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1. Introduction

In this paper we consider a non-autonomous competitive Lotka-Volterra system for two

species u and v,{
u̇ = u(λ− a(t)u− bv) u(s) = u0 > 0

v̇ = v(µ− cv − du) v(s) = v0 > 0,
(1)

where a(t) is continuous,

lim
s→+∞

a(s) = 0 < a(t) < A = lim
s→−∞

a(s) for all t ∈ R

and b, c, d > 0. We will also only consider the case λ, µ > 0, since when either of

these parameters are negative the behaviour is relatively simple. Note that our model

equation is asymptotically autonomous† both as t → +∞ and as t → −∞. We will

refer to system (1) as E[a(t)]: such a notation makes it easier to discuss comparisons of

solutions of (1) with the solutions of various autonomous systems E[a] with a(t) replaced

by a constant a (the behaviour of such systems is well understood, e.g. Murray [20], and

we recall this as required in what follows).

Since the u and v axes are invariant and solutions of (1) are unique the positive

cone P = {(u, v), u ≥ 0, v ≥ 0} and its interior P = {(u, v), u > 0, v > 0} are invariant

sets. It is therefore consistent to consider only positive solutions, which is also natural

in the light of the ecological interpretation of (1) as a model of two competing species.

Various authors have considered non-autonomous versions of the equation

concentrating on the asymptotic behaviour as t → +∞. However, there is another point

of view which, although equivalent in the autonomous case, allows for other arguments

in the non-autonomous situation. We study the solutions in terms of the corresponding

process {S(t, s)}t≥s, where S(t, s)x0 represents the solution of the system at time t that

was at x0 at time s (x0 ∈ R2) (cf. Sell [24]). For non-autonomous systems the initial

time is as important as the final time: this is in contrast to the autonomous case in

which only the time elapsed is relevant, i.e. S(t, s) = S(t − s, 0) for all t ≥ s. Thus

for autonomous systems the behaviour of solutions S(t, s)x0 for t → ∞ is the same as

for s → −∞. However, this “pullback” behaviour (which forms the basis of the theory

of attractors in non-autonomous systems, as developed by Cheban et al. [5], Kloeden

and Schmalfuss [12], Schmalfuss [23], Crauel et al. [10]) is distinct from the forwards

asymptotics in the non-autonomous case.

In this paper we completely describe the asymptotic behaviour of (1) both as t →∞
and as s → −∞. The forwards asymptotic behaviour is essentially the same as that

of the autonomous system E[0], while the pullback asymptotic behaviour is essentially

the same as that of E[A]. For certain parameter ranges these behaviours are distinct,

† We note here that while the theory of asymptotically autonomous equations (developed by Markus
[17], Thieme [28], and Mischaikow et al. [18]) gives some useful information about the behaviour of the
system as t →∞, a full description requires the additional analysis that we present here.
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and the pullback procedure provides more information about the system than would be

available solely by considering the forward asymptotics.

The main aim of this paper is not to offer a significant advance to the theory of

one particular class of equations (Lotka-Volterra models); rather, it is to illustrate the

power of the pullback idea in giving a full description of the dynamics, and to highlight

some of the interesting problems that can occur in non-autonomous systems.

1.1. Previous results for non-autonomous systems

There are a series of papers that treat non-autonomous N -dimensional Lotka-Volterra

systems in which all the coefficients are allowed to be non-autonomous (see, among

others, Ahmad [2], [3], Ahmad and Lazer [4], Montes de Oca and Zeeman [19], Redheffer

[21]). We believe that we could also treat this more general problem, although we have

chosen, for the sake of clarity, to consider only the simplest case where the previous

methods are not directly applicable.

For (1) the conditions in these papers become

0 < a1 ≤ a(t) ≤ a2, (2)

for all t ∈ R for the results in Ahmad [1] or [2], and

bµ/c < λ <

[
inf
t∈R

a(t)

]
µ/d (3)

to apply those in Ahmad and Lazer [4] or Montes de Oca and Zeeman [19] (this latter

in particular requires that a(t) ≥ a > 0 as in Redheffer [21]). Under these hypotheses

the above authors can prove the existence of a strictly positive solution of the system

that is globally asymptotically stable, while if

λ < bµ/c or λ >

[
sup
t∈R

a(t)

]
µ/d (4)

they obtain extinction of one of the species (i.e. the solution goes to zero) as time goes

to infinity. In our case none of the conditions (2–4) hold.

2. Pullback attractors in non-autonomous systems

We now show how we can consider the solutions of non-autonomous equations within a

dynamical systems-like framework, introduce more carefully the pullback idea that we

make great use of, and show that the equations in (1) give rise to an order-preserving

system.

2.1. Processes

We denote by S(t, s)x the solution of (1) at time t that takes the value x at time s. Then

S(t, s) defines a process, where a general process on a complete metric space (X, d) is a

family of mappings {S(t, s)}t≥s, t, s ∈ R that satisfy:
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(i) S(t, t) = IdX , for all t ∈ R,

(ii) S(t, τ)S(τ, s)u = S(t, s)u for all s ≤ τ ≤ t, u ∈ X, and

(iii) u 7→ S(t, s)u is continuous in X.

2.2. The pullback attractor

We now give a formal definition of the “pullback attraction” idea discussed in the

introduction. For A,B ⊂ X we let dist(A,B) denote the Hausdorff semidistance,

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b).

