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Abstract

The goal of this paper is to study the nonnegative steady-states solutions of the degenerate

logistic indefinite sublinear problem. We combine bifurcation method and linking local sub-

supersolution technique to show the existence and multiplicity of nonnegative solutions. We

employ a change of variable already used in a different context and the spectral singular

theory to prove uniqueness results.
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1 Introduction

Let Ω ⊂ IRN , N ≥ 1, be a bounded and regular domain of IRN and we consider the degenerate

logistic indefinite sublinear model




Lwm = λw + a(x)w2 in Ω,

w = 0 on ∂Ω,

(1.1)
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where m > 1; λ ∈ IR that it will be regarded as a parameter, a ∈ Cα(Ω), α ∈ (0, 1), changes

sign and L is a second order operator of the form

Lu := −
N∑

i,j=1

Di(aijDju) +
N∑

i=1

bi(x)Diu, (1.2)

with aij = aji ∈ C1(Ω), bi ∈ C1(Ω) and uniformly elliptic in the sense that

∃θ > 0 such that
N∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2, ∀ξ ∈ IRN , ∀x ∈ Ω. (1.3)

We write a = a+ + a− where a+(x) := max{a, 0} and a− := min{a, 0}. We define the sets:

A+ := {x ∈ Ω : a+(x) > 0}, A− := {x ∈ Ω : a−(x) < 0},

A0 := Ω \ (A+ ∪A−)

and assume that A+ is open and sufficiently smooth, that is, the finite number of connected

components Ak
+, k = 1, . . . , r, are sufficiently smooth.

Equation (1.1) has been proposed as a model for population density of a steady-state single

species w(x) inhabiting in a heterogeneous environment Ω. Here we are assuming that Ω is

fully surrounded by inhospitable areas, since the population density is subject to homogeneous

Dirichlet boundary conditions. In fact, the term m > 1 was introduced in [18], see also [25],

by describing the dynamics of biological population whose mobility depends upon their density.

The parameter λ represents the growth rate of the species and a(x) describes the limiting effects

of crowding in the species in A− and the intraspecific cooperation in A+. Observe that in A0 the

population is free from crowding and symbiosis effects. Finally, L measures the diffusivity and

the external transport effects of the species. In this context, m > 1 means that the diffusion,

the rate of movement of the species from high density regions to low density ones, is slower than

in the linear case (m = 1), which seems give more realistic models, see [18].

The change of variable u := wm transforms (1.1) into




Lu = λuq + a(x)up in Ω,

u = 0 on ∂Ω,

(1.4)

with q = 1/m and p = 2/m. Along this work we suppose

(H) 0 < q < p ≤ 1
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so, we are assuming that m ≥ 2, that includes the “very slow diffusion”(i.e. m > 2) and the

self-diffusion (m = 2), see [23].

In the last years the case m = 1 (q = 1 and p = 2) has attracted much attention, see [2], [3],

[9], [10], [17], [22], [26] and references therein.

When 1 < m < 2 (q < 1 < p) and a(x) ≡ a0 with a0 a positive constant, (1.4) was studied in

[4] in the particular case L = −∆ and in [6] when L is a quasilinear operator. When a changes

sign, (1.4) was analyzed in [24] in the particular case λ ≤ 0. Recently, in [15] the authors have

studied (1.4) when a changes sign and L is an operator as (1.2). In this work it was shown

that from the trivial solution u = 0 bifurcates supercritically at value λ = 0 a continuum of

nonnegative solutions of (1.4). Assuming some restrictions on a+ and p in order to obtain a

priori bounds of the solutions, it was proved that there exists a value λ∗ > 0 such that (1.4)

possesses a nonnegative and nontrivial solution if, and only if, λ ∈ (−∞, λ∗]. Moreover, there

exist at least two solutions for λ ∈ (0, λ∗) and a unique linearly asymptotically stable in such

interval.

When m ≥ 2 (q < p ≤ 1), only partial results are known about (1.4). When λ ≥ 0, the

existence of nonnegative solutions was proved in [8], see Theorem II.1. When λ = 0, A− = ∅
and L = −∆ the existence and uniqueness of positive solution was proved in [20], see also [30].

