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Escuela de Informática, Universidad Politécnica de Madrid, Carretera de Valencia Km 7.

Campus Sur. 28031-Madrid, Spain

E-mail addresses: madelgado@us.es, cristianm@us.es, suarez@us.es, jtello@eui.upm.es

Abstract

This paper deals with a nonlinear system of parabolic-elliptic type with a logistic
source term and coupled boundary conditions related to pattern formation. We prove
the existence of a unique positive global in time classical solution. We analyze also
the stationary problem associated. Moreover it is proved, under the assumption of
sufficiently strong logistic dumping, that there is only one nonzero homogeneous equi-
librium, and all the solutions to the non-stationary tend to this steady-state for large
times.
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1 Introduction

In many areas of research, from the biology of the embryonic development to the tumoral
growth, the models of the cell movement play a fundamental role. Broadly speaking, the
continuous models fall in two main classes: the mechanochemical models and the chemo-
tactic models. In the former, cells exert a traction on the extracellular matrix (ECM),
which carries out a key role; in the latter, cells secrete a chemical substance, which attracts
or repels, and move towards or away from the gradient of this chemical. There exists a
large number of examples where both types of models are applied to describe different
biological phenomena. Numerical simulations are used to compare the experimental data
with the mathematical results and to justify these mathematical models (see, [7], [12]). In
any case, the study of these systems have interest by itself (see, for instance, [13]).

On the other hand, we must not forget the influence of the boundary conditions on the
behavior of the solutions. Recently, nonlinear boundary conditions have been incorporated

1MD and AS have been supported by the Spanish Ministry of Science and Technology under Grant
MTM2006-07932 and JIT by Spanish Ministry of Sciences and Technology under grant MTM2009-13655.
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permitting a more accurate consideration of several situations (see, for instance, [6] and
references therein).

In [10], a generalized chemotactic model is considered whose origin was the spatial pat-
tern formation in embryology. It includes a generalized boundary condition which permits
to cover a number of them varying the control parameters. We think it is not difficult to
apply these models in other fields, for example, in angiogenesis, the cell movement linked
to the tumoral growth where the endothelial cells (ECM) move following the gradient of
TAF, the chemicals secreted by the tumor cells; for this reason, we think it is interesting
to study it. The nondimensional model is

ut = D∆u− χ∇ · (u∇v) + µsu(1− u) in Ω× (0, T ),

vt = ∆v − sv + s
u

γ + u
in Ω× (0, T ),

ρ1

(
D
∂u

∂n
− χu∂v

∂n

)
= (1− ρ1)(ρ2 − u) , ρ3

∂v

∂n
= (1− ρ3)

(
ρ2

1 + γ
− v

)
on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
(1)

where Ω ⊂ IRd is a bounded domain with regular boundary, u is the cell density, v is the
concentration of chemoattractant, D > 0 is the diffusion rate, χ > 0 is the chemotactic
coefficient of the motile cells, µ is the linear growth rate of the cell population, γ is a
constant governing the rate of chemoattractant production and degradation and s is a
parameter which controls spatial and temporal scale. In [10], it is presented numerical
solutions of this model in one spatial dimension and is discussed the behavior of the model
in two dimensions. The authors consider also the possibility to give different values to the
parameters ρ1, ρ2, ρ3 in different parts of the boundary.

During this work, we consider the following system of equations

ut = ∆u− χ∇ · (u∇v) + µu(1− u) in Ω× (0, T ),

0 = ∆v − v +
u

1 + u
in Ω× (0, T ),

∂u

∂n
− χu∂v

∂n
= r(θ − u) ,

∂v

∂n
= r′

(
θ

2
− v

)
on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(2)

where µ, r, r′, θ, χ denote non-negative constants. As we can see, it is the model resulting

from (1) for D = s = γ = 1, ρ2 = θ, r =
1− ρ1

ρ1
, r′ =

1− ρ3

ρ3
and supposing that the

temporal scale of chemical diffusion is much larger than the scale of diffusion of cells
and consequently we can take vt = 0. We will suppose that θ, r and r′ are nonnegative
constants on ∂Ω. Since we are interested only in non-negative solutions we assume that
u0(x) ≥ 0 in Ω.

Our purpose is the theoretical study of (2) and its associated stationary problem as-
sociated. Our main results can be summarized as follows:

a) The parabolic problem has existence and uniqueness of global solution ∀ r, r′, θ, µ ≥
0, for suitable initial data.

b) With respect to the elliptic problem, we can summarize the situation as follows:

(a) If θ > 0,

2
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• there exists at least a coexistence state ∀ r, r′, µ ≥ 0,
• there exists the trivial solution if, and only if, r = r′ = 0; which is unstable

for µ > 0,
• there exists one semitrivial solution (0, v) if r = 0, r′ > 0; which is unstable

for µ > 0.
In particular, if θ = 1, the system has the homogeneous solution (u, v) =
(1, 1/2). Then, we prove that
• if r, r′ > 0, then (1, 1/2) is globally stable when µ ≥ 0,
• if r′ = 0, r ≥ 0, then (1, 1/2) is globally stable when µ is big enough.

(b) If θ = 0, there exists the trivial solution and there is no semitrivial solution
(0, V ). We can find three curves, µ = h1(r), µ = h2(r), µ = h3(r), being
h1(r) ≥ h2(r) ≥ h3(r), such that
• if µ > h1(r), then there exists a coexistence state,
• if µ < h3(r), then there exists no coexistence state,
• if µ < h2(r), then the trivial solution is stable.

It is worthy to be remarked that we use a fixed point argument to study the evolutive
problem due to the fact that our system has one parabolic equation and one elliptic
equation and the general theory for parabolic equations (which is used, for example, in
[8]) has to be applied in a non-local framework, less constructive than the method we
follow. On the other hand, the method of bifurcation to study the stationary problem
(see also [8]) needs the knowledge of some nonnegative solution of the system to begin the
branch of positive solutions; this solution is usually one of the semitrivial solutions, but in
our case the system does not admit any semitrivial solution when r, r′, and θ are positive
and, for this reason, we use a decoupling method.

The paper is organized as follows. In Sections 2 and 3, we study the existence and
uniqueness of the global solution for the parabolic problem (2). This problem has only

one possible constant coexistence state for θ = 1, (u, v) = (1,
1
2

); we study in this case

the asymptotic behavior of the solutions of (2) in Section 4. In Section 5, we consider the
steady problem associated to our system, by a decoupling method and a sub-supersolution
method for nonlocal problems. We will obtain some results of existence of solutions and
some results of stability of the semitrivial solutions when they exist.

2 Preliminaries

First we observe that

χ∇ · (u∇v) = χ(∇u · ∇v + u∆v) = χ

(
∇u · ∇v + u

(
v − u

1 + u

))
.

So, we may rewrite the system (2) as follows

ut = ∆u− χ∇u · ∇v + χu

(
u

1 + u
− v

)
+ µu(1− u) in Ω× (0, T ),

0 = ∆v − v +
u

1 + u
in Ω× (0, T ),

∂u

∂n
= χur′

(
θ

2
− v

)
+ r(θ − u) ,

∂v

∂n
= r′

(
θ

2
− v

)
on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

(3)

3
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Next, in order to avoid the singularity of
u

u+ 1
we define the penalized function

h(u) :=
u+

u+ + 1

and we introduce the system

ut = ∆u− χ∇u · ∇v + χu

(
h(u)− v +

µ

χ
(1− u)

)
in Ω× (0, T ),

0 = ∆v − v + h(u) in Ω× (0, T ),
∂u

∂n
= χur′

(
θ

2
− v

)
+ r(θ − u) ,

∂v

∂n
= r′

(
θ

2
− v

)
on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω.