Definition 2.1. A time dependent family {K(t)}t∈R is pullback attracting if for each

t ∈ R
lim

s→−∞
dist(S(t, s)D,K(t)) = 0.

for every bounded set D.

This concept of attraction considers a fixed final time and moves the initial time

to −∞: this does not mean that we are going backwards in time, but rather that we

consider the state of the system at time t arising from the same initial condition starting

at earlier and earlier times s. As remarked above, in the autonomous case this notion

of pullback attraction ([12], [23]) is equivalent to the standard definition.

The generalisation of the autonomous concept of invariance is somewhat more

straightforward:

Definition 2.2. A family {B(t)}t∈R of subsets of X is said to be invariant with respect

to the process S if

S(t, s)B(s) = B(t) for all (s, t) ∈ R2, s ≤ t.

The definition of a non-autonomous attractor combines these notions of attraction

and invariance.

Definition 2.3. The family of compact sets {A(t)}t∈R is said to be the global pullback

attractor associated to the process S if it is invariant, pullback attracting, and is minimal

in the sense that if {C(t)}t∈R is another family of closed pullback attracting sets, then

A(t) ⊂ C(t) for all t ∈ R.

(Chepyzhov and Vishik [6] define the concept of kernel sections for non-autonomous

dynamical systems: these correspond to the fibres A(t) in the above definition of a

global pullback attractor.)

We now give a general result similar to those that can be found in Crauel et al.

[10] and Schmalfuss [23]. The particular form of the theorem given here is modelled on

a result for random attractors given in Crauel [9].

Theorem 2.4. There is a global pullback attractor {A(t)}t∈R if and only if there exists

a family {K(t)}t∈R of compact pullback attracting sets.
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2.3. Complete and hyperbolic trajectories

The simplest example of an invariant set is a fixed point x with S(t, s)x = x for all t ≥ s.

However, this is a very strong property to require of a solution of a non-autonomous

equation. One of the most basic problems with the investigation of non-autonomous

systems is to find a sensible generalisation of the notion of a fixed point.

A potential candidate is given by the notion of a complete trajectory, a continuous

map v : R→ X with

S(t, s)v(s) = v(t), for all t ≥ s.

This is simply a solution v(t) of the equation that is defined for all t ∈ R. However,

there are of course many such solutions, and we would ideally like to pick out certain

“distinguished” solutions. In a previous paper (Langa et al. [14]) we highlighted the

importance of complete trajectories with “certain well-defined stability properties” but

were less than explicit about what these might be.

One fruitful concept is the notion of a “hyperbolic trajectory” (see Malhotra &

Wiggins [16]) that generalises the idea of a hyperbolic fixed point. We will see in

our example that although this concept is useful it is not ideal without some minor

modifications. For autonomous systems hyperbolicity can be characterised using the

eigenvalues of the linearised equation near the fixed point. In non-autonomous systems

we need to introduce the concept of an exponential dichotomy (see Coppel [8], Sacker

& Sell [22]).

Definition 2.5. Let A(t) be a real N ×N matrix and Φ(t, s) be the fundamental N ×N

matrix solution of

dX/dt = A(t)X X(s) = I (5)

so that the solution of dξ/dt = A(t)ξ with ξ(s) = ξ0 is given by Φ(t, s)ξ0. Then (5) has

an exponential dichotomy if there is a projection operator P and constants K and λ > 0

such that

‖Φ(t, s)P‖ ≤ Ke−λ(t−s) t ≥ s

‖Φ(t, s)(I − P )‖ ≤ Keλ(t−s) t ≤ s.
(6)

(This definition can be generalised by allowing the projection P to depend on t in

such a way that it is invariant, i.e. that

Φ(t, s)P (s) = P (t) t ≥ s;

see Siegmund [25] for details.)

Definition 2.6. A complete trajectory x(t) of dx/dt = f(x, t) is said to be hyperbolic if

the linearised equation

dX/dt = Df(x(t), t)X

has an exponential dichotomy.
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As with the hyperbolicity of fixed points, the hyperbolicity of the trajectory x(t)

gives rise to local stable and unstable manifolds which are preserved under perturbation.

We reproduce here from [16] only the results that are relevant in this paper: for more

details and a proof see Yi [29]. In the statement of the theorem Nδ(x(t)) denotes the

tubular neighbourhood of x(t) in the space RN × R,

Nδ(x(t)) =
⋃

t∈R
(B(x(t), δ), t)

(the notation B(x, δ) is the open ball in RN of radius δ centred at x).

Theorem 2.7. Let x(t) be a hyperbolic trajectory in RN such that the projection P from

definition 2.5 has rank k. Then there exists a k + 1 dimensional Cr manifold W s
loc(t),

an n− k + 1 dimensional Cr manifold W u
loc(t), and a δ such that

(i) W s
loc is positively invariant, while W u

loc is negatively invariant, and the two

manifolds intersect along x(t),

(ii) trajectories on W s
loc converge towards x(t) exponentially fast as time runs forwards,

and leave Nδ(x(t)) as time runs backwards, while

(iii) trajectories on W u
loc leave Nδ(x(t)) as time runs forwards but converge exponentially

fast towards x(t) as time runs backwards, and

(iv) any trajectory starting in Nδ(x(t)) that is not in W s
loc nor W u

loc will leave Nδ(x(t))

both as time runs forwards and as time runs backwards.

