Nonnegative solutions for the degenerate logistic indefinite sublinear equation

M. Delgado and A. Suárez $^{\rm 1}$

Dpto. Ecuaciones Diferenciales y Análisis Numérico Fac. Matemáticas, C/ Tarfia s/n C.P. 41012, Univ. Sevilla, Spain e-mail: delgado@numer.us.es and suarez@numer.us.es

Abstract

The goal of this paper is to study the nonnegative steady-states solutions of the degenerate logistic indefinite sublinear problem. We combine bifurcation method and linking local subsupersolution technique to show the existence and multiplicity of nonnegative solutions. We employ a change of variable already used in a different context and the spectral singular theory to prove uniqueness results.

Key Words. Degenerate logistic indefinite equation, Singular eigenvalue problems, Indefinite sublinear problems, Multiplicity results.

AMS Classification. 35B32, 35J25, 35K57, 92D25.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \ge 1$, be a bounded and regular domain of \mathbb{R}^N and we consider the degenerate logistic indefinite sublinear model

$$\mathcal{L}w^m = \lambda w + a(x)w^2 \quad \text{in } \Omega,$$

$$w = 0 \qquad \qquad \text{on } \partial\Omega,$$
(1.1)

¹Corresponding author.

E-mail:suarez @numer.us.es

Fax: (34) 954552898

where m > 1; $\lambda \in \mathbb{R}$ that it will be regarded as a parameter, $a \in C^{\alpha}(\overline{\Omega})$, $\alpha \in (0,1)$, changes sign and \mathcal{L} is a second order operator of the form

$$\mathcal{L}u := -\sum_{i,j=1}^{N} D_i(a_{ij}D_ju) + \sum_{i=1}^{N} b_i(x)D_iu, \qquad (1.2)$$

with $a_{ij} = a_{ji} \in C^1(\overline{\Omega}), b_i \in C^1(\overline{\Omega})$ and uniformly elliptic in the sense that

$$\exists \theta > 0 \quad \text{such that} \quad \sum_{i,j=1}^{N} a_{ij}(x)\xi_i\xi_j \ge \theta |\xi|^2, \quad \forall \xi \in \mathbb{R}^N, \ \forall x \in \Omega.$$
(1.3)

We write $a = a^+ + a^-$ where $a^+(x) := \max\{a, 0\}$ and $a^- := \min\{a, 0\}$. We define the sets:

$$A_{+} := \{ x \in \Omega : a^{+}(x) > 0 \}, \quad A_{-} := \{ x \in \Omega : a^{-}(x) < 0 \}$$
$$A_{0} := \Omega \setminus (\overline{A}_{+} \cup \overline{A}_{-})$$

and assume that A_+ is open and sufficiently smooth, that is, the finite number of connected components A_+^k , k = 1, ..., r, are sufficiently smooth.

Equation (1.1) has been proposed as a model for population density of a steady-state single species w(x) inhabiting in a heterogeneous environment Ω . Here we are assuming that Ω is fully surrounded by inhospitable areas, since the population density is subject to homogeneous Dirichlet boundary conditions. In fact, the term m > 1 was introduced in [18], see also [25], by describing the dynamics of biological population whose mobility depends upon their density. The parameter λ represents the growth rate of the species and a(x) describes the limiting effects of crowding in the species in A_{-} and the intraspecific cooperation in A_{+} . Observe that in A_{0} the population is free from crowding and symbiosis effects. Finally, \mathcal{L} measures the diffusivity and the external transport effects of the species. In this context, m > 1 means that the diffusion, the rate of movement of the species from high density regions to low density ones, is slower than in the linear case (m = 1), which seems give more realistic models, see [18].

The change of variable $u := w^m$ transforms (1.1) into

$$\mathcal{L}u = \lambda u^{q} + a(x)u^{p} \quad \text{in } \Omega,$$

$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$
(1.4)

with q = 1/m and p = 2/m. Along this work we suppose

$$(H) 0 < q < p \le 1$$

so, we are assuming that $m \ge 2$, that includes the "very slow diffusion" (i.e. m > 2) and the self-diffusion (m = 2), see [23].

In the last years the case m = 1 (q = 1 and p = 2) has attracted much attention, see [2], [3], [9], [10], [17], [22], [26] and references therein.

When 1 < m < 2 (q < 1 < p) and $a(x) \equiv a_0$ with a_0 a positive constant, (1.4) was studied in [4] in the particular case $\mathcal{L} = -\Delta$ and in [6] when \mathcal{L} is a quasilinear operator. When *a* changes sign, (1.4) was analyzed in [24] in the particular case $\lambda \leq 0$. Recently, in [15] the authors have studied (1.4) when *a* changes sign and \mathcal{L} is an operator as (1.2). In this work it was shown that from the trivial solution u = 0 bifurcates supercritically at value $\lambda = 0$ a continuum of nonnegative solutions of (1.4). Assuming some restrictions on a^+ and p in order to obtain a priori bounds of the solutions, it was proved that there exists a value $\lambda^* > 0$ such that (1.4) possesses a nonnegative and nontrivial solution if, and only if, $\lambda \in (-\infty, \lambda^*]$. Moreover, there exist at least two solutions for $\lambda \in (0, \lambda^*)$ and a unique linearly asymptotically stable in such interval.

When $m \ge 2$ $(q , only partial results are known about (1.4). When <math>\lambda \ge 0$, the existence of nonnegative solutions was proved in [8], see Theorem II.1. When $\lambda = 0$, $A_{-} = \emptyset$ and $\mathcal{L} = -\Delta$ the existence and uniqueness of positive solution was proved in [20], see also [30]. When $\lambda = 0$, $\mathcal{L} = -\Delta$ and *a* changes sign, (1.4) was studied in detail in [7]. In this work, the authors proved the existence of nonnegative solutions of (1.4). Moreover, they showed that when $\|a^{-}\|_{\infty}$ is small, (1.4) possesses a unique nontrivial solution, see Theorem 2.4 in [7]. However, when $\|a^{-}\|_{\infty}$ is large they showed multiplicity results and the existence of *dead cores* for the solutions, i.e., regions in Ω where the solutions vanish identically.