When λ = 0, L = −∆ and a changes sign, (1.4) was studied in detail in [7]. In this work, the

authors proved the existence of nonnegative solutions of (1.4). Moreover, they showed that when

‖a−‖∞ is small, (1.4) possesses a unique nontrivial solution, see Theorem 2.4 in [7]. However,

when ‖a−‖∞ is large they showed multiplicity results and the existence of dead cores for the

solutions, i.e., regions in Ω where the solutions vanish identically.

We are going to improve and generalize these results and show that a drastic change occurs

when m ≥ 2 with respect to the case m < 2. Indeed, we show that, as in the case 1 < m < 2,

from the trivial solution u = 0 bifurcates a continuum of nonnegative solutions at λ = 0. When

m > 2 this bifurcation is subcritical and when m = 2 the bifurcation direction depends on

the sign of σ1[L − a(x)], where σ1[L − a(x)] stands for the principal eigenvalue of the operator

L − a(x) subject to homogeneous Dirichlet boundary conditions. Specifically, when m > 2 we

prove that there exist two values −∞ < λ∗ ≤ λ∗∗ < 0 such that, (1.4) admits a nonnegative

solution if, and only if, λ ≥ λ∗; a unique and linearly asymptotically stable if λ > 0 and at least

two nonnegative solutions in λ ∈ (λ∗∗, 0). When m = 2, we prove that if σ1[L − a(x)] = 0 then

3



(1.4) has positive solutions if, and only if, λ = 0 (vertical bifurcation). In this case, infinitely

positive solutions exist. If σ1[L − a(x)] > 0, (1.4) has positive solutions if, and only if, λ > 0,

moreover the solution is unique and linearly asymptotically stable. Finally, σ1[L − a(x)] < 0,

(1.4) has positive solutions if, and only if, λ < 0.

An outline of the work is as follows: in Section 2 we collect results of a linear eigenvalue

problem with singular potential. These results will be used in the next sections. In Section 3 we

apply the Leray-Schauder degree and bifurcation theory to show the existence of an unbounded

continuum of nonnegative solution emanating at λ = 0 from the trivial solution u = 0. In

Section 4 we study the case p < 1. Finally, in Section 5, the case p = 1 is analyzed.

2 Singular eigenvalue problem

Let M ∈ C1(Ω) be such that there exist two constants K > 0 and γ ∈ [0, 2) for which

|M(x)|[dist(x, ∂Ω)]γ ≤ K x ∈ Ω. (2.1)

We consider the following singular linear eigenvalue problem




(L+ M(x))u = σu in Ω,

u = 0 on ∂Ω,

(2.2)

where σ ∈ IR and M verifies (2.1). The next result was proved in [19], except (2.3), which follows

by Theorem 7, Chapter 2 of [28].

Theorem 2.1 Suppose M ∈ C1(Ω) satisfies (2.1). Then, there exists a unique value of σ,

denoted by σ1[L+ M ] and called principal eigenvalue of (2.2), for which (2.2) possesses positive

solution ϕ1 ∈ C1
0 (Ω), unique up to multiplicative constants, and called principal eigenfunction

of (2.2). Moreover,
∂ϕ1

∂ν
(x) < 0 (2.3)

for each x ∈ ∂Ω and where ν stands for any outward direction to Ω at x.

Furthermore, σ1[L + M ] is increasing with respect to M and decreasing with respect to Ω,

and if σ1[L+ M ] > 0 then u = 0 is the unique solution of

(L+ M(x))u = 0 in Ω, u = 0 on ∂Ω.
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Hereafter, we denote the space C0
0 (Ω) := {u ∈ C0(Ω) : u = 0 on ∂Ω}. Moreover Bρ := {u ∈

C0
0 (Ω) : ‖u‖∞ < ρ}. and for any f ∈ C0(Ω) we denote

fM := sup
x∈Ω

f(x).

Finally, L∗ stands for the adjoint of L with respect to the inner product of L2(Ω). Recall that

σ1[L∗] = σ1[L].

