On the structure of the positive solutions of the logistic equation with nonlinear diffusion

Manuel Delgado and Antonio Suárez *
Depto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, University of Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain.

E-mail: delgado@numer.us.es, suarez@numer.us.es

Running title:

logistic equation with nonlinear diffusion

Mailing address:

$$
\begin{gathered}
\text { Antonio Suárez Fernández } \\
\text { Dpto. de Ecuaciones Diferenciales y Análisis Numérico, } \\
\text { Facultad de Matemáticas, University of Sevilla } \\
\text { c/ Tarfia, s/n, } 41012 \text { Sevilla, Spain. E-mail: suarez@numer.us.es } \\
\text { TF: (34) } 954556834 \text { - FAX: (34) } 954552898
\end{gathered}
$$

[^0]
1 Introduction

In this work we study the structure of the positive solutions of the degenerate logistic equation, i.e. of the elliptic boundary value problem

$$
\left\{\begin{align*}
d \mathcal{L} w^{m} & =\sigma w-b(x) w^{r} & & \text { in } \Omega \tag{1}\\
w & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a bounded domain of $\mathbb{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega, \mathcal{L}$ is a general second order uniformly elliptic operator, b is a positive function, $m \geq 1, r>1, d$ is a positive constant and σ is a real parameter. Eq. (1) was introduced in biological models by Gurtin-McCamy [7], see also [13] and [14], in describing the dynamics of biological populations whose mobility is density dependent. In (1), Ω is the inhabiting region, $w(x)$ represents the density of a species and we are assuming that Ω is fully surrounded by inhospitable areas, since the population density is subject to homogeneous Dirichlet boundary conditions. The operator \mathcal{L} measures the diffusivity and the external transport effects of the species. In the case $m>1$ the diffusion, i.e. the rate the moving of the species from high density regions to low density ones, is slower than in the linear case $(m=1)$, which gives to rise a "more realistic" model. Moreover, here $d>0$ is the diffusion rate of the species, $b(x)$ and σ are associated with the limiting effect crowding in the population and the growth rate of the species, respectively.

An appropriate change of variable, see (5), transforms (1) into

$$
\left\{\begin{align*}
\mathcal{L} u=\lambda u^{q}-b(x) u^{p} & & \text { in } \Omega \tag{2}\\
u=0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

with $\lambda \in \mathbb{R}, 0<q<p$ and $q \leq 1$. The case $q=1$ and $p \geq 1$ has been widely studied in the recent years. When $q=1$ and $p>1$, it is well known that there exists a unique positive solution θ_{λ} of (2) if, and only if, $\lambda>\sigma_{1}[\mathcal{L}]$, where $\sigma_{1}[\mathcal{L}]$ is the principal eigenvalue of \mathcal{L} in Ω subject to homogeneous Dirichlet boundary conditions. Moreover, there exists a continuum of positive solutions of (2)
bifurcating from $(\lambda, u)=\left(\sigma_{1}[\mathcal{L}], 0\right)$ which is unbounded. In the particular case $q=p=1$ a vertical bifurcation diagram appears at $\lambda=\sigma_{1}[\mathcal{L}+b]$. Figure 1 shows these cases.

Case $\mathrm{p}>1$

Case $\mathrm{p}=1$

Figure 1: Bifurcation diagrams with $\mathrm{q}=1$

When $q<1$, in our knowledge only partial results are known about existence and uniqueness of positive solutions of (2). Indeed, when $\mathcal{L}=-\Delta$ and $b(x)=b \in \mathbb{R}$, it was proved in [12], Corollary 1 , that there exists a unique positive solution of (2) if, and only if, $\lambda>0$. When b is a function in x and $\mathcal{L}=-\Delta$, Pozio and Tesei [16] showed that if $\lambda>0$ there exists a positive solution of (2). Moreover, if $p \geq 1$ or $p<1$ and λ large enough, then the positive solution is unique, see Theorem 5 of [16]. Similar results were obtained by Leung and Fan in [10], see Theorem 2.1. We improve these results in two ways: when \mathcal{L} is a second order uniformly elliptic operator not necessarily selfadjoint and b is a function in x, we prove that there exists a unique positive solution of (2) if, and only if, $\lambda>0$. This solution will be denoted by $\theta_{[\lambda, q, p]}$. Moreover, there exists a continuum of positive solutions of (2) bifurcating from the trivial solution $u=0$ at $\lambda=0$ which is unbounded, see Figure 2.

We can define the map

$$
\mathcal{F}_{q}: \mathbb{R} \mapsto C_{0}^{2, \alpha}(\bar{\Omega}), \quad \mathcal{F}_{q}(\lambda):=\theta_{[\lambda, q, p]}
$$

with $\mathcal{F}_{q}(\lambda)=0$ if $\lambda \leq 0$. We focus on the study of the map \mathcal{F}_{q}, specifically we analyze the behaviour of \mathcal{F}_{q} as $\lambda \downarrow 0^{+}$and $\lambda \uparrow+\infty$, through the singular perturbation theory. We generalize

Figure 2: Bifurcation diagram with $q<1$.
the results obtained when $q=1$. Indeed, when $q<1, q<p$, we prove that if $1<p$,

$$
\begin{gathered}
\frac{\mathcal{F}_{q}(\lambda)}{\lambda^{1 /(p-q)}} \rightarrow\left(\frac{1}{b(x)}\right)^{1 /(p-q)} \text { uniformly on compact subsets of } \Omega \text { as } \lambda \uparrow+\infty \text { and } \\
\mathcal{F}_{q}(\lambda)=O\left(\lambda^{1 /(1-q)}\right) \text { as } \lambda \downarrow 0^{+} ;
\end{gathered}
$$

if $p<1$,

$$
\begin{gathered}
\mathcal{F}_{q}(\lambda)=O\left(\lambda^{1 /(1-q)}\right) \text { as } \lambda \uparrow+\infty \text { and } \\
\frac{\mathcal{F}_{q}(\lambda)}{\lambda^{1 /(p-q)}} \rightarrow\left(\frac{1}{b(x)}\right)^{1 /(p-q)} \text { uniformly on compact subsets of } \Omega \text { as } \lambda \downarrow 0^{+} ;
\end{gathered}
$$

and if $p=1$,

$$
\mathcal{F}_{q}(\lambda)=\lambda^{1 /(1-q)} \mathcal{F}_{q}(1)
$$

These results are a first step to obtain non-existence and existence results of systems with nonlinear diffusion as already it was shown when the diffusion is linear in [4].

