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Abstract

In this paper we analyze the existence, non-existence and uniqueness of pos-
itive solutions of some nonlinear elliptic equations containing singular terms
and natural growth in the gradient. We use an adequate sub-supersolution
method to prove the existence of solutions, different arguments for the non-
existence and results from Arcoya-Segura de León for the uniqueness.

Key words: Nonlinear elliptic equations, natural growth condition, the
sub-supersolution method, Singular gradient terms.
2010 MSC: 35A01, 35A02, 35B09, 35B51, 35D30, 35J60, 35J75.

1. Introduction

We study existence, nonexistence and uniqueness of positive solutions to
the following nonlinear elliptic problem{

−∆u+ g(u)|∇u|2 = f(λ, u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain of RN (N ≥ 3) and λ is a real param-
eter. The functions f ∈ C(R × [0,+∞)) and g ∈ C(0,+∞) are given, for
some k, γ, p, q > 0, by

g(s) =
k

sγ
, ∀s > 0, (1.2)

f(λ, s) = λsq or f(λ, s) = λs− sp, ∀s > 0. (1.3)



We say that a solution of (1.1) is a function u ∈ H1
0 (Ω) such that 0 < u

almost everywhere in Ω, g(u)|∇u|2 ∈ L1(Ω), f(λ, u) ∈ L1(Ω) and∫
Ω

∇u · ∇φ+

∫
Ω

g(u)|∇u|2φ =

∫
Ω

f(λ, u)φ

for every φ ∈ H1
0 (Ω) ∩ L∞(Ω).

This kind of equations (with quadratic gradient terms) has attracted
much interest since the pioneering works [8, 9]. In the last years, attention
has been paid in singular terms in front of the gradient terms [2, 3, 4, 5, 6, 11].
In fact, in most of these papers the right hand side of the equation is not
identically zero, i.e. for different kind of nonnegative functions g and f , is
studied the equation{

−∆u+ g(u)|∇u|2 = f(λ, u) + f0 in Ω,
u = 0 on ∂Ω,

(1.4)

where 0 ≤ f0 ∈ Lr(Ω) (r ≥ 1) and f0 6≡ 0. Thanks to this fact some
aspects in the study of existence of solution of (1.4) can be simplified since
the singularity can be avoided in compactly embedding subsets of Ω.

When f(λ, u) ≡ 0 and g is continuous at zero, problem (1.4) was studied,
among others, in [8, 9]. This was the starting point in [4, 6, 11] for the
singular case, to consider f(λ, u) ≡ 0 and g(s) singular at zero, as the model
k/sγ. In [2] the authors showed the existence of positive solutions for γ < 2
and non-existence for γ ≥ 2. Moreover, in [5] it is proved that the solution
is unique in the case γ < 1.

When f(λ, s) = λs and g ≡ 1, in [1] it was proved that there exists a
positive solution of (1.4) for every λ > 0 showing the regularizing effect of
the quadratic gradient terms. In [3] it was proved that this regularizing effect
remains true while

g(s) ≥ k/sγ, γ < 1, s large. (1.5)

In particular, for g given by (1.2) the existence of positive solution of (1.4)
is proved for every λ > 0, see also [10].

For f(λ, s) = λsq and g(s) = k/sγ with 0 < γ < 1 and γ + q < 2 the
existence of positive solution of (1.4) for every λ > 0 was proved in [10], see
also [3].

Very few is known for the problem (1.4) if f0 ≡ 0, mostly in the case of
functions g that are continuous at zero. In this case, it is proved in [3] the
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existence of positive solution for every λ > 0 if f(λ, s) = λsq with q < 1.
If q = 1 and g is a continuous function satisfying (1.5), in [3] is obtained
existence of solution for λ > λ1, where λ1 denotes the first eigenvalue of −∆
under homogeneous Dirichelt boundary conditions. In [14], for f(λ, s) = λsq

with q > 1 and given a continuous nonnegative function g satisfying (1.5), it
is proved existence of positive solution if and only if λ ≥ λ∗ for some λ∗ > 0.
Moreover, multiplicity of solution is shown for λ > λ∗. Finally if g ≡ 1, the
case f(λ, s) = λs − sp, for some p > 1, was analyzed in [15] showing the
existence and uniqueness of conti nuously differentiable positive solution for
λ > λ1.

In this paper we study problem (1.4) with f0 ≡ 0 in the case of functions
g that are singular at zero. More precisely, for the sake of clarity, we consider
problem (1.1) with functions g and f given respectively by (1.2) and (1.3).
We summarize the main results here. We would like to point out that the
first result contains direct results but we include it for reader’s convenience.

Theorem 1.1. Assume that f(λ, u) = λu and g(s) = k
sγ

.

1. If γ < 1, there exists a positive solution of (1.1) if and only if λ > λ1.
Moreover, for λ > λ1 there exists a unique bounded positive solution.

2. If γ = 1 and k < 1, then there exists positive solution of (1.1) if
and only if λ = λ1/(1 − k). In this case, there exist infinite positive
solutions.

3. If γ = 1 and k ≥ 1, then (1.1) has no positive solution for λ > 0.

4. If γ > 1 then (1.1) has no positive solution for λ > 0.

Theorem 1.2. Assume that f(λ, u) = λuq, 0 < q < 1 and g(s) = k
sγ

.

1. If γ < 1, there exists a unique bounded positive solution of (1.1) for
every λ > 0.

2. If γ = 1 and k ≤ q, there exists at most one positive solution for every
λ > 0.

3. If γ + q > 2, then (1.1) has no positive solution for λ > 0.

Theorem 1.3. Assume that f(λ, u) = λuq, 1 < q and g(s) = k
sγ

.

1. If γ < 1 and γ + q < 2, there exists λ∗ > 0 such that (1.1) possesses
a positive solution for every λ ≥ λ∗ and (1.1) does not possess any
positive solution for every λ < λ∗.