(v) Let dx/dt = f(x, t, p) be a family of non-autonomous ODEs that vary with the

parameter p in a Cr manner (uniformly on sets of the form K ×R where K is any

compact subset of RN). Then any hyperbolic trajectory that exists for some value

p = p0 persists under small perturbations, as do its stable and unstable manifolds:

these depend on p in a Cr fashion.

We will want to compare the dynamics of our asymptotically autonomous equation

with its “limit equation” E[0]. We can treat this case in the context of the above theorem

by defining a C1 family of functions αp(t) such that

αp(t) =

{
a(1/p) t ≤ 1/p

a(t) t ≥ (1/p) + 1

and αp(t) is monotonic between t = 1/p and t = (1/p) + 1. Then the family of

non-autonomous systems E[αp(t)] converge towards E[0] in the appropriate fashion as

p → 0. Since the dynamics of the systems E[αp(t)] are the same as those of E[a(t)] for

t ≥ (1/p) + 1 we expect that perturbations of hyperbolic trajectories of E[0] will play a

role in understanding the dynamics of E[a(t)].

2.4. Order preserving systems

When a non-autonomous system is “order-preserving” (in a sense that we now make

precise) it is possible to obtain more information about the structure of its pullback
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attractor. This programme is carried out in some detail in Chueshov [7], Langa &

Suárez [13], and Smith [26].

We say that the process {S(t, s) : X → X}t≥s is order-preserving if there exists an

order relation ‘¹’ in X such that if w1 ¹ w2 then S(t, s)w1 ¹ S(t, s)w2 for all t ≥ s.

For our equations we can define an appropriate relation ¹ on R2 that makes the

system order-preserving: given (u1, v1), (u2, v2) we say that

(u1, v1) ¹ (u2, v2) ⇐⇒ u1 ≤ u2 and v1 ≥ v2. (7)

In fact the following slightly stronger result (cf. Hess and Lazer [11]) will be useful.

We will denote the process corresponding to the system E[f(t)] by Sf(t)(t, s), reserving

S(t, s) for the process corresponding to (1).

Lemma 2.8. Let f(t) and f̃(t) be non-negative, and denote by (u(t), v(t)) the solution of

E[f(t)] with (u(s), v(s)) = (us, vs) and by (ũ(t), ṽ(t)) the solution of E[f̃(t)] that satisfies

(ũ(s), ṽ(s)) = (ũs, ṽs). Then, provided that f(t) ≥ f̃(t) for all t ∈ R,

(us, vs) ¹ (ũs, ṽs) =⇒ Sf(t)(t, s)(us, vs) ¹ Sf̃(t)(ũs, ṽs)

for all t ≥ s. We write “Sf(t) ¹ Sf̃(t)”.

Proof. Assume initially that f(t) > f̃(t) for all t ∈ R. Let [s, T ] be the maximal interval

on which

(u(t), v(t)) ¹ (ũ(t), ṽ(t)) for t ∈ [s, T ] (8)

and suppose that T < ∞. At time T one of the following three possibilities occurs:

(i) u(T ) = ũ(T ) = u but v(T ) > ṽ(T ): clearly for some δ1 > 0 we have v(t) ≥ ṽ(t) for

t ∈ (T, T + δ1]. We also have

d

dt
(ũ− u)(T ) = u[(f(T )− f̃(T ))u + b(v(T )− ṽ(T ))]. (9)

Since v(T ) > ṽ(T ) this is strictly positive and so for some δ2 > 0 we have u(t) < ũ(t)

for t ∈ (T, T + δ2]. This gives (8) on [s, T + δ], contradicting the maximality of T .

(ii) v(T ) = ṽ(T ) = v but u(T ) < ũ(T ): a similar argument can be used to show that

(8) holds on [s, T + δ] for some δ > 0, since we have

d

dt
(ṽ − v)(T ) = vd(u(T )− ũ(T )) < 0. (10)

(iii) (u(T ), v(T )) = (ũ(T ), ṽ(T )) = (u, v): when t = T we have (from (9) and (10))

d

dt
(ũ− u)(T ) = u(f(T )− f̃(T )) and

d

dt
(ṽ − v)(T ) = 0.

Since f(T ) > f̃(T ) we have ũ(t) > u(t) on (T, T + δ1] for some δ1 > 0. We also

have
d2

dt2
(ṽ − v)(T ) = −vd

d

dt
(ũ− u)(T ) < 0,

which implies that ṽ(t) < v(t) on (T, T + δ2] for some δ2 > 0. Once again this gives

(8) on the longer interval [s, T + δ] (with δ = min(δ1, δ2)).



A non-autonomous Lotka-Volterra system 8

This proves the result for f(t) > f̃(t). If f(t) ≥ f̃(t) then for each ε > 0 apply the

above result with f(t) replaced by f(t) + ε; noting that the solutions of E[f(t)] depend

continuously on f(t) the result follows as stated by taking the limit as ε → 0.