Finally, we study how the bifurcation diagram of Figure 2 varies when $q \uparrow 1$. We will show that if $p>1, \theta_{[\lambda, q, p]} \rightarrow \theta_{\lambda}$ as $q \uparrow 1$. In the special case $p=1$, we prove that if $\lambda<\sigma_{1}[\mathcal{L}+b]$ (resp. $\left.\lambda>\sigma_{1}[\mathcal{L}+b]\right)$ then $\theta_{[\lambda, q, p]}$ tends to 0 (resp. infinity) as $q \uparrow 1$.

An outline of this work is as follows. In Section 2 we study the existence and uniqueness of positive solution of (2), as well as some monotony properties of \mathcal{F}_{q}. In Section 3 we analyze the behaviour of the mapping \mathcal{F}_{q} as $\lambda \downarrow 0^{+}, \lambda \uparrow+\infty$ (Theorem 3) and as $q \uparrow 1$.

2 Existence and comparison results

In this section we study the positive solutions of

$$
\left\{\begin{align*}
d \mathcal{L} w^{m} & =\sigma w-b(x) w^{r} & & \text { in } \Omega \tag{3}\\
w & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a bounded domain of $\mathbb{R}^{N}, N \geq 1$, with smooth boundary $\partial \Omega, m>1, r>1, d>0$, $b \in C^{\alpha}(\bar{\Omega}), \alpha \in(0,1)$, with $b(x)>0$ for all $x \in \bar{\Omega}, \sigma$ is a real parameter and \mathcal{L} is a second order operator of the form

$$
\mathcal{L}:=-\sum_{i, j=1}^{N} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N} b_{i} \frac{\partial}{\partial x_{i}}
$$

with

$$
a_{i j} \in C^{1, \alpha}(\bar{\Omega}), b_{i} \in C^{\alpha}(\bar{\Omega}) \quad a_{i j}=a_{j i}, \quad \text { with } 0<\alpha<1
$$

and uniformly elliptic in the sense that

$$
\begin{equation*}
\exists \rho>0 \quad \text { such that } \quad \sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \geq \rho|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{N}, \forall x \in \Omega \tag{4}
\end{equation*}
$$

In the sequel, given any function $f \in C^{\alpha}(\bar{\Omega})$ we shall denote

$$
f_{M}:=\sup _{\bar{\Omega}} f, \quad f_{L}:=\inf _{\bar{\Omega}} f
$$

If $r \neq m$, performing the change

$$
\begin{equation*}
w^{m}=d^{m /(r-m)} u \tag{5}
\end{equation*}
$$

(3) can be rewritten as

$$
\left\{\begin{align*}
\mathcal{L} u & =\lambda u^{q}-b(x) u^{p} & & \text { in } \Omega \tag{6}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where p and q satisfy
(H)

$$
0<q<p, \quad q<1
$$

In the special case $r=m$, the change $w^{m}=u$ transforms (3) into

$$
\left\{\begin{array}{rll}
(d \mathcal{L}+b(x)) u & = & \lambda u^{q}
\end{array} \quad \text { in } \Omega, ~ 子 \begin{array}{rll}
u & =0 & \text { on } \partial \Omega \tag{7}
\end{array}\right.
$$

On the other hand, it is well-known that the linear eigenvalue problem

$$
\left\{\begin{align*}
(\mathcal{L}+f) u & =\lambda u \quad \text { in } \Omega \tag{8}\\
u & =0
\end{align*} \quad \text { on } \partial \Omega,\right.
$$

with $f \in L^{\infty}(\Omega)$ has a principal eigenvalue $\sigma_{1}^{\Omega}[\mathcal{L}+f]$, with a corresponding eigenfunction $\varphi_{1}^{\Omega}[\mathcal{L}+$ $f](x)>0$ for all $x \in \Omega, \partial_{n} \varphi_{1}^{\Omega}[\mathcal{L}+f](x)<0$ for all $x \in \partial \Omega$ where n is the outward unit normal on $\partial \Omega$ and normalized such that $\left\|\varphi_{1}^{\Omega}[\mathcal{L}+f]\right\|_{\infty}=1$ (the superscript Ω will be omitted if no confusion arises).

The following results characterize the existence and uniqueness of positive solutions for (6) and (7).

Theorem 1 Assume (H). Then (6) possesses a unique positive solution in $C^{2, \alpha}(\bar{\Omega})$ for some $\alpha \in$ $(0,1)$ if, and only if, $\lambda>0$.

Proof. We use the sub-supersolution method with Hölder continuous functions, cf. [1] and Theorem 4.5.1 in [15]. It is not hard to show that $\bar{u}:=\left(\lambda / b_{L}\right)^{1 /(p-q)}$ is a supersolution of (6). Moreover, using the maximum principle we can prove that

$$
\begin{equation*}
\|u\|_{\infty} \leq\left(\frac{\lambda}{b_{L}}\right)^{\frac{1}{p-q}} \tag{9}
\end{equation*}
$$

for any u solution of (6).
Take $\underline{u}=: \varepsilon \varphi_{1}[\mathcal{L}]$, with $\varepsilon>0$ to choose. It is easy to check that we can take $\varepsilon>0$ sufficiently small such that \underline{u} is a subsolution of (6) and $\underline{u} \leq \bar{u}$. This proves the existence of positive solution of (6) in $C^{2, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. The maximum principle implies that $\lambda>0$ is a necessary condition for the existence of positive solution of (6). For the uniqueness we are going to use a
change of variable already used in [17], see also [3], in a slightly different context. We define