(4)

Observe that we may consider the equation for u as a linear equation

Ut −∆U = −χa(x, t) · ∇U + χb(x, t)U in Ω,

∂U

∂n
= χr′c(x, t)U + r(θ − U) on ∂Ω.

where
a(x, t) := ∇v,
b(x, t) := h(u)− v +

µ

χ
(1− u),

c(x, t) :=
(
θ

2
− v

)
.

Thus, if b(x, t) ∈ L∞(Ω×(0, Tmax)), then, by the maximum principle, U(x, t) = u(x, t) ≥ 0
in Ω× [0, T ) and a solution to (4) is a solution to (3) and viceversa. Now, having in mind
that for positive solutions the systems (3) and (4) are equivalent if u, v ∈ L∞(Ω×(0, Tmax)),
we will show the local existence theorem for (4). Previously we prove the following result
where the notation is taken from [2], Sections 6 and 7:

Lemma 2.1 Let p > 1, 1 < β < 2α < 1 + 1
p and (W 2α−2,p

B , Aα−1) an element of the
interpolation-extrapolation scale generated by A0 := −∆ + I and the real interpolation
functor, then

‖e−tAα−1u‖Wβ,p ≤ Ce−νtt−κ‖u‖W 2α−2,p
B

, (5)

with κ(β) ∈ (0, 1) and ν ∈ (0, 1).

Proof. By Theorem 7.2 of [2], we have (W 2α,p
B ,W 2α−2,p

B )κ,p = W β,p
B , therefore, using this

reference, we know that there exists κ ∈ (0, 1) such that

‖e−tAα−1u‖
Wβ,p
B
≤ ‖e−tAα−1u‖κ

W 2α,p
B
‖e−tAα−1u‖1−κ

W 2α−2,p
B

.

Next, we apply [2, Theorem 8.5] together with [2, (3.1)] and we get

‖e−tAα−1u‖
Wβ,p
B
≤ ‖(I +Aα−1)e−tAα−1u‖κ

W 2α−2,p
B

‖e−tAα−1u‖1−κ
W 2α−2,p
B

.

4
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Taking into account that I+Aα−1 and Aα−1 are sectorial operators with Reσ(I+Aα−1) =
1 + Reσ(Aα−1) = 2 then we invoke [9, Theorem 1.3.4]. Thus, there exist ν ∈ (0, 1),
α ∈ (0, 2) such that

‖e−tAα−1u‖
Wβ,p
B

≤ ‖(I +Aα−1)e−t(I+Aα−1)etIu‖κ
W 2α−2,p
B

‖e−tAα−1u‖1−κ
W 2α−2,p
B

= eκt‖(I +Aα−1)e−t(I+Aα−1)u‖κ
W 2α−2,p
B

‖e−tAα−1u‖1−κ
W 2α−2,p
B

≤ e(κ(1−α)−ν(1−κ))tt−κ‖u‖
W 2α−2,p
B

.

Finally, we pick 1− α = −ν and use the fact that W β,p
B = W β,p to conclude the proof.

Lemma 2.2 Let 1 < β < 2α < 1+ 1
p then there exists κ < 1 such that Xκ ↪→W β,p, where

Xκ := D((I +Aα−1)κ)

Proof. Arguing in the same manner as we did in the previous lemma we have that there
exists θ < 1 such that

‖u‖Wβ,p ≤ C‖(I +Aα−1)u‖κW 2α−2,p‖u‖1−κW 2α−2,p .

Finally the lemma can be concluded with the use of [9, pg. 28, Exer. 11].

3 Global existence in time

Theorem 3.1 Let p > d and consider the initial data u0 ∈ W 1,p(Ω) with u0 ≥ 0. Then
there exists τ(‖u0‖W 1,p) such that the system (4) has a unique positive local in time solution

(u, v) ∈
(
C([0, τ ];W 1,p(Ω)) ∩ C1((0, τ); C2+α(Ω))

)2
,

and u(x, t), v(x, t) ≥ 0 for (x, t) ∈ Ω× [0, τ ]. Moreover, the solution depends continuously
on the initial data, i.e. if u(u0) and u(u0) denote the solutions to (4) with inial data u0

and u0 respectively then

‖u(u0)− u(u0)‖(C([0,τ ];W 1,p))2 ≤ C‖u0 − u0‖W 1,p .

Proof. The proof of the Theorem is based on a standard fixed point argument. Let

XT := C([0, T ];W 1,p(Ω)).

For each f ∈ XT we consider the operator

S : XT → C([0, T ];W 2,p(Ω))
f 7→ S(f) = v,

where v is the unique solution to
−∆v + v = h(f) in Ω× (0, T ),
∂v

∂n
= r′

(
θ

2
− v

)
on ∂Ω× (0, T ).

5
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Moreover for each t ∈ [0, T ], thanks to [1], the following estimate is satisfied

‖v(t)‖W 2,p ≤ C(t)
(
‖h(f)‖p + ‖θ/2r′‖W 1−1/p,p(∂Ω)

)
. (6)

Next, we consider the operator

H : XT → XT

f 7→ H(f) = u,

where u is the unique solution to the linear parabolic problem
ut −∆u = −χ∇f · ∇v + χf(h(f)− v) + µf(1− f) in Ω× (0, T ),
∂u

∂n
= χfr′

(
θ

2
− v

)
+ r(θ − f) on ∂Ω× (0, T ).

(7)

Let 2α ∈
(
1, 1 + 1

p

)
. Thanks to the generalized variations of constants formula, see [2] pg.

63, we can rewrite (7) in the following manner

u(t) = e−tAα−1u0 +
∫ t

0
e−(t−τ)Aα−1(F (f, v) +Aα−1Bcγg(f, v))dτ, (8)

where γ : W 1,p(Ω)→W 1−1/p,p(∂Ω) denotes the trace operator and

F (f, v) := −χ∇f · ∇v + χf(h(f)− v) + µf(1− f),

g(f, v) := χfr′
(
θ

2
− v

)
+ r(θ − f).

Let us point out that, since Aα−1Bc ∈ L(W 2α−1−1/p,p(∂Ω),W 2α−2,p
B ) together with the

embedding W 1−1/p,p(∂Ω) ↪→ W 2α−1−1/p,p(∂Ω), then we can assert that Aα−1Bcγ is well
defined for g(f, v) ∈W 1,p(Ω). Next, we define the closed set

BT
R := {f ∈ C([0, T ];W 1,p(Ω)) : ‖f‖XT ≤ R}.

Now, we have to verify that the conditions of the Banach fixed point Theorem are
satisfied for the map H.
Step 1. There exist R, T > 0 such that for any f ∈ BT

R, it holds that H(f) ∈ BT
R.

From (8), thanks to (5) and the embedding W β,p(Ω) ↪→W 1,p(Ω) we get

‖u(t)‖W 1,p ≤ C‖u0‖W 1,p + C

∫ t

0
e−ν(t−τ)(t− τ)−κ(‖F (f, v)‖

W 2α−2,p
B

+

+‖Aα−1Bcγg(f, v)‖
W 2α−2,p
B

)dτ.