2.5. The separatrix of an autonomous system

In one of the proofs below we will need to use properties of the separatrix of the

autonomous system{
u̇ = u(λ− au− bv) u(0) = u0 > 0

v̇ = v(µ− cv − du) v(0) = v0 > 0,
(11)

where ac < bd and aµ/d < λ < bµ/c. In this case there are three fixed points: two

stable fixed points at (0, µ/c) and (λ/a, 0), and one saddle point in the interior at

x∗a =
1

bd− ac
(bµ− cλ, dλ− aµ).

We include a proof since although the system is a standard example in undergraduate

differential equations courses, we were unable to find any rigorous treatment in the

literature. In the proof we use (x, y) ≥ (u, v) to mean x ≥ u and y ≥ v.

Proposition 2.9. If ac < bd and aµ/d < λ < bµ/c then there is a separatrix Γa, given

as the graph of a strictly increasing continuous function φa : (0,∞) → (0,∞) with

lim
u→0

φa(u) = 0

such that if

v0





<

=

>





φa(u0) then lim
t→∞

S(t, 0)(u0, v0) =





(λ/a, 0)

x∗a
(0, µ/c)





.

Furthermore for each fixed u the value of φa(u) is continuous in a and is monotonically

decreasing in a.

Proof. First we consider the problem for a fixed value of a.

Dulac’s criterion (∇ · [ 1
uv

f(u, v)] < 0 in P , where f is the right-hand side of (11))

shows that the equation has no periodic orbits in P , and a simple computation of the

time derivative of µ|u|2 + λ|v|2 shows that all orbits are bounded. It follows from the

Poincaré-Bendixson theorem that every orbit converges to one of the fixed points.

Let Γa be the stable manifold of x∗a, i.e.

Γa = {x : Sa(t, 0)x → x∗a as t → +∞}.

This is the global extension of the local stable manifold of x∗a, which is tangent to the

linear stable manifold at x∗a; elementary considerations of the linearisation show that

the linear stable manifold moves into (u, v) > x∗a and (u, v) < x∗a. Since u̇ and v̇ are
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both positive [negative] when (u, v) > x∗a [(u, v) < x∗a] it follows that close to x∗a the

separatrix Γa is the graph of a strictly increasing continuous function φa; the continuity

of φa in a within this neighbourhood is a standard result from the theory of local stable

manifolds.

The global stable manifold consists of two trajectories. In order to understand their

behaviour outside a neighbourhood of x∗a we consider the time-reversed flow, writing

ǔ(t) for u(−t). Then since ˙̌u and ˙̌v can be bounded below for (u, v) ≥ x∗a + (ε, ε),

and if v̌(t) → ∞ then we must also have ǔ(t) → ∞ (if ǔ(t) → c < ∞ then ˙̌u → ∞, a

contradiction) the stable manifold Γa extends to infinity in such a way that φa is defined

for every u > [x∗a]1. Since (ǔ, v̌) < x∗a is invariant for the time reversed flow and this

region contains no periodic orbits (Dulac’s criterion again) it follows that the trajectory

to the left of x∗a converges to the origin as t → −∞.

The convergence of S(t, 0)(u0, v0) to one of the fixed points on the axes when the

initial condition lies above/below Γa is now immediate, since Γa is invariant and consists

of all points attracted to x∗a.
The continuity of φa(u) for all values of u is a consequence of the continuous

dependence of solutions on initial conditions and on the parameter a, and it only remains

to show that φa(u) is monotonically decreasing. This will follow if we can show that

for distinct values of a 6= ã the separatrices Γa and Γã are disjoint, since x∗a ∈ Γa is

strictly increasing with respect to the order ¹ (this follows from a simple calculation of

dx∗a/da). Without loss of generality assume that a > ã, and suppose that x ∈ Γa ∩ Γã.

Using lemma 2.8 we have Sa ¹ Sã, and so

x∗a = lim
t→∞

Sa(t, 0)x ¹ lim
t→∞

Sã(t, 0)x = x∗ã.

However, x∗a Â x∗ã, a contradiction. So Γa ∩ Γã = ∅ as required.

2.6. A non-autonomous logistic equation

Also useful will be the following simple result that gives some properties of the solutions

of the non-autonomous logistic equation

dx/dt = x(p(t)− l(t)x) x(s) = x0, (12)

with p(t) > 0 and l ∈ C0(R) with l(t) > 0 for all t ∈ R. We denote the solution of this

equation as θ[p(·),l(·)](t, s; x0), and note that it can be given explicitly by

θ[p(·),l(·)](t, s; x0) =
e
R t

s p(u) du

x−1
0 +

∫ t

s
e
R r

s p(u) dul(r) dr
. (13)

From here it is easy to deduce the following properties:

Lemma 2.10. The solutions of (12) have the following properties:

(i) If p(t) → p > 0 and l(t) → 0 as t →∞ then θ[p,l](t, s) →∞ as t →∞.
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(ii) If ps(·) → p > 0 (uniformly on compact subsets of R) as s → −∞ then there exists

a solution α : R→ R of

dx/dt = x(p− l(t)x)

(given explicitly by

α(t) =
ept

∫ t

−∞ l(τ)epτ dτ
, (14)

cf. (13)) such that

lim
s→−∞

θ[ps(·),l(·)](t0, s) = α(t0) for all t0 ∈ R.