$$
z:=\frac{1}{1-q} u^{1-q} .
$$

Then (6) is equivalent to

$$
\left\{\begin{align*}
\mathcal{L} z-\frac{q}{(1-q) z} \sum_{i, j=1}^{N} a_{i j} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} & =\lambda-b(x)(1-q)^{(p-q) /(1-q)} z^{(p-q) /(1-q)} & & \text { in } \Omega \tag{10}\\
z & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Let z_{2} be the maximal solution of (10), which exists by (9). Suppose there exists another solution z_{1} of (10) with $z_{1} \leq z_{2}$. We are going to prove that $z_{1} \geq z_{2}$. We argue by contradiction. We suppose that there exists $P \in \Omega$ where

$$
\Phi:=z_{1}-z_{2}
$$

attains its negative minimum. Let $r>0$ be such that $0<z_{1}(x)<z_{2}(x)$ for all $x \in B(P, r)$, where $B(P, r)$ is the ball of radius r centered at P. It is not hard to show that Φ satisfies
$\mathcal{L} \Phi-\frac{q}{1-q}\left(\sum_{i, j=1}^{N} a_{i j}\left[\frac{1}{z_{1}} \frac{\partial z_{1}}{\partial x_{i}} \frac{\partial z_{1}}{\partial x_{j}}-\frac{1}{z_{2}} \frac{\partial z_{2}}{\partial x_{i}} \frac{\partial z_{2}}{\partial x_{j}}\right]\right)=-b(x)(1-q)^{(p-q) /(1-q)}\left(z_{1}^{(p-q) /(1-q)}-z_{2}^{(p-q) /(1-q)}\right)$.
On the other hand, it can be proved that

$$
\sum_{i, j=1}^{N} a_{i j}\left[\frac{1}{z_{1}} \frac{\partial z_{1}}{\partial x_{i}} \frac{\partial z_{1}}{\partial x_{j}}-\frac{1}{z_{2}} \frac{\partial z_{2}}{\partial x_{i}} \frac{\partial z_{2}}{\partial x_{j}}\right]=\sum_{i=1}^{N} c_{i} \frac{\partial \Phi}{\partial x_{i}}-c(x) \Phi
$$

where

$$
c_{i}=\sum_{j=1}^{N} a_{i j} \frac{1}{z_{1}}\left(\frac{\partial z_{1}}{\partial x_{j}}+\frac{\partial z_{2}}{\partial x_{j}}\right), \quad c(x)=\frac{1}{z_{1} z_{2}} \sum_{i, j=1}^{N} a_{i j} \frac{\partial z_{2}}{\partial x_{i}} \frac{\partial z_{2}}{\partial x_{j}} .
$$

So, Φ verifies

$$
\begin{equation*}
\mathcal{L}_{1} \Phi+\frac{q}{1-q} c(x) \Phi=-b(x)(1-q)^{(p-q) /(1-q)}\left(z_{1}^{(p-q) /(1-q)}-z_{2}^{(p-q) /(1-q)}\right), \quad \text { in } B(P, r) \tag{11}
\end{equation*}
$$

being

$$
\mathcal{L}_{1}=-\sum_{i, j=1}^{N} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{N}\left(b_{i}-\frac{q}{1-q} c_{i}\right) \frac{\partial}{\partial x_{i}} .
$$

By (4), $c(x) \geq 0$ in $B(P, r)$, and from (H) we have that $z_{2}^{(p-q) /(1-q)}>z_{1}^{(p-q) /(1-q)}$ in $B(P, r)$, and so by the strong maximun principle of Hopf, see for example Theorem 3.5 in [6], $\Phi=C<0$ in $B(P, r)$ with C constant. Thus, the left hand side of (11) is non-positive and right one positive. This gives a contradiction and completes the proof.

The following result is well known when the operator is selfadjoint, see [2], [9], [10] and [17] for example, and its proof can be deduced by Theorem 1. So that, we only present an alternative uniqueness proof in which we use a singular eigenvalue problem.

Theorem 2 If $0<q<1$, then (7) possesses a unique positive solution in $C^{2, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$ if, and only if, $\lambda>0$.

Proof. Let $u_{1}, u_{2}, u_{1} \geq u_{2}, u_{1}$ the maximal positive solution of (7) and u_{2} an arbitrary positive solution. Then

$$
\begin{equation*}
\sigma_{1}\left[d \mathcal{L}+b-\lambda u_{i}^{q-1}\right]=0 \quad i=1,2 . \tag{12}
\end{equation*}
$$

Observe that this principal eigenvalue is not in the setting of (8) because $u_{i}^{q-1} \notin L^{\infty}(\Omega)$. But, u_{i} is a positive function satisfying (7) and so, by the strong maximum principle, there exists a positive constant C such that

$$
C d_{\Omega}(x) \leq u_{i}(x) \quad \text { for all } x \in \bar{\Omega}
$$

where $d_{\Omega}(x):=\operatorname{dist}(x, \partial \Omega)$. Hence, $d_{\Omega}^{1-q}(x) u_{i}^{q-1}$ is bounded and so we can apply the results of [8] (see also [5] for selfadjoint operators) to define correctly $\sigma_{1}\left[d \mathcal{L}+b-\lambda u_{i}^{q-1}\right]$. Now, applying the mean value theorem

$$
\left(d \mathcal{L}+b-\lambda q \xi^{q-1}\right)\left(u_{1}-u_{2}\right)=0
$$

for some $u_{2} \leq \xi \leq u_{1}$. Hence,

$$
0=\sigma_{1}\left[d \mathcal{L}+b-\lambda q \xi^{q-1}\right] \geq \sigma_{1}\left[d \mathcal{L}+b-\lambda q u_{2}^{q-1}\right]
$$

but from (12), we get that $\sigma_{1}\left[d \mathcal{L}+b-\lambda q u_{2}^{q-1}\right]>\sigma_{1}\left[d \mathcal{L}+b-\lambda u_{2}^{q-1}\right]=0$, which gives a contradiction. \diamond

In the sequel we shall denote $\theta_{[\lambda, q, p]}$ the unique positive solution of (6) if (H) holds, with $\theta_{[\lambda, q, p]}=0$ if $\lambda \leq 0$.

