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Abstract

In this work we study the existence, uniqueness and qualitative properties of nonnegative
solutions of the Lotka-Volterra models with nonlinear diffusion under homogeneous Dirichlet
boundary conditions. We consider the three typical interactions: prey-predator, competition
and symbiosis. Unlike the linear diffusion models, nontrivial nonnegative solutions can exist
which are not strictly positive. Sufficient conditions in terms of the coefficients involved in
the setting of the models are given assuring that one species (or both) does not survive on
a set of its habitat (called “dead core”) of positive measure.

AMS Classification Codes: 35B50, 35B99, 35J55, 35K57, 92D25.
Keywords and phrases: degenerate Lotka-Volterra models, coexistence states, dead core set.

1



1 Introduction

In this paper we are interested in nonnegative solutions of the following system




−d1∆Um = U(A−BU ± CV ) in Ω,
−d2∆V n = V (D −EV ± FU) in Ω,
U = V = 0 on ∂Ω,

(1)

where Ω is a bounded domain of IRN , N ≥ 1, with a smooth boundary ∂Ω and m, n, d1, d2, B,
C, E, F are positive constants with m, n ≥ 1 and A,D ∈ IR. The problem (1) models the in-
teractions between two species, with population densities U(x) and V (x), inhabiting the region
Ω. Moreover, we are assuming that Ω is fully surrounded by inhospitable areas, because both
population densities are subject to homogeneous Dirichlet boundary conditions. Nonlinear dif-
fusion arises mainly in the porous media equation and it was introduced in population dynamics
in [16]. We refer to [12] and the references therein for details about the model. For the present
model U and V can interact in three different ways indicated by the sign of the last terms in
the equations: if both of them are negative then U and V compete; if they are positive then U
and V co-operate; and if, for example, the sign is positive in the first equation and negative in
the second one then U and V represent the predator and prey populations respectively.
To study (1), we make an appropiate change of variables (see [12]) and obtain





−∆wm = w(λ− w ± bz) in Ω,
−∆zn = z(µ− z ± cw) in Ω,
w = z = 0 on ∂Ω,

(2)

where λ, µ ∈ IR and b, c > 0.
When m = n = 1, (2) is the classical Lotka-Volterra model which has been widely studied

in the last years: see [4], [6], [8], [9], [15], [23], [26], [28] in competition, [4], [9], [10], [21], [25] in
predator-prey and [11], [19], [22], [24], [27] in symbiosis, for instance.

When m,n > 1 there exists an important change in the behaviour of the solutions of (2).
More precisely, it is possible that one species (or both) is nonnegative but not strictly positive,
i.e. there exist some subsets of Ω with strictly positive measures where the species does not
survive. We call them “dead cores” (see [14]). For that, we distinguish two types of nontrivial
nonnegative solutions of (2); those with both components positive, the coexistence states, and
those where at least one component could have a dead core, the semi-coexistence states.

We now describe the distribution and the contents of this work. In Section 2 we study the
single boundary value problem

{
−∆wm = w(a(x)− dw) in Ω,

w = 0 on ∂Ω,
(3)

which appears when one of the species is zero and where a ∈ Cα(Ω), α ∈ (0, 1), m ≥ 1 and
d ≥ 0. If m = 1 it is known that (3) admits a unique positive solution if and only if σΩ

1 (−a) < 0,
where σΩ

1 (q) stands for the principal eigenvalue of the problem
{
−∆w + q(x)w = σw in Ω,

w = 0 on ∂Ω,
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with q ∈ L∞(Ω). The particular case m > 1 and d = 0 has been studied in [1], [2], [3] and [17].
Thus, we focus on the case m > 1 and d > 0 which has been previously analyzed in [17] and
[30]. To state our main results, we need the following notation. For any a ∈ Cα(Ω) we denote

aL := min
x∈Ω

a(x) aM := max
x∈Ω

a(x).

In Theorem 1 we obtain some results concerning existence and uniqueness of nonnegative solu-
tions of (3) which can be summarized as follows:

• If aL ≥ 0 and 1 < m ≤ 2 then there exists a unique positive solution of (3).

• If aM > 0 then there exists at least a nonnegative solution of (3).

• If aM ≤ 0 then (3) does not admit a nonnegative solution.

Particular attention is paid to the existence of a dead core for solutions of (3). We show:

• If either aL > 0 or aL = 0 and 1 < m ≤ 2, any solution of (3) is positive and so it has not
a dead core.

• If aL = 0, m > 2 and A0 := int{x ∈ Ω : a(x) = 0} 6= ∅, there exists a positive constant
C = C(N, d, ε) such that if aM < C then any nonnegative solution of (3) has a dead core,
where ε > 0 is the radius of a ball contained in A0.

When a changes sign, we write at(x) := a+(x)− ta−(x) where a±(x) := max{0,±a(x)} and for
any t > 0 and R > 0 we consider the sets

N(R, t) := {x ∈ Ω : a−(x) ≥ R

t
}, M(R, t) := {x ∈ N(R, t) : dist(x, ∂N(R, t)\∂Ω) ≥ CR},

with

CR :=

√
N

2

∫ (
a+

M
d

)m

0

ds

[
∫ s

0
(Rν1/m + dν2/m)dν]1/2

.

With this notation, we obtain that if M(R, t) 6= ∅ for some t > 0 and R > 0 then any nonnegative
solution of (3) has a dead core. Moreover, we consider t as parameter and we obtain information
about the qualitative behaviour of the nonnegative solutions of (3). Our results in this direction
can be stated in the following general terms:

• There exists t0 > 0 such that if t ≥ t0 then any nonnegative solution of (3) has a dead
core.

• If 1 < m ≤ 2 there exists t1 > 0 such that if 0 < t ≤ t1 then any nonnegative solution of
(3) is positive.

• If m > 2 there exist d0 > 0 and t0(d0) > 0 such that if 0 < t ≤ t0(d0) then any nonnegative
solution of (3) has a dead core.
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These results improve and extend those in [30] (See Remark 5 and Section 2).
In Section 3 we analyze the system (2) in the three classical interactions: predator-prey, com-
petition and symbiosis. The prey-predator case has been investigated in [7], [18], [20], [29], [31];
competition one in [7], [29]; and lastly, the symbiosis one in [7]. We consider λ and µ as principal
parameters and we study the set of values of (λ, µ) for which (2) admits a semi-coexistence or
coexistence state. On the other hand, we obtain a priori bounds for nonnegative solutions of (2)
which are the key to get the non-existence regions of nonnegative solutions in the (λ, µ)-plane.
We should notice that our results improve in some sense those in the above mentioned works
(see Remarks 8, 9 and 11).
Now, we are interested in the existence of a dead core for any nonnegative solution of (2). This
has been previously studied in the cases of prey-predator and competition in [18] and [29]. To get
results concerning this subject, we apply the results of Section 2 and obtain for the prey-predator
case:

• For fixed λ > 0, there exists µ0(λ) > 0 such that if 0 < µ < µ0(λ) any nonnegative solution
of (2) has a dead core.

