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Abstract

In this paper we study a non-homogeneous elliptic Kirchhoff equation with nonlin-

ear reaction term. We analyze the existence and uniqueness of positive solution. The

main novelty is the inclusion of non-homogeneous term making the problem without

a variational structure. We use mainly bifurcation arguments to get the results.
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1 Introduction

In this paper we study the following nonlinear Kirchhoff equation with non-homogeneous

material 
−M(x, ‖u‖2)∆u = λuq in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ IRN , N ≥ 1, is a bounded and regular domain, 0 < q ≤ 1, λ ∈ IR and

M(x, s) := a(x) + b(x)s, ‖u‖2 =
∫

Ω
|∇u|2dx,



with a, b ∈ Cγ(Ω), γ ∈ (0, 1) and a(x) ≥ a0 > 0, b ≥ 0. Equation (1.1) is the steady-state

problem associated to the time dependent problem

utt −M(x, ‖u‖2)∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(1.2)

which models small vertical vibrations of an elastic string with fixed ends when the density

of the material is not constant. The problem (1.2) was proposed by J. L. Lions [17] (see

also [16] and [24]). The elliptic version of (1.2) was studied in [22] and [26] for bounded

and unbounded domains, respectively. In these papers a fixed point argument and the

Galerkin method are used to prove the existence of a solution.

However, in contrast with the non-homogeneous case, when a and b are positive con-

stants the problem has a variational structure and has been investigated extensively during

last years. In [2], [8], [9], [11], [15], [19] and [25] the following problem was studied
−M(‖u‖2)∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.3)

for different properties on f . In [2] and [19] the Mountain Pass Theorem and a truncation

argument is applied to prove the existence of a solution when f is subcritical (see also

[9] for the critical case). In [8] the Mountain Pass Theorem and the Ekeland’s Principle

were used to show the existence of multiple non-trivial solutions of (1.3) with a concave

nonlinearity. In [25] variational results were employed for nonlinearities f which are reso-

nant at an eigenvalue. In [15] existence of positive solutions was showed using topological

degree arguments and variational method for functions f asymptotically linear at zero and

asymptotically 3-linear at infinity. When Ω = IRN the problem
M

(∫
IRN

|∇u|2dx+ V (x)u
)

[−∆u+ V (x)u] = f(u) in IRN ,

u ∈ H1(IRN ),

(1.4)

has been analyzed under appropriate assumptions on V and f . In [3] it is shown existence

of solution for f subcritical and critical. Multiplicity of solutions were showed in [11], [14],
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[19], [27], [28] and [29] using genus or category theory. The case in which the Laplace

operator is replaced by the p-Laplacian or the p(x)-Laplacian has been considered in [6]

and [5] respectively. The case where M is the identity and V (x) = b > 0 is studied in [4]

via minimization and in [13] by a monotonicity trick. For sign changing solutions see the

papers [20], [21] and [30].

The purpose of this paper is to take a first step to study the problem

−M(x, ‖u‖2)∆u = f(x, u)

for general non-linearities f . For that, we have chosen the sublinear case f(x, s) = λsq

for 0 < q ≤ 1. We employ two different techniques to study our problem. For the case

q < 1 we use the bifurcation method to show that there exists a positive solution for all

λ > 0 and no positive solution for λ ≤ 0. This result is similar to the one obtained in the

homogeneous case, although the techniques that we apply are different. In order to apply

the bifurcation method, we need to rewrite (1.1) as a fixed point equation of a compact

operator. For that, we have to deal with the case f = f(x).

For the case q = 1 we have used an argument based on the eigenvalue problems of

elliptic equations and their properties. In this case, we can see the consequences of the

non-homogeneous term b. In this case we show the existence of positive solution for

λ ∈ (λ0, λ1) where λ0 and λ1 are positive constants; while for the homogeneous case the

existence holds for λ > λ0, see Section 4 for details.

In all the cases (lineal, q = 1 and q < 1) we have proved the uniqueness of positive

solution of (1.1). In our knowledge, the results are new even in the homogeneous case.

An outline of the paper is as follows: In Section 2 we give a motivation of the non-

homogeneous problem, Section 3 is devoted to the linear case, in Sections 4 and 5 we study

the cases q = 1 and q < 1, respectively.