Taking into account the embedding W 1−1/p,p(∂Ω) ↪→W 2α−1−1/p,p(∂Ω) we have

‖Aα−1Bcγg(f, v)‖W 2α−2,p(∂Ω) ≤ C‖γg(f, v)‖W 2α−1−1/p,p(∂Ω)

≤ C‖γg(f, v)‖W 1−1/p,p(∂Ω)

≤ C‖g(f, v)‖W 1,p

also, having in mind [2, (7.5),(7.8)], we have Lp := W 0,p
B ↪→W 2α−2,p

B . Thus, we infer

‖u(t)‖W 1,p ≤ C‖u0‖W 1,p + C

∫ t

0
e−ν(t−τ)(t− τ)−κ(‖F (f, v)‖p + ‖g(f, v)‖W 1,p)dτ. (9)

6
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On one hand we have

‖F (f, v)‖Lp ≤ χ(‖∇f · ∇v‖p + ‖fh(f)‖p + ‖fv‖p) + µ(‖f‖p + ‖f2‖p). (10)

Now, we estimate each term of (10) separately

‖∇f · ∇v‖p ≤ ‖∇v‖∞‖∇f‖p
≤ C‖v‖W 1,∞‖f‖W 1,p

≤ C‖v‖W 2,p‖f‖W 1,p

≤ C(‖h(f)‖p + C(r′))‖f‖W 1,p

≤ C(‖h(f)‖∞ + C(r′))‖f‖W 1,p

≤ C(‖f‖W 1,p + C(r′))‖f‖W 1,p .

The remaining terms of (10) can be estimated in a similar way to obtain

‖F (f, v)‖p ≤ C(χ, µ, r′, ‖f‖W 1,p), (11)

with C(χ, µ, r′, ‖f‖W 1,p) an increasing function on its arguments. On the other hand we
have

‖g(f, v)‖W 1,p ≤
χθr′

2
‖f‖W 1,p + χr′‖fv‖W 1,p + ‖rθ‖W 1,p + r‖f‖W 1,p . (12)

The term ‖fv‖W 1,p is estimated as follows

‖fv‖W 1,p ≤ C‖f‖W 1,p‖v‖W 1,∞

≤ C‖f‖W 1,p(‖h(f)‖p + C(r′))
≤ C‖f‖W 1,p(‖f‖W 1,p + C(r′)).

So, we obtain
‖g(f, v)‖W 1,p ≤ C(χ, r, r′, θ, ‖f‖W 1,p), (13)

where C(χ, r, r′, θ, ‖f‖W 1,p) is an increasing function on its arguments. Now, we plug (11)
and (13) in (9) to obtain

‖u(t)‖W 1,p ≤ C‖u0‖W 1,p + C(R)
∫ t

0
Ce−ν(t−τ)(t− τ)−κdτ

≤ C‖u0‖W 1,p + C(R)T 1−κ.

Thus, choosing R > C‖u0‖W 1,p and τ0 = T (R) sufficiently small then ‖u‖Xτ0 ≤ R.
Moreover, ‖u‖XT ≤ R for all T ≤ τ0. Now, we fix R > C‖u0‖W 1,p and T ≤ τ0 is free to
our disposal.
Step 2. H is contractive.
Let f1, f2 ∈ BT

R then, u1 = H(f1) ∈ BT
R and u2 = H(f2) ∈ BT

R and

u1(t)− u2(t) =
∫ t

0
e−(t−τ)Aα−1((F (f1, v1)−F (f2, v2)) +Aα−1Bcγ(g(f1, v1)− g(f2, v2)))dτ.

So, we obtain

‖u1(t)− u2(t)‖W 1,p ≤
∫ t

0
e−ν(t−τ)(t− τ)−κ(‖F (f1, v1)− F (f2, v2)‖p+

+‖g(f1, v1)− g(f2, v2)‖W 1,p)dτ.
(14)

7



April 26, 2014 M. Delgado, C. Morales-Rodrigo, A. Suárez, J. I. Tello

On one hand we have

‖F (f1, v1)− F (f2, v2)‖p ≤ χ‖∇f2 · ∇v2 −∇f1 · ∇v1‖p + χ‖f1h(f1)− f2h(f2)‖p+
+µ‖f1 − f2‖p + µ‖f2

2 − f2
1 ‖p.

(15)
Now, we estimate each term of (15) separately

‖∇f2 · ∇v2 −∇f1 · ∇v1‖p ≤ ‖∇(f2 − f1) · ∇v2‖p + ‖∇f1 · ∇(v2 − v1)‖p
≤ C(‖v2‖W 2,p‖f1 − f2‖W 1,p +R‖v1 − v2‖W 2,p)
≤ C(C(R)‖f1 − f2‖W 1,p +R‖h(f1)− h(f2)‖p).

Taking into account that ‖h(f1)− h(f2)‖p ≤ ‖(f1)+ − (f2)+‖∞ ≤ ‖f1 − f2‖∞ we get

‖∇f2 · ∇v2 −∇f1 · ∇v1‖p ≤ C(R)‖f1 − f2‖W 1,p .

For the remaining terms of (15) we can argue in a similar way to obtain

‖F (f1, v1)− F (f2, v2)‖p ≤ C(R)‖f1 − f2‖W 1,p . (16)

On the other hand we have

‖g(f1, v1)− g(f2, v2)‖W 1,p ≤
(
χθr′

2
+ r

)
‖f1 − f2‖W 1,p + χr′‖f2v2 − f1v1‖W 1,p .

We deduce

‖f2v2 − f1v1‖W 1,p ≤ ‖v2(f2 − f1)‖W 1,p + ‖f1(v2 − v1)‖W 1,p

≤ ‖v2‖W 1,∞‖f1 − f2‖W 1,p + ‖f1‖W 1,p‖v2 − v1‖W 1,∞

≤ C(R)‖f1 − f2‖W 1,p .

Thus, we get
‖g(f1, v1)− g(f2, v2)‖W 1,p ≤ C(R)‖f1 − f2‖W 1,p . (17)

Finally, we put the estimates (16) and (17) in (14) to obtain

‖u1 − u2‖XT ≤ C(R)T 1−κ‖f1 − f2‖XT .

Hence, taking T sufficiently small we prove that H is contractive.

Now we deal with the regularity of the solution. Let us fix any t ∈ (0, τ) then the
equation for u has the abstract representation

du

dt
+ (I +Aα−1)u = f(x, t), u(0) = u0.

Thus, thanks to [9, Theorem 3.5.2] du
dt (t) ∈ Xκ with κ < 1. In particular, by Lemma

2.2,we have du
dt (t) ∈ W β,p for some β > 1, p > d. So, we obtain u ∈ C1((0, τ);W 1,p(Ω))

and since the v-equation preserves the regularity in time then v ∈ C1((0, τ);W 1,p(Ω)). We
observe that  −∆v(t) + v(t) = h(u)(t) in Ω,

∂v

∂n
(t) + r′v(t) =

r′θ

2
on ∂Ω.