2. If γ ≥ 1 then (1.1) has no positive solution for λ > 0.
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Theorem 1.4. Assume that f(λ, u) = λu− up, p > 1, and g(s) = k
sγ

.

1. Any positive solution u of (1.1) is bounded and ‖u‖∞ ≤ λ1/(p−1).

2. If γ < 1, there exists a positive solution of (1.1) if and only if λ > λ1.
In this case, the solution is unique.

3. If γ = 1 and k < 1, if there exists positive solution of (1.1) then it is
unique and λ > λ1/(1− k).

4. If γ = 1 and k ≥ 1, then (1.1) has no positive solution for λ ≥ 0.

5. If γ > 1, then (1.1) has no positive solution for λ ≥ 0.

To prove our existence results, we use the sub-supersolution method for
weak-solution. In [9] it was proved that the sub-supersolution method works
for sub and supersolution that belong to W 1,∞(Ω) and g is regular. We
present an adequate method using the Schauder Fixed Point Theorem as-
suming some general conditions on the nonlinear function f . In our case, we
can only apply this method for the case g integrable, that is γ < 1. In order
to use the sub-supersolution method we need a slightly improvement of the
comparison principle in [5]. This is only needed for the logistic nonlinearity
but we present the sub-supersolution method in the more general version.

It is well-know that the uniqueness is a very hard work, in fact very few
results are concerned to the uniqueness of positive solution of (1.1). We use
mainly [5], and a variant of this result, to show our uniqueness results.

Finally, we employ different arguments to show the non-existence results,
some of them are an adequate extension of those in [2, 3, 14]. For γ ≥ 1 and
γ + q > 2 the main novelty is that we are able to prove that any positive
solution satisfies that |∇u|2/u2 ∈ L1(Ω), which is not possible as was shown
in [17].

We remark that there are some gaps in our existence results, since we
can not deal with the sub-supersolution method in the case γ ≥ 1, but we
guess that there exists solution for some λ’s in the case f(λ, s) = λsq with
γ ≥ 1, γ + q < 2. Conversely, in the case γ < 1, γ + q > 2, we can not use
our non existence results, but we guess that there is no solution for λ > 0.
Moreover, in the case γ + q = 2 we only have completely described the case
γ = 1 = q in Theorem 1.1. The last gap relies in the uniqueness since for
γ = 1 and q < 1 we only have proved the uniqueness for k < q.

The outline of the paper is the following, in Section 2 we prove some
qualitative properties of solutions of (1.1) and in particular the nonexistence
results. In Section 3 we prove that the sub-supersolution method works for
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(1.1) in the case γ < 1. The uniqueness of solution is studied in Section 4
and finally in Section 5 we include the proofs of Theorems 1.1, 1.2, 1.3 and
1.4.

Notation. As usual for every s ∈ R we consider the positive and negative
parts given by s+ = max{s, 0} and s− = min{s, 0}. We denote by Tk the
usual truncature function given by Tk(s) = min{k, s+} + max{−k, s−} for
every s ∈ R. We denote by |Ω| the Lebesgue measure of a measurable
set Ω in RN. For 1 ≤ p ≤ +∞, ‖u‖p is the usual norm of a function
u ∈ Lp(Ω). We equipped the standard Sobolev space H1

0 (Ω) with the norm

‖u‖ =

(∫
Ω

|∇u|2
)1/2

.

2. Qualitative properties of solutions

In this section we set the main properties of solutions of (1.1). More
precisely, given a solution u, we give sufficient conditions in order to have

that u ∈ L∞(Ω) or even that g(u)|∇u|2
uβ

∈ L1(Ω) for some β > 0. This fact will
be crucial to obtain our nonexistence result.

Taking into account that g is nonnegative we can recover for solutions of
(1.1) any of the known properties of sub-solutions of the semilinear problem{

−∆u = f(λ, u) in Ω,
u = 0 on ∂Ω.

(2.1)

In particular these properties hold for sub-solutions of (1.1) in the sense of
the following definition.

Definition 2.1. A sub-solution of (1.1) is a function u ∈ H1
0 (Ω) such that

1. 0 < u almost everywhere in Ω,

2. g(u)|∇u|2 ∈ L1(Ω), f(λ, u) ∈ L1(Ω),

3. for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ > 0,∫

Ω

∇u · ∇φ+

∫
Ω

g(u)|∇u|2φ ≤
∫

Ω

f(λ, u)φ. (2.2)

Similarly a super-solution of (1.1) is a function u ∈ H1(Ω) verifying items 1,
2 and 3 with the reverse inequality in (2.2). Observe that a super-solution is
allowed to be different from zero at the boundary while, since we are studying
positive solutions, this is not possible for sub-solutions.
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We recall some classical results about the regularity that we can find
in [16]. Concretely, the following two lemmas resume some known L∞(Ω)-
estimates for sub-solutions of (2.1).

Lemma 2.2. Assume that there exists C > 0 such that |f(λ, s)| ≤ C(1+|s|q)
(q < (N + 2)/(N − 2)) for every s ∈ R (f subcritical) and that u is a sub-
solution of (1.1), then u ∈ L∞(Ω). Moreover, there exist α, β > 0 such
that

‖u‖∞ ≤ α‖u‖β.

Remark 2.3. Once we have proved that it is bounded, under conditions of
the previous lemma, we have that any solution u is continuous in Ω arguing
as in [12] (see Remark 2.6 in [2] for a detailed proof).

Lemma 2.4. Assume that there exists s0(λ) such that f(λ, s) ≤ 0 for every
s > s0(λ). Assume also that u is a sub-solution of (1.1) then u ∈ L∞(Ω)
and ‖u‖∞ ≤ s0(λ).

The following lemma will be the keystone in the proof of our nonexistence
result.