2 Motivation of the problem

In this section we would like to deduce (1.2). We point out that problem (1.2) appears,

for example, when one considers small transversal vibrations of an elastic string with fixed

ends which is composed by a non-homogeneous material. In this case, distinct points can
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have distinct densities and tensions. Let us consider an elastic string of length L composed

of a non-homogeneous material, resting on the horizontal axis x and with fixed ends at

the points {0, L}. We denote by u(x, t) and τ(x, t), respectively, the displacement and the

tension of point x at the time t.

Since we will submit the string to small vibrations, perpendicular to the axis x, we can

consider only the vertical component τ(x, t) sin θ of τ(x, t), where θ is an angle such that

sin θ ≈ ∂u

∂x
. So, by using the Newton’s second law of dynamics, we deduce

∂

∂x
(τ(x, t) sin θ) = d(x, t)

∂2u

∂t2
, (2.1)

where d(x, t) denotes the density at x in the instant t. Again, since the vibrations are

small, we can consider that the variation of τ(x, t) is small, therefore

∂

∂x
(τ(x, t) sin θ) =

∂τ

∂x
sin θ + τ

∂ sin θ
∂x

≈ τ(x, t)
∂2u

∂x2
. (2.2)

From (2.1) and (2.2),

τ(x, t)
∂2u

∂x2
= d(x, t)

∂2u

∂t2
. (2.3)

On the other hand, if we denote by h the area of the cross-section (which we consider

constant) and by E(x) the Young modulus of the material that makes up the point x, it

follows from Hooke’s law and from straightforward computations that

τ(x, t) = τ(x, 0) +
hE(x)

2L

∫ L

0

(
∂u

∂x

)2

dx. (2.4)

Replacing (2.4) in (2.3), we obtain

∂2u

∂t2
−

[
τ(x, 0)
d(x, t)

+
hE(x)

2Ld(x, t)

∫ L

0

(
∂u

∂x

)2

dx

]
∂2u

∂x2
= 0. (2.5)

This last equation is the time-dependent uni-dimensional version of the problem (1.2).

3 The linear case

In this section we analyze the case when f does not depend on u:
−M(x, ‖u‖2)∆u = f(x) in Ω,

u = 0 on ∂Ω,

(3.1)
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when f ∈ L∞(Ω). Let us introduce some notation. Let P := {u ∈ L∞(Ω) : u(x) ≥

0 a.e. x ∈ Ω} be the positive cone in L∞(Ω) and the set U := P ∪ (−P ). Given f ∈ C(Ω)

we denote

fL := min
x∈Ω

f(x), fM := max
x∈Ω

f(x).

In the following result, we prove the existence of a classical positive solution of (3.1)

as well as the compactness of the solution operator.

Proposition 3.1. For each f ∈ L∞(Ω) there exists a solution u of (3.1). Moreover, if

f ∈ U , there exists a unique solution. Furthermore, the operator solution T : U 7→ U

defined by

T (f) := u

is compact.

Proof. When f ≡ 0 the result is trivial. So, assume that f 6= 0. We use a fixed point

argument. For any R ≥ 0, uR stands for the unique solution of
−(a(x) + b(x)R)∆uR = f(x) in Ω,

u = 0 on ∂Ω.

(3.2)

Observe that uR is the solution of a linear equation, therefore, by the elliptic regularity

and the continuity in R of

h(R) =
f

a(x) + b(x)R

we deduce that the map R 7→ uR is continuous. Moreover,

−‖f‖∞
aL

≤ −∆uR ≤
‖f‖∞
aL

,

and then ‖uR‖∞ ≤ C.

Now, we have to find R such that

R =
∫

Ω
|∇uR|2dx =

∫
Ω

f(x)uR
a(x) + b(x)R

dx.

Define

g(R) :=
∫

Ω

f(x)uR
a(x) + b(x)R

dx,
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we have to find a fixed point of R = g(R). Observe that g(0) > 0. Indeed,

−∆u0 =
f(x)
a(x)

and so

g(0) =
∫

Ω

f(x)u0

a(x)
dx =

∫
Ω
|∇u0|2dx > 0.

On the other hand,

|g(R)| ≤
∫

Ω

|f(x)||uR|
a(x) + b(x)R

dx ≤ 1
aL
‖f‖∞‖uR‖∞ ≤ C.

This concludes the existence.

We prove the uniqueness. Assume that f ∈ U , for example f ∈ P , and that there exist

two positive solutions u 6= v. If
∫

Ω |∇u|
2dx =

∫
Ω |∇v|

2dx then it follows that u = v.