We are going to improve and generalize these results and show that a drastic change occurs when $m \ge 2$ with respect to the case m < 2. Indeed, we show that, as in the case 1 < m < 2, from the trivial solution u = 0 bifurcates a continuum of nonnegative solutions at $\lambda = 0$. When m > 2 this bifurcation is subcritical and when m = 2 the bifurcation direction depends on the sign of $\sigma_1[\mathcal{L} - a(x)]$, where $\sigma_1[\mathcal{L} - a(x)]$ stands for the principal eigenvalue of the operator $\mathcal{L} - a(x)$ subject to homogeneous Dirichlet boundary conditions. Specifically, when m > 2 we prove that there exist two values $-\infty < \lambda_* \le \lambda_{**} < 0$ such that, (1.4) admits a nonnegative solution if, and only if, $\lambda \ge \lambda_*$; a unique and linearly asymptotically stable if $\lambda > 0$ and at least two nonnegative solutions in $\lambda \in (\lambda_{**}, 0)$. When m = 2, we prove that if $\sigma_1[\mathcal{L} - a(x)] = 0$ then (1.4) has positive solutions if, and only if, $\lambda = 0$ (vertical bifurcation). In this case, infinitely positive solutions exist. If $\sigma_1[\mathcal{L} - a(x)] > 0$, (1.4) has positive solutions if, and only if, $\lambda > 0$, moreover the solution is unique and linearly asymptotically stable. Finally, $\sigma_1[\mathcal{L} - a(x)] < 0$, (1.4) has positive solutions if, and only if, $\lambda < 0$.

An outline of the work is as follows: in Section 2 we collect results of a linear eigenvalue problem with singular potential. These results will be used in the next sections. In Section 3 we apply the Leray-Schauder degree and bifurcation theory to show the existence of an unbounded continuum of nonnegative solution emanating at $\lambda = 0$ from the trivial solution u = 0. In Section 4 we study the case p < 1. Finally, in Section 5, the case p = 1 is analyzed.

2 Singular eigenvalue problem

Let $M \in C^1(\Omega)$ be such that there exist two constants K > 0 and $\gamma \in [0, 2)$ for which

$$|M(x)|[\operatorname{dist}(x,\partial\Omega)]^{\gamma} \le K \quad x \in \Omega.$$
(2.1)

We consider the following singular linear eigenvalue problem

$$\begin{cases} (\mathcal{L} + M(x))u = \sigma u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2.2)

where $\sigma \in \mathbb{R}$ and M verifies (2.1). The next result was proved in [19], except (2.3), which follows by Theorem 7, Chapter 2 of [28].

Theorem 2.1 Suppose $M \in C^1(\Omega)$ satisfies (2.1). Then, there exists a unique value of σ , denoted by $\sigma_1[\mathcal{L} + M]$ and called principal eigenvalue of (2.2), for which (2.2) possesses positive solution $\varphi_1 \in C_0^1(\overline{\Omega})$, unique up to multiplicative constants, and called principal eigenfunction of (2.2). Moreover,

$$\frac{\partial \varphi_1}{\partial \nu}(x) < 0 \tag{2.3}$$

for each $x \in \partial \Omega$ and where ν stands for any outward direction to Ω at x.

Furthermore, $\sigma_1[\mathcal{L} + M]$ is increasing with respect to M and decreasing with respect to Ω , and if $\sigma_1[\mathcal{L} + M] > 0$ then u = 0 is the unique solution of

$$(\mathcal{L} + M(x))u = 0$$
 in Ω , $u = 0$ on $\partial \Omega$.

Hereafter, we denote the space $C_0^0(\overline{\Omega}) := \{ u \in C^0(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega \}$. Moreover $B_\rho := \{ u \in C_0^0(\overline{\Omega}) : ||u||_{\infty} < \rho \}$. and for any $f \in C^0(\overline{\Omega})$ we denote

$$f_M := \sup_{x \in \overline{\Omega}} f(x).$$

Finally, \mathcal{L}^* stands for the adjoint of \mathcal{L} with respect to the inner product of $L^2(\Omega)$. Recall that $\sigma_1[\mathcal{L}^*] = \sigma_1[\mathcal{L}]$.

The following characterization of the positivity of $\sigma_1[\mathcal{L} + M]$ was shown in [21] when $M \in L^{\infty}(\Omega)$, and in [14] when M satisfies (2.1).

Definition 2.2 A function $\varphi \in C^2(\Omega) \cap C^1(\overline{\Omega})$ is said a supersolution of $\mathcal{L} + M$ if $(\mathcal{L} + M)\varphi \geq 0$ in Ω and $\varphi \geq 0$ on $\partial\Omega$. If in addition, $(\mathcal{L} + M)\varphi > 0$ in Ω or $\varphi > 0$ on $\partial\Omega$, then it is said that φ is a strict supersolution.

Proposition 2.3 Assume that M satisfies (2.1). Then: $\sigma_1[\mathcal{L} + M] > 0$ if, and only if, $\mathcal{L} + M$ admits a positive strict supersolution.

Along this work, we need to apply this result assuming less regularity to the strict supersolution.

Proposition 2.4 Assume that M satisfies (2.1). Then: $\sigma_1[\mathcal{L} + M] > 0$ if, and only if, there exists $\varphi \in C^2(\Omega) \cap C_0^0(\overline{\Omega})$ such that $\varphi > 0$ in Ω and $(\mathcal{L} + M(x))\varphi > 0$ in Ω .