8
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Taking into account that h(u)(t) ∈ Cα(Ω) then the elliptic regularity assures v(t) ∈
C2+α(Ω). So, we have proved that v ∈ C1((0, τ); C2+α(Ω)). Now we rewrite the u-equation
as follows 

−∆u(t) +∇u(t) · ∇v(t) = f(t) in Ω,
∂u

∂n
(t) +

(
r − χr′

(
θ

2
− v

))
u(t) = rθ on ∂Ω,

where
f(t) := (uh(u)− uv + µu(1− u)− ut)(t).

Since f(t) ∈ Cα(Ω), r − χr′
(
θ
2 − v

)
(t) ∈ C1+α(∂Ω) and ∇v(t) ∈ Cα(Ω) then elliptic regu-

larity entails u(t) ∈ C2+α(Ω).

Next we observe that the positivity of (u, v) is consequence of the maximum principle
for parabolic equations.

At the end we show the continuity respect to the initial data, for this purpose we argue
in the following manner. Let R > C(‖u0‖W 1,p + ‖u0‖W 1,p). We have

u(u0)(t) = e−tAα−1u0 +
∫ t

0
e−(t−τ)Aα−1(F (u(u0), v(u0)) +Aα−1Bcγg(u(u0), v(u0)))dτ

= e−tAα−1u0 +H(u(u0))− e−tAα−1u0.

Hence, we infer

‖(u(u0)− u(u0))(t)‖W 1,p ≤ 2‖e−tAα−1(u0 − u0)‖W 1,p + ‖H(u(u0)−H(u(u0))‖W 1,p .

Taking supremum on time, thanks to the contractivity of H, we obtain

‖u(u0)− u(u0)‖XT ≤ C‖u0 − u0‖W 1,p + k‖u(u0)− u(u0)‖XT ,

with k < 1. Also we have

‖(v(u0)− v(u0))(t)‖W 2,p ≤ C(t)‖h(u(u0))(t)− h(u0(u0))(t)‖Lp
≤ C(t)‖u(u0)− u(u0)‖W 1,p .

(18)

From (18) the proof of the continuity can be easily concluded.

Now we deal with the issue of global in time solutions. To this end we have just to
show that ‖u(t)‖W 1,p ≤ C(t) for all t < Tmax where Tmax stands for the maximal interval
of existence. We observe that

−∆v + v =
u

1 + u
in Ω× (0, Tmax),

∂v

∂n
+ r′v =

r′θ

2
on ∂Ω× (0, Tmax).

Since
∥∥∥ u(t)

1+u(t)

∥∥∥
∞
≤ 1 then ‖v(t)‖W 2,p ≤ C for all t ∈ [0, Tmax). Next we put the formula

of generalized variations of constants to obtain

u(t) = e−tAα−1u0 +
∫ t

0
e−(t−τ)Aα−1(F (u, v) +Aα−1Bcg(u, v))dτ.

9
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So,

‖u(t)‖W 1,p ≤ C‖u0‖W 1,p + C

∫ t

0
e−ν(t−τ)(t− τ)−κ(‖F (u, v)‖Lp + ‖g(u, v)‖W 1,p)

≤ C‖u0‖W 1,p + C

∫ t

0
e−ν(t−τ)(t− τ)−κ‖u(τ)‖W 1,pdτ.

Finally the proof of global existence concludes with use of Gronwall’s Lemma.

4 Asymptotic behavior for θ = 1

When θ = 1 there exists the coexistence state (u, v) = (1, 1/2).

4.1 Case r′ > 0

Theorem 4.1 Assume r > 0. There exists C(r, r′) > 0 a function increasing on r such
that if 0 < χ < C(r, r′) then

‖u(t)− 1‖Wβ,p ≤ Ce−α(β,p,χ)t ‖v(t)− 1/2‖W 2,p ≤ Ce−γ(p,χ)t

where β < 1, p ≥ 2 and α(β, p, χ) > 0, γ(p, χ) > 0 are given functions that can be
computed.

Proof. We multiply the u-equation by u− 1 and after integrating in the spatial variable
we get

d

2dt

∫
Ω

(u− 1)2 = −
∫

Ω
|∇(u− 1)|2 + χ

∫
Ω
u∇v · ∇(u− 1)−

−r
∫
∂Ω

(u− 1)2 − µ
∫

Ω
u(u− 1)2

= −
∫

Ω
|∇(u− 1)|2 +

χ

2

∫
Ω
∇v · ∇(u− 1)2 + χ

∫
Ω
∇v · ∇(u− 1)−

−r
∫
∂Ω

(u− 1)2 − µ
∫

Ω
u(u− 1)2 .

(19)
Now, we compute the terms

∫
Ω∇v · ∇(u − 1)2,

∫
Ω∇v · ∇(u − 1). For this purpose we

multiply the v-equation by u− 1 and we integrate in Ω to obtain∫
Ω
∇v · ∇(u− 1) =

∫
Ω

(
u

1 + u
− v

)
(u− 1) + r′

∫
∂Ω

(
1
2
− v

)
(u− 1)

=
∫

Ω

(
u

1 + u
− 1

2

)
(u− 1) +

∫
Ω

(
1
2
− v

)
(u− 1) + r′

∫
∂Ω

(
1
2
− v

)
(u− 1)

=
∫

Ω

(u− 1)2

2(1 + u)
+
∫

Ω

(
1
2
− v

)
(u− 1) + r′

∫
∂Ω

(
1
2
− v

)
(u− 1) .

(20)

In the same manner we have∫
Ω
∇v · ∇(u− 1)2 =

∫
Ω

(u− 1)3

2(1 + u)
+
∫

Ω

(
1
2
− v

)
(u− 1)2 + r′

∫
∂Ω

(
1
2
− v

)
(u− 1)2 . (21)

Now, we estimate each term in the right-hand side of (21) and (20). We know that
s−1

2(1+s) <
1
2 for all s ≥ 0. Therefore,∫

Ω

(u− 1)3

2(1 + u)
≤ 1

2

∫
Ω

(u− 1)2 .

10
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Since v ≥ 0 then∫
Ω

(
1
2
− v

)
(u− 1)2 ≤ 1

2

∫
Ω

(u− 1)2 , r′
∫
∂Ω

(
1
2
− v

)
(u− 1)2 ≤ r′

2

∫
∂Ω

(u− 1)2 .

By the positivity of u we have∫
Ω

(u− 1)2

2(1 + u)
≤ 1

2

∫
Ω

(u− 1)2 .

It remains to estimate (I) =
∫

Ω

(
1
2 − v

)
(u− 1) + r′

∫
∂Ω

(
1
2 − v

)
(u− 1). We know that

(I) ≤ (II) +
1
2

∫
Ω

(u− 1)2 +
r′

2

∫
∂Ω

(u− 1)2 ,

where

(II) =
1
2

∫
Ω

(
1
2
− v

)2

+
r′

2

∫
∂Ω

(
1
2
− v

)2

.

Now, we try to estimate (II), to this aim we subtract 1/2 in the v-equation and we
multiply it by v − 1/2 to get, after integrating in the spatial variable, that∫

Ω

∣∣∣∣∇(v − 1
2

)∣∣∣∣2 +
1
2

∫
Ω

(
v − 1

2

)2

+
r′

2

∫
∂Ω

(
1
2
− v

)2

+ (II) =
∫

Ω

(
u

1 + u
− 1

2

)(
v − 1

2

)
.

(22)
We provide a bound of the first and third term in the above inequality with the following
argument. Let λ1(r′/2) ∈ [0, λ1(+∞)) the principal eigenvalue of −∆ϕ = λϕ in Ω,

∂ϕ

∂n
+
r′

2
ϕ = 0 on ∂Ω.