Lemma 2.5. Assume that u ∈ H1
0 (Ω) ∩ L∞(Ω) is a sub-solution of (1.1),

then |∇u|2/uβ ∈ L1(Ω) for every β < 1. Moreover, if we assume also that
there exists ε0 > 0 such that for some 0 < k ≤ r and some cλ > 0 we have

g(s) ≥ k

s
, 0 < s ≤ ε0, (2.3)

and
f(λ, s) ≤ cλs

r, 0 < s ≤ ε0, (2.4)

then g(u)|∇u|2/uβ ∈ L1(Ω) for every β < k ≤ r.

Remark 2.6. Assume (2.4). Observe that g(s) = c
sγ

satisfies (2.3) for any
k > 0 if γ > 1. Thus, the conclusion of from the previous lemma for this
particular function g is:

1. for γ > 1 we have
|∇u|2

uσ
∈ L1(Ω) for every σ < γ + r,

2. for γ = 1 and c ≥ r we have
|∇u|2

uσ
∈ L1(Ω) for every σ < 1 + r,

3. for γ = 1 and c < r we have
|∇u|2

uσ
∈ L1(Ω) for every σ < 1 + c.
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Proof. We consider ψε given by

ψε(s) =

{
s1−β s > ε,
s
εβ

0 ≤ s < ε.

Taking ψε(u) as test function in (1.1) we obtain∫
{u>ε}

|∇u|2
(

1− β
uβ

+ g(u)u1−β
)

+

∫
{u<ε}

(
g(u)

u

εβ
+

1

εβ

)
|∇u|2

≤
∫

Ω

f(λ, u)ψε(u) ≤
∫

Ω

f(λ, u)u1−β < C.

Therefore using Fatou Lemma in the previous inequality we obtain that
|∇u|2/uβ ∈ L1(Ω) for every β < 1. Moreover, in order to prove the sec-
ond part of the lemma, we consider the function ϕε given by

ϕε(s) =

 1
sβ

+ βe−G(s)

∫ s

ε

eG(t)

tβ+1
dt s > ε,

s
εβ+1 0 ≤ s < ε,

and G denotes any primitive of g. Observe that

ϕ′ε(s) + g(s)ϕε(s) =
g(s)

sβ
for every s > ε.

Thus, taking ϕε(u) as test function in (1.1) we obtain∫
{u>ε}

g(u)

uβ
|∇u|2 +

∫
{u<ε}

1

εβ+1
(g(u)u+ 1) |∇u|2 ≤

∫
Ω

f(λ, u)ϕε(u). (2.5)

We claim that
∫

Ω
f(λ, u)ϕε(u) is bounded as ε tends to zero. Indeed, observe

that (2.4) implies that for ε < ε0 we have∫
{u<ε}

f(λ, u)ϕε(u) ≤ cλε
r−β|Ω|

and ∫
{u>ε}

f(λ, u)
1

uβ
=

∫
{u>ε0}

f(λ, u)
1

uβ
+

∫
{ε0>u>ε}

f(λ, u)
1

uβ

≤ max
ε0≤s≤‖u‖∞

f(λ, s)ε−β0 |Ω|+ cλ‖u‖r−β∞ |Ω|.
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Thus, in order to prove the claim we only have to prove that∫
{u>ε}

(
f(λ, u)e−G(u)

∫ u

ε

eG(t)

tβ+1
dt

)
is bounded for ε→ 0. Observe that for ε < ε0 we have∫

{u>ε}

(
f(λ, u)e−G(u)

∫ u

ε

eG(t)

tβ+1
dt

)
=

∫
{u>ε}

(∫ u

ε

f(λ, u)

tβ+1
e−

∫ u
t g(s)ds

)
dt

=

∫
{u>ε0}

(∫ ε0

ε

f(λ, u)

tβ+1
e−

∫ u
t g(s)dsdt+

∫ u

ε0

f(λ, u)

tβ+1
e−

∫ u
t g(s)dsdt

)
+

∫
{ε0≥u>ε}

∫ u

ε

f(λ, u)

tβ+1
e−

∫ u
t g(s)dsdt

≤
∫
{u>ε0}

∫ ε0

ε

e−
∫ ε0
t

k
s
ds 1

tβ+1
e
−
∫ u
ε0
g(s)ds

f(λ, u)dt

+ max
ε0≤s≤‖u‖∞

f(λ, s)
|Ω|
εβ+1

0

+ cλ

∫
{ε0>u>ε}

∫ u

ε

e−
∫ u
t
k
s
ds 1

tβ+1
urdt

≤|Ω| max
ε0≤s≤‖u‖∞

f(λ, s)

(∫ ε0

0

tk

εk0t
β+1

+
1

εβ+1
0

)
+

λ

k − β

∫
Ω

ur−β.

Therefore using Fatou Lemma in (2.5) we obtain that
g(u)|∇u|2

uβ
∈ L1(Ω)

and we conclude the proof.

The following result is contained in [17] (see Theorem 1.1).

Lemma 2.7. For every u ∈ H1
0 (Ω) it holds that

∫
Ω

|∇u|2

u2
= +∞. In particu-

lar, (1.1) with g(s) given by (1.2) for some γ ≥ 2 has no positive solution.

Using the previous two lemmas we obtain the following corollary concern-
ing with the nonexistence of solution for the problem (1.1).

Corollary 2.8. Assume that f and g are given by (1.2) and (1.3).

1. If f(λ, u) = λu− up for some p > 1 and γ > 1 then problem (1.1) does
not admit solution.

2. If f(λ, u) = λuq for some q > 0 with γ > 1 and γ+ q > 2 or γ = 1 and
min{k, q} > 1 then problem (1.1) does not admit solution.
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Proof. Observe that it is enough to choose β = 2−γ in Lemma 2.5 and thus
|∇u|2
u2 ∈ L1(Ω) which is a contradiction with Lemma 2.7.

que todo cuadre con la idea de [5] hay que usar tambin que f(λ, x, u) ≥
f̃(λ, x, s) ≥ f(λ, x, u).