Proof: If $\sigma_1[\mathcal{L} + M] > 0$, then we can take $\varphi = \varphi_1$. Now, assume that there exists a positive function $\varphi \in C^2(\Omega) \cap C_0^0(\overline{\Omega})$ such that

$$(\mathcal{L} + M(x))\varphi := F > 0$$
 in Ω .

It is well-known, see Lemma 2.7 in [19], that $\sigma_1[\mathcal{L} + M] > 0$ is equivalent to prove that given $v \in C^2(\Omega) \cap C^1(\overline{\Omega})$ such that $v \neq 0$, and

$$(\mathcal{L} + M(x))v \ge 0 \text{ in } \Omega, \quad v \ge 0 \text{ on } \partial\Omega,$$

then v > 0 in Ω and $\partial v / \partial n < 0$ for all $x \in \partial \Omega$ such that v(x) = 0, where n stands for the outward unit normal to Ω in x.

By an adequate change of variable, see Lemma 2.1 in [19] or Lemma 1 in [14], we can suppose that $M \ge 0$ in a neighborhood of $\partial \Omega$. For each $\varepsilon > 0$ and K > 0, we define

$$w := v + \varepsilon + \varepsilon K \varphi \in C^2(\Omega) \cap C^0(\overline{\Omega}),$$

and so,

$$(\mathcal{L} + M(x))w \ge \varepsilon(M + KF) > 0 \quad \text{in } \Omega, \tag{2.4}$$

for K sufficiently large. Moreover, for any $\varepsilon > 0$, there exists $\gamma(\varepsilon) > 0$ such that w > 0 in $\Omega_{\varepsilon} := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \gamma(\varepsilon)\}$. By (2.4), we can apply the generalized maximum principle and we get that w > 0 in $\Omega \setminus \Omega_{\varepsilon}$. Thus, w > 0 in Ω for all $\varepsilon > 0$, and we obtain that $v \ge 0$ in Ω . Hence, taking $M_1 := \max\{M, 0\}$, we get

$$(\mathcal{L} + M_1)v \ge (\mathcal{L} + M)v \ge 0,$$

and the result follows by the strong maximum principle.

3 Bifurcation from the trivial solution

In this section we adapt the results of [5], see also [6] and [15], to show that a bifurcation from the trivial solution of (1.4) occurs at $\lambda = 0$. We include them for the reader's convenience and send to [15] for details. Observe that by elliptic regularity a solution $u \in C_0^0(\overline{\Omega})$ of (1.4), it belongs to $C^{1+\mu}(\Omega) \cap C_0^1(\overline{\Omega})$ for $\mu := \min\{\alpha, q\}$.

We extend the function

$$f(\lambda, x, s) := \begin{cases} \lambda s^q + a(x)s^p & \text{if } s \ge 0, \\ 0 & \text{if } s < 0. \end{cases}$$

Note that f can take negative values. Finally, we define the map

$$\mathcal{K}_{\lambda}: C_0^0(\overline{\Omega}) \mapsto C_0^0(\overline{\Omega}); \qquad \mathcal{K}_{\lambda}(u) := u - \mathcal{L}^{-1}(f(\lambda, x, u))$$

where \mathcal{L}^{-1} is the inverse of the operator \mathcal{L} under homogeneous Dirichlet boundary conditions, which is well-defined since $\sigma_1[\mathcal{L}] > 0$. Indeed, observe that positive constants are strict supersolutions of \mathcal{L} , and so, by Proposition 2.3, $\sigma_1[\mathcal{L}] > 0$. Now, we can prove that u is a nonnegative solution of (1.4) if, and only if, u is a zero of the map \mathcal{K}_{λ} . It is clear that every nonnegative solution is a zero of \mathcal{K}_{λ} . Conversely, let u be a zero of \mathcal{K}_{λ} and assume that the set

$$\Omega_{-} := \{ x \in \Omega : u(x) < 0 \} \neq \emptyset.$$

Then,

$$\mathcal{L}u = 0$$
 in Ω_{-} and $u = 0$ on $\partial \Omega_{-}$.

Since $\sigma_1[\mathcal{L}] > 0$ and $\Omega_- \subset \Omega$, then

$$0 < \sigma_1[\mathcal{L}] < \lambda_1(\mathcal{L}, \Omega_-)$$

where $\lambda_1(\mathcal{L}, \Omega_-)$ denotes the principal eigenvalue of \mathcal{L} in Ω_- defined in (1.10) of [11]. Now, by Theorem 1.1 of [11], the maximum principle holds in Ω_- and so u = 0 in Ω_- , which leads us to a contradiction.

In order to prove the main result of this section we use the Leray-Schauder degree of \mathcal{K}_{λ} on B_{ρ} with respect to zero, denoted by $\deg(\mathcal{K}_{\lambda}, B_{\rho})$, and the index of the isolated zero u of \mathcal{K}_{λ} , denoted by $i(\mathcal{K}_{\lambda}, u)$.

Theorem 3.1 The value $\lambda = 0$ is the only bifurcation point from the trivial solutions for (1.4). Moreover, there exists a continuum C_0 of nonnegative solutions of (1.4) unbounded and connected in $\mathbb{R} \times C_0^0(\overline{\Omega})$ emanating from (0,0).

Proof: We divide the proof in several steps.

Step 1: If $\lambda < 0$, then $i(\mathcal{K}_{\lambda}, 0) = 1$.