The following result is well known and it will be very useful to compare positive solutions of different logistic boundary value problems.

Lemma 1 Assume (H). Then:

1. If $\lambda \leq 0$, (6) does not admit a positive subsolution.
2. If $\lambda>0$ and \bar{u} is a positive supersolution of (6), then $\theta_{[\lambda, q, p]} \leq \bar{u}$.
3. If $\lambda>0$ and \underline{u} is a positive subsolution of (6), then $\underline{u} \leq \theta_{[\lambda, q, p]}$.

From Lemma 1 we obtain the following results. The first one shows the monotony of $\theta_{[\lambda, q, p]}$ with respect to the domain and the second one will be quite useful below.

Corollary 1 Assume (H) and let Ω_{1} be a subdomain of Ω with boundary $\partial \Omega_{1}$ sufficiently smooth. If we denote $\theta_{[\lambda, q, p]}^{\Omega}$ the unique positive solution of (6) in Ω, then

$$
\theta_{[\lambda, q, p]}^{\Omega_{1}}<\theta_{[\lambda, q, p]}^{\Omega} \quad \text { in } \Omega_{1} .
$$

Corollary 2 Assume (H). Then there exists a constant $K(\lambda):=K(\Omega, \lambda, q, p)>0$ such that

$$
\begin{equation*}
K(\lambda) \varphi_{1}[\mathcal{L}] \leq \theta_{[\lambda, q, p]}<\left(\frac{\lambda}{b_{L}}\right)^{\frac{1}{p-q}} \tag{13}
\end{equation*}
$$

Proof. We will prove that $K \varphi_{1}[\mathcal{L}]$ is a subsolution of (6). Then the first inequality of (13) follows from Lemma 1. Indeed, $K \varphi_{1}[\mathcal{L}]$ is a subsolution of (6) if, for example,

$$
\begin{equation*}
K^{1-q} \sigma_{1}[\mathcal{L}]+b_{M} K^{p-q}=\lambda . \tag{14}
\end{equation*}
$$

Now, for fixed $\lambda>0,(14)$ has a unique positive solution which we denote $K(\lambda)$ and which satisfies

$$
\lim _{\lambda \downarrow 0^{+}} K(\lambda)=0 \quad \text { and } \quad \lim _{\lambda \uparrow+\infty} K(\lambda)=\infty
$$

The second inequality of (13) follows from (9) and the strong maximum principle.

Remark 1 It is important to note:

1. If $p=1$,

$$
K(\lambda)=\left(\frac{\lambda}{\sigma_{1}[\mathcal{L}]+b_{M}}\right)^{\frac{1}{1-q}}
$$

2. If $1<p$,

$$
K(\lambda)=O\left(\lambda^{1 /(1-q)}\right) \quad \text { if } \lambda \downarrow 0^{+} \quad \text { and } \quad K(\lambda)=O\left(\lambda^{1 /(p-q)}\right) \quad \text { if } \lambda \uparrow+\infty
$$

3. If $p<1$,

$$
K(\lambda)=O\left(\lambda^{1 /(p-q)}\right) \quad \text { if } \lambda \downarrow 0^{+} \quad \text { and } \quad K(\lambda)=O\left(\lambda^{1 /(1-q)}\right) \quad \text { if } \lambda \uparrow+\infty
$$

When $b(x)=b \in \mathbb{R}$, Lemma 1 can be used to prove some monotony properties of $\theta_{[\lambda, q, p]}$ with respect to λ.

Proposition 1 Suppose (H) and that $b(x)=b \in \mathbb{R}, \lambda, \mu>0$. The following assertions are true:

1. Assume $1 \leq p$. If $\lambda \geq \mu$, then

$$
\left(\frac{\lambda}{\mu}\right)^{1 /(p-q)} \theta_{[\mu, q, p]} \leq \theta_{[\lambda, q, p]} \leq\left(\frac{\lambda}{\mu}\right)^{1 /(1-q)} \theta_{[\mu, q, p]}
$$

2. Assume $p<1$. If $\lambda \geq \mu$, then

$$
\left(\frac{\lambda}{\mu}\right)^{1 /(1-q)} \theta_{[\mu, q, p]} \leq \theta_{[\lambda, q, p]} \leq\left(\frac{\lambda}{\mu}\right)^{1 /(p-q)} \theta_{[\mu, q, p]}
$$

Proof. We only prove the first part; the second one follows similarly. So, assume $1 \leq p$ and take $\eta:=(\lambda / \mu)^{1 /(p-q)}$. It can be showed that $\eta \theta_{[\mu, q, p]}$ is a subsolution of (6). Analogously, it can be proved that $(\lambda / \mu)^{1 /(1-q)} \theta_{[\mu, q, p]}$ is a supersolution of (6). From Lemma 1, the result follows. \diamond As an immediate consequence of Proposition 1, we obtain the following result:

Corollary 3 Assume (H) and that $b(x)=b \in \mathbb{R}$. The following assertions are true:

1. $\theta_{[\lambda, q, p]}$ is increasing in λ.
2. If $1<p$, then

$$
\frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(p-q)}} \quad \text { is increasing in } \lambda \text { and } \frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(1-q)}} \quad \text { is decreasing in } \lambda \text {. }
$$

3. If $p<1$, then

$$
\frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(p-q)}} \quad \text { is decreasing in } \lambda \text { and } \frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(1-q)}} \text { is increasing in } \lambda \text {. }
$$

4. If $p=1$, then

$$
\frac{\theta_{[\lambda, q, 1]}}{\lambda^{1 /(1-q)}} \quad \text { is constant in } \lambda \text {. }
$$

Remark 2 1. The case $p=1$ is very special. In fact it holds

$$
\begin{equation*}
\theta_{[\lambda, q, 1]}=\lambda^{1 /(1-q)} \theta_{[1, q, 1]} \tag{15}
\end{equation*}
$$

2. In the very special case, $q=1$ and $p=2$, it was shown in [11] that $\theta_{[\lambda, 1,2]} / \lambda$ is increasing in

入. Thus, our result is a generalization of that one.