The following characterization of the positivity of σ1[L + M ] was shown in [21] when M ∈
L∞(Ω), and in [14] when M satisfies (2.1).

Definition 2.2 A function ϕ ∈ C2 (Ω)∩C1(Ω) is said a supersolution of L+M if (L+M)ϕ ≥ 0

in Ω and ϕ ≥ 0 on ∂Ω. If in addition, (L+ M)ϕ > 0 in Ω or ϕ > 0 on ∂Ω, then it is said that

ϕ is a strict supersolution.

Proposition 2.3 Assume that M satisfies (2.1). Then: σ1[L+ M ] > 0 if, and only if, L+ M

admits a positive strict supersolution.

Along this work, we need to apply this result assuming less regularity to the strict supersolution.

Proposition 2.4 Assume that M satisfies (2.1). Then: σ1[L + M ] > 0 if, and only if, there

exists ϕ ∈ C2(Ω) ∩ C0
0 (Ω) such that ϕ > 0 in Ω and (L+ M(x))ϕ > 0 in Ω.

Proof: If σ1[L + M ] > 0, then we can take ϕ = ϕ1. Now, assume that there exists a positive

function ϕ ∈ C2(Ω) ∩ C0
0 (Ω) such that

(L+ M(x))ϕ := F > 0 in Ω.

It is well-known, see Lemma 2.7 in [19], that σ1[L + M ] > 0 is equivalent to prove that given

v ∈ C2(Ω) ∩ C1(Ω) such that v 6= 0, and

(L+ M(x))v ≥ 0 in Ω, v ≥ 0 on ∂Ω,

then v > 0 in Ω and ∂v/∂n < 0 for all x ∈ ∂Ω such that v(x) = 0, where n stands for the

outward unit normal to Ω in x.

By an adequate change of variable, see Lemma 2.1 in [19] or Lemma 1 in [14], we can suppose

that M ≥ 0 in a neighborhood of ∂Ω. For each ε > 0 and K > 0, we define

w := v + ε + εKϕ ∈ C2(Ω) ∩ C0(Ω),

5



and so,

(L+ M(x))w ≥ ε(M + KF ) > 0 in Ω, (2.4)

for K sufficiently large. Moreover, for any ε > 0, there exists γ(ε) > 0 such that w > 0 in

Ωε := {x ∈ Ω : dist(x, ∂Ω) < γ(ε)}. By (2.4), we can apply the generalized maximum principle

and we get that w > 0 in Ω\Ωε. Thus, w > 0 in Ω for all ε > 0, and we obtain that v ≥ 0 in Ω.

Hence, taking M1 := max{M, 0}, we get

(L+ M1)v ≥ (L+ M)v ≥ 0,

and the result follows by the strong maximum principle. 2

3 Bifurcation from the trivial solution

In this section we adapt the results of [5], see also [6] and [15], to show that a bifurcation from

the trivial solution of (1.4) occurs at λ = 0. We include them for the reader’s convenience and

send to [15] for details. Observe that by elliptic regularity a solution u ∈ C0
0 (Ω) of (1.4), it

belongs to C1+µ(Ω) ∩ C1
0 (Ω) for µ := min{α, q}.

We extend the function

f(λ, x, s) :=





λsq + a(x)sp if s ≥ 0,

0 if s < 0.

Note that f can take negative values. Finally, we define the map

Kλ : C0
0 (Ω) 7→ C0

0 (Ω); Kλ(u) := u− L−1(f(λ, x, u))

where L−1 is the inverse of the operator L under homogeneous Dirichlet boundary conditions,

which is well-defined since σ1[L] > 0. Indeed, observe that positive constants are strict superso-

lutions of L, and so, by Proposition 2.3, σ1[L] > 0. Now, we can prove that u is a nonnegative

solution of (1.4) if, and only if, u is a zero of the map Kλ. It is clear that every nonnegative

solution is a zero of Kλ. Conversely, let u be a zero of Kλ and assume that the set

Ω− := {x ∈ Ω : u(x) < 0} 6= ∅.