Define the family of maps

$$\mathcal{H}_1: [0,1] \times C_0^0(\overline{\Omega}) \mapsto C_0^0(\overline{\Omega}); \quad \text{by} \quad \mathcal{H}_1(t,u) := \mathcal{L}^{-1}(t(\lambda u^q + a(x)u^p)).$$

It is not hard to prove that there exists $\delta > 0$ such that $u \neq \mathcal{H}_1(t, u)$ for $u \in \overline{B}_{\delta}$, $u \neq 0$ and $t \in [0, 1]$. Hence, the homotopy defined by \mathcal{H}_1 is admissible and so, taking $\varepsilon \in (0, \delta]$, we have

$$i(\mathcal{K}_{\lambda}, 0) = \deg(\mathcal{K}_{\lambda}, B_{\varepsilon}) = \deg(I - \mathcal{H}_{1}(1, \cdot), B_{\varepsilon}) = \deg(I - \mathcal{H}_{1}(0, \cdot), B_{\varepsilon})$$
$$= \deg(I, B_{\varepsilon}) = 1.$$

Step 2: If $\lambda > 0$, then $i(\mathcal{K}_{\lambda}, 0) = 0$.

Fix $\phi \in C_0^0(\overline{\Omega}), \phi > 0$. We define the map

$$\mathcal{H}_2: [0,1] \times C_0^0(\overline{\Omega}) \mapsto C_0^0(\overline{\Omega}); \quad \text{by} \quad \mathcal{H}_2(t,u) := \mathcal{L}^{-1}(\lambda u^q + a(x)u^p + t\phi).$$

Again it can be proved that there exists $\delta > 0$ such that

$$u \neq \mathcal{H}_2(t, u)$$
 for all $u \in \overline{B}_{\delta}, u \neq 0$ and $t \in [0, 1].$ (3.1)

So, the homotopy defined by \mathcal{H}_2 is admissible. Then, taking $\varepsilon \in (0, \delta]$ we have

$$i(\mathcal{K}_{\lambda}, 0) = \deg(\mathcal{K}_{\lambda}, B_{\varepsilon}) = \deg(I - \mathcal{H}_{2}(0, \cdot), B_{\varepsilon}) = \deg(I - \mathcal{H}_{2}(1, \cdot), B_{\varepsilon}) = 0.$$

The last equality follows because $\mathcal{L}u = \lambda u^q + a(x)u^p + \phi$ has no solution in $\overline{B}_{\varepsilon}$, see (3.1). **Step 3:** $\lambda = 0$ is the unique bifurcation point from the trivial solution.

That $\lambda = 0$ is a bifurcation point from the trivial solution follows directly by Steps 1 and 2. We will show that there is not any other bifurcation point in $\mathbb{R}\setminus\{0\}$. Suppose there exists a sequence of solutions (λ_n, u_n) of (1.4) such that $\lambda_n \to \lambda_0 < 0$ and $||u_n||_{\infty} \to 0$. With a similar argument to the one used at the beginning of this section, we can prove that $u_n \ge 0$. Since $||u_n||_{\infty} \to 0$ and $\lambda_n \to \lambda_0 < 0$, there exists $n_0 \in \mathbb{N}$ such that for $n \ge n_0$, it holds

$$\mathcal{L}u_n = \lambda_n u_n^q + a(x)u_n^p \le 0 \text{ in } \Omega, \quad u_n = 0 \text{ on } \partial\Omega,$$

which implies that $u_n = 0$.

Now, assume that there exists a sequence of solutions (λ_n, u_n) of (1.4) such that $\lambda_n \to \lambda_0 > 0$ and $||u_n||_{\infty} \to 0$. Observe that, by the strong maximum principle, $u_n > 0$. We take $K \ge \sigma_1[\mathcal{L}]$, so there exists $n_0 \in \mathbb{N}$ such that

$$\lambda_n u_n^q + a(x)u_n^p > Ku_n \qquad \text{for all } n \ge n_0,$$

and so,

$$(\mathcal{L} - K)u_n > 0 \quad \text{in } \Omega, \qquad u_n = 0 \quad \text{on } \partial\Omega.$$

Hence, u_n is a positive strict supersolution of $\mathcal{L}-K$, and by Proposition 2.3, we get $\sigma_1[\mathcal{L}-K] > 0$, and so $K < \sigma_1[\mathcal{L}]$, which leads us to a contradiction.

Finally, the existence of an unbounded and connected continuum of nonnegative solutions of (1.4) follows from a slight modification of the proof of Theorem 1.3 in [29], see also Theorem 3.1 in [1] and Theorem 4.4 in [6].

4 The very slow diffusion case: p < 1.

Along this section we assume p < 1, that is m > 2 in the original equation (1.1). The main result in this case is the following:

Theorem 4.1 Assume p < 1. There exist $-\infty < \lambda_* \le \lambda_{**} < 0$ such that:

- a) (1.4) has a nonnegative and nontrivial solution if, and only if, $\lambda \in [\lambda_*, \infty)$,
- b) If $\lambda \in (0, \infty)$, (1.4) possesses exactly a solution, which is positive and linearly asymptotically stable,

c) If $\lambda \in (\lambda_{**}, 0)$, (1.4) possesses at least two nonnegative and nontrivial solutions.

This result will be an easy consequence of the following ones.

Proposition 4.2 Assume p < 1. Then, there exists $-\infty < \underline{\lambda} < 0$ such that for $\lambda < \underline{\lambda}$, (1.4) has no solution.

Proof: It is not hard to prove that

$$\lambda s^{q} + a_{M} s^{p} - \sigma_{1}[\mathcal{L}]s < 0 \quad \forall s \in \mathbb{R}_{+}, \ \forall \lambda < \underline{\lambda}$$

$$(4.1)$$

where

$$\underline{\lambda} := (\sigma_1[\mathcal{L}])^{(p-q)/(p-1)} a_M^{(1-q)/(1-p)} \left(\frac{p-q}{1-q}\right)^{(p-q)/(1-p)} \frac{p-1}{1-q}.$$
(4.2)

Now, let (λ, u) be a nonnegative solution of (1.4) for $\lambda < \underline{\lambda}$. Multiplying (1.4) by φ_1^* , the eigenfunction associated to \mathcal{L}^* and taking account (4.1), we obtain

$$0 = \int_{\Omega} (\lambda u^q + a(x)u^p - \sigma_1[\mathcal{L}^*]u)\varphi_1^* \le \int_{\Omega} (\lambda u^q + a_M u^p - \sigma_1[\mathcal{L}]u)\varphi_1^* < 0,$$

which is a contradiction. This completes the proof.