3 Asymptotic behaviour of the branch $\theta_{[\lambda, q, p]}$

We will regard (6) as a bifurcation problem with λ as the bifurcation parameter. By the above results, from the trivial state $u=0$ emanates a curve of positive solutions at $\lambda=0$. This curve goes to the right and to infinity as $\lambda \uparrow+\infty$. Throughout this section $\omega_{[\lambda, q]}$ will denote the unique positive solution of (7) with $d=1$ and $b \equiv 0$.

The main result of this section completes the information of Corollary 3.

Theorem 3 Assume (H).

1. If $1<p$, then

$$
\begin{gathered}
\lim _{\lambda \downarrow 0^{+}} \frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(1-q)}}=\omega_{[1, q]} \quad \text { in } C^{2}(\bar{\Omega}) . \\
\lim _{\lambda \uparrow+\infty} \frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(p-q)}}=\left(\frac{1}{b(x)}\right)^{1 /(p-q)} \quad \text { uniformly on compacts of } \Omega .
\end{gathered}
$$

2. If $p<1$, then

$$
\begin{aligned}
\lim _{\lambda \downarrow 0^{+}} \frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(p-q)}} & =\left(\frac{1}{b(x)}\right)^{1 /(p-q)} \quad \text { uniformly on compacts of } \Omega . \\
& \lim _{\lambda \uparrow+\infty} \frac{\theta_{[\lambda, q, p]}^{\lambda^{1 /(1-q)}}=\omega_{[1, q]} \quad \text { in } C^{2}(\bar{\Omega}) .}{} .
\end{aligned}
$$

3. If $p=1$, then

$$
\lim _{\lambda \downarrow 0^{+}} \frac{\theta_{[\lambda, q, 1]}}{\lambda^{1 /(1-q)}}=\lim _{\lambda \uparrow+\infty} \frac{\theta_{[\lambda, q, 1]}}{\lambda^{1 /(1-q)}}=\theta_{[1, q, 1]}
$$

To prove this result we need some preliminaries. Consider the following problem

$$
\left\{\begin{align*}
d \mathcal{L} w & =w^{q}-b(x) w^{p} & & \text { in } \Omega \tag{16}\\
w & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

with $d>0$. Observe that this problem is in the setting of (3) and so, fixed $d>0$, there exists a unique positive solution of (16) which we will denote $\Phi_{[d, q, p]}$. The following result provides us with the behaviour of $\Phi_{[d, q, p]}$ as $d \uparrow+\infty$ and $d \downarrow 0^{+}$. This is a singular perturbation problem. In fact we give a proof that is a slight modification of the Theorem 3.4 in [4]; we include it for reader's convenience.

Theorem 4 Assume (H) and let $\Phi_{[d, q, p]}$ be the unique positive solution of (16). Then

$$
\begin{align*}
\lim _{d \downarrow 0^{+}} \Phi_{[d, q, p]}= & \left(\frac{1}{b(x)}\right)^{\frac{1}{p-q}} \quad \text { uniformly on compact subsets of } \Omega, \\
& \lim _{d \uparrow+\infty} \Phi_{[d, q, p]}=0 \quad \text { uniformly on } \Omega \tag{17}
\end{align*}
$$

Proof. We consider $\bar{u}_{d}=d^{-1} \omega_{[1, q]}$. It is easy to show that \bar{u}_{d} is a supersolution of (16) provided that

$$
\omega_{[1, q]}^{q}\left(1-d^{-q}+b(x) d^{-p} \omega_{[1, q]}^{p-q}\right) \geq 0
$$

Taking d sufficiently large and a further application of Lemma 1 gives (17).
Let \mathcal{K} be a compact subset of Ω. We shall show that given $\varepsilon>0$ there exists $d_{0}=d_{0}(K, \varepsilon)>0$ such that for every $d<d_{0}$

$$
\begin{equation*}
\left(\frac{1}{b}\right)^{\frac{1}{p-q}}-\varepsilon \leq \Phi_{[d, q, p]} \leq\left(\frac{1}{b}\right)^{\frac{1}{p-q}}+\varepsilon \quad \text { in } \mathcal{K} \tag{18}
\end{equation*}
$$

Let $\beta=\beta(\varepsilon)$ be such that

$$
0<\beta(\varepsilon)<\left(\left(\frac{1}{b}\right)^{1 /(p-q)}+\varepsilon\right)^{p-q}-\frac{1}{b}
$$

Take $\Phi \in C^{\infty}(\bar{\Omega})$ such that

$$
\left(\frac{1}{b}+\beta\right)^{\frac{1}{p-q}} \leq \Phi \leq\left(\frac{1}{b}\right)^{\frac{1}{p-q}}+\varepsilon \quad \text { in } \Omega
$$

Then, we have

$$
\Phi^{q}-b(x) \Phi^{p}=b(x) \Phi^{q}\left(1 / b(x)-\Phi^{p-q}\right) \leq-\beta b(x) \Phi^{q} \leq d \mathcal{L} \Phi \quad \text { in } \Omega,
$$

for any $d<d_{1}$, for some $d_{1}(\varepsilon)$. Thus, for any $d<d_{1}$ the function Φ is a supersolution of (16) and from Lemma 1, we get

$$
\Phi_{[d, q, p]} \leq \Phi \leq\left(\frac{1}{b}\right)^{\frac{1}{p-q}}+\varepsilon
$$