Then,

Lu = 0 in Ω− and u = 0 on ∂Ω−.
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Since σ1[L] > 0 and Ω− ⊂ Ω, then

0 < σ1[L] < λ1(L, Ω−)

where λ1(L, Ω−) denotes the principal eigenvalue of L in Ω− defined in (1.10) of [11]. Now, by

Theorem 1.1 of [11], the maximum principle holds in Ω− and so u = 0 in Ω−, which leads us to

a contradiction.

In order to prove the main result of this section we use the Leray-Schauder degree of Kλ on

Bρ with respect to zero, denoted by deg(Kλ, Bρ), and the index of the isolated zero u of Kλ,

denoted by i(Kλ, u).

Theorem 3.1 The value λ = 0 is the only bifurcation point from the trivial solutions for (1.4).

Moreover, there exists a continuum C0 of nonnegative solutions of (1.4) unbounded and connected

in IR× C0
0 (Ω) emanating from (0, 0).

Proof: We divide the proof in several steps.

Step 1: If λ < 0, then i(Kλ, 0) = 1.

Define the family of maps

H1 : [0, 1]× C0
0 (Ω) 7→ C0

0 (Ω); by H1(t, u) := L−1(t(λuq + a(x)up)).

It is not hard to prove that there exists δ > 0 such that u 6= H1(t, u) for u ∈ Bδ, u 6= 0 and

t ∈ [0, 1]. Hence, the homotopy defined by H1 is admissible and so, taking ε ∈ (0, δ], we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε) = deg(I −H1(0, ·), Bε)

= deg(I,Bε) = 1.

Step 2: If λ > 0, then i(Kλ, 0) = 0.

Fix φ ∈ C0
0 (Ω), φ > 0. We define the map

H2 : [0, 1]× C0
0 (Ω) 7→ C0

0 (Ω); by H2(t, u) := L−1(λuq + a(x)up + tφ).

Again it can be proved that there exists δ > 0 such that

u 6= H2(t, u) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1]. (3.1)

So, the homotopy defined by H2 is admissible. Then, taking ε ∈ (0, δ] we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε) = deg(I −H2(1, ·), Bε) = 0.
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The last equality follows because Lu = λuq + a(x)up + φ has no solution in Bε, see (3.1).

Step 3: λ = 0 is the unique bifurcation point from the trivial solution.

That λ = 0 is a bifurcation point from the trivial solution follows directly by Steps 1 and 2.

We will show that there is not any other bifurcation point in IR\{0}. Suppose there exists a

sequence of solutions (λn, un) of (1.4) such that λn → λ0 < 0 and ‖un‖∞ → 0. With a similar

argument to the one used at the beginning of this section, we can prove that un ≥ 0. Since

‖un‖∞ → 0 and λn → λ0 < 0, there exists n0 ∈ IN such that for n ≥ n0, it holds

Lun = λnuq
n + a(x)up

n ≤ 0 in Ω, un = 0 on ∂Ω,

which implies that un = 0.

Now, assume that there exists a sequence of solutions (λn, un) of (1.4) such that λn → λ0 > 0

and ‖un‖∞ → 0. Observe that, by the strong maximum principle, un > 0. We take K ≥ σ1[L],

so there exists n0 ∈ IN such that

λnuq
n + a(x)up

n > Kun for all n ≥ n0,

and so,

(L −K)un > 0 in Ω, un = 0 on ∂Ω.

Hence, un is a positive strict supersolution of L−K, and by Proposition 2.3, we get σ1[L−K] > 0,

and so K < σ1[L], which leads us to a contradiction.

Finally, the existence of an unbounded and connected continuum of nonnegative solutions

of (1.4) follows from a slight modification of the proof of Theorem 1.3 in [29], see also Theorem

3.1 in [1] and Theorem 4.4 in [6]. 2

4 The very slow diffusion case: p < 1.

Along this section we assume p < 1, that is m > 2 in the original equation (1.1). The main

result in this case is the following:

Theorem 4.1 Assume p < 1. There exist −∞ < λ∗ ≤ λ∗∗ < 0 such that:

a) (1.4) has a nonnegative and nontrivial solution if, and only if, λ ∈ [λ∗,∞),

b) If λ ∈ (0,∞), (1.4) possesses exactly a solution, which is positive and linearly asymptoti-

cally stable,
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c) If λ ∈ (λ∗∗, 0), (1.4) possesses at least two nonnegative and nontrivial solutions.