• For fixed µ > 0, there exist λ0(µ) < 0 and ε > 0 such that if λ ≤ λ0(µ) there is no
nonnegative solution of (2) and if λ ∈ (λ0(µ), λ0(µ) + ε) any nonnegative solution of (2)
has a dead core.

• For fixed λ, µ, b > 0, there exists c0 > 0 such that if c > c0 any nonnegative solution of (2)
has a dead core.

In the case of competition, we have:

• For fixed λ > 0 (resp. µ > 0), there exists µ0(λ) > 0 (resp. λ0(µ) > 0) such that if
0 < µ < µ0(λ) (resp. 0 < λ < λ0(µ)) any nonnegative solution of (2) has a dead core.

• For fixed λ, µ > 0 and c > 0 (resp. b > 0), there exists b0 > 0 (resp. c0 > 0) such that if
b > b0 (resp. c > c0) any nonnegative solution of (2) has a dead core.

Moreover, in this Section we will give a biological interpretation to these results.

2 The logistic equation with nonlinear diffusion

In this paper we use the following notation: Ω is a bounded domain in IRN with a smooth enough
boundary ∂Ω. For fixed α > 0, we consider the spaces U := {w ∈ C2,α(Ω) : w = 0 on ∂Ω}
and V := Cα(Ω) ordered by their cones of nonnegative functions PU := {w ∈ U : w ≥ 0} and
PV := {w ∈ V : w ≥ 0}. We will write f ≥ g if f − g ∈ P , f > g if f − g ∈ P − {0} and f À g
if f − g ∈ Ṗ , where Ṗ denotes the interior of P . Moreover, for any f ∈ V we denote

fM := max
x∈Ω

f(x) fL := min
x∈Ω

f(x).
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Let a ∈ V, m > 1 and d > 0, we consider the logistic equation with nonlinear diffusion, namely
{
−∆wm = a(x)w − dw2 in Ω,

w = 0 on ∂Ω.
(4)

Given q ∈ L∞(Ω), σΩ
1 (q) stands for the first eigenvalue of

{
−∆w + q(x)w = σw in Ω,

w = 0 on ∂Ω,
(5)

whose corresponding associated eigenfunction ϕΩ
1 [q] can be chosen such that ϕΩ

1 [q] À 0 and
‖ϕΩ

1 [q]‖∞ = 1. Moreover, due to the strong maximun principle, we have

∂ϕΩ
1 [q]

∂n
< 0 (6)

where n is the outward unit normal at ∂Ω. Finally, we write σΩ
1 := σΩ

1 (0) and ϕΩ
1 := ϕΩ

1 [0].
To study (4), we perform the change of variables wm = u and we obtain

{
−∆u = a(x)u1/m − du2/m in Ω,

u = 0 on ∂Ω.
(7)

For the existence and uniqueness of nonnegative solutions of (7), the main result is the following
one:

Theorem 1 Let a ∈ V, d > 0 and m > 1. The following assertions are true:

1. If a À 0, then there exists a solution u ∈ U of (7) with u À 0. Moreover, if m ≤ 2 the
solution is unique.

2. If a > 0 and m ≤ 2, then there exists a unique solution u ∈ U of (7) with u À 0.

3. If there exists x0 ∈ Ω such that a(x0) > 0, then there exists at least a solution u ∈ U of
(7) with u > 0.

Remark 1 If a ≤ 0 then u = 0 is the unique nonnegative solution of (7) owing to the maximum
principle. On the other hand, observe that the function a can change of sign in case 3.

Proof. We will apply the sub-supersolution method. By the regularity of a there exist x0 ∈ Ω
and r > 0 such that

a(x) ≥ a0 > 0, for x ∈ B(x0, r),

where B(x0, r) is the ball of radius r > 0 centered at x0. Now, we define the function

φ(x) :=

{
ϕΩ′

1 (x) if x ∈ Ω′,
0 if x ∈ Ω\Ω′,
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with Ω′ = Ω in the case 1 and Ω′ = B(x0, r) in the other cases. We will show that u = ρφ is a
subsolution of (7) with ρ a positive constant. Indeed, we can take ρ > 0 such that

−∆(ρϕΩ′
1 ) ≤ a(x)(ρϕΩ′

1 )1/m − d(ρϕΩ′
1 )2/m in Ω′.

By (6) we can use Lemma I.1 of [3] and conclude that u is a subsolution of (7). As a supersolution
we pick u = M , with M > 0 a sufficiently large constant. Moreover, it is easy to see that

‖u‖∞ ≤ M :=
(

aM

d

)m

(8)

for any solution u of (7). So, there exists at least a solution u ∈ U such that u ≤ u ≤ u.
Clearly u À 0 in the first case. Now, we show that u À 0 in the case 2 by applying the strong
maximum principle. Let u > 0 be a solution of (7); it suffices to find a constant K > 0 such
that (−∆ + K)u > 0, or equivalently

K > du2/m−1 − a(x)u1/m−1, with u ∈ (0,M ], (9)

which follows from hypotheses and so u À 0.
For the uniqueness we use [5]. We define the map

t 7→ g(x, t) :=
a(x)t1/m − dt2/m

t
= a(x)t1/m−1 − dt2/m−1.

It is not hard to prove that this application is decreasing in the cases a À 0 and m ≤ 2 as well
as a > 0 and m < 2. It remains to prove the uniqueness in the case m = 2 and a > 0. Let
u1 and u2 be two arbitrary solutions of (7). Now, the function g is nonincreasing, so by the
Remark 1 of [5], it follows that there exists a constant C such that u1 = Cu2. Hence,

a(x)u1/2
1 − du1 = −∆u1 = −∆(Cu2) = C(a(x)u1/2

2 − du2) = Ca(x)u1/2
2 − du1

from which
a(x)C1/2u

1/2
2 (1− C1/2) = 0,

and therefore C = 1. This completes the proof.