(Note that in part (ii) ps(t) is a function of t that also depends on s. This enables us to

consider the pullback behaviour of, for example, v̇ = v((µ − du) − cv), for fixed initial

conditions (u0, v0) when we know that the u component of S(t, s)(u0, v0) converges to

zero as s → −∞.)

3. Forward asymptotic behaviour

In this section we analyse the asymptotic behaviour of (1) as t → ∞. Perhaps

unsurprisingly this behaviour is essentially the same as the autonomous system with

a = 0. Indeed, our non-autonomous equation (1) is “asymptotically autonomous” in

the sense of Markus [17] with limiting equation E[0]:
{

u̇ = u(λ− bv) u(s) = u0 > 0

v̇ = v(µ− cv − du) v(s) = v0 > 0.
(15)

For this autonomous equation, when λ > bµ/c all trajectories converge to (+∞, 0),

while for 0 < λ < bµ/c there is an interior fixed point x∗ = (bµ − λc, λd)/bd, whose

stable manifold forms a separatrix between solutions tending to (0, µ/c) and (+∞, 0).

We now recover similar behaviour for the non-autonomous equation.

In this section and the following we denote the process generated by the solutions

of (1) by S(t, s).

3.1. When λ > bµ/c

When λ > bµ/c trajectories are asymptotically unbounded. Since we wish to be specific

about the way in which the trajectories diverge we cannot appeal to the results of

Markus [17].

Lemma 3.1. If λ > bµ/c then S(t, s)(u0, v0) → (∞, 0) as t →∞.

Proof. We compare trajectories of E[a] with those of two autonomous systems. First we

control the long-time behaviour by choosing k > max(A, dλ/µ, bd/c) and considering

the system E[k]. By our choice of k > dλ/µ we know that E[k] has an attracting fixed
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point (u∗, v∗) within P , while since k > A we know that Sk(t, s)(u0, v0) ¹ S(t, s)(u0, v0)

for all t ≥ s. In particular given an ε > 0 any solution satisfies

(u∗ − ε, v∗ + ε) ¹ S(t, s)(u0, v0)

for all t sufficiently large.

Now we compare trajectories with those of the system E[δ], choosing δ small enough

to ensure that the point (u∗ − ε, v∗ + ε) is contained in the basin of attraction of

(+∞, 0) for Sδ(·, ·): since Sδ(t, s) ¹ S(t, s) for t, s large enough it now follows that

S(t, s)(u0, v0) → (+∞, 0) as t →∞.

3.2. When 0 < λ < bµ/c

When 0 < λ < bµ/c we obtain a “non-autonomous separatrix”. In what follows we will

denote the interior fixed point for the system E[0] by x∗ (see above).

Proposition 3.2. For 0 < λ < bµ/c there exists a time dependent family of continuous

functions φt(u) : R × R+ → R+ which are strictly increasing in u for each fixed t such

that if

v





<

=

>





φs(u) then S(t, s)(u, v) →





(∞, 0)

x∗

(0, µ/c)





as t →∞.

All limits in the proof are taken as t →∞ unless otherwise stated, and we use the

notation [(x1, x2)]j = xj.

Proof. First we show that for a fixed u0 if v0 is small enough then S(t, s)(u0, v0) →
(∞, 0). Choosing ε such that εc < bd there exists a T (ε) such that for t ≥ T (ε) we

have a(t) ≤ ε. Using the invariance of u ≡ 0 and continuity with respect to initial

conditions we know that for v0 small enough S(T, s)(u0, v0) is contained in the basin

of attraction of (λ/ε, 0) for E[ε]. Since Sε(t, s) ¹ S(t, s) for t, s ≥ T it follows that for

such v0 we have limt→∞[S(t, s)(u0, v0)]2 → 0. Part (i) of lemma 2.10 now shows that

limt→∞[S(t, s)(u0, v0)]1 = ∞.

Now we show that if v0 is large enough then S(t, s)(u0, v0) → (0, µ/c). Comparing

solutions of (1) with those of E[0] shows that for v0 sufficiently large we have

S(t, s)(u0, v0) ¹ S0(t, s)(u0, v0) where S0(t, s)(u0, v0) → (0, µ/c). The theory of

asymptotically autonomous equations developed by Thieme [28] guarantees in our case

(since none of the fixed points of E[0] are cyclically chained to each other) that the ω

limit set of any bounded solution of E[a(t)] is one of the fixed points of E[0]. It follows

that we must have S(t, s)(u0, v0) → (0, µ/c).

The two functions

φ−s (u) = sup{v ≥ 0 : S(t, s)(u, v) → (∞, 0)}
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and

φ+
s (u) = inf{v ≥ 0 : S(t, s)(u, v) → (0, µ/c)}

are therefore both well-defined and finite (0 < φ±· < ∞) for each u > 0.

The order-preserving property shows both that φ−s is non-decreasing and that if

v < φ−s (u) then S(t, s)(u, v) → (+∞, 0): if S(t, s)(u, v) → (+∞, 0) and (u, v) ¹ (ũ, ṽ)

then we must have S(t, s)(u, v) ¹ S(t, s)(ũ, ṽ) and so S(t, s)(ũ, ṽ) → (+∞, 0).

Now suppose that for some s the function φ−s (u) is not strictly increasing in u. Then

there exists an interval [u1, u2] such that φ−s (u) ≡ v∗ for all u ∈ [u1, u2]. In particular

there is a portion of the graph of φ−s over which u̇ changes monotonically while v̇ is

strictly decreasing (both with respect to u). Since the graph of φ−· is invariant, it

follows that the function φ−s′ is decreasing for some s′ close to s, a contradiction.