The following result is well-known when that $\mathcal{L} = -\Delta$. It will be very useful in this work.

Proposition 4.3 Assume p < 1 and let $b \in C^{\alpha}(\overline{\Omega})$ be such that $b \ge 0$ and $b \ne 0$. Consider the following problem

$$\begin{cases} \mathcal{L}u = b(x)u^p & in \ \Omega, \\ u = 0 & on \ \partial\Omega. \end{cases}$$
(4.3)

Then, (4.3) possesses a unique positive solution, denoted by $z_{[b,p]}$.

Proof: Firstly, we are going to use the linking local sub-supersolution method to prove the existence of nonnegative solution of (4.3). Since $b \ge 0$, $b \ne 0$, there exists $x_0 \in \Omega$ and $r_0 > 0$ such that

$$b(x) \ge b_0 > 0$$
 for all $x \in B := B(x_0, r_0)$ and $\overline{B} \subset \Omega$

for some constant $b_0 > 0$ and where $B(x_0, r_0)$ is the ball of radius r_0 centered at x_0 . We define

$$\Psi := \begin{cases} \varphi_1^B & \text{in } \overline{B}, \\ 0 & \text{in } \Omega \backslash B, \end{cases}$$
(4.4)

where φ_1^B is the principal eigenfunction of \mathcal{L} in B associated to the principal eigenvalue, $\sigma_1^B[\mathcal{L}]$, and normalized so that $\sup_{x \in B} \varphi_1^B = 1$. Observe that $\Psi \in H^1(\Omega)$ and that

$$\frac{\partial \varphi_1^B}{\partial n_{\mathcal{L}}} < 0 \quad \text{on } \partial B, \tag{4.5}$$

where $n_{\mathcal{L}}$ denotes the conormal associated with \mathcal{L} , i.e., $(n_{\mathcal{L}})_i := \sum_{j=1}^N a_{ij}n_j$, being $n := (n_1, \ldots, n_N)$ the outward unit normal to B. Indeed, (4.5) follows by (2.3) and the fact that $n_{\mathcal{L}}$ is an outward direction because by (1.3), it follows

$$n \cdot n_{\mathcal{L}} = \sum_{i,j=1}^{N} a_{ij} n_i n_j > 0.$$

We define $e \in C^2(\overline{\Omega})$ the unique positive solution of

$$\begin{aligned} \mathcal{L}e &= 1 \quad \text{in } \Omega, \\ e &= 0 \quad \text{on } \partial\Omega. \end{aligned}$$
 (4.6)

Now, thanks to (4.5) we can apply Lemma I.1 in [8] to show that the pair $(\underline{u}, \overline{u}) := (\varepsilon \Psi, Ke)$ is a sub-supersolution of (1.4) provided of $\varepsilon > 0$ and K > 0 satisfy

$$\underline{u} \le \overline{u}, \quad \varepsilon \le \left(\frac{b_0}{\sigma_1^B[\mathcal{L}]}\right)^{1/(1-p)}, \quad K \ge (b_M \|e\|_{\infty}^p)^{1/(1-p)}$$

This proves the existence of at least a nonnegative solution of (4.3). By the strong maximum principle, any nonnegative solution of (4.3) is positive.

For the uniqueness, we assume that (4.3) possesses two positive solutions $v \neq u$. By the integral mean value theorem, we get

$$\mathcal{L}(u-v) = b(x)(u^p - v^p) = b(x)p \int_0^1 [tu + (1-t)v]^{p-1} dt (u-v) \quad \text{in } \Omega.$$

Hence,

$$(\mathcal{L} - b(x)pM(x))(u - v) = 0$$
 in Ω ,
 $u - v = 0$ on $\partial\Omega$,

where

$$M(x) := \int_0^1 [tu + (1-t)v]^{p-1} dt.$$

Since u and v are strictly positive, there exist positive constants $C_u, C_v > 0$ such that

$$C_u \operatorname{dist}(x, \partial \Omega) \le u(x), \qquad C_v \operatorname{dist}(x, \partial \Omega) \le v(x) \qquad \forall x \in \Omega,$$

and so,

$$|M(x)|[\operatorname{dist}(x,\partial\Omega)]^{1-p} \le K,\tag{4.7}$$

for some K > 0. Hence M verifies (2.1). Moreover, it satisfies the following estimate

$$pM < u^{p-1}$$
 in Ω .

Thus, according to Theorem 2.1

$$\sigma_1[\mathcal{L} - b(x)pM] > \sigma_1[\mathcal{L} - b(x)u^{p-1}] = 0.$$

Therefore, u - v = 0. This shows the uniqueness of positive solution of (4.3).

The next result shows the existence of a nonnegative maximal solution of (1.4) for $\lambda = 0$. Related results were proved in [7] (Theorem 2.2) and in [27] (Theorem 4) when $\mathcal{L} = -\Delta$.