•

Remark 2 1.- When aL > 0 there exists a unique positive solution of (7) provided that

m > 2 and
aL

aM
>

m− 2
m− 1

.

Indeed, it can be proved that the function t 7→ g(x, t) defined in the proof of Theorem 1 is
decreasing.
2.- In the particular case a(x) ≡ λ = cte it is known, cf. [13], that there exists a unique positive
solution of (7) if and only if λ > 0.
3.- When a À 0 and m > 1, any solution of (7) is positive in Ω. In this case, it is easy to prove
the existence of the constant K satisfying (9).
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¿From the priori bound (8) follows the existence of a nontrivial maximal solution of (7) which
we denote by θ[a,d,m]. We will take θ[a,d,m] = 0 if a ≤ 0.
The next result will be very useful to compare positive solutions of different logistic boundary
value problems.

Proposition 1 Let a, b ∈ V.

1. If u is a subsolution of (7), then
u ≤ θ[a,d,m].

2. If a ≤ b, then
θ[a,d,m] ≤ θ[b,d,m].

Proof. Let u be a subsolution of (7). As sufficiently large constants, say K > 0, are supersolu-
tions, then there exists a solution u of (7) such that u ≤ u ≤ K. From the maximality of θ[a,d,m]

it follows that u ≤ θ[a,d,m]. For the second part it is enough to prove that θ[a,d,m] is a subsolution
of {

−∆w = b(x)w1/m − dw2/m in Ω,
w = 0 on ∂Ω,

and apply the previous result.
•

2.1 Existence of a “dead core”

In this subsection we shall consider the existence of a “dead core” for solutions u of (7), i.e., we
will show that the set Ω0 := {x ∈ Ω : u(x) = 0} has a strictly positive measure under suitable
easily checked hypotheses on a, d, m, Ω and N .
Assume that a > 0 and

A0 := int{x ∈ Ω : a(x) = 0} 6= ∅.
Theorem 1 ensures that if m ≤ 2 any nonnegative solution of (7) is positive. Our principal result
is:

Theorem 2 Let m > 2, a > 0 and A0 = int{x ∈ Ω : a(x) = 0} 6= ∅. Let x0 ∈ A0 and ε > 0 be
such that B(x0, 2ε) ⊂ A0 and assume that

aM <
d

m−1
m−2 ε

2
m−2

[q(q − 1 + N−1
2 )]

1
m−2

, (10)

with q = 2m/(m − 2). Then there exists a dead core for any u > 0 solution of (7). Moreover,
we have

Ω0 = {x ∈ Ω : u(x) = 0} ⊃ B(x0, ε).
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Proof. Let x0 ∈ A0 and ε > 0 be such that B(x0, 2ε) ⊂ A0. We will build a function which is
zero in B(x0, ε) ⊂ Ω and bigger than the maximal solution of (7). Without loss of generality we
can suppose that x0 = 0. We consider the function

Ψ(x) :=





0 if x ∈ B(0, ε),
(|x|−ε)q

εq if x ∈ B(0, 2ε)\B(0, ε),
1 if x ∈ Ω\B(0, 2ε).

It is clear that Ψ ∈ H1(Ω). We will show that the function u0 := KΨ satisfies

θ[a,d,m] ≤ u0 in Ω,

with an appropiate constant K. Taking

K ≥ (
aM

d
)m (11)

we have u0 ≥ θ[a,d,m] in Ω\B(0, 2ε) from (8). We will prove now that (θ[a,d,m] − u0)+ = 0 in
B(0, 2ε). It is sufficient to prove that

∫

B(0,2ε)
|∇(θ[a,d,m] − u0)+|2 ≤ 0, (12)

because (θ[a,d,m] − u0)+ = 0 on ∂B(0, 2ε). Let φ ∈ H1
0 (B(0, 2ε)), φ ≥ 0. Then

∫

B(0,2ε)
∇(θ[a,d,m] − u0) · ∇φ =

∫

B(0,2ε)
∇θ[a,d,m] · ∇φ−K

∫

B(0,2ε)\B(0,ε)
∇Ψ · ∇φ =

∫

B(0,2ε)
θ
1/m
[a,d,m](a(x)− dθ

1/m
[a,d,m])φ + K

∫

B(0,2ε)\B(0,ε)
∆Ψ · φ−K

∫

∂B(0,ε)

∂Ψ
∂n

φ.

Now using that ∂Ψ/∂n = 0 on ∂B(0, ε) and a(x) = 0 in B(0, 2ε), we find that
∫

B(0,2ε)
∇(θ[a,d,m] − u0) · ∇φ ≤ −

∫

B(0,2ε)
dθ

2/m
[a,d,m]φ + K

∫

B(0,2ε)\B(0,ε)
∆Ψ · φ =

= −
∫

B(0,ε)
dθ

2/m
[a,d,m]φ +

∫

B(0,2ε)\B(0,ε)
(−dθ

2/m
[a,d,m] + K(

q

εq
(|x| − ε)q−2(q − 1 +

N − 1
|x| (|x| − ε))))φ.

Taking φ = (θ[a,d,m] − u0)+, we obtain
∫

B(0,2ε)
|∇(θ[a,d,m] − u0)+|2 ≤

≤
∫

B(0,2ε)\B(0,ε)
(−dθ

2/m
[a,d,m] + K(

q

εq
(|x| − ε)q−2(q − 1 +

N − 1
|x| (|x| − ε))))(θ[a,d,m] − u0)+.

(13)
Using (13) and noting that q − 2 = 2q/m, to prove (12) it is sufficient to show that

K1−2/m q

ε2
(q − 1 +

N − 1
|x| (|x| − ε))− d ≤ 0 x ∈ B(0, 2ε)\B(0, ε).
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We denote

K1 :=
K1−2/m

ε2
q(q − 1)− d and K2 :=

K1−2/m

ε2
q(N − 1).

We must prove that

K1 + K2 ≤ ε
K2

|x| for ε < |x| < 2ε. (14)

Assume that N ≥ 2. If K1 + K2 ≤ 0, (14) is trivial because K2 > 0. If K1 + K2 > 0, (14) is
equivalent to

|x| ≤ ε
K2

K1 + K2
.

This inequality is true in B(0, 2ε)\B(0, ε) if

2K1 + K2 ≤ 0. (15)

If N = 1 then K2 = 0, and so (15) is equivalent to be K1 ≤ 0. It is not hard to prove from (10)
the existence of a constant K satisfying (11) and (15). This finishes the proof.