Finally, we present a general result of non-existence of positive solution of
a general problem using the ideas in [2]. This result will be applied to show
the non-existence of positive solution of (1.1) for λ small when f(λ, u) = λuq

and γ < 1 < q.
We consider the function g given by (1.2) for some γ < 1 and we define

G(s) by

G(s) :=

∫ s

0

g(t)dt s > 0. (2.6)

Lemma 2.9. The function ϕ given by

ϕ(s) =


e−G(s)

∫ s

0

eG(t)dt, s > 0,

0, s = 0,

(2.7)

is a continuously differentiable function in [0,+∞) and it satisfies the ordi-

nary differential equation ϕ′(s) +
k

sγ
ϕ(s) = 1, for s > 0 and ϕ(0) = 0.

Proof. The proof is straightforward except for assuring that ϕ is differentiable
at zero and ϕ′ is continuous at zero. In order to do that we note firstly that ϕ
is continuous at zero. Indeed, since eG(s) is nondecreasing we have ϕ(s) ≤ s
for s < 1. Moreover, k

sγ
ϕ(s) ≤ ks1−γ for s < 1, which implies that

ϕ′(0) = lim
s→0+

ϕ(s)

s
= lim

s→0
ϕ′(s) = 1.

Then ϕ is differentiable at zero and ϕ′ is continuous at zero.

Theorem 2.10. Assume that there exists a positive constant C such that,
for ϕ given by (2.7),

f(λ, s)ϕ(s) ≤ λCs2, ∀s > 0. (2.8)

Then the problem (1.1) has no positive solution in H1
0 (Ω) ∩ L∞(Ω) for λ1 ≥

λC.
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Proof. Let u ∈ H1
0 (Ω) ∩ L∞(Ω) be a positive solution for (1.1) and let ϕ ∈

C1([0,+∞)) given by (2.7). Since ϕ(0) = 0, we can take v = ϕ(u) as test
function in (1.1) to obtain∫

Ω

|∇u|2
(
ϕ′(u) +

k

uγ
ϕ(u)

)
=

∫
Ω

f(λ, u)ϕ(u).

Using now the equation satisfied by ϕ we get∫
Ω

|∇u|2 =

∫
Ω

f(λ, u)ϕ(u) ≤ λC

∫
Ω

u2.

From (2.8) and the variational characterization of λ1 we deduce that λ1 <
λC.

3. The sub-supersolution method

In order to show the existence of positive solutions of (1.1) we are going to
use the sub-supersolution method for a slightly more general problem. More
precisely we consider, for some M ≥ 0 and 0 ≤ h(x) ∈ L2N/(N+2)(Ω), the
following problem{

−∆u+ g(u)|∇u|2 +MΨ(u)eG(u) = h(x) in Ω,
u = 0 on ∂Ω,

(3.1)

where g ∈ C(0,+∞) is a nonnegative function which is integrable at zero, G
is given by (2.6) and Ψ is defined by

Ψ(s) :=

∫ s

0

e−G(t)dt, s > 0. (3.2)

The concept of sub and super-solution for (3.1), as in Definition 2.1, is
the following:

Definition 3.1. A sub-solution of (3.1) is a function u ∈ H1
0 (Ω) such that

0 < u a.e. in Ω, g(u)|∇u|2,MΨ(u)eG(u) ∈ L1(Ω) and for every φ ∈ H1
0 (Ω) ∩

L∞(Ω), φ > 0,∫
Ω

∇u · ∇φ+

∫
Ω

g(u)|∇u|2φ+M

∫
Ω

Ψ(u)eG(u)φ ≤
∫

Ω

h(x)φ.
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Similarly u ∈ H1(Ω) such that 0 < u a.e. in Ω, g(u)|∇u|2,MΨ(u)eG(u) ∈
L1(Ω) and for every φ ∈ H1

0 (Ω) ∩ L∞(Ω), φ > 0,∫
Ω

∇u · ∇φ+

∫
Ω

g(u)|∇u|2φ+M

∫
Ω

Ψ(u)eG(u)φ ≥
∫

Ω

h(x)φ,

is called a super-solution of (3.1). We say that u ∈ H1
0 (Ω) is a solution of

(3.1) if it is a sub and super-solution of (3.1).

The next lemma states a Comparison Principle for (3.1) similar to that
contained in [5]. We include here the proof for convenience of the reader.

Lemma 3.2. Assume that g is integrable at zero and 0 ≤ h(x) ∈ L1(Ω). Let
u, u be a sub and a super solution of (3.1). Then u ≤ u.

Proof. Following the ideas contained in Theorem 2.7 in [5] we define ϕε(s) =
min{max{ε, s}, 1/ε}, for every s > 0 and ε < 1. We take as test function
e−G(ϕε(u))Tk ((Ψ(u)−Ψ(u))+) ∈ H1

0 (Ω) ∩ L∞(Ω) in the inequality satisfied
by u and e−G(ϕε(u))Tk ((Ψ(u)−Ψ(u))+) ∈ H1

0 (Ω) ∩ L∞(Ω) in the inequality
satisfied by u. Subtracting and taking into account that Ψ(s) is strictly
increasing and e−G(s) is strictly decreasing we have∫

Ω

e−G(ϕε(u))∇u · ∇Tk
(
(Ψ(u)−Ψ(u))+

)
+

∫
{ε>u}∪{u>1/ε}

e−G(ϕε(u))g(u)|∇u|2Tk
(
(Ψ(u)−Ψ(u))+

)
+M

∫
Ω

e−G(ϕε(u))eG(u)Ψ(u)Tk
(
(Ψ(u)−Ψ(u))+

)
−
∫

Ω

e−G(ϕε(u))∇u · ∇Tk
(
(Ψ(u)−Ψ(u))+

)
−
∫
{ε>u}∪{u>1/ε}

e−G(ϕε(u))g(u)|∇u|2Tk
(
(Ψ(u)−Ψ(u))+

)
−M

∫
Ω

e−G(ϕε(u))eG(u)Ψ(u)Tk
(
(Ψ(u)−Ψ(u))+

)
≤
∫

Ω

h(x)(e−G(ϕε(u)) − e−G(ϕε(u)))Tk
(
(Ψ(u)−Ψ(u))+

)
≤ 0.