Proposition 4.4 Assume p < 1 and $\lambda = 0$. Then (1.4) admits a maximal nonnegative solution U^0 . Moreover,

$$U^0 > 0 \quad in \ \overline{A}_+. \tag{4.8}$$

Proof: Observe that any nonegative solution u of (1.4) for $\lambda = 0$ is a subsolution of (4.3) with $b(x) \equiv a_M$. Since for K sufficiently large, $\overline{u} := Ke$ is a supersolution of (4.3) and $u \leq \overline{u}$, from the uniqueness of positive solution of (4.3), we obtain that

$$u \leq z_{[a_M,p]}$$

for any nonnegative solution u of (1.4) for $\lambda = 0$. Moreover, $z_{[a_M,p]}$ is a supersolution of (1.4) for $\lambda = 0$. Thus, we deduce the existence of a maximal nonnegative solution of (1.4) for $\lambda = 0$, which we call U^0 . Finally, we will prove (4.8). For that, again we use the linking local sub-supersolution method. For any $k = 1, \ldots, r$, we consider $x_k \in A^k_+$ and $r_k > 0$ such that $\overline{B}_k := \overline{B}(x_k, r_k) \subset A^k_+$. We define

$$\Psi := \begin{cases} \varphi_1^{B_k} & \text{in } \overline{B}_k, \text{ for all } k = 1, \dots, n, \\ 0 & \text{in } \Omega \backslash (\cup_{k=1}^r B_k), \end{cases}$$

where $\varphi_1^{B_k}$ is the principal eigenfunction of \mathcal{L} in B_k . By a similar reasoning to the used in the Proposition 4.3, it can be proved that we can apply Lemma I.1 in [8] to show that the pair $(\underline{u}, \overline{u}) := (\varepsilon \Psi, Ke)$ is a sub-supersolution of (1.4), provided that ε and K are sufficiently small

and large, respectively. Now, the strong maximum principle shows (4.8), see Lemma 2.1 in [7]. This completes the proof. $\hfill \Box$

The next result shows the uniqueness and stability of the positive solution when $\lambda > 0$. The existence will be shown in Theorem 4.1. For the uniqueness we would like to point out that we use a change of variable already used in a different context in [30], see also [7] and [12].

Proposition 4.5 Assume p < 1 and $\lambda > 0$. Then, there exists at most a unique positive solution of (1.4), say u_{λ} . Moreover,

$$\sigma_1[\mathcal{L} - \lambda q u_{\lambda}^{q-1} + p a(x) u_{\lambda}^{p-1}] > 0,$$

that is, u_{λ} is linearly asymptotically stable.

Proof: Firstly, observe that since $\lambda > 0$ then, by the strong maximum principle any nonnegative and nontrivial solution u is in fact strictly positive. So, we can define the change of variable

$$w := \frac{u^{1-p}}{1-p}$$

which transforms (1.4) into

$$\begin{cases} \mathcal{L}w - \frac{p}{(1-p)w} \sum_{i,j=1}^{N} a_{ij} D_i w D_j w = \lambda (1-p)^{\frac{q-p}{1-p}} w^{\frac{q-p}{1-p}} + a(x) & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega. \end{cases}$$
(4.9)

Assume that there exist two positive solution $u_1 \neq u_2$ of (1.4). Let $x_0 \in \Omega$ be such that

$$\Phi := u_1 - u_2$$

attains its positive maximum. If such positive maximum does not exist, we will reason similarly with the function $\Phi := u_2 - u_1$. Since $x_0 \in \Omega$, there exists r > 0 such that

$$u_1(x) > u_2(x) \ge \rho > 0$$
 for all $x \in B(x_0, r)$,

for some $\rho > 0$. Now, we define

$$\Psi := w_1 - w_2$$

where $w_i := u_i^{1-p} / (1-p)$. So by (4.9), we get

$$\mathcal{L}\Psi - \frac{p}{1-p} \left(\sum_{i,j=1}^{N} a_{ij} \left[\frac{1}{w_1} D_i w_1 D_j w_1 - \frac{1}{w_2} D_i w_2 D_j w_2\right]\right) =$$

$$= \lambda (1-p)^{(q-p)/(1-p)} (w_1^{(q-p)/(1-p)} - w_2^{(q-p)/(1-p)}).$$

On the other hand, it can be proved that

$$\sum_{i,j=1}^{N} a_{ij} \left[\frac{1}{w_1} D_i w_1 D_j w_1 - \frac{1}{w_2} D_i w_2 D_j w_2 \right] = \sum_{i=1}^{N} c_i D_i \Psi - c(x) \Psi$$

where

$$c_i = \sum_{j=1}^N a_{ij} \frac{1}{w_1} (D_j w_1 + D_j w_2), \qquad c(x) = \frac{1}{w_1 w_2} \sum_{i,j=1}^N a_{ij} D_i w_2 D_j w_2.$$

So, Ψ verifies in $B(x_0, r)$

$$\mathcal{L}_1\Psi + \frac{p}{1-p}c(x)\Psi = \lambda(1-p)^{(q-p)/(1-p)}(w_1^{(q-p)/(1-p)} - w_2^{(q-p)/(1-p)}),$$
(4.10)

being

$$\mathcal{L}_1 = -\sum_{i,j=1}^N D_i(a_{ij}D_j) + \sum_{i=1}^N (b_i - \frac{p}{1-p}c_i)D_i.$$

By (1.3), $c(x) \ge 0$ in $B(x_0, r)$, and from (H) we have that

$$w_2^{(q-p)/(1-p)} > w_1^{(q-p)/(1-p)}$$
 in $B(x_0, r)$,

and so by the strong maximum principle of Hopf, see for example Theorem 3.5 in [16], $\Psi = C > 0$ in $B(x_0, r)$ with C constant. Thus, the left hand side of (4.10) is non-negative and right one negative. This gives a contradiction and completes the proof of the uniqueness.