•

Remark 3 We remark that the constant

C := C(d, ε, m,N) =
d

m−1
m−2 ε

2
m−2

[q(q − 1 + N−1
2 )]

1
m−2

satisfies C ↑ +∞ as d ↑ +∞ or ε ↑ +∞. Then, if a > 0 is given, Ω0 exists if d is large enough.
On the other hand, if d is given, Ω0 exists if aM is sufficiently small or if A0 is large.

Now we consider the case where a changes sign. Let t ∈ IR+ and we define

at(x) := a+(x)− ta−(x)

where a±(x) := max{0,±a(x)} and we suppose that a+ 6≡ 0. The aim is now to study the
existence of a dead core of solutions of

{
−∆u = at(x)u1/m − du2/m in Ω,

u = 0 on ∂Ω,
(16)

with t as a parameter. To prove the main result we need the following Lemma motivated by
Lemma 7 in [30].

Lemma 1 Let R > 0,

R0 :=

√
N

2

∫ +∞

0

ds

[
∫ s

0
(Rν1/m + dν2/m)dν]1/2
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and hR : [0, R0) 7→ IR+, be implicitly defined by

∫ hR(r)

0

ds

[
∫ s

0
(Rν1/m + dν2/m)dν]1/2

=
√

2
N

r. (17)

Then hR ∈ C2(0, R0), hR(0) = h′R(0) = 0 and for any x, x0 ∈ IRN

−∆hR(|x− x0|) + dh
2/m
R (|x− x0|) + Rh

1/m
R (|x− x0|) ≥ 0.

Proof. Firstly, observe that R0 = +∞ if m ≥ 2 and R0 < +∞ if m < 2. It is not difficult
to prove that for any r0 > 0 there exists a unique value of hR(r0) satisfying (17). Moreover,
hR(0) = 0 and the first claim follows from the implicit function theorem. On the other hand,
from (17) it is easy to show that

h′R(r) =
√

2
N

[
∫ hR(r)

0
(Rs1/m + ds2/m)ds]1/2 h′′R(r) =

1
N

(Rh
1/m
R (r) + dh

2/m
R (r)).

Hence,
−∆hR(|x− x0|) + dh

2/m
R (|x− x0|) + Rh

1/m
R (|x− x0|) =

= −h′′R(r)− N − 1
r

h′R(r) + dh
2/m
R + Rh

1/m
R (r) =

N − 1
Nr

g(r),

where

g(r) = (Rh
1/m
R (r) + dh

2/m
R (r))r −

√
2N [

∫ hR(r)

0
(Rs1/m + ds2/m)ds]1/2.

It is clear that g(0) = 0 and

g′(r) =
r

m
[RhR(r)(1−m)/m + 2dhR(r)(2−m)/m]h′R(r),

and so g ≥ 0. This completes the proof.
•

We consider the sets

N(R, t) := {x ∈ Ω : a−(x) ≥ R

t
}, M(R, t) := {x ∈ N(R, t) : dist(x, ∂N(R, t)\∂Ω) ≥ CR},

where

CR :=

√
N

2

∫ (
a+

M
d

)m

0

ds

[
∫ s

0
(Rν1/m + dν2/m)dν]1/2

.

The main result is the following one:

Theorem 3 Assume m > 1 and that for some R > 0 and t > 0, M(R, t) 6= ∅. Then there
exists a dead core for any solution u of (16). Moreover, we have

Ω0 = {x ∈ Ω : u(x) = 0} ⊃ M(R, t).
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Proof. Let x0 ∈ M(R, t). Then
B(x0, CR) ⊂ N(R, t).

We consider the map
w(x) := hR(|x− x0|),

which is well-defined in B(x0, CR) because CR < R0. Hence, by Lemma 1, it follows that

−∆(w − θ[at,d,m]) ≥ R(θ1/m
[at,d,m] − w1/m) + d(θ2/m

[at,d,m] − w2/m) in B(x0, CR).

Now we study the behaviour on ∂B(x0, CR). If x ∈ ∂B(x0, CR), then

w(x) = hR(CR) = (
a+

M

d
)m ≥ θ[at,d,m](x).

The maximum principle implies that w ≥ θ[at,d,m] in B(x0, CR). Since w(x0) = 0, then
θ[at,d,m](x0) = 0. This concludes the proof.

•
Remark 4 We could formulate a similar result with R = 0 assuming that m > 2.

It seems reasonable that for large t, (16) should have a dead core. The following result shows
this fact.

Corollary 1 Let m > 1 and d > 0. Then there exists t0 > 0 such that for t ≥ t0 any solution
of (16) has a dead core.

Proof. We take R(t) = t1/2. Then

N(R(t), t) = {x ∈ Ω : a−(x) ≥ 1
t1/2

}.

It is easy to show that if t1 ≤ t2 then N(R(t1), t1) ⊂ N(R(t2), t2). On the other hand, there
exist t > 0 (it is enough to take t > 1

(a−)2M
), x0 ∈ Ω and r0 > 0 such that

B(x0, r0) ⊂ N(R(t), t) ⊂ N(R(t), t), for any t ≥ t.

Since CR(t) ↓ 0 as t ↑ ∞, there exists t > 0 such that if t ≥ t then

CR(t) < r0.

Hence, taking t0 := max{t, t}, for t ≥ t0 we obtain

dist(x0, ∂N(R(t), t)\∂Ω) ≥ dist(x0, ∂B(x0, r0)\∂Ω) = r0 > CR(t),

and therefore M(R(t), t) 6= ∅. The result now follows from Theorem 3.

•
The case t = 0 has been studied in Theorem 2. We now see what happens when t is positive
and small. In [30] the authors presented an example in which there is not a dead core when t is
positive and small. Their reasoning can be generalized in the spatial dimension as well as the
generality of at. The proof of this result is rather similar to the one written in [30] and so we
omit it here.
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Corollary 2 Let 1 < m ≤ 2. Then there exists t0 > 0 such that for 0 < t ≤ t0, any solution of
(16) is positive.

The following result says us that the above one is not true in general in the case m > 2.

Corollary 3 Assume m > 2. Then there exist d0 > 0 and t0(d0) > 0 such that for 0 < t ≤ t0,
any solution of (16) has a dead core.

Proof. We take R(t) = t2. Then N(R(t), t) = {x ∈ Ω : a−(x) ≥ t}. Let x0 ∈ Ω be such that
a−(x0) = (a−)M and let C be the connected component of Ω such that x0 ∈ C. Let r0 > 0 be
such that B(x0, r0) ⊂ C and

0 < a := (a−)L in B(x0, r0).