This result will be an easy consequence of the following ones.

Proposition 4.2 Assume p < 1. Then, there exists −∞ < λ < 0 such that for λ < λ, (1.4)

has no solution.

Proof: It is not hard to prove that

λsq + aMsp − σ1[L]s < 0 ∀s ∈ IR+, ∀λ < λ (4.1)

where

λ := (σ1[L])(p−q)/(p−1)a
(1−q)/(1−p)
M

(
p− q

1− q

)(p−q)/(1−p) p− 1
1− q

. (4.2)

Now, let (λ, u) be a nonnegative solution of (1.4) for λ < λ. Multiplying (1.4) by ϕ∗1, the

eigenfunction associated to L∗ and taking account (4.1), we obtain

0 =
∫

Ω
(λuq + a(x)up − σ1[L∗]u)ϕ∗1 ≤

∫

Ω
(λuq + aMup − σ1[L]u)ϕ∗1 < 0,

which is a contradiction. This completes the proof. 2

The following result is well-known when that L = −∆. It will be very useful in this work.

Proposition 4.3 Assume p < 1 and let b ∈ Cα(Ω) be such that b ≥ 0 and b 6= 0. Consider the

following problem 



Lu = b(x)up in Ω,

u = 0 on ∂Ω.

(4.3)

Then, (4.3) possesses a unique positive solution, denoted by z[b,p].

Proof: Firstly, we are going to use the linking local sub-supersolution method to prove the

existence of nonnegative solution of (4.3). Since b ≥ 0, b 6= 0, there exists x0 ∈ Ω and r0 > 0

such that

b(x) ≥ b0 > 0 for all x ∈ B := B(x0, r0) and B ⊂ Ω

for some constant b0 > 0 and where B(x0, r0) is the ball of radius r0 centered at x0. We define

Ψ :=





ϕB
1 in B,

0 in Ω\B,

(4.4)
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where ϕB
1 is the principal eigenfunction of L in B associated to the principal eigenvalue, σB

1 [L],

and normalized so that supx∈B ϕB
1 = 1. Observe that Ψ ∈ H1(Ω) and that

∂ϕB
1

∂nL
< 0 on ∂B, (4.5)

where nL denotes the conormal associated with L, i.e., (nL)i :=
∑N

j=1 aijnj , being n :=

(n1, . . . , nN ) the outward unit normal to B. Indeed, (4.5) follows by (2.3) and the fact that

nL is an outward direction because by (1.3), it follows

n · nL =
N∑

i,j=1

aijninj > 0.

We define e ∈ C2(Ω) the unique positive solution of




Le = 1 in Ω,

e = 0 on ∂Ω.

(4.6)

Now, thanks to (4.5) we can apply Lemma I.1 in [8] to show that the pair (u, u) := (εΨ, Ke) is

a sub-supersolution of (1.4) provided of ε > 0 and K > 0 satisfy

u ≤ u, ε ≤
(

b0

σB
1 [L]

)1/(1−p)

, K ≥ (bM‖e‖p
∞)1/(1−p) .

This proves the existence of at least a nonnegative solution of (4.3). By the strong maximum

principle, any nonnegative solution of (4.3) is positive.

For the uniqueness, we assume that (4.3) possesses two positive solutions v 6= u. By the integral

mean value theorem, we get

L(u− v) = b(x)(up − vp) = b(x)p
∫ 1

0
[tu + (1− t)v]p−1dt (u− v) in Ω.

Hence, 



(L − b(x)pM(x))(u− v) = 0 in Ω,

u− v = 0 on ∂Ω,

where

M(x) :=
∫ 1

0
[tu + (1− t)v]p−1dt.