Now, we prove the stability of the positive solution. Let (λ, u_{λ}) be a positive solution of $\lambda > 0$. By the strong maximum principle, it can be shown, as we did in (4.7), that the function

$$M(x) := -\lambda q u_{\lambda}^{q-1} - p a(x) u_{\lambda}^{p-1}$$

satisfies (2.1). Thus, $\sigma_1[\mathcal{L} - \lambda q u_{\lambda}^{q-1} - pa(x)u_{\lambda}^{p-1}]$ is well defined. Now, it is not difficult to prove that

$$(\mathcal{L} - \lambda q u_{\lambda}^{q-1} - p a(x) u_{\lambda}^{p-1}) u_{\lambda}^{p} =$$

$$p(1-p) u_{\lambda}^{p-2} \sum_{i,j=1}^{N} a_{ij} D_{i} u D_{j} u + \lambda (p-q) u_{\lambda}^{p+q-1} > 0$$

Hence, $u_{\lambda}^{p} \in C^{2}(\Omega) \cap C_{0}^{0}(\overline{\Omega})$ is a positive strict supersolution of the operator $\mathcal{L} - \lambda q u_{\lambda}^{q-1} - pa(x)u_{\lambda}^{p-1}$. The result is a consequence of Proposition 2.4

Proof of Theorem 4.1: Firstly, we are going to show that the bifurcation from the trivial solution u = 0 is subcritical. Suppose the contrary: there exists a sequence of nonnegative and

nontrivial solutions (λ_n, u_n) verifying $\lambda_n \ge 0$, $\lambda_n \to 0$ and $||u_n||_{\infty} \to 0$. We distinguish two cases:

Case 1: $\lambda_n > 0$. In this case, by Proposition 4.5, we have that $u_n = u_{\lambda_n}$. Now, it is clear that for each $n \in \mathbb{N}$ there exists a positive constant $K_n > 0$ such that the pair $(U^0, K_n e)$ is a sub-supersolution of (1.4) for $\lambda = \lambda_n$, and so by the uniqueness of positive solution for $\lambda_n > 0$, we have

$$U^0 \le u_n \le K_n e. \tag{4.11}$$

Case 2: $\lambda_n = 0$. Since u_n is nonnegative, there exists $\rho_n > 0$ sufficiently small such that the function $u_n - \rho_n e$ attains a positive maximum in Ω . Let $x_n \in \Omega$ be such that $(u_n - \rho_n e)(x_n) := \max_{x \in \overline{\Omega}} (u_n - \rho_n e)(x) > 0$. Then,

$$0 \le \mathcal{L}(u_n - \rho_n e)(x_n) = a(x_n)u_n^p(x_n) - \rho_n$$

and so,

$$0 < \rho_n \le a(x_n)u_n^p(x_n). \tag{4.12}$$

Therefore, $x_n \in A_+$. Assume, that $x_n \in A_+^{k_0}$ for some $k_0 \in \{1, \ldots, r\}$. By (4.12), it follows that $u_n \ge 0, u_n \ne 0$ in $A_+^{k_0}$. From the strong maximum principle, see again Lemma 2.1 in [7], it follows that

$$u_n > 0$$
 in $\overline{A_+^{k_0}}$.

Hence, u_n is a supersolution of (4.3) in A_{k_0} with $b(x) \equiv a(x)$. We can build a subsolution as (4.4), and we conclude by Proposition 4.3 that

$$z_{[a,p]} \le u_n \quad \text{in } A^{k_0}_+.$$
 (4.13)

Hence, in any case by (4.11) and (4.13) it follows that $||u_n||_{\infty}$ does not approach to 0.

Now, we define

$$\lambda_* := \inf \{\lambda \in \mathbb{R} : (1.4) \text{ has a nonnegative and nontrivial solution.} \}$$

We have just proved that $-\infty < \lambda_* < 0$. Take $\lambda_0 \in (\lambda_*, 0)$. So, there exists u_{μ} with $\mu \in [\lambda_*, \lambda_0)$ solution of (1.4). Then, the pair $(\underline{u}, \overline{u}) := (u_{\mu}, U^0)$ is a sub-supersolution of (1.4) for $\lambda = \lambda_0$, and so there exists a solution of (1.4) for $\lambda = \lambda_0$. Observe that $u_{\mu} \leq U^0$ due to the maximality of U^0 . The existence of solution for $\lambda = \lambda_*$ follows by a standard compactness argument. Finally, the subcritical bifurcation at $\lambda = 0$, the connectivity of the continuum \mathcal{C}_0 of nonnegative solutions, (4.11) and (4.13) imply the existence of λ_{**} such that for $\lambda \in (\lambda_{**}, 0)$, (1.4) admits at least two nonnegative solutions. This completes the proof.

The next result shows that λ_* goes 0 as $||a^+||_{\infty} \to 0$. This result is consistent with that when $a^+ \equiv 0$, (1.4) has positive solution if, and only if, $\lambda > 0$, see [13].

Lemma 4.6 Assume p < 1. Then $\lambda_* \uparrow 0$ as $||a^+||_{\infty} \to 0$.

Proof: If $||a^+||_{\infty} \to 0$, then $a_M \to 0$. The result follows by (4.2).

5 The self-diffusion case: p = 1.

In the particular case p = 1, the bifurcation direction of the continuum C_0 depends on the sign of $\sigma_1[\mathcal{L} - a(x)]$.

Theorem 5.1 Assume p = 1. Then,

- a) If $\sigma_1[\mathcal{L} a(x)] = 0$, then (1.4) admits nonnegative and nontrivial solutions if, and only if, $\lambda = 0$. Moreover, in this case (1.4) has infinitely many positive solutions.
- b) If $\sigma_1[\mathcal{L} a(x)] > 0$, then (1.4) admits nonnegative and nontrivial solutions if, and only if, $\lambda > 0$. In this case (1.4) has a unique positive solution which is linearly asymptotically stable.
- c) If $\sigma_1[\mathcal{L} a(x)] < 0$, then (1.4) admits nonnegative and nontrivial solutions if, and only if, $\lambda < 0$.

Proof: In the case p = 1, observe that (1.4) can be written as

$$(\mathcal{L} - a(x))u = \lambda u^q \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega.$$
(5.1)

In the first paragraph, $\sigma_1[\mathcal{L} - a(x)] = 0$, the Fredholm alternative provides us the result.

Assume that $\sigma_1[\mathcal{L}-a(x)] > 0$. The maximum principle applied to (5.1) implies that if $\lambda \leq 0$, (1.4) does not admit nonnegative solution.