By applying similar arguments above to the function

ψ+
s (v) = inf{u ≥ 0 : S(t, s)(u, v) → (∞, 0)}

it follows that φ−s (u) is continuous in u, while what is essentially a repetition of the

arguments shows that φ+
s (u) enjoys the same properties, with v > φ+

s (u) implying that

S(t, s)(u, v) → (0, µ/c).

We showed above that for fixed s the basins of attraction of both (+∞, 0) and

(0, µ/c) contain an open neighbourhood of the respective limit. Continuity with respect

to initial conditions then guarantees that these basins of attraction are open. It follows

that if φ−s (u) ≤ v ≤ φ+
s (u) then (u, v) must be attracted to x∗.

Finally observe that the set Γ(s) = {(u, v) : φ−s (u) ≤ v ≤ φ+
s (u)} is invariant and

also given by

Γ(s) = {(u, v) : S(t, s)(u, v) → x∗}.
Applying the construction discussed at the end of section 2.3 we can see that the

hyperbolic fixed point x∗ perturbs to give a time-dependent hyperbolic trajectory for

E[a(t)] in the region t ≥ T for some T sufficiently large. The one-dimensional stable

manifold of this hyperbolic trajectory contains all points that converge to x∗ as t →∞.

For s sufficiently large this stable manifold coincides with Γ(s). It follows, using the

invariance of Γ(·) and the fact that S(t, s) is 1−1 for t ≥ s, that Γ(t) is one-dimensional

for all t ∈ R, and hence that φ+
s (t) = φ−s (t) for all t ∈ R.

Thus the asymptotic dynamics as t → ∞ are essentially the same as those of the

limiting system E[0], and in particular we cannot find a strictly positive solution that

attracts as t → ∞. However, we will see in the next section that the equations do in

fact possess a distinguished positive solution that attracts “as s → −∞”.

4. Pullback asymptotic behaviour

In this section we investigate the pullback dynamics of our system, finding that they are

similar to those of the equation E[A]. In particular there exists a range for the values
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of the parameters (λ, µ) for which we can prove the existence of a complete positive

trajectory that is pullback attracting.

4.1. When Ac < bd and Aµ/d < λ < bµ/c

First we consider the case Ac < bd, for which the behaviour is similar to that of

proposition 3.2: in the autonomous case a(t) ≡ A the stable manifold ΓA of the interior

fixed point

x∗A =
1

bd− Ac
(bµ− cλ, dλ− Aµ)

forms a separatrix between solutions that tend to (λ/A, 0) and (0, µ/c), as shown in

proposition 2.9. The remarkable thing about the non-autonomous system is that here

the separatrix is precisely that of the system E[A] and does not depend on time. This

is perhaps less surprising than it at first appears, since with the pullback process we

send the initial condition “back to s = −∞”. However, note that we do not have any

equivalent of the attraction to the interior fixed point.

Proposition 4.1. Suppose that Ac < bd and Aµ/d < λ < bµ/c. Then we have

lim
s→−∞

S(t, s)x0 =

{
(0, µ/c)

(α(t), 0)

}
if x0 lies

{
above

on or below

}
ΓA.

Proof. If x0 lies below ΓA then since SA(t, s) ¹ S(t, s) and SA(t, s)x0 → (λ/A, 0) as

s → −∞ it follows that

lim
s→−∞

[S(t, s)x0]2 = 0

and part (iii) of lemma 2.10 implies that

lim
s→−∞

[S(t, s)x0]1 = α(t).

If x0 lies above ΓA then there exists an ε such that x0 lies above ΓA−ε, since the

separatrices Γa move down as a increases (see proposition 2.9). But there exists a T (ε)

such that A− ε ≤ a(t) for all t ≤ T , and hence for which

S(t, s) ¹ SA−ε(t− s) for all t, s ≤ T. (16)

Since x0 lies above ΓA−ε it follows that

lim
s→−∞

[S(t, s)x0]1 = 0,

which in turn (using part (ii) of lemma 2.10) implies that

lim
s→−∞

S(t, s)x0 = (0, µ/c).

Now observe that since (0, µ/c) is a fixed point of S(t, s) and S(t, s) is continuous we

must have, for any t′ > t (and in particular for t′ > T (ε))

lim
s→−∞

S(t′, s)x0 = S(t′, t)
[

lim
s→−∞

S(t, s)x0

]
= S(t′, t)(0, µ/c) = (0, µ/c).
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Finally we consider the case x0 ∈ ΓA. Note that since ΓA is invariant for SA, and

S º SA, it follows that the portion of P lying on or beneath ΓA (and including the

origin) is invariant; we now excise a small portion of this region to the left of a vertical

line in order to exclude the origin, and denote this region (which is still invariant for S

by PΓ.

We show that the process S restricted to PΓ has a pullback attractor. Indeed, since

S(t, s) º SA(t, s) we must have

lim
s→−∞

S(t, s)x0 º x∗A,

while for each ε > 0 we can choose a T (ε) such that A− ε ≤ a(t) for all t ≤ T . It follows

that for s ≤ t ≤ T we have S(t, s) ¹ SA−ε(t, s); any x0 lies below ΓA−ε, and so

SA−ε(t, s) →
(

λ

A− ε
, 0

)
.