Since u and v are strictly positive, there exist positive constants Cu, Cv > 0 such that

Cudist(x, ∂Ω) ≤ u(x), Cvdist(x, ∂Ω) ≤ v(x) ∀x ∈ Ω,
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and so,

|M(x)|[dist(x, ∂Ω)]1−p ≤ K, (4.7)

for some K > 0. Hence M verifies (2.1). Moreover, it satisfies the following estimate

pM < up−1 in Ω.

Thus, according to Theorem 2.1

σ1[L − b(x)pM ] > σ1[L − b(x)up−1] = 0.

Therefore, u− v = 0. This shows the uniqueness of positive solution of (4.3). 2

The next result shows the existence of a nonnegative maximal solution of (1.4) for λ = 0.

Related results were proved in [7] (Theorem 2.2) and in [27] (Theorem 4) when L = −∆.

Proposition 4.4 Assume p < 1 and λ = 0. Then (1.4) admits a maximal nonnegative solution

U0. Moreover,

U0 > 0 in A+. (4.8)

Proof: Observe that any nonegative solution u of (1.4) for λ = 0 is a subsolution of (4.3) with

b(x) ≡ aM . Since for K sufficiently large, u := Ke is a supersolution of (4.3) and u ≤ u, from

the uniqueness of positive solution of (4.3), we obtain that

u ≤ z[aM ,p]

for any nonnegative solution u of (1.4) for λ = 0. Moreover, z[aM ,p] is a supersolution of (1.4) for

λ = 0. Thus, we deduce the existence of a maximal nonnegative solution of (1.4) for λ = 0, which

we call U0. Finally, we will prove (4.8). For that, again we use the linking local sub-supersolution

method. For any k = 1, . . . , r, we consider xk ∈ Ak
+ and rk > 0 such that Bk := B(xk, rk) ⊂ Ak

+.

We define

Ψ :=





ϕBk
1 in Bk, for all k = 1, . . . , n,

0 in Ω\(∪r
k=1Bk),

where ϕBk
1 is the principal eigenfunction of L in Bk. By a similar reasoning to the used in the

Proposition 4.3, it can be proved that we can apply Lemma I.1 in [8] to show that the pair

(u, u) := (εΨ, Ke) is a sub-supersolution of (1.4), provided that ε and K are sufficiently small
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and large, respectively. Now, the strong maximum principle shows (4.8), see Lemma 2.1 in [7].

This completes the proof. 2

The next result shows the uniqueness and stability of the positive solution when λ > 0. The

existence will be shown in Theorem 4.1. For the uniqueness we would like to point out that we

use a change of variable already used in a different context in [30], see also [7] and [12].

Proposition 4.5 Assume p < 1 and λ > 0. Then, there exists at most a unique positive

solution of (1.4), say uλ. Moreover,

σ1[L − λquq−1
λ + pa(x)up−1

λ ] > 0,

that is, uλ is linearly asymptotically stable.

Proof: Firstly, observe that since λ > 0 then, by the strong maximum principle any nonnegative

and nontrivial solution u is in fact strictly positive. So, we can define the change of variable

w :=
u1−p

1− p

which transforms (1.4) into




Lw − p

(1− p)w

N∑

i,j=1

aijDiwDjw = λ(1− p)
q−p
1−p w

q−p
1−p + a(x) in Ω,

w = 0 on ∂Ω.

(4.9)

Assume that there exist two positive solution u1 6= u2 of (1.4). Let x0 ∈ Ω be such that

Φ := u1 − u2

attains its positive maximum. If such positive maximum does not exist, we will reason similarly

with the function Φ := u2 − u1. Since x0 ∈ Ω, there exists r > 0 such that

u1(x) > u2(x) ≥ ρ > 0 for all x ∈ B(x0, r),

for some ρ > 0. Now, we define

Ψ := w1 − w2

where wi := u1−p
i /(1− p). So by (4.9), we get

LΨ− p

1− p
(

N∑

i,j=1

aij [
1
w1

Diw1Djw1 − 1
w2

Diw2Djw2]) =

12



= λ(1− p)(q−p)/(1−p)(w(q−p)/(1−p)
1 − w

(q−p)/(1−p)
2 ).