By the variational characterization of λ1(r′/2) we have that for all ϕ ∈ H1(Ω)

λ1(r′/2)
∫

Ω
ϕ2 ≤

∫
Ω
|∇ϕ|2 +

r′

2

∫
∂Ω
ϕ2 .

Putting the previous estimate in (22) we obtain(
1
2

+ λ1(r′/2)
)∫

Ω

(
v − 1

2

)2

+ (II) ≤ ε
∫

Ω

(u− 1)2

4(1 + u)2
+

1
4ε

∫
Ω

(
v − 1

2

)2

,

for all ε > 0. We pick ε = ε0 > 0 such that 1
4ε0
≤ 1

2 + λ1(r′/2) . Thus,

(II) ≤ ε0
4

∫
Ω

(u− 1)2.

All the previous estimates allow us to infer from (19) that

1
2
d

dt

∫
Ω

(u− 1)2 ≤ −
∫

Ω
|∇(u− 1)|2 +

χ(6 + ε0)
4

∫
Ω

(u− 1)2 +
(

3χr′

4
− r

)∫
∂Ω

(u− 1)2 .

11
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Let z(χ) = r− 3χr′

4 . Observe that, by the variational characterization of λ1(z(χ)) we have

1
2
d

dt

∫
Ω

(u− 1)2 ≤ F (χ)
∫

Ω
(u− 1)2 ,

where
F (χ) :=

χ(6 + ε0)
4

− λ1(z(χ)).

By the monotonicity of z and λ1 we have that F (χ) is increasing in χ. Since F (0) < 0 and
F ((4r)/(3r′)) > 0 then there exists a unique χ∗ = C(r, r′) such that for all χ < C(r, r′)
F (χ) < 0. From here we deduce that

‖u(t)− 1‖22 ≤ ‖u0 − 1‖22e2F (χ)t.

Let p ≥ 2. Since ‖u(t)‖W 1,p ≤ C for all t ≥ 0 then∫
Ω

(u− 1)p ≤
∫

Ω
(u− 1)p−2(u− 1)2 ≤ Cp−2‖u0 − 1‖22e2F (χ)t.

Therefore,
‖u(t)− 1‖p ≤ Cp−2‖u0 − 1‖2/p2 e2F (χ)/pt .

Next, the Gagliardo-Nirenberg inequality (see for instance [9, p. 37]) entails

‖u(t)− 1‖Wβ,p ≤ C‖u(t)− 1‖κW 1,p‖u(t)− 1‖1−κp

for β < κ, κ ∈ (0, 1). From the last inequality easily follows the convergence of u to 1 in
norm W β,p. Finally the convergence for v follows from the W 2,p estimates of v.

Remark 4.2 Observe that if µ = r = 0 integrating in the u-equation we get∫
Ω
u(t) =

∫
Ω
u0,

and then we can assure in general that u tends to 1.

4.2 Case r′ = 0

In this case we follow the lines of [11].

Theorem 4.3 We assume min
x∈Ω

u0(x) > 0 and consider the constant γ0 defined as follows

γ0 :=
2χ(

1 + u0
u0

)2 − µ < 0 (23)

where

u0 := max

{
max
x∈Ω

u0(x), 1

}
, u0 := min

{
min
x∈Ω

u0(x), 1

}
,

then the solution (u, v) to (2) fulfills

‖u(t)− 1‖∞ +
∥∥∥∥v(t)− 1

2

∥∥∥∥
W 2,p

≤ −Cε−1
0 ln(ε0)eγ0ε0t, t > 0, (24)

for any p > 1 and ε0 := u0
u0

.

12



On a parabolic-elliptic chemotactic model... April 26, 2014

Proof. Let

F1(u, v) := χu

(
u

1 + u
− v

1 + v

)
+ µu(1− u)

F2(u, v) := χv

(
v

1 + v
− u

1 + u

)
+ µv(1− v)

and (u, u) = (u(t), u(t)) the solution to the following system of differential equations ut = F1(u, u),

ut = F2(u, u),
(25)

with initial data (u(0), u(0)) = (u0, u0). Let us decompose the proof of the Theorem into
several steps.

Step 1. We first claim that

0 < u ≤ u in (0, Tmax). (26)

where Tmax > 0 denotes the maximal existence time of (25). Having in mind that F1 and
F2 are regular functions then, at least locally the system (25) has a unique solution in
(0, Tmax). Since F1(0, u) = 0 and u0 > 0 then u(t) > 0 for all t ∈ (0, Tmax). Arguing in the
same manner we can prove that u(t) > 0 for all t ∈ (0, Tmax). Finally, it remains to prove
u ≤ u. Suppose that there exists t0 ≥ 0 such that u(t0) = u(t0); then by the uniqueness
u(t) = u(t) = v(t) for all t ≥ 0 where v solves vt = µv(1−v), v(t0) = u(t0). So, if u0 = u0,
then u = u in (0, Tmax); if u0 < u0, the u < u in (0, Tmax), because the previous t0 can
not exist.

Step 2. We have
u ≤ 1 ≤ u in (0, Tmax). (27)

Since x
x+1 is an increasing function, by (25) and Step 1, u satisfies ut ≥ µu(1 − u). Since

u(0) ≥ 1, by comparison we get u ≥ 1. In the same fashion we prove u ≤ 1.

Step 3. We next show that under assumption (23) we have

u(t)− u(t) ≤ −ε−1
0 ln(ε0)eγ0ε0t. (28)

On multiplying the first equation in (25) by 1
u and the second one by 1

u , we obtain

ut
u

= χ

(
u

1 + u
− u

1 + u

)
+ µ(1− u) in (0, Tmax),

and
ut
u

= χ

(
u

1 + u
− u

1 + u

)
+ µ(1− u) in (0, Tmax),

for t > 0, respectively. Subtracting the previous equations we get

d

dt

(
ln
u

u

)
= 2χ

(
u

1 + u
− u

1 + u

)
− µ(u− u). (29)

13
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Next, we observe that the mean value theorem entails

2χ
(

u

1 + u
− u

1 + u

)
=

2χ
(1 + ξ(t))2

(u− u), (30)

where ξ(t) ∈ (u(t), u(t)). Let

γ(t) :=
(

2χ
(1 + ξ(t))2

− µ
)

Therefore
d

dt

(
ln
u

u

)
= γ(t)(u− u). (31)

Next, we claim that u(t) ≥ ε0. Suppose the contrary then the set

A := {t ∈ [0, Tmax) : u(t) < ε0}

in not empty and bounded from below because 0 6∈ A. Therefore, there exists t0 := inf A.
It is not difficult to infer that t0 > 0. Thanks to (23) there exists k > 0 such that

2χ
(1 + ε0 − k)2

− µ ≤ 0.

By the continuity of u and the definition of t0 we have that there exists δ0(k) > 0 such that
u(t0 + δ) > ε−k for all δ ≤ δ0. More generally, we have u(t) > ε0−k for all t ∈ [0, t0 + δ0].
Since ξ(t) ≥ u(t) ≥ ε0− k for all t ∈ [0, t0 + δ0] then γ(t) ≤ 0 for all t ∈ [0, t0 + δ0]. Hence,
from (31) we get

u(t)
u(t)

≤ u(0)
u(0)

= ε−1
0 , ∀t ∈ [0, t0 + δ0].