Since CR(t) < C0 and C0 ↓ 0 as d ↑ ∞ (see Remark 4), then there exists d0 > 0 such that

CR(t) < r0 for d ≥ d0.

Let 0 < t0 ≤ a. Then, for t ≤ t0 we get

B(x0, r0) ⊂ N(R(t0), t0) ⊂ N(R(t), t).

As in Corollary 1 it follows that M(R(t0), t0) 6= ∅. This completes the proof.

•

Remark 5 1. Note that given t > 0, if aM ↓ 0 or d ↑ +∞ then there exists a dead core of the
solutions of (16). Indeed, for fixed t0 > 0, let x0 ∈ Ω be such that a−(x0) = (a−)M > 0.
Then there exist R0 > 0 sufficiently small (0 < R0 < (a−)M ) and r0(R0) > 0 such that

B(x0, r0(R0)) ⊂ N(R0, t0).

Moreover, CR ↓ 0 as aM ↓ 0 or d ↑ ∞. So, we can reason as in the preceding corollaries
and prove that M(R0, t0) 6= ∅. It is sufficent to apply Theorem 3.

2. We would like to point out that Theorem 3 improves the result obtained in [30] where the
authors proved the same result with

C̃R :=

√
N

2R

∫ (
a+

M
d

)m

0

ds

[
∫ s

0
ν1/mdν]1/2

instead of CR. It is clear that C̃R > CR.

12



3 Systems

As we have mentioned in the Introduction, in this section we will apply the preceding results to
the following systems 




−∆wm = w(λ− w ± bz) in Ω,
−∆zn = z(µ− z ± cw) in Ω,
w = z = 0 on ∂Ω,

(18)

where b, c > 0 and λ, µ ∈ IR. Performing the change of variables wm = u and zn = v, (18) can
be rewritten as 




−∆u = λu1/m − u2/m ± bu1/mv1/n in Ω,
−∆v = µv1/n − v2/n ± cv1/nu1/m in Ω,
u = v = 0 on ∂Ω.

(19)

3.1 Predator-prey

We consider the following problem




−∆u = λu1/m − u2/m + bu1/mv1/n in Ω,
−∆v = µv1/n − v2/n − cv1/nu1/m in Ω,
u = v = 0 on ∂Ω,

(20)

where u and v denote the predator and prey populations respectively.

Lemma 2 The condition µ > 0 is necessary for the existence of coexistence and semi-coexistence
states.

The proof follows from applying the maximum principle to second equation in (20).
Firstly, we focus our attention on the existence of semi-coexistence states. We consider (λ, µ)

as parameters and study the set of values of (λ, µ) in (λ, µ)-plane where semi-coexistence states
exist.
Hereafter we shall denote θ[a,m] := θ[a,1,m] and

θλ,0 := θ
1/m
[λ,m] θµ,0 := θ

1/n
[µ,n],

and for r ≥ 0,
θλ,r+1 := θ

1/m
[λ+bθµ,r,m] θµ,r+1 := θ

1/n
[µ−cθλ,r,n].

Then, for r ≥ 1

−∆(θm
λ,r) = θλ,r(λ + bθµ,r−1 − θλ,r), −∆(θn

µ,r) = θµ,r(µ− cθλ,r−1 − θµ,r). (21)

With respect to the existence of semi-coexistence states, our main result is the following one:

Theorem 4 Assume µ > 0 and that the set

Ω1 := int{x ∈ Ω : λ + bθµ,2(x) > 0} 6= ∅. (22)

Then there exists at least one semi-coexistence state of (20).
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Proof. We use the sub-supersolution method, see [12], i.e, we have to find u, u, v, v ∈ H1(Ω)
⋂

L∞(Ω), u ≤ u and v ≤ v in Ω, u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω and such that for any ϕ ∈ H1
0 (Ω),

ϕ ≥ 0 we have 



∫

Ω
∇u · ∇ϕ ≤

∫

Ω
(λu1/m − u2/m + bu1/mv1/n)ϕ,

∫

Ω
∇u · ∇ϕ ≥

∫

Ω
(λu1/m − u2/m + bu1/mv1/n)ϕ,

∫

Ω
∇v · ∇ϕ ≤

∫

Ω
(µv1/n − v2/n − cv1/nu1/m)ϕ,

∫

Ω
∇v · ∇ϕ ≥

∫

Ω
(µv1/n − v2/n − cv1/nu1/m)ϕ.

(23)

Let B1 be an open ball such that B1 ⊂ Ω1. We pick

(u, u) = (ρφ, θm
λ,1), (v, v) = (θn

µ,2, θ
n
µ,0)

where ρ > 0 has still to be specified and

φ(x) :=

{
ϕB1

1 (x) if x ∈ B1,
0 if x ∈ Ω\B1.

¿From Proposition 1 we have v ≤ v and we can choose ρ such that u ≤ u. We must prove only
the inequalities in (23). We will show the first one, the other ones follow from (21) directly. Let
ϕ ∈ H1

0 (Ω), ϕ ≥ 0. Then

∫

Ω
∇u · ∇ϕ = ρ

∫

B1

∇ϕB1
1 · ∇ϕ = −ρ

∫

B1

∆ϕB1
1 · ϕ + ρ

∫

∂B1

∂ϕB1
1

∂n
· ϕ

< ρ

∫

B1

σB1
1 ϕB1

1 · ϕ ≤ ρ1/m
∫

Ω
(λφ1/m − ρ1/mφ2/m + bφ1/mv1/n)ϕ =

∫

Ω
u1/m(λ− u1/m + bv1/n)ϕ

taking ρ sufficiently small and using (22). Finally, we claim that θµ,2 > 0. Indeed, since µ > 0
it follows from Theorem 1 that θµ,0 À 0. Moreover, the set

Ω2 := int{x ∈ Ω : µ− cθλ,1(x) > 0} 6= ∅,

and so, the claim follows from Theorem 1. 3). This completes the proof.

•

Remark 6 Observe that, since θµ,2 > 0, condition (22) is true for any λ such that

λ > −b(θµ,2)M .

The following result gives us a priori bounds for the semi-coexistence states.