Then, assume that
∫

Ω |∇u|
2dx >

∫
Ω |∇v|

2dx. Since f ≥ 0, we infer by the maximum

principle that v > u in Ω. But,

0 <
∫

Ω
(|∇u|2 − |∇v|2)dx =

∫
Ω
∇(u− v) · ∇(u+ v)dx =

∫
Ω

(u− v)(−∆(u+ v))dx < 0,

an absurdum.

Let T : U → H1
0 (Ω) ∩ L∞(Ω) be the operator defined by T (f) = u, where u is a weak

solution to

−∆u =
f(x)

a(x) + b(x)‖u‖2
in Ω and u = 0 on ∂Ω. (3.3)

We are going to show that T is compact. Let (fn) ⊂ L∞(Ω) be a bounded sequence. Then

there is α > 0 such that

‖fn‖∞ ≤ α, ∀ n ∈ IN. (3.4)

So, if un = T (fn) ∈ H1
0 (Ω) ∩ L∞(Ω) we have

−∆un =
fn(x)

a(x) + b(x)‖un‖2
. (3.5)

The elliptic regularity [10] asserts that there is a positive constant Cs that does not depend

on n such that

‖un‖W 2,s ≤ Cs
∥∥∥∥ fn
a+ b‖un‖2

∥∥∥∥
s

≤ Cs
(
α

aL

)
|Ω|

1
s , (3.6)

for all n ∈ IN and s ∈ (1,∞). We pick s sufficiently large, by the compact embedding,

there exists a subsequence such that

un → u in L∞(Ω).
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In the sequel, we prove the continuity of T . Let {fn} ⊂ L∞(Ω) and f ∈ L∞(Ω) be

such that

fn → f in L∞(Ω). (3.7)

From (3.7) we conclude {fn} is bounded in L∞(Ω). So, denoting un = T (fn) and

arguing as in (3.6) we conclude that {un} is bounded in W 2,s(Ω) for all s ∈ (1,∞). By

the compact embedding we have

un → u in L∞(Ω) ∩H1
0 (Ω). (3.8)

From (3.8), it follows that u = T (f). Therefore T is continuous and the proof is complete.

4 Non-linear eigenvalue problem

In this section we study the equation
−M(x, ‖u‖2)∆u = λu in Ω,

u = 0 on ∂Ω.

(4.1)

In order to show our results, we need to introduce some notation. Given a domain D ⊂ Ω

and a strictly positive function A ∈ Cγ(Ω) for some γ ∈ (0, 1), we denote by λ1(−A∆;D)

the principal eigenvalue of the problem
−A(x)∆ϕ = λϕ in D,

ϕ = 0 on ∂D.

(4.2)

In the following result we show some properties of λ1(−A∆;D).

Proposition 4.1. a) If D1 ⊂ D2 ⊂ Ω, then

λ1(−A∆;D2) ≤ λ1(−A∆;D1).

b) If Ai ∈ Cγ(Ω), i = 1, 2 are positive functions such that A1 ≤ A2 in Ω, then

λ1(−A1∆;D) ≤ λ1(−A2∆;D).

7



c) Let A,B ∈ Cγ(Ω) be two functions such that A is strictly positive, B ≥ 0, the set

B0 := int({x ∈ D : B(x) = 0})

is a connected subset of D, and consider the map

λ1(µ) := λ1(−(A+ µB)∆, D), µ ≥ 0.

Then, λ1(µ) is a continuous and increasing function and

lim
µ→0

λ1(µ) = λ1(−A∆, D), lim
µ→+∞

λ1(µ) = λ1(−A∆, B0).

If BL > 0 then λ1(−(A+ µB)∆, D)→ +∞ as µ→∞.

Proof. Paragraph a) follows, for instance, by [18, Proposition 3.2].

The proof of b) is as follows. Observe that (4.2) is equivalent to

−∆ϕ = λ
1

A(x)
ϕ.

If A1 ≤ A2, then 1/A1 ≥ 1/A2. Hence, λ1(−A1∆;D) ≤ λ1(−A2∆;D).

We prove now paragraph c). First, λ1(µ) is continuous from classical results, see [12].

That λ1(µ) is increasing follows by paragraph b).