It follows that

lim
s→−∞

S(t, s)x0 ¹
(

λ

A− ε
, 0

)
for all t ≤ T (ε).

Thus there is a pullback attractor AΓ(t) that lies in the region

x∗A ¹ x ¹
(

λ

A− ε
, 0

)

when t ≤ T (ε).

Now take a point x ∈ AΓ(t), and suppose that x2 6= 0. Note that it follows that as

s → −∞,

dist(SA−ε(s, t)x, ΓA−ε) → 0.

Since S ¹ SA−ε and AΓ(t) is invariant and lies wholly within PΓ (so that in particular

backwards trajectories are bounded away from the origin), this implies that S(s, t)x lies

above ΓA for s sufficiently small; but this is impossible. It follows that x2 = 0, and

hence, since S(t, s)x is a bounded trajectory of S, that

lim
s→−∞

S(t, s)x0 = (α(t), 0).

We omit the other two cases that occur when Ac < bd (that is λ < Aµ/d and

λ > bµ/c) since similar behaviour occurs when Ac > bd (for λ < bµ/c and λ > Aµ/d

respectively). Since it is only when Ac > bd that we can obtain a coexistent pullback

attracting state we treat this case in full, starting with these two parameter ranges.
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4.2. When Ac > bd

Note that the pullback asymptotic dynamics on the u-axis (that is, v ≡ 0) is described

by the pullback attractor of the logistic equation u̇ = u(λ−a(t)u), while for the dynamics

on the v-axis (u ≡ 0) it is described by the autonomous equation v̇ = v(µ− cv). In the

following two lemmas we show that for suitable parameter ranges the attractors on the

u or v axis is globally asymptotically stable.

4.2.1. Only one species remains. We start with the case λ < bµ/c. Here we have

“pullback extinction” for the first species. (The autonomous equation E[A] has (0, µ/c)

as an attracting fixed point.)

Lemma 4.2. Suppose that Ac > bd and λ < bµ/c. Then, for all (u0, v0) ∈ P we have

lim
s→−∞

S(t, s)(u0, v0) = (0, µ/c). (17)

Proof. Under these conditions on the parameters, there exists a T ∈ R such that for all

t0 ≤ T we have a(t0)c > bd and so

d

a(t0)
λ <

c

b
λ < µ. (18)

All solutions of the system E[a(t0)] satisfy

lim
s→−∞

Sa(t0)(u0, v0) = (0, µ/c),

while we know from lemma 2.8 that S(t, s)(u, v) ¹ Sa(t0)(t, s)(u, v). It follows that

lim
s→−∞

[S(t, s)(u0, v0)]1 = 0, (19)

which implies by part (ii) of lemma 2.10 that lims→−∞[S(t0, s)(u0, v0)] = µ/c. Since

(0, µ/c) is a fixed point of S(·, ·) the limiting behaviour in (17) follows for any t ∈ R.

We now deal with the extinction of the second species (the autonomous equation

E[A] has (λ/A, 0) as an attracting fixed point.)

Lemma 4.3. Suppose that Ac > bd and λ > Aµ/d. Then for all (u0, v0) ∈ P we have

lim
s→−∞

S(t, s)(u0, v0) = (α(t), 0),

where α(t) is given in (14) with p = λ and l(t) = a(t).

Proof. Comparing solutions of E[a(t)] with those of E[A], for which

lim
s→−∞

SA(t, s)(u0, v0) = (λ/A, 0)

it follows that lims→−∞[S(t, s)(u0, v0)]2 = 0. Part (ii) of lemma 2.10 now shows that

lim
s→−∞

[S(t, s)(u0, v0)]1 = α(t)

as claimed.
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4.2.2. A pullback attracting coexistent state. Finally we investigate the parameter range

in which we obtain our pullback attracting coexistent state: the autonomous system E[A]

has an attracting interior fixed point for this set of parameters.

In two proofs of this section we will make use of the following result from Ahmad

and Lazer [4] (Lemma 3), rewritten here using our order notation.

Lemma 4.4. Suppose that there exist δ, δ1, δ2 > 0 such that for some fixed t ∈ R
δ1a(t) > δ2d + δ (20)

δ2c > δ1b + δ,

and that there exist solutions x1(·) and x2(·) of (1) such that

a− ¹ xi(s) ¹ a+ for all s ≤ t

where a− ¹ a+ and both are elements of P . Then x1(t) = x2(t) for all t ∈ R.

Theorem 4.5. If Ac > bd and

bµ/c < λ < Aµ/d (21)

then there exists a complete trajectory (U(t), V (t)) ∈ P such that for each u0, v0 > 0

and every t ∈ R,

lim
s→−∞

S(t, s)(u0, v0) = (U(t), V (t)).

Proof. For any ε > 0 such that (A−ε)c > bd there exists a t0(ε) such that a(t) > (A−ε)

for all t ≤ t0. It follows that for s, t ≤ t0 we have

SA(t, s) ¹ S(t, s) ¹ SA−ε(t, s).

Every system E[a] with A− ε ≤ a ≤ A has an attracting interior fixed point x∗a, and for

the parameter range considered here x∗a is decreasing (with respect to the order ¹) in a.