Proposition 2 Let (u, v) be a semi-coexistence state of (20). Then

θ[λ,m] ≤ u ≤ (λ + bµ)m, v ≤ θ[µ,n]. (24)
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Proof. Let (u, v) be a semi-coexistence state of (20). It can be proved easily that v is a
subsolution of (7) with a(x) = µ. The second relation of (24) follows from Proposition 1.
The left inequality of the first relation of (24) follows as u a supersolution of (7) with a(x) = λ
and the positive solution of this equation is unique.
Now we show the right inequality. We define Ω1 = {x ∈ Ω : u1/m(x) > λ + bµ}. Then,

−∆u ≤ bu1/m(v1/n − µ) ≤ 0 in Ω1.

Hence |Ω1| = 0 and the result follows.
•

As an easy consequence from Proposition 2 we obtain the following result, which provides us of
a non-existence region of nonnegative solutions.

Corollary 4 Assume λ + bµ ≤ 0. Then (20) does not admit a semi-coexistence state.

Proof. ¿From (24) and (8), we have λ + bv1/n ≤ λ + bµ. Hence,

−∆u = λu1/m − u2/m + bu1/mv1/n = (λ + bv1/n)u1/m − u2/m ≤ (λ + bµ)u1/m − u2/m.

The result now follows from Remark 1.
•

Now we are interested in the existence of coexistence states. We proved in [12] the following
result that we include here for the sake of completeness.

Theorem 5 Assume bc < 1 and

λ > 0 and µ > c(λ + bµ). (25)

Then there exists at least one coexistence state of (20).

¿From Theorems 4 and 5 a natural question is raised: is there a region in the (λ, µ)-plane where
(20) possesses at least a semi-coexistence state but not a coexistence state, i.e., a region where
any nonnegative solution of (20) has a dead core? We present a couple of results about this
subject. The first one provides us a region in the (λ, µ)-plane where any nonnegative solution
of (20) is positive.

Proposition 3 Assume bc < 1 and that λ and µ satisfy (25). Then any semi-coexistence state
of (20) is a coexistence state, i.e., there is not a dead core.

Proof. Let (u, v) be a semi-coexistence state of (20). Then

−∆u = u1/m(λ + bv1/n)− u2/m, −∆v = v1/n(µ− cu1/m)− v2/n.

On the other hand, if λ and µ satisfy (25), we get λ + bv1/n À 0 and µ− cu1/m À 0. Hence,
using Remark 2. 3) the result follows.

•
that The following result gives us conditions in terms of the coefficients in the model setting
which ensure that any nonnegative solution of (20) has a dead core.
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Theorem 6 The following assertions are true:

1. Assume λ > 0. Then there exists ρ(λ) > 0 such that if 0 < µ < ρ(λ) any nonnegative
solution of (20) has a dead core.

2. Assume µ > 0. Then there exists λ0(µ) < 0 and ε > 0 such that if λ ∈ (λ0(µ), λ0(µ) + ε)
any nonnegative solution of (20) has a dead core.

3. Assume µ > 0 and λ > 0. Then there exists c0 > 0 such that if c > c0 any nonnegative
solution of (20) has a dead core.

Proof. Using Propositions 1 and 2 it is easy to prove that for any nonnegative solution (u, v) of
(20) we have

u ≤ θ
[λ+bθ

1/n

[µ,n]
,m]

v ≤ θ
[µ−cθ

1/m

[λ,m]
,n]

, (26)

and so,
Ωu,0 := {x ∈ Ω : u(x) = 0} ⊃ {x ∈ Ω : θ

[λ+bθ
1/n

[µ,n]
,m]

(x) = 0},

Ωv,0 := {x ∈ Ω : v(x) = 0} ⊃ {x ∈ Ω : θ
[µ−cθ

1/m

[λ,m]
,n]

(x) = 0}.

To prove the first part we will use Theorem 3 and Remark 5. In this case

a(x) = µ− cθ
1/m
[λ,m](x).

Hence aM = µ and A− = {x ∈ Ω : µ − cθ
1/m
[λ,m](x) < 0}. Let x0 ∈ Ω and R > 0 be such that

θ
1/m
[λ,m](x0) = (θ1/m

[λ,m])M and c(θ1/m
[λ,m])M −R > 0. We define

B(x) := cθ
1/m
[λ,m](x)−R,

and so,
N(R, 1) := N(µ) = {x ∈ Ω : µ ≤ B(x)}.

It is easily seen that if µ1 ≤ µ2 then

N(µ2) ⊂ N(µ1). (27)

Let δ > 0 be such that 0 < δ < c(θ1/m
[λ,m])M −R and define

µ0 := c(θ1/m
[λ,m])M −R− δ.

With these choices we can see that x0 ∈ N(µ0) and from the continuity of B(x) there exists
rµ0 > 0 such that B(x0, rµ0) ⊂ N(µ0). Moreover, from (27) we get

B(x0, rµ0) ⊂ N(µ0) ⊂ N(µ) for µ ∈ [0, µ0].

On the other hand, if µ ↓ 0 then aM = µ ↓ 0, and so CR ↓ 0. Thus, there exists µ1 > 0 such
that if 0 < µ < µ1 then CR < rµ0 . Finally, we take ρ := min{µ0, µ1}. Thus, for µ ∈ (0, ρ)

CR < rµ0 and B(x0, rµ0) ⊂ N(µ)
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and so,
dist(x0, ∂N(µ)\∂Ω) ≥ dist(x0, ∂B(x0, rµ0)\∂Ω) = rµ0 > CR.

Therefore M(R, 1) 6= ∅, and so the first part follows from Theorem 3.
In order to prove the second part let

a(x) = λ + bθ
1/n
[µ,n](x)

and so,
aM = λ + b(θ1/n

[µ,n])M .

We take
λ0 = −b(θ1/n

[µ,n])M .

It is clear that if λ > λ0 then aM > 0. Let R and δ be such that 0 < R < δ < −λ0. Thus, for
λ ∈ (λ0,−δ] the set

N(R, 1) = {x ∈ Ω : λ ≤ −R− bθ
1/n
[µ,n](x)} 6= ∅.

Observe that if λ ↓ λ+
0 then aM ↓ 0, and so CR ↓ 0. Now, reasoning as in the above paragraph,

the result follows.
To prove the last part we fix λ, µ > 0. We take R = c1/2 and denote by N(R, 1) := N(c). Thus,

N(c) = {x ∈ Ω :
µ + c1/2

c
≤ θ

1/m
[λ,m](x)}.

Observe that the function

f(c) :=
µ + c1/2

c

is decreasing and tends to 0 as c ↑ ∞. Moreover, if c1 ≤ c2 then N(c1) ⊂ N(c2). Hence, for c
sufficiently large we get N(c) 6= ∅. Finally, observe that CR(c) ↓ 0 as c ↑ ∞. We can complete
the proof by using an argument similar to that used previously.