Assume that BL > 0, then

λ1(µ) = λ1(−(A+ µB)∆, D) ≥ λ1(−(AL + µBL)∆, D) = λ1(−∆, D)(AL + µBL),

and we conclude that λ1(µ)→∞ as µ→∞.

On the other hand, assume that B0 6= ∅, then by a)

λ1(µ) = λ1(−(A+ µB)∆, D) ≤ λ1(−(A+ µB)∆, B0) = λ1(−A∆, B0),

and so, limµ→∞ λ1(µ) := λ0 ≤ λ1(−A∆, B0). Consider now ϕµ the positive eigenfunction

associated to λ1(µ) such that
∫

Ω ϕ
2
µdx = 1. Then,∫

Ω
|∇ϕµ|2dx = λ1(µ)

∫
Ω

ϕ2
µ

A+ µB
dx ≤ λ1(−A∆, B0)

AL
,

and so {ϕµ} is bounded in H1
0 (Ω). We can conclude that there exists ϕ∞ such that

‖ϕ∞‖2 = 1 and

ϕµ → ϕ∞ in L2(Ω), ϕµ ⇀ ϕ∞ in H1
0 (Ω) as µ→∞.

8



Take ϕ ∈ C1
c (B0), then∫

Ω
∇ϕµ · ∇ϕdx = λ1(µ)

∫
Ω

ϕµϕ

A+ µB
dx = λ1(µ)

∫
B0

ϕµϕ

A
dx,

and passing to the limit∫
B0

∇ϕ∞ · ∇ϕdx = λ0

∫
B0

ϕ∞ϕ

A
dx, ∀ϕ ∈ C1

c (B0).

We denote by D any domain such that D ⊂ Ω \ B0 and ϕ ∈ C1
c (D) and assume that

ϕ∞ > 0 in D. Then,∫
Ω
∇ϕµ · ∇ϕdx = λ1(µ)

∫
Ω

ϕµϕ

A+ µB
dx = λ1(µ)

∫
D

ϕµϕ

A+ µB
dx,

and passing to the limit ∫
D
∇ϕ∞ · ∇ϕdx = 0, ∀ϕ ∈ C1

c (D).

This implies that ϕ∞ is constant, that is, ϕ∞ = 0 in D. This implies that ϕ∞ ∈ H1
0 (B0),

and then λ0 = λ1(−A∆, B0).

The main result in this section is:

Theorem 4.2. Assume that Ω0 := int({x ∈ Ω : b(x) = 0}) is a regular sub-domain of Ω.

Then, (4.1) possesses a positive solution if and only if

λ ∈ (λ1(−a∆; Ω), λ1(−a∆; Ω0)), (4.3)

where we denote by λ1(−a∆; Ω0) =∞ when bL > 0. Moreover, in such case, the solution

is unique and it will be denoted by uλ. Furthermore,

lim
λ↓λ1(−a∆;Ω)

‖uλ‖ = lim
λ↓λ1(−a∆;Ω)

‖uλ‖∞ = 0,

lim
λ↑λ1(−a∆;Ω0)

‖uλ‖ = lim
λ↑λ1(−a∆;Ω0)

‖uλ‖∞ =∞.
(4.4)

Proof. Assume that u is a positive solution of (4.1), then

λ = λ1(−(a(x) + b(x)
∫

Ω |∇u|
2dx)∆; Ω)

< λ1(−(a(x) + b(x)
∫

Ω |∇u|
2dx)∆; Ω0) = λ1(−a∆; Ω0).
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On the other hand, by Proposition 4.1

λ = λ1(−(a(x) + b(x)
∫

Ω
|∇u|2dx)∆; Ω) > λ1(−a∆; Ω).

Now, we fix any λ ∈ (λ1(−a∆; Ω), λ1(−a∆; Ω0)). By Proposition 4.1 there exists a unique

t0(λ) such that

λ1(−(a+ bt0)∆; Ω) = λ.

Moreover, by Proposition 4.1 we have that

lim
λ↓λ1(−a∆;Ω)

t0(λ) = 0 and lim
λ↑λ1(−a∆;Ω0)

t0(λ) = +∞. (4.5)

For a fixed t0 take ϕ0 > 0 the positive eigenfunction associated to λ1(−(a+ bt0)∆; Ω) such

that ∫
Ω
|∇ϕ0|2dx = t0. (4.6)

Then, it is not hard to show that ϕ0 is solution of (4.1).

We prove now the uniqueness. Assume that there exist two positive solutions u 6= v.