By a compactness argument, to complete the proof of (18) it suffices to show that given $x_{0} \in \mathcal{K}$ there exist $r_{0}>0$ and $d_{2}=d_{2}\left(x_{0}\right)$ such that for each $d<d_{2}$

$$
\Phi_{[d, q, p]} \geq\left(\frac{1}{b}\right)^{\frac{1}{p-q}}-\varepsilon \quad \text { in } B\left(x_{0}, r_{0}\right)
$$

For any $B\left(x_{0}, r\right) \subset \Omega, r>0$, from Corollary 1 we have

$$
\Phi_{[d, q, p]}^{B\left(x_{0}, r\right)} \leq \Phi_{[d, q, p]} \quad \text { in } B\left(x_{0}, r\right)
$$

Thus, to complete the proof it remains to show that for any $d<d_{2}$,

$$
\Phi_{[d, q, p]}^{B\left(x_{0}, 2 r_{0}\right)} \geq\left(\frac{1}{b}\right)^{\frac{1}{p-q}}-\varepsilon \quad \text { in } B\left(x_{0}, r_{0}\right)
$$

We consider two different cases:
Case 1: Suppose there exists $r_{0}>0$ such that $b(x)=b \in \mathbb{R}$ in $B_{0}:=B\left(x_{0}, 2 r_{0}\right) \subset \Omega$. Let $\varphi_{1}^{B_{0}}[\mathcal{L}]$ normalized so that

$$
\begin{equation*}
\left\|\varphi_{1}^{B_{0}}[\mathcal{L}]\right\|_{\infty, B_{0}}=\frac{1}{2} \tag{19}
\end{equation*}
$$

Set $B_{1}:=B\left(x_{0}, r_{0}\right)$. Then, $\varphi_{1}^{B_{0}}[\mathcal{L}](x)>0$ for each $x \in \bar{B}_{1}$ and there exists $\varphi_{0} \in C^{2}\left(B_{1}\right)$ such that

$$
\begin{equation*}
\varphi_{0}\left(x_{0}\right)=1, \quad\left\|\varphi_{0}\right\|_{\infty, B_{1}}=1, \quad \varphi_{0}(x)>0 \quad \forall x \in \bar{B}_{1} \tag{20}
\end{equation*}
$$

and the function $\Psi: B_{0} \rightarrow \mathbb{R}$ defined by

$$
\Psi(x)=\left\{\begin{array}{lc}
\varphi_{1}^{B_{0}}[\mathcal{L}](x) & \text { if } x \in B_{0} \backslash B_{1} \\
\varphi_{0}(x) & \text { if } x \in \bar{B}_{1}
\end{array}\right.
$$

lies in $C^{2}\left(B_{0}\right)$. Given $\delta \in(0,1)$, we define

$$
\Psi_{\delta}:=\delta\left(\frac{1}{b}\right)^{\frac{1}{p-q}} \Psi
$$

Since $b \in \mathbb{R}$, then $\Psi_{\delta} \in C^{2}\left(B_{0}\right)$. It is not hard to show that Ψ_{δ} is a positive subsolution of (16) if, and only if,

$$
\begin{equation*}
\frac{\mathcal{L} \Psi}{\Psi^{q}} \leq \frac{1}{d} b^{(1-q) /(p-q)} \delta^{q-1}\left(1-\delta^{p-q} \Psi^{p-q}\right) \quad \text { in } B_{0} \tag{21}
\end{equation*}
$$

and this inequality holds if d is sufficiently small. Indeed, observe that the left hand side of (21) is bounded above in B_{0}. From (19) and (20), we have that $\Psi \leq \Psi^{q}$, and so

$$
\frac{\mathcal{L} \Psi}{\Psi^{q}} \leq \frac{\mathcal{L} \Psi}{\Psi} \leq C
$$

for some $C>0$. This last inequality follows by the strong maximum principle. Thus, since $\delta<1$ and $0 \leq \Psi \leq 1$, it is sufficient to take d small to satisfy (21). From Lemma 1 , we have that for d sufficiently small

$$
\Psi_{\delta} \leq \Phi_{[d, q, p]}^{B_{0}} \leq \Phi_{[d, q, p]} \quad \text { in } B_{0} .
$$

Clearly, since $\Psi\left(x_{0}\right)=1$ if δ is taken sufficiently close to 1 , then Ψ_{δ} will be as close as we want to $(1 / b)^{1 /(p-q)}$ on some ball centered at x_{0}. This completes the proof in this case.

Case 2: Assume $b(x)$ is not constant in some ball centered at x_{0}. We have

$$
d \mathcal{L} \Phi_{[d, q, p]}^{B_{0}}=\left(\Phi_{[d, q, p]}^{B_{0}}\right)^{q}-b(x)\left(\Phi_{[d, q, p]}^{B_{0}}\right)^{p} \geq\left(\Phi_{[d, q, p]}^{B_{0}}\right)^{q}-b_{M, B_{0}}\left(\Phi_{[d, q, p]}^{B_{0}}\right)^{p}
$$

and so, $\Phi_{[d, q, p]}^{B_{0}}$ is a positive supersolution of (16) with $b(x)=b_{M, B_{0}} \in \mathbb{R}$, and so from Lemma 1 that

$$
\Phi_{[d, q, p]}^{B_{0}} \geq \hat{\Phi}_{[d, q, p]}^{B_{0}},
$$

where $\hat{\Phi}_{[d, q, p]}^{B_{0}}$ stands for the unique positive solution of (16) with $b(x)=b_{M, B_{0}} \in \mathbb{R}$. Thus, from the Case 1, there exists $r_{1}>0$ such that

$$
\Phi_{[d, q, p]}^{B_{0}} \geq \hat{\Phi}_{[d, q, p]}^{B_{0}} \geq\left(1 / b_{M, B_{0}}\right)^{1 /(p-q)}-\frac{\varepsilon}{2} \quad \text { in } B\left(x_{0}, r_{1}\right)
$$

Therefore, if B_{0} is chosen so that for each $x \in B_{0}$

$$
\left(1 / b_{M, B_{0}}\right)^{1 /(p-q)} \geq(1 / b(x))^{1 /(p-q)}-\frac{\varepsilon}{2}
$$

then

$$
\Phi_{[d, q, p]}^{B_{0}} \geq\left(\frac{1}{b(x)}\right)^{1 /(p-q)}-\varepsilon
$$

for each $x \in B\left(x_{0}, r_{1}\right)$. This completes the proof.
We consider the equation

$$
\left\{\begin{align*}
\mathcal{L} w & =w^{q}-d b(x) w^{p} & & \text { in } \Omega \tag{22}\\
w & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

From Theorem 1, given $d>0$ there exists a unique positive solution $\Theta_{[d, q, p]}$ of (22). The following result provides us the behaviour of $\Theta_{[d, q, p]}$ as $d \downarrow 0^{+}$and $d \uparrow+\infty$.