Observe that functions e−G(ϕε(u)) and e−G(ϕε(u)) are bounded and thus we can
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pass to the limit as ε goes to zero and we obtain that

0 ≤
∫

Ω

|∇Tk
(
(Ψ(u)−Ψ(u))+

)
|2

+M

∫
Ω

(Ψ(u)−Ψ(u))Tk
(
(Ψ(u)−Ψ(u))+

)
≤ 0.

Thus (Ψ(u)−Ψ(u))+ = 0 and consequently u ≤ u (since ψ is strictly increas-
ing).

In the next lemma we give sufficient conditions to prove the existence of
solution of (3.1).

Lemma 3.3 (Existence result). Let 0 ≤ h(x) ∈ L2N/(N+2)(Ω), h 6≡ 0, and
assume that g is integrable at zero. Then there exists a solution u ∈ H1

0 (Ω)
of (3.1). Moreover, if h(x) ∈ Lq(Ω) for some q > N/2 then u ∈ L∞(Ω).

Proof. We consider the approximated problem −∆un +
gn(un)|∇un|2

1 + 1
n
|∇un|2

+
MΨn(u+

n )eGn(u+
n )

1 + 1
n
Ψn(u+

n )eGn(u+
n )

= Tn(h(x)) in Ω,

un = 0 on ∂Ω,

(3.3)
where the functions gn, Gn and Ψn are given by

gn(t) =
g(t+ + 1

n
)

1 + 1
n
g(t+ + 1

n
)

t+

1
n

+ t+
,

Gn(t) =
∫ t

0
gn(s)ds and Ψn(t) :=

∫ t
0
e−Gn(s)ds, for every t ∈ R.

By applying [13] there exists a solution un ∈ H1
0 (Ω) of (3.3) such that

un ∈ L∞(Ω) (see [16]). Moreover we claim that un ≥ 0. Indeed, taking u−n
as test function in (3.3) we obtain∫

Ω

|∇u−n |2 +

∫
Ω

gn(un)u−n |∇un|2

1 + 1
n
|∇un|2

+M

∫
Ω

u−n
Ψn(u+

n )eGn(u+
n )

1 + 1
n
Ψn(u+

n )eGn(u+
n )

=

∫
Ω

Tn(h(x))u−n

and thanks to the positivity of the lower order terms we have∫
Ω

|∇u−n |2 ≤
∫

Ω

Tn(h(x))u−n ≤ 0

12



which establishes that un ≥ 0. Similarly, taking un as test function in (3.3)
and using the positivity of the lower order terms we get∫

Ω

|∇un|2 ≤
∫

Ω

h(x)un ≤ ‖h‖2N/(N+2)‖un‖2∗ .

Thus, using the Sobolev embedding theorem, we deduce that un is bounded
in H1

0 (Ω). Even more, taking Tε(un)/ε as test function and using Fatou
Lemma as ε→ 0 yields that∫

Ω

(
gn(un)

|∇un|2

1 + 1
n
|∇un|2

+M
Ψn(u+

n )eGn(u+
n )

1 + 1
n
Ψn(u+

n )eGn(u+
n )

)
≤ ‖h‖1.

Therefore un weakly converges to u ∈ H1
0 (Ω), ∇un → ∇u a.e. (see [7,

Theorem 2.1]) and using Fatou Lemma as n→∞,

g(u)|∇u|2χ{u>0} ∈ L1(Ω) and Ψ(u)eG(u)χ{u>0} ∈ L1(Ω).

In particular, since g is integrable at zero, we have that Ψ(u)eG(u) is bounded
at zero and thus, Ψ(u)eG(u) ∈ L1(Ω).

In order to pass to the limit and to prove that u is the solution of (3.1)
it is essential to prove that u > 0.

In order to do that we follow the ideas in [6]. We take e−Gn(un)φ, with
0 ≤ φ ∈ C∞0 (Ω), as test function in (3.3) and we obtain that∫

Ω

∇Ψn(un) · ∇φ+M

∫
Ω

Ψn(un)φ ≥
∫

Ω

Tn(h(x))e−Gn(un)φ

≥
∫

Ω

T1(h(x))e−Gn(un)φ.

Observe that, since e−Gn(un) is bounded and Ψn(s) ≤ s we can pass to the
limit in the inequality above and we have∫

Ω

∇Ψ(u) · ∇φ+M

∫
Ω

Ψ(u)φ ≥
∫

Ω

T1(h(x))e−G(u)φ.

Thus, the strong maximum principle allows us to assure that 0 < Ψ(u) ≤ u.
Now, we can use the ideas in [6] to pass to the limit in the approximated
problem and we deduce that u ∈ H1

0 (Ω) is a solution of (3.1). The second
part follows directly from Lemma 2.2.
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As a consequence of Lemma 3.2 we state:

Corollary 3.4. The solution provided by Lemma 3.3 is unique.

Now, we are ready to state the method of sub and super solutions in
order to get existence of solution of (1.1). We define the interval (closed and
convex in L2(Ω))

I := [u, u] = {u ∈ L2(Ω) : u ≤ u ≤ u}.

Theorem 3.5. Assume that there exist 0 < u ≤ u in Ω, respectively a sub
and a super-solution of (1.1). Assume also that g is integrable at zero and
the following conditions on f :

(F1) There exists a constant M ≥ 0 such that the map s 7→ f(λ, s) +
MΨ(s)eG(s) is increasing for s > 0.

(F2) f(λ, u) +MΨ(u)eG(u) ∈ L2N/(N+2)(Ω).

(F3) f(λ, u) +MΨ(u)eG(u) > 0.

Then, there exists a solution u of (1.1) such that u ≤ u ≤ u.