Then,

λ = λ1(−(a(x) + b(x)
∫

Ω
|∇u|2dx)∆; Ω) = λ1(−(a(x) + b(x)

∫
Ω
|∇v|2dx)∆; Ω).

Therefore
∫

Ω |∇u|
2dx =

∫
Ω |∇v|

2dx, and u is proportional to v, which implies that u = v.

This concludes the uniqueness.

Finally, we show (4.4). Observe that by (4.6) we have that t0(λ) = ‖ϕ0‖2. When

λ ↓ λ1(−a∆; Ω) we get by (4.5) that ‖ϕ0(λ)‖ → 0 and by a boot-strapping argument we

conclude that ‖ϕ0‖∞ → 0. Indeed, we can show that

‖ϕ0‖W 2,s ≤ C‖ϕ0‖s for s > 1.

Hence, since ‖ϕ0(λ)‖ → 0 we have that ‖ϕ0(λ)‖2∗ → 0 and then ‖ϕ0(λ)‖W 2,2∗ → 0. A

boot-strapping argument concludes that ‖ϕ0(λ)‖∞ → 0.

On the other hand, when λ ↑ λ1(−a∆; Ω0) by (4.5) then ‖ϕ0(λ)‖ → ∞ and hence by

the equation

‖ϕ0‖ ≤ C‖ϕ0‖∞.

This concludes the proof.
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5 The case q < 1.

During this section we will analyze the problem (1.1) for 0 < q < 1 and λ ∈ IR. We

are going to use the bifurcation method. To this aim, we consider the Banach space

X := C0(Ω), denote Bρ := {u ∈ X : ‖u‖∞ < ρ}. Define the map

Kλ : X 7→ X; Kλ(u) := u− T (λ(u+)q),

where u+ := max{u, 0} and T is the operator defined in Section 3. It is clear that u is

a non-negative solution of (1.1) if, and only if, u is a zero of the map Kλ. Observe that

Kλ is compact. Indeed, the map from X into U := P ∪ (−P ) defined by u 7→ λ(u+)q is

continuous, and T from U to X is compact from Proposition 3.1.

In order to prove the main result of this section we use the Leray-Schauder degree of

Kλ on Bρ with respect to zero, denoted by deg(Kλ, Bρ), and the index of the isolated zero

u of Kλ, denoted by i(Kλ, u).

In the following result, we show that from the trivial solution emanates an unbounded

continuum of positive solution.

Theorem 5.1. The value λ = 0 is the only bifurcation point from the trivial solution for

(1.1). Moreover, there exists a continuum C0 of positive solutions of (1.1) unbounded in

IR×X emanating from (0, 0).

The following lemmas play a fundamental rolle in the proof of the result.

Lemma 5.2. If λ < 0, then i(Kλ, 0) = 1.

Proof. Fix λ < 0 and define the map

H1 : [0, 1]×X 7→ X; H1(t, u) := T (tλ(u+)q).

We claim that there exists δ > 0 such that

u 6= H1(t, u) for all u ∈ Bδ, u 6= 0 and t ∈ [0, 1].

Indeed, suppose that there exist sequences un ∈ X\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1]

such that

un = H1(tn, un),
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that is

−M(x, ‖un‖2)∆un = tnλ(u+
n )q ≤ 0,

and so un ≤ 0, and going back to the equation, un ≡ 0, an absurdum.

Taking now ε ∈ (0, δ], the homotopy defined by H1 is admissible and so,

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε) = deg(I −H1(0, ·), Bε) =

= deg(I,Bε) = 1.

Lemma 5.3. If λ > 0, then i(Kλ, 0) = 0.

Proof. Fix λ > 0 and φ ∈ X, φ > 0. We define the map

H2 : [0, 1]×X 7→ X; H2(t, u) := T (λ(u+)q + tφ).

We will show that there exists δ > 0 such that u 6= H2(t, u) for all u ∈ Bδ, u 6= 0

and t ∈ [0, 1]. Indeed, suppose the contrary: there exist sequences un ∈ X \ {0} with

‖un‖∞ → 0 and tn ∈ [0, 1] such that un = H2(tn, un), that is

−M(x, ‖un‖2)∆un = λ(u+
n )q + tnφ.

Since tnφ ≥ 0, from the maximum principle we have that un > 0.