Theorem 5 Assume (H) and let $\Theta_{[d, q, p]}$ be the unique positive solution of (22). Then,

$$
\begin{gathered}
\lim _{d \downarrow 0^{+}} \Theta_{[d, q, p]}=\omega_{[1, q]} \quad \text { in } C^{2, \nu}(\bar{\Omega}), \text { for some } \nu \in(0,1) \\
\lim _{d \uparrow+\infty} \Theta_{[d, q, p]}=0 \quad \text { uniformly on } \Omega .
\end{gathered}
$$

Proof. By Corollary 2,

$$
\Theta_{[d, q, p]} \leq\left(\frac{1}{d b_{L}}\right)^{1 /(p-q)}
$$

from which the second relation follows.
On the other hand, it is not hard to prove that $\bar{u}=\omega_{[1, q]}$ is a supersolution of (22) and hence,

$$
\left\|\Theta_{[d, q, p]}\right\|_{\infty} \leq\left\|\omega_{[1, q]}\right\|_{\infty}=K(\text { independent of } d)
$$

Thus, according to the L^{s} theory of elliptic equations, $\left\{\Theta_{[d, q, p]}\right\}_{d}$ is a bounded sequence in $W^{2, s}(\Omega)$, for $s>1$, and so we can extract a convergent subsequence, again labeled by d, such that

$$
\Theta_{[d, q, p]} \rightarrow \bar{w} \quad \text { in } C^{1, \alpha}(\bar{\Omega}), \text { where } 0<\alpha=1-N / s<1
$$

as $d \downarrow 0^{+}$. Using (22) we get

$$
\Theta_{[d, q, p]}=(\mathcal{L})^{-1}\left(\Theta_{[d, q, p]}^{q}-d b(x) \Theta_{[d, q, p]}^{p}\right),
$$

and so

$$
\left\{\begin{array}{rll}
\mathcal{L} \bar{w}=\bar{w}^{q} & \text { in } \Omega \\
\bar{w}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Now, as in Corollary 2, we can get a constant $K=K(\Omega)>0$, independent of d, such that

$$
K(\Omega) \varphi_{1}[\mathcal{L}] \leq \Theta_{[d, q, p]}, \quad \text { for all } d \in\left[0, d_{0}\right], \text { for some } d_{0}>0
$$

In fact, in this case we can take K satisfying

$$
d b_{M} K^{p-q}+K^{1-q} \sigma_{1}[\mathcal{L}]=1
$$

It can be proved that the map

$$
d \in\left[0, d_{0}\right] \mapsto K(d)
$$

is continuous, and so there exists the constant $K(\Omega)$. We can deduce that $\bar{w}=\omega_{[1, q]}$ and by Ascoli-Arzela's Theorem all sequence converges in $C^{2, \nu}(\bar{\Omega})$ for some $\nu \in(0,1)$ and the result follows.

Proof Theorem 3. Let us define

$$
\Psi_{[\lambda, q, p]}:=\frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(p-q)}}
$$

It is easy to check that $\Psi_{[\lambda, q, p]}$ is the unique positive solution of the equation

$$
\left\{\begin{aligned}
\frac{1}{\lambda^{(p-1) /(p-q)}} \mathcal{L} w & =w^{q}-b(x) w^{p} & & \text { in } \Omega \\
w & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

included in the setting (16). Now, Theorem 4 proves two relations of Theorem 3.
If we write,

$$
\chi_{[\lambda, q, p]}:=\frac{\theta_{[\lambda, q, p]}}{\lambda^{1 /(1-q)}}
$$

then $\chi_{[\lambda, q, p]}$ is the unique positive solution of

$$
\left\{\begin{aligned}
\mathcal{L} w & =w^{q}-\lambda^{(p-1) /(1-q)} b(x) w^{p} & & \text { in } \Omega \\
w & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

From Theorem 5, the other relations follow.
Finally, for $p=1$ the result follows by (15). The proof of Theorem 3 is completed.
Now, we denote θ_{λ} the unique positive solution of (6) for $q=1$ and $p>1$ if $\lambda>\sigma_{1}[\mathcal{L}]$, with $\theta_{\lambda}=0$ if $\lambda \leq \sigma_{1}[\mathcal{L}]$. The next results provide us the behaviour of $\theta_{[\lambda, q, p]}$ as $q \uparrow 1$. We consider two different cases: $p>1$ and $p=1$.