Proof. We define the operator T : I 7→ H1
0 (Ω), w 7→ u := T (w) the unique

solution of {
−∆u+ g(u)|∇u|2 +MΨ(u)eG(u) = F (x) in Ω,
u = 0 on ∂Ω,

(3.4)

where
F (x) := f(λ,w(x)) +MΨ(w(x))eG(w(x)).

Thanks to (F1) and (F3) we have that F > 0. Moreover, (F1) and (F2)
imply that F ∈ L2N/(N+2)(Ω). Thus, by Lemma 3.3 and Corollary 3.4 it
follows that T is well-defined. We claim now that T is compact. Indeed,
consider any sequence wn ∈ I, weakly convergent to w ∈ I in L2(Ω). Taking
un = T (wn), it is clear that there exists C > 0 such that∫

Ω

|∇un|2 ≤ C,

i.e. un is bounded in H1
0 (Ω). Therefore there exists u ∈ H1

0 (Ω) such that, up
to a subsequence, un → u weakly in H1

0 (Ω), un → u strongly in Lη(Ω) with
η < 2N/(N − 2) and un(x)→ u(x) a.e. in Ω. We can pass to the limit using
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the previous property, that wn ∈ I is bounded in L2(Ω) and that u > 0 (we
can prove it using (F3) as in Lemma 3.3). Hence, u = T (w). Moreover, as in
[2], we can prove that un strongly converges to u in H1

loc(Ω). Thus, arguing
as in [3] we conclude that un strongly converges to u in H1

0 (Ω) and therefore
T is compact.

Now, we claim that T (I) ⊂ I. Indeed, take w ∈ I and consider u the
unique solution of (3.4). We are going to show that u ∈ I. Observe that

−∆u+ g(u)|∇u|2 +MΨ(u)eG(u) ≥ f(λ, u) +MΨ(u)eG(u)

≥ f(λ,w) +MΨ(w)eG(w)

= −∆u+ g(u)|∇u|2 +MΨ(u)eG(u).

Then, since (F2) implies that ψ(u)eG(u) ∈ L1(Ω), u is a supersolution of

−∆u+ g(u)|∇u|2 +MΨ(u)eG(u) = F (x).

Hence, by Lemma 3.2 we conclude that u ≥ u. Similarly, it can be shown that
u ≤ u and the result concludes by using the Schauder Fixed Point Theorem.

Remark 3.6. Some remarks are in order concerning to (F1)-(F3). Condition
(F1) is similar to the used in the classical sub-supersolution method without
gradient term. (F2) is necessary to auxiliar problem (3.4) is well-posed and
follows directly if the function f(λ, ·)+MΨ(·)e−G(·) has a subcritical growth.
Observe that, if f is a C1-function and u ∈ L∞(Ω) then (F1) and (F2)
are verified. Finally, (F3) is used to find positive solutions avoiding the
singularity, which it suffices that u > 0.

4. Uniqueness results

In this section we prove our uniqueness results for problem (1.1). The
first result is an immediate consequence of Theorem 3.1 in [5].

Lemma 4.1. Assume that g(s) = k/sγ with γ < 1 and f(λ, u) = λuq with
0 < q ≤ 1. Then we can assure uniqueness of bounded solution of (1.1).

Proof. Using Theorem 3.1 in [5], if

s 7→ h(s) :=
f(λ, s)e−G(s)

Ψ(s)
is decreasing, (4.1)

15



then, there exists at most a positive bounded solution of (1.1). The functions
G and Ψ are defined in (2.6) and (3.2).

In this case, the function h(s) defined in (4.1) is decreasing if

j(s) := sqe−G(s) + Ψ(s)(ksq−γ − qsq−1) > 0, s > 0.

Observe that if ksq−γ − qsq−1 ≥ 0, or equivalently s1−γ ≥ q/k we have that
j(s) > 0. So, assume that s < s0 where

s0 =
( q
k

)1/(1−γ)

.

Observe that, since lims→0 Ψ(s)/s = 1, we have that j(0) = 0. Moreover,

j′(s) = Ψ(s)sq−2(k(q − γ)s1−γ + q(1− q)), s > 0.

It is clear that if q ≥ γ then j′(s) > 0 and so j(s) > 0 for every s > 0.
Assume then that q < γ, which implies that lims→0 j

′(s) = +∞. Even more
j′(s) = 0 if and only if s1−γ = q(1− q)/(k(γ − q)). Finally, observe that

j′(s0) = Ψ(s0)sq−2
0 q(1− γ) > 0,

and hence we conclude that j(s) > 0 for every s < s0.

A slightly improvement of Theorem 3.1 in [5] allows us to consider the
case of functions g that are not integrable at zero. In this case we take G
any primitive of g, for example G(s) =

∫ s
1
g(t)dt.

Theorem 4.2. Assume that f and g are continuous functions, e−G(s) is
integrable at zero, the function f(λ, s)e−G(s) is bounded at zero and that

f(λ, s)e−G(s)

Ψ(s)
is a decreasing function.

Then there exists at most a solution of (1.1) in the class

H = {u ∈ H1
0 (Ω) ∩ L∞(Ω) : e−G(u)|∇u| ∈ L2(Ω)}.

Proof. We observe that, given φ ∈ C1
0(Ω) and u ∈ H a solution of (1.1), we

can take e−G(u)φ as test function, beacuse u is continuous (see Remark 2.3),
and we obtain ∫

Ω

e−G(u)∇u · ∇φ =

∫
Ω

f(λ, u)e−G(u)φ.
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Using that f(λ, u)e−G(u) ∈ L∞(Ω), e−G(u)|∇u| ∈ L2(Ω) and the density of
C1

0(Ω) in H1
0 (Ω) we yield∫

Ω

∇Ψ(u) · ∇φ =

∫
Ω

f(λ, u)e−G(u)φ,

for every φ ∈ H1
0 (Ω). The proof follows now exactly as in [5, Theorem

3.1].

Theorem 4.3. Assume that g(s) = k/s for 0 < k < 1.