On the other hand, since ‖un‖∞ → 0 we get∫
Ω
|∇un|2dx =

∫
Ω

λuq+1
n + tnφun

a(x) + b(x)
∫

Ω |∇un|2dx
dx ≤ C(‖un‖q+1

∞ + ‖un‖∞) ≤ C,

for some positive constant C. Hence, by Proposition 4.1 we have that

λ1(−M(x, ‖un‖2)∆,Ω) ≤ λ1(−(aM + bMC
2)∆,Ω) := Λ.

Fix this value of Λ, then for n large we have that λuqn > Λun and then

−(aM + bMC
2)∆un ≥ −M(x, ‖un‖)∆un = λ(u+

n )q + tnφ > Λun,

and so λ1(−(aM + bMC
2)∆,Ω) > Λ, an absurdum.

This proves that the homotopy defined by H2 is admissible. Then, if we take ε ∈ (0, δ]

we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε) = deg(I −H2(1, ·), Bε) = 0.
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Proof of Theorem 5.1: First, we would like to point out that we can not apply directly

Theorem 1.3 in [23] because our equation

u = T (λ(u+)q) (5.1)

can be not written in the form (0.1) of [23], we have not differentiability at u = 0 nor

λ = 0 is an eigenvalue with odd multiplicity of the “linearized” problem around u = 0.

However, we can prove our result following the main lines of the cited result (see [1] for a

similar problem).

We denote by S the closure of the set on non-trivial solutions of (5.1) and C0 the

maximal connected subset of S ∪ {(0, 0)} to which (0, 0) belongs. We are going to show

that C0 is unbounded in IR × X. Assume that C0 is bounded. First, we show that C0

can not meet (λ, 0) for any λ 6= 0 showing that (λ, 0) is an isolated solution of (5.1), or

equivalently of (1.1), for λ 6= 0. It is clear that for λ ≤ 0 problem (1.1) does not possess a

positive solution. Assume now that there exist λ0 > 0 and a sequence of positive solutions

of (1.1) such that λn → λ0 and ‖un‖∞ → 0. Then, fixed ε > 0 there exists n0 ∈ IN such

that for n ≥ n0 we get

−M(x, ‖un‖)∆un = λnu
q
n ≥ (λ0 − ε)uqn > Λun,

where Λ is defined in Lemma 5.3. Now, we arrive at a contradiction in a similar way that

in the proof of Lemma 5.3.

Then, C0 verifies the hypotheses of Lemma 1.2 in [23] and so, there exist a bounded

set O ⊂ IR × X such that (0, 0) ∈ O, ∂O ∩ S = ∅, and O contains no trivial solutions

others than those in open ball Bε of IR×X where ε > 0 small.

Now, we can follow Theorem 1.3 in [23] to conclude that the existence of ε > 0 and

values λ and λ such that −ε < λ < 0 < λ < ε and (see (1.11) in [23])

i(Kλ, 0) = i(Kλ, 0).

This is an absurdum with Lemmas 5.2 and 5.3. Hence, we conclude the existence of an

unbounded continuum C0 of solutions of (1.1) bifurcating from (0, 0). �

We are ready to prove the main result of this section:

Theorem 5.4. The equation (1.1) has a positive solution if and only if λ > 0. Moreover,

the solution is unique.
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Proof. By Theorem 5.1 we know the existence of an unbounded continuum C0 of positive

solution of (1.1).

Observe that if u is a positive solution of (1.1) then for λ > 0

−∆u ≤ λ

aL
uq,

and hence ‖u‖∞ is bounded for all λ > 0. As consequence of Theorem 5.1 we obtain

positive solution for all λ > 0.

We show now the uniqueness of positive solution of (1.1). Assume that there exist two

positive solutions u 6= v. If
∫

Ω |∇u|
2dx =

∫
Ω |∇v|

2dx, then, u and v are positive solutions

of

−∆w = λ
1

a(x) + b(x)
∫

Ω |∇u|2dx
wq. (5.2)

Since this equation has only one positive solution, we can deduce that u = v.

On the other hand, if
∫

Ω |∇u|
2dx >

∫
Ω |∇v|

2dx, then, v is supersolution of (5.2), and

so v > u. Hence,

0 <
∫

Ω
(|∇u|2 − |∇v|2)dx =

∫
Ω
∇(u− v) · ∇(u+ v)dx =

∫
Ω

(u− v)(−∆(u+ v))dx < 0.

This concludes the proof.
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