It follows that

x∗A ¹ lim
s→−∞

S(t, s)(u0, v0) ¹ x∗A−ε.

Since S(t′, t)x depends continuously on x, it follows that for any t′

S(t′, t)x∗A ¹ lim
s→−∞

S(t′, s)(u0, v0) ¹ S(t′, t)x∗A−ε

and theorem 2.4 ensures the existence of a non-autonomous attractor A(t).

Any two trajectories x1(t) and x2(t) in A(t) must satisfy

x∗A ¹ xi(t) ¹ x∗A−ε

for t ≤ t0. Lemma 4.4 now guarantees that x1(t) = x2(t) for all t ∈ R, and thus A(t)

consists of a single trajectory (U(t), V (t)) as claimed.
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5. Conclusions

We have described in some detail the dynamics of a two-dimensional non-autonomous

competitive Lotka-Volterra model that is asymptotically autonomous both as t → ∞
and as t → −∞. While the asymptotic behaviour as t → ∞ corresponds to that of

the limiting system far in the future, the pullback asymptotic behaviour as s → −∞
appears to correspond to that of the limiting system in the distant past. We think that

at the very least this example should serve to clarify the type of information that can

be picked up using the pullback idea.

If it really is forward asymptotic behaviour that is of interest then we can expect

to gain little from the pullback approach, but if a propensity to favour this point of

view is a product only of its familiarity (and the equivalence of the two notions in the

autonomous case) then the pullback procedure provides another technique that can be

useful in uncovering important qualitative features of the dynamics.

For example, for a certain range of parameters there is a distinguished positive

“coexistent” trajectory x(t) = (u(t), v(t)) that is pullback attracting. To give this a

biological interpretation, if were to arrive today (t = 0) at a remote island on which

two species have been competing according to (1) for a long time, the distribution of

the two species would be very close to (u(t), v(t)). However, we know that one of the

species is destined to die out in the future.

Some interesting mathematical questions are also raised. When A is sufficiently

small the system E[a(t)] will be C1 close to E[0] over the whole line (t ∈ R) and the

saddle point x∗ of the system E[0] will become a hyperbolic trajectory for E[a(t)]: our

results confirm this, so that when Ac < bd the pullback behaviour and the forwards

asymptotic behaviour are similar. However, when Ac > bd the picture is different:

somehow we have to “join” the pullback behaviour (an attracting coexistent trajectory)

to the forwards behaviour: it is not clear that the hyperbolic trajectory emanating from

the stable positive fixed point of E[A] remains hyperbolic for all t ∈ R. In particular

it seems more natural to allow for “eventually hyperbolic” trajectories where we only

require an exponentially dichotomy for t, s ≥ T or t, s ≤ T (for some appropriate T ).

With further analysis we believe that it would have been possible to treat not only

the predator-prey and cooperative cases, but also higher-dimensional systems and more

general non-autonomous terms (indeed, a related infinite-dimensional problem is studied

in Langa et al. [15]). However, we have preferred to keep the problem relatively simple

in order to show that the pullback procedure can be a very useful tool.

Acknowledgments

This work has been partially supported by Proyecto D.G.I.C.Y.T. (Spain) BFM2002-

03068. JCR is a Royal Society University Research Fellow, and would like to thank the

Society for all their support. He would also like to thank EDAN for their hospitality,

and Iberdrola for their generosity.



A non-autonomous Lotka-Volterra system 18

References

[1] S. Ahmad. On almost periodic solutions of the competing species problem. Proc. Amer. Math.
Soc. 102 (1988), 855–861.

[2] S. Ahmad. On the nonautonomous Volterra-Lotka competition equation. Proc. Amer. Math. Soc.
117 (1993), 199–205.

[3] S. Ahmad. Extinction of species in nonautonomous Lotka-Volterra systems. Proc. Amer. Math.
Soc. 127 (1999), 2905–2910.

[4] S. Ahmad and A.C. Lazer. On the nonautonomous N -competing species problems, App. Anal. 57
(1995), 309–323.

[5] D. N. Cheban, P. E. Kloeden and B. Schmalfuss. The relationship between pullback, forwards and
global attractors of non-autonomous dynamical systems. Preprint

[6] V. V. Chepyzhov and M. I. Vishik. Attractors of non-autonomous dynamical systems and their
dimension. J. Math. Pures Appl. 73 (1994), 279–333.

[7] I. Chueshov. Order-preserving skew-product flows and non-autonomous parabolic systems. Acta
Appl. Math. 65 (2001), 185–205.

[8] W.A. Coppel. Dichotomies in Stability Theory (Berlin: Springer Lecture Notes in Mathematics
No. 629, 1978).

[9] H. Crauel. Random point attractors versus random set attractors. J. Lond. Math. Soc. 63 (2001),
413–427.

[10] H. Crauel, A. Debussche and F. Flandoli. Random attractors. J. Dynamics Differential Equations
9 (1997), 397–341.

[11] P. Hess and A.C. Lazer. On an abstract competition model and applications. Nonlinear Anal.
TMA 16 (1991), 917–940.

[12] P. E. Kloeden and B. Schmalfuss. Asymptotic behaviour of non-autonomous difference inclusions.
Systems & Control Letters 33 (1998), 275–280.
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