Therefore, taking into account that u(t) ≥ 1, the previous inequality asserts

ε0 ≤ u(t) ∀t ∈ [0, t0 + δ0]. (32)

From (32) we infer inf A ≥ t0 + δ0, a contradiction. As a consequence of the previous
proof we have that γ(t) ≤ γ0 < 0. Now, we observe that the mean value theorem entails

u− u = elnu − elnu = eln û(t)(lnu− lnu) = û(t) ln
(
u

u

)
, (33)

where û(t) ∈ (u(t), u(t)). Substituting the term (33) in (31) we deduce

d

dt

(
ln
(
u

u

))
= γ(t)û(t) ln

(
u

u

)
≤ γ0ε0 ln

(
u

u

)
.

Upon integration this yields

ln
(
u(t)
u(t)

)
≤ − ln(ε0)eγ0ε0t.

The above inequality prove that Tmax = +∞. Moreover substituting the estimate (33) in
the previous inequality we get

u(t)− u(t) ≤ −ε−1
0 ln(ε0)eγ0ε0t.

14
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Step 4. We now establish a connection between (25) and (23) by showing that

u(t) ≤ u(x, t) ≤ u(t) ∀ (x, t) ∈ Ω× (0,∞). (34)

We consider U(x, t) = u(x, t)− u(t) and U(x, t) = u(x, t)− u(t) which satisfy:

U t−∆U = −χ∇·
(
U∇v

)
−χu

(
u

1 + u
− u

u+ 1

)
+χu

(
u

1 + u
− v

)
+µu(1−u)−µu(1−u)

since

−χu
(

u

1 + u
− u

u+ 1

)
+ χu

(
u

1 + u
− v

)
= χu

(
u

1 + u
− u

1 + u
+

u

u+ 1
− v

)
,

= χu

(
1

(1 + ξ1)2
U +

u

u+ 1
− v

)
,

and
µu(1− u)− µu(1− u) = µ(1− u− u)U

where ξ1(x, t) ∈ (min{u, u},max{u, u}). Then U satisfies

U t −∆U = −χ∇ ·
(
U∇v

)
+ χu

(
1

(1 + ξ1)2
U +

u

u+ 1
− v

)
+ µ(1− u− u)U

i.e.

U t −∆U = −χ∇ ·
(
U∇v

)
+ U

(
χu

(1 + ξ1)2
+ µ(1− u− u)

)
+ χu

(
u

u+ 1
− v

)
. (35)

Notice that∫
Ω

(
−∆U + χ∇ · (U∇v)

)
U+ =

=
∫

Ω
|∇U+|2 − χ

∫
Ω
U∇v · ∇U+ −

∫
∂Ω

(
∂U

∂n
− χU ∂v

∂n

)
U+

=
∫

Ω
|∇U+|2 −

χ

2

∫
Ω
∇v · ∇U2

+ −
∫
∂Ω

(
r(1− u) + χu

∂v

∂n

)
U+

=
∫

Ω
|∇U+|2 −

χ

2

∫
Ω

(
u

1 + u
− v

)
U

2
+ −

χ

2

∫
∂Ω

∂v

∂n
U

2
+ −

∫
∂Ω

(
r(1− u) + χu

∂v

∂n

)
U+

=
∫

Ω
|∇U+|2 +

χ

2

∫
Ω

(
v − u

1 + u

)
U

2
+ −

∫
∂Ω
r(1− u)U+.

Since U+ 6= 0 whenever u ≥ u then by step 2, u ≥ u ≥ 1. As a consequence, the boundary
term is non-positive. We take U+ as test function in (35) to obtain

d

2dt

∫
Ω
U

2
+ +

∫
Ω
|∇U+|2 ≤

∫
Ω
U

2
+g(u, v, u) + χ

∫
Ω
U+u

(
u

1 + u
− v

)
, (36)

with
g(u, v, u) :=

χ

2

(
u

1 + u
− v

)
+

χu

(1 + ξ1)2
+ µ(1− u− u).

We try to estimate the last term in the right hand side of (36). We observe

χ

∫
Ω
U+u

(
u

1 + u
− v

)
≤ χ

∫
Ω
U+u

(
u

1 + u
− v

)
+

≤ χε−1
0

(∫
Ω
U

2
+ +

∫
Ω

(
v − u

1 + u

)2

−

)
,

(37)
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where in the last inequality we used that f+ = −(−f)−. We note that

−∆v + v − u

1 + u
= U

1
(1 + ξ2)2

for some ξ2(x, t) ∈ (min{u, u},max{u, u}). After multiplying the previous expression by
(v − u

1+u)− we get

∫
Ω

∣∣∣∣∣∇
(
v − u

1 + u−

)∣∣∣∣∣
2

+
∫

Ω

(
v − u

1 + u

)2

−
=
∫

Ω
U

1
(1 + ξ2)2

(
v − u

1 + u

)
−

≤
∫

Ω
U−

1
(1 + ξ2)2

(
v − u

1 + u

)
−

≤ 1
2

∫
Ω
U2
− +

1
2

∫
Ω

(
v − u

1 + u

)2

−

Taking into account that the boundary term is non-positive then, from the above inequality
we deduce

1
2

∫
Ω

(
v − u

1 + u

)2

−
≤ 1

2

∫
Ω
U2
−. (38)

Plugging the estimate (38) into (37) we obtain

χ

∫
Ω
U+

(
u

1 + u
− v

)
≤ χε−1

0

(∫
Ω
U

2
+ +

∫
Ω
U2
−

)
.

The previous inequality provides with the following bound in (36)

d

2dt

∫
Ω
U

2
+ ≤

∫
Ω
U

2
+g(u, v, u) + χε−1

0

(∫
Ω
U

2
+ +

∫
Ω
U2
−

)
.

Since g(u, v, u) ≤ C then

d

2dt

∫
Ω
U

2
+ ≤ C

(∫
Ω
U

2
+ +

∫
Ω
U2
−

)
.

In the same fashion we have

d

2dt

∫
Ω
U2
− ≤ C

(∫
Ω
U

2
+ +

∫
Ω
U2
−

)
.

Adding the above inequalities and taking into account that (U0)+ = (U0)− = 0, we may
invoke Gronwall’s Lemma to achieve

U+ = U− = 0 (39)

which proves the step.

Step 5. Since u ≤ u ≤ u and u ≤ 1 ≤ u then

‖u(t)− 1‖∞ ≤ u− u ≤ −ε−1
0 ln(ε0)eγ0ε0t ∀t > 0. (40)
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Next we observe that ξ = 1
2 is the unique solution to the problem
−∆ξ + ξ =

1
2

in Ω× (0,+∞),
∂ξ

∂n
= 0 on ∂Ω× (0,+∞).

Therefore z := v − ξ satisfies
−∆z + z =

u

1 + u
− 1

2
in Ω× (0,+∞),

∂z

∂n
= 0 on ∂Ω× (0,+∞),

(41)

and elliptic regularity asserts

‖z(t)‖W 2,p ≤ C
∥∥∥∥ u(t)− 1

2(1 + u(t))

∥∥∥∥
∞
≤ C‖u(t)− 1‖∞,

concluding the result.