Theorem 6 Assume $p>1>q$ and $\lambda>0$. Then

$$
\lim _{q \uparrow 1} \theta_{[\lambda, q, p]}=\theta_{\lambda} \quad \text { in } C^{2, \nu}(\bar{\Omega}) \text { for some } \nu \in(0,1)
$$

Proof. Fix $\delta \in(0,1)$. We know from Corollary 2 that for $q \in[1-\delta, 1]$,

$$
\left.\left\|\theta_{[\lambda, q, p]}\right\|_{\infty} \leq\left(\frac{\lambda}{b_{L}}\right)^{\frac{1}{p-q}} \leq K \quad \text { (independent of } q .\right)
$$

We can reason as in Theorem 5 and conclude that there exists a subsequence $\left\{\theta_{[\lambda, q, p]}\right\}_{q}$ such that

$$
\theta_{[\lambda, q, p]} \rightarrow \bar{w} \geq 0 \quad \text { in } C^{1, \alpha}(\bar{\Omega}), \text { with } 0<\alpha<1
$$

as $q \uparrow 1$ with \bar{w} satisfying

$$
\left\{\begin{aligned}
\mathcal{L} \bar{w}=\lambda \bar{w}-b(x) \bar{w}^{p} & & \text { in } \Omega \\
\bar{w}=0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

So, if $\lambda \leq \sigma_{1}[\mathcal{L}], \bar{w}=0$. On the other hand, if $\lambda>\sigma_{1}[\mathcal{L}]$, we can choose $K(\lambda)$, independent of q, such that

$$
K(\lambda) \varphi_{1}[\mathcal{L}] \leq \theta_{[\lambda, q, p]}
$$

Again the Ascoli-Arzela's Theorem completes the proof.
The case $p=1$ is more complicated. We are going to prove that $\theta_{[\lambda, q, p]}$ tends to 0 when $\lambda<\sigma_{1}[\mathcal{L}+b]$ and to infinity when $\lambda>\sigma_{1}[\mathcal{L}+b]$ as $q \uparrow 1$, showing that the bifurcation diagram with $q<1$ (see Figure 2) "converges" to the one with $q=p=1$ (see Figure 1).

Theorem 7 Assume $0<q<p=1$. Then:

1. If $\lambda<\sigma_{1}[\mathcal{L}+b]$, then $\left\|\theta_{[\lambda, q, 1]}\right\|_{\infty} \rightarrow 0$ as $q \uparrow 1$.
2. If $\lambda>\sigma_{1}[\mathcal{L}+b]$, then $\left\|\theta_{[\lambda, q, 1]}\right\|_{\infty} \rightarrow \infty$ as $q \uparrow 1$.

Proof. For the first part, we fix $\lambda<\sigma_{1}[\mathcal{L}+b]$. From the continuous dependence of $\sigma_{1}[\mathcal{L}+b]$ respect to the domain, there exists a regular domain $\Omega^{\prime} \supset \Omega$ such that

$$
\begin{equation*}
\lambda<\sigma_{1}^{\Omega^{\prime}}[\mathcal{L}+b]<\sigma_{1}^{\Omega}[\mathcal{L}+b] . \tag{23}
\end{equation*}
$$

Let $\varphi_{1}^{\prime}:=\varphi_{1}^{\Omega^{\prime}}[\mathcal{L}+b]$ be with $\left\|\varphi_{1}^{\prime}\right\|_{\infty, \Omega^{\prime}}=1$. It is not difficult to see that $\bar{u}:=M \varphi_{1}^{\prime}$ is a supersolution of (6) being

$$
M=\left(\frac{\lambda}{\sigma_{1}^{\Omega^{\prime}}[\mathcal{L}+b]}\right)^{1 /(1-q)} \frac{1}{\left(\varphi_{1}^{\prime}\right)_{L, \Omega}}
$$

and so, by Lemma 1,

$$
\left\|\theta_{[\lambda, q, 1]}\right\|_{\infty, \Omega} \leq M\left\|\varphi_{1}^{\prime}\right\|_{\infty, \Omega}
$$

Now, it suffices to use (23) and to tend $q \uparrow 1$.
For the second part, we are going to build a subsolution whose norm tends to infinity. We take $\varphi_{1}[\mathcal{L}+b]$ normalized such that $\left\|\varphi_{1}[\mathcal{L}+b]\right\|_{\infty}=1$. It is easy to prove that $\underline{u}:=C \varphi_{1}[\mathcal{L}+b]$ is a subsolution of (6) with

$$
C=\left(\frac{\lambda}{\sigma_{1}[\mathcal{L}+b]}\right)^{1 /(1-q)}
$$

References

1. H. Amann, On the existence of positive solution of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
2. D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Diff. Eqns. 39 (1981), 378-412.
3. C. Bandle, M. A. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. A.M.S., 303 (1987), 487-501.
4. M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects, J. Diff. Eqns. 160 (2000), 175-262.
5. M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations, J. Diff. Eqns., 57 (1985), 373-405.
6. D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Berlin, 1983.
7. M. E. Gurtin and R. C. McCamy, On the diffusion of biological populations, Math. Bios. 33 (1977), 35-49.
8. J. Hernández, F. Mancebo and J. M. Vega de Prada, On the linearization of some singular nonlinear elliptic problem and applications, to appear in Ann. Inst. H. Poincare Anal. NonLineaire.
9. T. Laetsch, Uniqueness for sublinear boundary value problems, J. Diff. Eqns., 13 (1973), 13-23.
10. A. Leung and G. Fan, Existence of positive solutions for elliptic systems- degenerate and nondegenerate ecological models, J. Math. Anal. Appl. 151 (1990), 512-531.
11. P. J. McKenna and W. Walter, On the Dirichlet problem for elliptic systems, Appl. Anal. 21 (1986), 207-224.
12. P. De Mottoni, A. Schiaffino and A. Tesei, Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems, Annali Mat. Pura Appl. 136 (1984), 35-48.
13. J. D. Murray, "Mathematical Biology", Biomaths. Texts, Vol. 19, Springer-Verlag, Berlin, 1989.
14. A. Okubo, "Diffusion and Ecological Problems: Mathematical Models", Springer, Berlin, 1980.
15. C. V. Pao, "Nonlinear Parabolic and Elliptic Equations", Plenum Press, New York, 1992.
16. M. A. Pozio and A. Tesei, Support properties of solutions for a class of degenerate parabolic problems, Comm. Partial Diff. Eqns., 12, (1987), 47-75.
17. J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Diff. Eqns., $15,(1983), 1605-1620$.

[^0]: *research parcially financed by C.I.C.Y.T project MAR98-0486