•

Remark 7 We can give a biological interpretation of the above result. In the part 1 we fix the
predator’s growth rate. Then if the prey’s growth rate is small, the prey do not live in all the
space Ω, i.e., there exist some subregions of Ω where the prey is driven to extinction by the
predator. On the other hand, in part 3 if the rate at which the prey is consumed by the predator
(the parameter c in the setting of the system (20)) is sufficiently large, then there exist some
areas where the prey do not exist.
In part 2, from (26) observe that if λ ≤ −b(θ1/n

[µ,n])M := λ0 then there are no semi-coexistence
states of (20). Theorem 6 ensures that (20) does not admit a coexistence state if λ ∈ (λ0, λ0 +ε).

Remark 8 Our results are improvement on previous results papers. Indeed, in [20] the authors
obtained under condition (25) the existence of a coexistence state of (20) but only in the particular
case 1 < m = n < 2. In [7] the authors showed the existence of a semi-coexistence state when λ
and µ satisfy (25). It is clear that condition (22) is weaker than (25).
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3.2 Competition

Consider the following model whose solutions represent the steady states of dynamical models
of competing populations





−∆u = λu1/m − u2/m − bu1/mv1/n in Ω,
−∆v = µv1/n − v2/n − cv1/nu1/m in Ω,
u = v = 0 on ∂Ω.

(28)

Concerning the existence of semi-coexistence states, we have the following result:

Theorem 7 (28) possesses a semi-coexistence state if and only if λ > 0 and µ > 0.

Proof. Let (u, v) be a semi-coexistence state of (28). Then the maximum principle ensures that
λ and µ have to be positive. Assume now λ, µ > 0. It is clear that

B1 := {x ∈ Ω : λ− bθ
1/n
[µ,n](x) > 0} 6= ∅, B2 := {x ∈ Ω : µ− cθ

1/m
[λ,m](x) > 0} 6= ∅. (29)

We have to find a couple (u, u) − (v, v) of sub-supersolutions of (28), see [12], i.e. u, u, v, v ∈
H2(Ω) ∩ L∞(Ω), u ≤ u and v ≤ v in Ω and u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω and such that





−∆u ≤ λu1/m − u2/m − bu1/mv1/n in Ω,
−∆u ≥ λu1/m − u2/m − bu1/mv1/n in Ω,
−∆v ≤ µv1/n − v2/n − cv1/nu1/m in Ω,
−∆v ≥ µv1/n − v2/n − cv1/nu1/m in Ω.

(30)

We pick
(u, u) = (θ

[λ−bθ
1/n

[µ,n]
,m]

, θ[λ,m]) (v, v) = (θ
[µ−cθ

1/m

[λ,m]
,n]

, θ[µ,n]).

Using (29) and Theorem 1, it can be shown that u > 0, v > 0. Moreover, from Proposition 1,
u ≤ u and v ≤ v in Ω. It is not hard to prove that this couple satisfies the inequalities in (30)
and this completes the proof.

•
The proofs of the following results are similar to the predator-prey ones, so we omit them.

Proposition 4 Let (u, v) be a semi-coexistence state of (28). Then

u ≤ θ[λ,m] v ≤ θ[µ,n]. (31)

With respect to the existence of coexistence states we have the following result whose proof can
be found in [12].

Theorem 8 Assume bc < 1 and

λ > bµ and µ > cλ. (32)

Then there exists at least one coexistence state of (28).
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Finally, concerning conditions on λ and µ under which any coexistence state has not a dead
core, we obtain:

Proposition 5 Assume bc < 1 and that λ and µ satisfy (32). Then any nonnegative solution
of (28) has not a dead core.

The following result gives us conditions which ensure that any nonnegative solution of (28) has
a dead core.

Theorem 9 The following assertions are true:

1. Assume λ > 0. Then there exists µ(λ) > 0 such that if 0 < µ < µ(λ) any nonnegative
solution of (28) has a dead core.

2. Assume µ > 0. Then there exists λ(µ) > 0 such that if 0 < λ < λ(µ) any nonnegative
solution of (28) has a dead core.

3. Assume λ, µ > 0 and b > 0. Then there exists c0 > 0 such that if c > c0 any nonnegative
solution of (28) has a dead core.

4. Assume λ, µ > 0 and c > 0. Then there exists b0 > 0 such that if b > b0 any nonnegative
solution of (28) has a dead core.

Proof. We will prove the first and third parts. The other ones follow similarly. We claim that
for any nonnegative solution (u, v) of (28), we have

u ≤ θ
[λ−bθ

1/n

[µ−cθ
1/m

[λ,m]
,n]

,m]
, v ≤ θ

[µ−cθ
1/m

[λ−bθ
1/n

[µ,n]
,m]

,n]
. (33)

Indeed, using Proposition 1 it is sufficient to show that u is subsolution of



−∆w = (λ− bθ

1/n

[µ−cθ
1/m

[λ,m]
,n]

)w1/m − w2/m in Ω,

w = 0 on ∂Ω,

which is true if θ
[µ−cθ

1/m

[λ,m]
,n]
≤ v. ¿From Propositions 4 and 1, it follows that

v = θ[µ−cu1/m,n] ≥ θ
[µ−cθ

1/m

[λ,m]
,n]

.

This proves the first relation of (33). The second one follows analogously. So, from (33) we have

Ωu,0 = {x ∈ Ω : u(x) = 0} ⊃ {x ∈ Ω : θ
[λ−bθ

1/n

[µ−cθ
1/m

[λ,m]
,n]

,m]
(x) = 0},

Ωv,0 = {x ∈ Ω : v(x) = 0} ⊃ {x ∈ Ω : θ
[µ−cθ

1/m

[λ−bθ
1/n

[µ,n]
,m]

,n]
(x) = 0}.

We now prove the first part. For fixed λ > 0, we consider

a(x) = µ− cθ
1/m

[λ−bθ
1/n

[µ,n]
,m]

(x),
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and so aM = µ. As λ > 0, the set {x ∈ Ω : λ− bθ
1/n
[µ,n](x) > 0} 6= ∅ and thus

θ
[λ−bθ

1/n

[µ,n]
,m]

> 0 for µ ≥ 0.

Let
a(x, µ) := cθ

1/m

[λ−bθ
1/n

[µ,n]
,m]

(x).