1. In the case f(λ, s) = λsq with k ≤ q < 1 there exists at most one
positive solution of (1.1).

2. For f(λ, s) = λs − sp with p > 1 there exists at most one positive
solution of (1.1).

Proof. Observe that e−G(s) = s−k and Ψ(s) = s1−k

1−k . Thus, thanks to Le-
mma 2.5 (with β = 2k − 1 < k) we have that if u is solution of (1.1) then
u ∈ H. Moreover, in the case of item (1), f(λ, s)e−G(s) = λsq−k is bounded

at zero and f(λ,s)e−G(s)

Ψ(s)
= λ(1− k)sq−1 is a decreasing function and the result

follows directly from Theorem 4.2.
In the case of item (2), f(λ, s)e−G(s) = λs1−k − sp−k is bounded at zero

and f(λ,s)e−G(s)

Ψ(s)
= λ(1 − k) − (1 − k)sp−1 is a decreasing function. Thus the

result follows again from Theorem 4.2.

5. Proof of Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theo-
rem 1.4

In this section we prove the main results concerning with the model prob-
lem.

Proof of Theorem 1.1. We are going to apply Theorem 3.5 in order to deal
with the existence result of item (1). Observe that (F1) is verified clearly
because f is increasing.

We claim that u := εφa1 is the required sub-solution for some convenient
positive constants ε, a > 0 to be chosen later. Indeed, observe that

g(u)|∇u|2 = ka2|∇φ1|2ε2−γφ
a(2−γ)−2
1 ,
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thus, using that |∇φ1|2
φα1
∈ L1(Ω) for every α < 1, we conclude that g(u)|∇u|2 ∈

L1(Ω) if a > 1/(2− γ). Secondly, after a calculation, we obtain:

−∆u+ g(u)|∇u|2 = εa|∇φ1|2φa−2
1 (1− a+ akε1−γφ

a(1−γ)
1 ) + ελ1aφ

a
1.

Therefore u is a sub-solution if

εa|∇φ1|2φa−2
1 (1− a+ akε1−γφ

a(1−γ)
1 ) + ελ1aφ

a
1 − f(λ, εφa1) ≤ 0.

In the case γ < 1 and f(λ, u) = λu, the previous inequality is equivalent to

a|∇φ1|2φ−2
1 (1− a+ akε1−γφ

a(1−γ)
1 ) < λ− λ1a.

Thus, taking λ
λ1
> a > 1 > 1

2−γ and 0 < ε small, we have that u = εφa1 is a

sub-solution of (1.1).
We build now the supersolution. Consider a C2(Ω) function e ≥ e0 > 0

in Ω, such that |∇e|2 ≥ c0 > 0 in Ω. Then, u := Le is a supersolution if

k
L1−γ

eγ
|∇e|2 ≥ λe+ ∆e.

Thus, taking L large enough we have that Le is a super solution and

u = εφa1 ≤ Le = u.

Finally, it is clear that (F2) and (F3) are verified, and the existence of positive
solution for λ > λ1 follows. Taking φ1 as test function we deduce that for
λ ≤ λ1 does not exist any solution. The uniqueness follows directly from
Lemma 4.1.

With respect to item (2) we observe that for g(s) = k/s with k < 1, Rφa1
is solution of (1.1) for any R > 0 if

a|∇φ1|2φa−2
1 (1− a+ ka) = (λ− λ1a)φa1.

Taking a = 1/(1− k), then the above equality holds for λ = λ1/(1− k).
Moreover, given a solution u ∈ H1

0 (Ω) of (1.1) with g(s) = k/s, k < 1, and
f(λ, s) = λs then, using Lemma 2.2 and Lemma 2.5 (observe that 2k < k+1),

the function w :=
∫ u

0
e−G(t)dt = u1−k

1−k belongs to H1
0 (Ω). Even more, for

φn → φ1 with φn ∈ C1
0(Ω) we can take e−G(u)φn = φn

uk
as test function and it

follows that ∫
Ω

∇w · ∇φn = λ(1− k)

∫
Ω

wφn.
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Passing to the limit as n goes to infinity we get

λ1

∫
Ω

wφ1 = λ(1− k)

∫
Ω

wφ1.

Then we obtain that λ1 = λ(1− k).
Item (3) is deduced similarly. Indeed if, for some λ > 0 and some k ≥ 1,

there exists a solution u ∈ H1
0 (Ω) of (1.1) with g(s) = k/s and f(λ, s) = λs

then, using Lemma 2.2 and Lemma 2.5, the function w = u1−c

1−c belongs to
H1

0 (Ω) for every c < 1. Even more, for φn → φ1 with φn ∈ C1
0(Ω) we can

take φn
uc

as test function and it follows that∫
Ω

∇w · ∇φn + (k − c)
∫

Ω

|∇u|2

u1+c
φn = λ(1− c)

∫
Ω

wφn.

Passing to the limit as n goes to infinity we get

λ1

∫
Ω

wφ1 ≤ λ(1− c)
∫

Ω

wφ1,

for every c < 1. This is a contradiction since implies, in particular, that
λ1 ≤ 0.

Finally item (4) follows from Corollary 2.8.

Proof of Theorem 1.2. First we deal with item (1). Again, we will apply
Theorem 3.5. As in the previous proof, condition (F1) is clearly verified, and
we can take u = εφa1 as subsolution if

ε1−qa|∇φ1|2φa(1−q)−2
1 (1− a+ akε1−γφ

a(1−γ)
1 ) + λ1aε

1−qφ
a(1−q)
1 < λ. (5.1)

Taking λ > 0 and ε small, (5.1) is verified for some a > 1
2−γ .

As supersolution, we take the unique positive solution w ∈ H1
0 (Ω) of

−∆w = λwq.

Moreover, we can choose ε > 0 small enough to have u ≤ w. Again, (F2)
and (F3) are verified. The uniqueness follows from Lemma 4.1.