Corollary 4.4 If µ ≥ 2χ then the solution (u, v) to (2) is globally exponentially asymp-
totically stable and converges to the homogeneous steady-state (1, 1

2). Moreover, if µ ≥ 2χ,
then the previous homogeneous steady-state is the only positive solution to the steady-state
problem associated to (2).

Proof. Assume min u0 = 0 then, by the strong maximum principle, min u(τ) > 0 for
arbitrary τ > 0 small as desired. Next, we observe that γ0 < 2χ − µ ≤ 0 and thanks to
Theorem 4.2 we conclude the first part. The second part is a direct consequence of the
global stability.

Another consequence of Theorem 4.2 is the next Corollary

Corollary 4.5 If µ > χ
2 then the solution (1, 1

2) to (2) is locally exponentially asymptoti-
cally stable.

5 The stationary problem

In this section, we analyze the stationary problem associated to (2), that is

−∆u = −χ∇ · (u∇v) + µu(1− u) in Ω,

−∆v = −v +
u

1 + u
in Ω,

∂u

∂n
− χu∂v

∂n
= r(θ − u) on ∂Ω,

∂v

∂n
= r′

(
θ

2
− v

)
on ∂Ω.

(42)

First, in order to present and prove our main result, we need introduce some notation.
Given functions a, b ∈ C(Ω) with a ≥ a0 > 0, r ∈ C(∂Ω), we denote by λ1(a; b;N + r) the
principal eigenvalue of the problem −div(a(x)∇u) = λb(x)u in Ω,

∂u

∂n
+ r(x)u = 0 on ∂Ω.

(43)

17



April 26, 2014 M. Delgado, C. Morales-Rodrigo, A. Suárez, J. I. Tello

Recall that λ1(a; b;N + r) is increasing in a and r and decreasing in b.
On the other hand, denote by vr′ the unique positive solution of −∆v + v = 1 in Ω,

∂v

∂n
+ r′v = r′

θ

2
on ∂Ω.

(44)

It is clear that vr′ = 1 if r′ = 0. Moreover, if r′ > 0

min{1, θ/2} ≤ vr′ ≤ max{1, θ/2}.

Finally, observe that since u/(u+ 1) ≤ 1 we get

v ≤ vr′ in Ω. (45)

Now, we are ready to state our main result:

Theorem 5.1 a) Assume that θ > 0 and r′ ≥ 0. Then, there exists at least a positive
solution of (42) if µ ≥ 0 and r ≥ 0.

b) Assume that θ = 0 and r′ ≥ 0. Then, there exists at least a positive solution of (42)
if

µ > λ1(eχvr′ ; 1;N + r),

and (42) does not possess a positive solution if

0 ≤ µ ≤ λ1(1; eχvr′ ;N + r).

Corollary 5.2 Assume that θ = r′ = 0. Then, there exists at least a positive solution of
(42) if, and only if,

µ > λ1(1; 1;N + r),

In order to prove the main result we are going to use a decoupling method and a sub-
supersolution method for non-local problems. Let us begin showing the validity of the this
last method.

Consider a continuous map B : C(Ω) 7→ C(Ω) and the non-linear equation −∆u = f(x, u,B(u)) in Ω,
∂u

∂n
+ r(x)u = h(x) on ∂Ω,

(46)

where f : Ω× IR× C(Ω) 7→ IR is a regular function; r, h ∈ C(∂Ω).

Definition 5.3 We say that u, u ∈ C2(Ω) ∩ C(Ω) is a sub-supersolution of (46) if u ≤ u
in Ω and

a)
−∆u− f(x, u,B(u)) ≤ 0 ≤ −∆u− f(x, u,B(u)) in Ω, ∀u ∈ [u, u],

b)
∂u

∂n
+ r(x)u ≤ h(x) ≤ ∂u

∂n
+ r(x)u on ∂Ω.
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Proposition 5.4 Assume that there exists a sub-supersolution of (46), u, u, in the sense
of Definition 5.3. Then, there exists a solution u ∈ [u, u] of (46).

Proof. Being the proof standard, we outline only it. Take M > 0 large enough such that
u 7→ f(x, u, ξ) +Mu is increasing for all x ∈ Ω and ξ ∈ C(Ω) and λ1(1; 1;N + r) +M > 0.
Consider the map

T : [u, u]2 → [u, u]2
w 7→ u := T (w),

being u the unique solution of the following problem −∆u+Mu = f(x,w,B(w)) +Mw in Ω,
∂u

∂n
+ r(x)u = h(x) on ∂Ω,

(47)

where
[u, u]2 := {u ∈ L2(Ω) : u ≤ u ≤ u}.

It is not hard to show that we can apply the Schauder fixed point theorem to T and
conclude the result.

To study system (42) we are going to apply the change of variable

u = eχvw

which transforms the first equation of (42) into −div(eχv∇w) = µeχvw(1− eχvw) in Ω,
∂w

∂n
+ rw = rθe−χv on ∂Ω.

(48)

With respect to this equation, we get:

Proposition 5.5 Fix v ∈ C(Ω) and denote by

vL := min
x∈Ω

v(x), vM := max
x∈Ω

v(x).

a) Assume that rθ > 0. Then, there exists a unique positive solution, denoted w, of
(48) for µ ≥ 0. Moreover,

min{1, θ}e−χvM ≤ w ≤ max{1, θ}e−χvL if µ > 0,
θe−χvM ≤ w ≤ θe−χvL if µ = 0.

(49)

b) Assume that rθ = 0. Then, if µ > 0 there exists a unique positive solution of (48)
if, and only if,

µ > λ1(eχv; eχv;N + r).

Moreover,
µ− λ1(eχv; eχv;N + r)

µeχvM ‖ϕ‖∞
ϕ ≤ w ≤ e−χvL (50)

where ϕ is a positive eigenfunction associated to λ1(eχv; eχv, N + r).

If µ = 0 there exists a positive solution if, and only if, r = 0. In such case, any
positive constant is solution.
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Proof. We will apply the sub-supersolution method.
a) Assume that rθ > 0. Take w := ε > 0 and w := K > 0 with ε,K to be chosen. Then,
ε and K must satisfy

0 ≤ µ(1− eχvε) in Ω, ε ≤ θe−χv on ∂Ω,

and
0 ≥ µ(1− eχvK) in Ω, K ≥ θe−χv on ∂Ω.

This proves (49). The uniqueness follows because the map w 7→ µ(1− eχvw) is decreasing
when µ > 0, see [5]. In the case µ = 0 the equation (48) is linear, and hence it is clear the
uniqueness result.
b) Assume rθ = 0. Let w be a positive solution of (48). Then,

−div(eχv∇w) < µeχvw in Ω,
∂w

∂n
+ rw = 0 on ∂Ω,

and so, multiplying by ϕ and integrating we get that µ > λ1(eχv; eχv;N + r). For the
existence of solution take in this case w := εϕ with

ε =
µ− λ1(eχv; eχv;N + r)

µeχvM ‖ϕ‖∞
.

Again, the uniqueness follows similarly.
Finally, the case µ = 0 follows easily.

We fix now µ > 0, the case µ = 0 will be treated separately. Fix v ∈ C(Ω) and consider
the equation (48). Denote by

w(v) :=

{
wv if rθ > 0 or if rθ = 0 and µ > λ1(eχv; eχv;N + r) ,
0 in other case,

being wv the unique positive solution of (46), which exists by Proposition 5.5.