On the other hand, it can be proved that

N∑

i,j=1

aij [
1
w1

Diw1Djw1 − 1
w2

Diw2Djw2] =
N∑

i=1

ciDiΨ− c(x)Ψ

where

ci =
N∑

j=1

aij
1
w1

(Djw1 + Djw2), c(x) =
1

w1w2

N∑

i,j=1

aijDiw2Djw2.

So, Ψ verifies in B(x0, r)

L1Ψ +
p

1− p
c(x)Ψ = λ(1− p)(q−p)/(1−p)(w(q−p)/(1−p)

1 − w
(q−p)/(1−p)
2 ), (4.10)

being

L1 = −
N∑

i,j=1

Di(aijDj) +
N∑

i=1

(bi − p

1− p
ci)Di.

By (1.3), c(x) ≥ 0 in B(x0, r), and from (H) we have that

w
(q−p)/(1−p)
2 > w

(q−p)/(1−p)
1 in B(x0, r),

and so by the strong maximun principle of Hopf, see for example Theorem 3.5 in [16], Ψ = C > 0

in B(x0, r) with C constant. Thus, the left hand side of (4.10) is non-negative and right one

negative. This gives a contradiction and completes the proof of the uniqueness.

Now, we prove the stability of the positive solution. Let (λ, uλ) be a positive solution of

λ > 0. By the strong maximum principle, it can be shown, as we did in (4.7), that the function

M(x) := −λquq−1
λ − pa(x)up−1

λ

satisfies (2.1). Thus, σ1[L−λquq−1
λ − pa(x)up−1

λ ] is well defined. Now, it is not difficult to prove

that

(L − λquq−1
λ − pa(x)up−1

λ )up
λ =

p(1− p)up−2
λ

N∑

i,j=1

aijDiuDju + λ(p− q)up+q−1
λ > 0.

Hence, up
λ ∈ C2(Ω) ∩ C0

0 (Ω) is a positive strict supersolution of the operator L − λquq−1
λ −

pa(x)up−1
λ . The result is a consequence of Proposition 2.4 2

Proof of Theorem 4.1: Firstly, we are going to show that the bifurcation from the trivial

solution u = 0 is subcritical. Suppose the contrary: there exists a sequence of nonnegative and
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nontrivial solutions (λn, un) verifying λn ≥ 0, λn → 0 and ‖un‖∞ → 0. We distinguish two

cases:

Case 1: λn > 0. In this case, by Proposition 4.5, we have that un = uλn . Now, it is clear

that for each n ∈ IN there exists a positive constant Kn > 0 such that the pair (U0,Kne) is a

sub-supersolution of (1.4) for λ = λn, and so by the uniqueness of positive solution for λn > 0,

we have

U0 ≤ un ≤ Kne. (4.11)

Case 2: λn = 0. Since un is nonnegative, there exists ρn > 0 sufficiently small such that the

function un− ρne attains a positive maximum in Ω. Let xn ∈ Ω be such that (un− ρne)(xn) :=

maxx∈Ω(un − ρne)(x) > 0. Then,

0 ≤ L(un − ρne)(xn) = a(xn)up
n(xn)− ρn

and so,

0 < ρn ≤ a(xn)up
n(xn). (4.12)

Therefore, xn ∈ A+. Assume, that xn ∈ Ak0
+ for some k0 ∈ {1, . . . , r}. By (4.12), it follows that

un ≥ 0, un 6= 0 in Ak0
+ . From the strong maximum principle, see again Lemma 2.1 in [7], it

follows that

un > 0 in Ak0
+ .

Hence, un is a supersolution of (4.3) in Ak0 with b(x) ≡ a(x). We can build a subsolution as

(4.4), and we conclude by Proposition 4.3 that

z[a,p] ≤ un in Ak0
+ . (4.13)

Hence, in any case by (4.11) and (4.13) it follows that ‖un‖∞ does not approach to 0.

Now, we define

λ∗ := inf{λ ∈ IR : (1.4) has a nonnegative and nontrivial solution.}

We have just proved that −∞ < λ∗ < 0. Take λ0 ∈ (λ∗, 0). So, there exists uµ with µ ∈ [λ∗, λ0)

solution of (1.4). Then, the pair (u, u) := (uµ, U0) is a sub-supersolution of (1.4) for λ = λ0,

and so there exists a solution of (1.4) for λ = λ0. Observe that uµ ≤ U0 due to the maximality

of U0. The existence of solution for λ = λ∗ follows by a standard compactness argument.