¿From Proposition 1, if µ1 ≤ µ2 then

a(x, µ2) ≤ a(x, µ1). (34)

On the other hand, a(x, 0) = cθ
1/m
[λ,m] À 0 and so there exists µ0 > 0 such that for 0 ≤ µ < µ0

we have
0 ≤ µ < (a(x, µ0))M ≤ (a(x, µ))M .

By the continuity of a(x, µ0) there exists R0 > 0 such that for µ < µ0 the set

{x ∈ Ω : µ ≤ a(x, µ0)−R0} 6= ∅.
Hence,

N(µ) := N(R0, 1) = {x ∈ Ω : µ ≤ a(x, µ)−R0} ⊃ {x ∈ Ω : µ ≤ a(x, µ0)−R0} 6= ∅.
Finally, from (34) it follows easily that if µ1 ≤ µ2 then N(µ2) ⊂ N(µ1). Now we can reason as
in the first part of Theorem 6.
We will prove the third part. For fixed λ, µ > 0 and b > 0, we consider the same function a(x)
as above. In this case, we have

N(R, 1) := N(c) = {x ∈ Ω :
µ + R

c
≤ θ

1/m

[λ−bθ
1/n

[µ,n]
,m]

(x)},

and again arguing as for the second part of Theorem 6 the proof follows.

•
Remark 9 1. Theorem 9 has a biological interpretation similar to Theorem 6 given in Re-

mark 7.

2. The existence of semi-coexistence states of (28) has been studied in [7]. The authors ob-
tained a semi-coexistence state under the condition (32), which is stronger than λ, µ > 0.
It seems that the existence of coexistence states of (32) has not been analyzed previously.

3.3 Symbiosis

In this case we consider the cooperative system




−∆u = λu1/m − u2/m + bu1/mv1/n in Ω,
−∆v = µv1/n − v2/n + cv1/nu1/m in Ω,
u = v = 0 on ∂Ω.

(35)

Our main result about the existence of semi-coexistence states is the following one:
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Theorem 10 Assume bc < 1 and that the sets

P1 := {x ∈ Ω : µ + cθ
1/m
[λ,m](x) > 0} 6= ∅ P2 := {x ∈ Ω : λ + bθ

1/n
[µ,n](x) > 0} 6= ∅.

Then there exists at least one semi-coexistence state of (35).

Remark 10 An observation about the way in which the above conditions should be interpreted
is appropriate. If for example λ ≤ 0 then θ[λ,m] = 0, and so P1 6= ∅ is equivalent to µ > 0.

Proof. Again we use the sub-supersolution method for systems. In this case a couple (u, u)−(v, v)
is sub-supersolution of (35) if, see [12], u, u, v, v ∈ H2(Ω) ∩ L∞(Ω), u ≤ u and v ≤ v in Ω and
u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω and such that





−∆u ≤ λu1/m − u2/m + bu1/mv1/n in Ω,
−∆u ≥ λu1/m − u2/m + bu1/mv1/n in Ω,
−∆v ≤ µv1/n − v2/n + cv1/nu1/m in Ω,
−∆v ≥ µv1/n − v2/n + cv1/nu1/m in Ω.

(36)

We consider two cases:

1. Assume λ ≤ 0. As we have mentioned above, the condition P1 6= ∅ is equivalent to µ > 0.
We take

(u, u) = (θ
[λ+bθ

1/n

[µ,n]
,m]

,M) (v, v) = (θ[µ,n], N),

with M,N > 0 constants still to be chosen. Since P2 6= ∅ then u > 0.
It is easy to show that M and N satisfy (36) provided that

λ−M1/m + bN1/n ≤ 0, µ−N1/n + cM1/m ≤ 0. (37)

Since bc < 1 there exist M and N satisfying (37). Thus the proof of case 1 is complete.

2. Assume λ > 0. In this case, P2 = Ω. Now we pick

(u, u) = (θ[λ,m],M) (v, v) = (θ
[µ+cθ

1/m

[λ,m]
,n]

, N),

with M and N as above. This completes the proof.

•
Again the following results do not need any proof.

Proposition 6 Assume bc < 1 and let (u, v) be a nonnegative solution of (35). Then

θ[λ,m] ≤ u ≤
(

λ + bµ

1− bc

)m

θ[µ,n] ≤ v ≤
(

µ + cλ

1− bc

)n

. (38)

As an immediate consequence of Proposition 6, we have
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Corollary 5 Assume bc < 1 and either λ + bµ ≤ 0 or µ + cλ ≤ 0. Then (35) does not admit a
semi-coexistence state.

We obtain the following result on coexistence states

Theorem 11 Assume bc < 1 and

(λ, µ) ∈ IR+ × IR+\{(0, 0)}. (39)

Then (35) possesses at least one coexistence state.

Proof. Assume λ, µ > 0. We take

(u, u) = (θ[λ,m],M) (v, v) = (θ[µ,n], N)

with M and N satisfying (37). It is not difficult to show that this couple is a sub-supersolution
of (35). On the other hand, if for example λ = 0 and µ > 0 we pick

(u, u) = (θ
[bθ

1/n

[µ,n]
,m]

,M) (v, v) = (θ[µ,n], N).

In this case, M and N have to satisfy the following inequalities

−M1/m + bN1/n ≤ 0, µ−N1/n + cM1/m ≤ 0.

We can reason analogously in the remaining case. This concludes the proof.

•
The following result can be proved similarly to Proposition 3.

Proposition 7 Assume (39). Then any nonnegative solution of (35) is positive, i.e., it has not
a dead core.

The following result says that the set of (λ, µ) ∈ IR2 where (35) has at least a semi-coexistence
state is connected.

Theorem 12 Assume bc < 1. Let us denote

Γ := {(λ, µ) ∈ IR2 : (35) has at least a semi-coexistence state in (λ, µ)}.
Then Γ is connected.

Proof. Let (u0, v0) be a semi-coexistence state in (λ0, µ0). We fix λ0. Let µ ∈ [µ0,∞) and define

(u, u) = (u0,M) (v, v) = (v0, N)

with M and N satisfying (37). It is not hard to show that this couple is a sub-supersolution of
(35) in (λ0, µ). This completes the proof.

•
Remark 11 To our knowledge, (35) has been only studied previously in [7]. In this work the
authors obtained the existence of a semi-coexistence state under the condition λ > 0 and µ > 0.
From Theorem 10, (35) possesses a semi-coexistence state even when λ or µ is negative.
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