Assume that $\sigma_1[\mathcal{L} - a(x)] < 0$ and that there exists a nonnegative solution u of (5.1). Then, multiplying (5.1) by ψ_1^* , principal eigenfunction of $\mathcal{L}^* - a(x)$ and taking account that $\sigma_1[\mathcal{L}^* - a(x)] = \sigma_1[\mathcal{L} - a(x)] < 0$, we obtain

$$\sigma_1[\mathcal{L}^* - a(x)] \int_{\Omega} \psi_1^* u = \lambda \int_{\Omega} u^q \psi_1^*,$$

and so $\lambda < 0$.

We claim that for $\lambda \in I$, a compact interval in \mathbb{R} , there exists C > 0 such that (1.4) does not possess positive solution u with $||u||_{\infty} > C$. Indeed, we suppose the contrary: there exists a sequence (λ_n, u_n) of solutions of (1.4) with $\lambda_n \to \lambda_0 \in \mathbb{R}$ and $||u_n||_{\infty} \to +\infty$. Let $v_n := u_n/||u_n||_{\infty}$ be, so

$$(\mathcal{L} - a(x))v_n = \lambda_n \frac{u_n^q}{\|u_n\|_{\infty}},$$

hence $v_n \to v \ge 0$ with $||v||_{\infty} = 1$ and

$$(\mathcal{L} - a(x))v = 0 \quad \text{in } \Omega, \qquad v = 0 \quad \text{on } \partial\Omega.$$
 (5.2)

If $\sigma_1[\mathcal{L} - a(x)] > 0$, by the maximum principle we obtain that $v \equiv 0$. If $\sigma_1[\mathcal{L} - a(x)] < 0$, multiplying (5.2) by ψ_1^* , we obtain

$$\sigma_1[\mathcal{L}^* - a(x)] \int_{\Omega} \psi_1^* v = 0,$$

and so $v \equiv 0$.

Now, Theorem 3.1 provides us the existence of nonnegative solution for $\lambda > 0$ (resp. $\lambda < 0$) if $\sigma_1[\mathcal{L} - a(x)] > 0$ (resp. $\sigma_1[\mathcal{L} - a(x)] < 0$.)

For the uniqueness in the case $\lambda > 0$, we can repeat exactly the argument used in Proposition 4.3 to show that (4.3) possesses a unique positive solution.

On the other hand, let (λ, u) be a positive solution of (5.1) with $\lambda > 0$, we have

$$\sigma_1[\mathcal{L} - a(x) - q\lambda u^{q-1}] > \sigma_1[\mathcal{L} - a(x) - \lambda u^{q-1}] = 0.$$

This shows the stability and completes the proof.

Acknowledgments: The authors are grateful to Professors D. Arcoya and J. López Gómez for their helpful comments. They thank to CICYT of Spain for research support under grant MAR98-0486 and BFM2000-0797.

References

- S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. in Differential Equations, 4 (1999), 813-842.
- [2] S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., 221 (1996), 467-493.

-	-	

- [3] H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374.
- [4] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
- [5] A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl., 73 (1980), 411-422.
- [6] D. Arcoya, J. Carmona and B. Pellacci, *Bifurcation for some quasi-linear operators*, to appear in Proc. Royal Soc. of Edin. Section A.
- [7] C. Bandle, M. A. Pozio and A. Tesei, The asymptotic behaviour of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc., 303 (1987), 487-501.
- [8] H. Berestycki and P. L. Lions, Some applications of the method of super and subsolutions, Lecture Notes in Mathematics, 782 (1980), 16-41.
- [9] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.
- [10] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 553-572.
- [11] H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for a second-order elliptic operators in general domains, Comm. Pure and Appl. Math., XLVII (1994), 47-92.
- [12] H. Brezis and S. Kamin, Sublinear elliptic equations in \mathbb{R}^n , Manus. Math., **74** (1992), 87-106.
- [13] M. Delgado, J. López-Gómez and A. Suárez, Non-linear versus linear diffusion. From classical solutions to metasolutions, submitted.
- [14] M. Delgado and A. Suárez, Stability and uniqueness for cooperative degenerate Lotka-Volterra model, to appear in Nonlinear Analysis.

- [15] M. Delgado and A. Suárez, Positive solutions for the degenerate logistic indefinite superlinear problem: the slow diffusion case, submitted.
- [16] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Berlin, 1983.
- [17] R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.
- [18] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), 35-49.
- [19] J. Hernández, F. Mancebo and J. M. Vega de Prada, On the linearization of some singular nonlinear elliptic problems and applications, to appear in Ann. Inst. H. Poincare Anal. Non-Lineaire.
- [20] T. Laetsch, Uniqueness for sublinear boundary problem, J. Differential Equations, 13 (1973), 13-23.
- [21] J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations, 127 (1996), 263-294.
- [22] J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825-1858.
- [23] Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
- [24] L. Moschini, S. I. Pohozaev and A. Tesei, Existence and nonexistence of solutions of nonlinear Dirichlet problems with first order terms, J. Funct. Anal., 177 (2000), 365-382.
- [25] T. Namba, Density-dependent dispersal and spatial distribution of a population, J. Theor. Biol., 86 (1980), 351-363.
- [26] T. Ouyang, On the positive solutions of semilinear equations Δu + λu + hu^p = 0 on compact manifods. Part II, Indiana Univ. Math. J., 40 (1991), 1083-1141.

- [27] M. A. Pozio and A. Tesei, Support properties of solutions for a class of degenerate parabolic problems, Commun. Partial Differential Eqns., 12 (1987), 47-75.
- [28] M. H. Protter and H. F. Weinberger, "Maximum principles in differential equations", Prentice-Hall, INC. New Jersey, 1967.
- [29] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
- [30] J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Differential Equations, 8 (1983), 1605-1620.