With respect to item (2) it is deduced from Theorem 4.3.
Finally item (3) follows from Corollary 2.8 since γ > 2− q > 1.
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Proof of Theorem 1.3. Observe that item (2) follows by Corollary 2.8. We
have to prove item (1). In order to do that we define the set

Λ = {λ > 0 : (1.1) admits positive solution}.

First we prove that Λ is nonempty since there exists solution for λ large
enough. Once again u = εφa1 is subsolution if (5.1) is satisfied. Fix ε > 0

such that (1− a) + akε1−γφ
a(1−γ)
1 < 1−a

2
. Thus, it is enough to have

ε1−qa
1− a

2
|∇φ1|2φa(1−q)−2

1 + ε1−qλ1aφ
a(1−q)
1 < λ.

Observe that there exits Ω1 a neighborhood of ∂Ω such that

ε1−qa
1− a

2
|∇φ1(x)|2φ1(x)a(1−q)−2 + ε1−qλ1aφ1(x)a(1−q) ≤ 0, x ∈ Ω1.

Indeed, it is enough to take Ω1 such that

2λ1φ
2
1(x)

(a− 1)|∇φ1(x)|2
≤ 1, x ∈ Ω1.

Thus (5.1) is true for every λ such that

λ > sup
x∈Ω\Ω1

{
ε1−qa

1− a
2
|∇φ1|2φa(1−q)−2

1 + ε1−qλ1aφ
a(1−q)
1

}
.

As supersolution, take again u := Le where e is a C2(Ω) function e ≥
e0 > 0 in Ω, such that |∇e|2 ≥ c0 > 0 in Ω. Then, u is a supersolution if

k
L2−q−γ

eγ
|∇e|2 ≥ λeq + L1−q∆e.

Thus, taking L large enough we have that Le is a super solution and u =
εφa1 ≤ Le = u. Hence, using Theorem 3.5 we conclude the existence of
solution of (1.1) for λ large. In particular, Λ 6= ∅.

We prove now that Λ is an unbounded interval. Indeed, if µ ∈ Λ then for
λ = µ problem (1.1) admits a positive solution uµ ∈ H1

0 (Ω) ∩ L∞(Ω). It is
clear that for every λ > µ there exists a Lλ large enough such that the pair
(u, u) = (uµ, Lλe) is a sub-supersolution of (1.1). Thus we conclude, using
Theorem 3.5, that there exists a solution uλ ≥ uµ and (µ,+∞) ⊂ Λ.
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Now, we prove that inf Λ = λ∗ > 0, that is, (1.1) does not admit positive
solution for λ small. For that, we consider the function ϕ given by (2.7) and
apply Theorem 2.10. First, we claim that

sqϕ(s)

s2
≤ C for some C > 0 and for all s > 0.

Observe that 1 < q < 2− γ < 2 and thus

lim
s→0+

sqϕ(s)

s2
= lim

s→0+

∫ s

0

eG(t)dt

eG(s)s2−q = lim
s→0+

1

s1−q(ks1−γ + (2− q))
= 0.

Analogously,

lim
s→+∞

sqϕ(s)

s2
= lim

s→0+

1

ks2−q−γ + (2− q)s1−q = 0.

Hence, there exists C > 0 such that

f(λ, s)ϕ(s)

s2
= λ

sqϕ(s)

s2
≤ λC,

and so applying Theorem 2.10, (1.1) does not admit positive solution for
λC ≤ λ1, that is, for λ small.

Now we prove that λ∗ ∈ Λ. Indeed, we can take a strictly decreasing
sequence λn → λ∗ and un the decreasing sequence of solutions of (1.1) for
λ = λn. Since un is bounded in L∞(Ω) and thus is bounded in H1

0 (Ω) then,
up to a subsequence, un weakly converges to u∗ ∈ H1

0 (Ω) ∩ L∞(Ω). Once
we prove that u∗ 6= 0 we can argue as in Lemma 3.3 to prove that u∗ is a
solution of (1.1) for λ = λ∗. In order to prove that u∗ 6= 0 we denote by zn
the sequence un/‖un‖ and observe that:

1 + k

∫
Ω

|∇zn|u1−γ
n = λn

∫
Ω

z2
nu

q−1
n .

In particular, if u∗ = 0, taking into account that zn is bounded in H1
0 (Ω), un

bounded in L∞(Ω) and using Lebesgue Theorem to take limits in the previous
identity, we reach a contradiction. Therefore (1.1) admits a solution for λ∗.
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Proof of Theorem 1.4. Item (1) follows directly from Lemma 2.4. We prove
now the existence of item (2). Observe that for M > 0 large, (F1) is verified
taking u = θλ the unique positive solution

−∆u = λu− up,

which exists and it is positive for λ > λ1. Again, in this case u = εφa1 is
subsolution arguing as in Theorem 1.1.

We show now the uniqueness. In this case, the function h(s) defined in
(4.1) is decreasing if

j(s) := (λs− sp)e−G(s) + [−λ+ psp−1 + kλs1−γ − ksp−γ]Ψ(s) > 0, s > 0.

It is clear again that j(0) = 0 and

j′(s) = Ψ(s)s−γ[p(p− 1)sp+γ−2 + λk(1− γ)− k(p− γ)sp−1], s > 0.

Since p − 1 > p + γ − 2, it can be proved that j′(s) has only one positive
root. Since any solution u is such that ‖u‖∞ ≤ λ1/(p−1), it is enough to show
that j(λ1/(p−1)) = λ(p− 1) > 0, which is true.

Finally, taking φ1 as test function we deduce that for λ ≤ λ1 does not
exist any solution.

With respect to items (3) and (4), the uniqueness follows from Theo-
rem 4.3. Moreover as in the proof of Theorem 1.1, using that λu− up ≤ λu
we obtain that λ1 ≤ (1 − k)λ for k < 1 and λ1 ≤ (1 − c)λ for every c < 1
if k ≥ 1. This implies that for k ≥ 1 problem (1.1) does not admit positive
solution.

Finally item (5) follows from Corollary 2.8.
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