Finally, the subcritical bifurcation at λ = 0, the connectivity of the continuum C0 of nonnegative
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solutions, (4.11) and (4.13) imply the existence of λ∗∗ such that for λ ∈ (λ∗∗, 0), (1.4) admits at

least two nonnegative solutions. This completes the proof. 2

The next result shows that λ∗ goes 0 as ‖a+‖∞ → 0. This result is consistent with that

when a+ ≡ 0, (1.4) has positive solution if, and only if, λ > 0, see [13].

Lemma 4.6 Assume p < 1. Then λ∗ ↑ 0 as ‖a+‖∞ → 0.

Proof: If ‖a+‖∞ → 0, then aM → 0. The result follows by (4.2). 2

5 The self-diffusion case: p = 1.

In the particular case p = 1, the bifurcation direction of the continuum C0 depends on the sign

of σ1[L − a(x)].

Theorem 5.1 Assume p = 1. Then,

a) If σ1[L− a(x)] = 0, then (1.4) admits nonnegative and nontrivial solutions if, and only if,

λ = 0. Moreover, in this case (1.4) has infinitely many positive solutions.

b) If σ1[L − a(x)] > 0, then (1.4) admits nonnegative and nontrivial solutions if, and only

if, λ > 0. In this case (1.4) has a unique positive solution which is linearly asymptotically

stable.

c) If σ1[L− a(x)] < 0, then (1.4) admits nonnegative and nontrivial solutions if, and only if,

λ < 0.

Proof: In the case p = 1, observe that (1.4) can be written as

(L − a(x))u = λuq in Ω, u = 0 on ∂Ω. (5.1)

In the first paragraph, σ1[L − a(x)] = 0, the Fredholm alternative provides us the result.

Assume that σ1[L−a(x)] > 0. The maximum principle applied to (5.1) implies that if λ ≤ 0,

(1.4) does not admit nonnegative solution.

Assume that σ1[L − a(x)] < 0 and that there exists a nonnegative solution u of (5.1).

Then, multiplying (5.1) by ψ∗1, principal eigenfunction of L∗ − a(x) and taking account that

σ1[L∗ − a(x)] = σ1[L − a(x)] < 0, we obtain

σ1[L∗ − a(x)]
∫

Ω
ψ∗1u = λ

∫

Ω
uqψ∗1,
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and so λ < 0.

We claim that for λ ∈ I, a compact interval in IR, there exists C > 0 such that (1.4)

does not possess positive solution u with ‖u‖∞ > C. Indeed, we suppose the contrary: there

exists a sequence (λn, un) of solutions of (1.4) with λn → λ0 ∈ IR and ‖un‖∞ → +∞. Let

vn := un/‖un‖∞ be, so

(L − a(x))vn = λn
uq

n

‖un‖∞ ,

hence vn → v ≥ 0 with ‖v‖∞ = 1 and

(L − a(x))v = 0 in Ω, v = 0 on ∂Ω. (5.2)

If σ1[L − a(x)] > 0, by the maximum principle we obtain that v ≡ 0. If σ1[L − a(x)] < 0,

multiplying (5.2) by ψ∗1, we obtain

σ1[L∗ − a(x)]
∫

Ω
ψ∗1v = 0,

and so v ≡ 0.

Now, Theorem 3.1 provides us the existence of nonnegative solution for λ > 0 (resp. λ < 0)

if σ1[L − a(x)] > 0 (resp. σ1[L − a(x)] < 0.)

For the uniqueness in the case λ > 0, we can repeat exactly the argument used in Proposition

4.3 to show that (4.3) possesses a unique positive solution.

On the other hand, let (λ, u) be a positive solution of (5.1) with λ > 0, we have

σ1[L − a(x)− qλuq−1] > σ1[L − a(x)− λuq−1] = 0.

This shows the stability and completes the proof. 2
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