Lemma 5.6 The operator v ∈ C(Ω) 7→ w(v) ∈ C(Ω) is continuous.

Proof. Consider sequences vn → v in C(Ω) and wn := w(vn). Observe that wn is solution
of

−div(an(x)∇wn) + wn = hn, in Ω, an(x)
∂wn
∂n

= gn on ∂Ω,

being

an(x) := eχvn , hn := wn + µwn · (1− eχvnwn), gn := an · (−rwn + rθe−χvn).

Observe that
0 < α ≤ an ≤ β <∞

and thanks to (49) and (50) we get that ‖hn‖∞ ≤ C and ‖gn‖L∞(∂Ω) ≤ C, and then, by
Theorem 2.1 in [3], it follows that

‖wn‖Cν(Ω) ≤ C,
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for ν ∈ (0, 1) and some constants depending on α and β. Hence, for a subsequence,
wn → w in C(Ω), being w a weak solution of (46). The elliptic regularity proves that w is
a classical solution of (46). Now, we can follow the lines of the proof of Lemma 3.1 of [4]
to conclude that in fact w = w(v).

Proof of Theorem 5.1. Now, we have to study the following non-local and nonlinear
equation 

−∆v + v =
eχvw(v)

1 + eχvw(v)
in Ω,

∂v

∂n
+ r′v = r′

θ

2
on ∂Ω.

(51)

To study this equation we apply Proposition 5.4 with v = vr′ being vr′ the unique
positive solution of (44).

We take as subsolution v = 0 . Observe that v = 0 is sub-solution and no solution of
(51) if

θr′ ≥ 0 and w(v) ≥ 0 ∀v ∈ [0, vr′ ]

and some inequality strict. It is clear that this holds if θr′ > 0 and paragraph a) follows
for µ > 0.

Assume now that r′ = 0 and θ > 0. If r > 0 then rθ > 0 and by Proposition 5.5 we
have that

w(v) ≥ min{1, θ}e−χvM > 0 for all µ > 0.

If r = 0, by Proposition 5.5

µ− λ1(eχv; eχv;N + r)
µeχvM ‖ϕ‖∞

ϕ ≤ w(v)

if
µ > λ1(eχv; eχv;N) = 0.

Hence, w(v) > 0 if µ > 0.
Finally assume that r′ ≥ 0 and θ = 0. If r = 0, by a similar reasoning, we need that

µ > 0. If r > 0 we need that

µ > λ1(eχv; eχv;N + r) ∀v ∈ [0, vr′ ].

Thanks to (45) we get

λ1(eχv; eχv;N + r) ≤ λ1(eχvr′ ; 1;N + r),

hence it is enough that µ > λ1(eχvr′ ; 1;N + r).
Finally, we show the non-existence result. Assume that rθ = 0. Observe that w(v) = 0

if µ > 0 and µ ≤ λ1(eχv; eχv;N + r). But

λ1(eχv; eχv;N + r) ≥ λ1(1; eχvr′ ;N + r)

whence we deduce the result.
Consider now the case µ = 0. If rθ > 0 then there exists a unique w(v) > 0 solution of

(48) and the result follows in a similar way. If θ = 0 and r > 0 then w(v) = 0, and then
u = 0. However, if r = 0, we obtain that w = C for any positive constant C, and then

u = eχvC.
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It is enough now to study the equation for v

−∆v + v =
Ceχv

1 + Ceχv
in Ω,

∂v

∂n
+ r′v = r′

θ

2
on ∂Ω.

We can argue as in the above case and conclude the result.
With respect to the semitrivial and trivial solutions, we get:

Proposition 5.7 a) The trivial solution (u, v) = (0, 0) exists if and only if rθ = r′θ =
0. In such case, the solution is unstable for µ > λ1(1; 1;N + r) and stable for
µ < λ1(1; 1;N + r).

b) The semitrivial solution (0, Vr′) exists if and only if r = 0 and r′, θ > 0, being Vr′
the unique solution of  −∆V + V = 0 in Ω,

∂V

∂n
+ r′V = r′

θ

2
on ∂Ω.

(52)

In such case, (0, wr′) is unstable for µ > 0.

Proof. a) The existence result is not hard to show. On the other hand, the stability of
(0, 0) is given by the real parts of the eigenvalues for which the following problem admits
a solution (ξ, η) 6= (0, 0) 

−∆ξ − µξ = σξ in Ω,
−∆η + η = ξ + ση in Ω,
∂ξ

∂n
+ rξ = 0 on ∂Ω,

∂η

∂n
+ r′η = 0 on ∂Ω.

(53)

If ξ = 0, then
σ = λj(1; 1;N + r′) + 1 > 0.

Assume now that ξ 6= 0, so

σ = λj(1; 1;N + r)− µ ≥ λ1(1; 1;N + r)− µ.

Then, if µ < λ1(1; 1;N + r) we obtain that σ > 0 and (0, 0) is stable.
Assume now that µ > λ1(1; 1;N + r). Then,

σ1 := λ1(1; 1;N + r)− µ < 0.

Denote by ξ a positive eigenfunction associated to σ1, that is

−∆ξ − µξ = σ1ξ in Ω,
∂ξ

∂n
+ rξ = 0 on ∂Ω.

Since σ1 < 0, then
λ1(1; 1;N + r′) + 1− σ1 > 0,

and so there exists η 6= 0 such that

−∆η + η − σ1η = ξ in Ω,
∂η

∂n
+ r′η = 0 on ∂Ω.
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Then, σ1 < 0 is an eigenvalue of (53) with associated eigenfunction (ξ, η), so (0, 0) is
unstable.

b) Again the existence result is direct. Now, the linearization around (0, Vr′) is

−∆ξ = −div(χξ∇Vr′) + µξ + σξ in Ω,
−∆η + η = ξ + ση in Ω,
∂ξ

∂n
− χξ∂Vr

′

∂n
= 0 on ∂Ω,

∂η

∂n
+ r′η = 0 on ∂Ω.

(54)

The first equation, after the change of variable

ξ = eχVr′ψ,

is transformed into

−div(eχVr′∇ψ) = (µ+ σ)eχVr′ψ in Ω,
∂ψ

∂n
= 0 on ∂Ω.

If ξ = 0 then, since η 6= 0, then σ = λj(1; 1;N + r′) + 1 > 0. On the other hand, if ξ 6= 0
we get

σ = λj(eχVr′ ; eχVr′ ;N)− µ ≥ λ1(eχVr′ ; eχVr′ ;N)− µ > 0,

since λ1(eχVr′ ; eχVr′ ;N) = 0 and µ < 0.
Assume now that µ > 0, then σ1 := λ1(eχVr′ ; eχVr′ ;N) − µ < 0 and consider ψ a

positive eigenfunction associated to σ1, that is

−div(eχVr′∇ψ) = (µ+ σ1)eχVr′ψ in Ω,
∂ψ

∂n
= 0 on ∂Ω.

Again, consider the change of variable ξ = eχVr′ψ, and η the solution of

−∆η + η = ξ + σ1η in Ω,
∂η

∂n
+ r′η = 0 on ∂Ω,

which exists because λ1(1; 1;N + r′) + 1 − σ1 > 0. Then, σ1 < 0 is an eigenvalue of (54)
with associated eigenfunction (ξ, η), so (0, Vr′) is unstable.
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