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1 Introduction

In this work we study the structure of the positive solutions of the degenerate logistic equation,

i.e. of the elliptic boundary value problem




dLwm = σw − b(x)wr in Ω,

w = 0 on ∂Ω,
(1)

where Ω is a bounded domain of IRN , N ≥ 1, with a smooth boundary ∂Ω, L is a general second

order uniformly elliptic operator, b is a positive function, m ≥ 1, r > 1, d is a positive constant

and σ is a real parameter. Eq. (1) was introduced in biological models by Gurtin-McCamy [7], see

also [13] and [14], in describing the dynamics of biological populations whose mobility is density

dependent. In (1), Ω is the inhabiting region, w(x) represents the density of a species and we are

assuming that Ω is fully surrounded by inhospitable areas, since the population density is subject

to homogeneous Dirichlet boundary conditions. The operator L measures the diffusivity and the

external transport effects of the species. In the case m > 1 the diffusion, i.e. the rate the moving of

the species from high density regions to low density ones, is slower than in the linear case (m = 1),

which gives to rise a “more realistic” model. Moreover, here d > 0 is the diffusion rate of the

species, b(x) and σ are associated with the limiting effect crowding in the population and the

growth rate of the species, respectively.

An appropriate change of variable, see (5), transforms (1) into




Lu = λuq − b(x)up in Ω,

u = 0 on ∂Ω,
(2)

with λ ∈ IR, 0 < q < p and q ≤ 1. The case q = 1 and p ≥ 1 has been widely studied in the recent

years. When q = 1 and p > 1, it is well known that there exists a unique positive solution θλ of (2)

if, and only if, λ > σ1[L], where σ1[L] is the principal eigenvalue of L in Ω subject to homogeneous

Dirichlet boundary conditions. Moreover, there exists a continuum of positive solutions of (2)
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bifurcating from (λ, u) = (σ1[L], 0) which is unbounded. In the particular case q = p = 1 a vertical

bifurcation diagram appears at λ = σ1[L+ b]. Figure 1 shows these cases.

Case p>1 Case p=1

λ λ
1

|| ||    || ||

σ [L] σ [L+b]1

Figure 1: Bifurcation diagrams with q=1

When q < 1, in our knowledge only partial results are known about existence and uniqueness of

positive solutions of (2). Indeed, when L = −∆ and b(x) = b ∈ IR, it was proved in [12], Corollary

1, that there exists a unique positive solution of (2) if, and only if, λ > 0. When b is a function in

x and L = −∆, Pozio and Tesei [16] showed that if λ > 0 there exists a positive solution of (2).

Moreover, if p ≥ 1 or p < 1 and λ large enough, then the positive solution is unique, see Theorem

5 of [16]. Similar results were obtained by Leung and Fan in [10], see Theorem 2.1. We improve

these results in two ways: when L is a second order uniformly elliptic operator not necessarily

selfadjoint and b is a function in x, we prove that there exists a unique positive solution of (2) if,

and only if, λ > 0. This solution will be denoted by θ[λ,q,p]. Moreover, there exists a continuum of

positive solutions of (2) bifurcating from the trivial solution u = 0 at λ = 0 which is unbounded,

see Figure 2.

We can define the map

Fq : IR 7→ C2,α
0 (Ω), Fq(λ) := θ[λ,q,p]

with Fq(λ) = 0 if λ ≤ 0. We focus on the study of the map Fq, specifically we analyze the

behaviour of Fq as λ ↓ 0+ and λ ↑ +∞, through the singular perturbation theory. We generalize
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λ

Figure 2: Bifurcation diagram with q < 1.

the results obtained when q = 1. Indeed, when q < 1, q < p, we prove that if 1 < p,

Fq(λ)
λ1/(p−q)

→
(

1
b(x)

)1/(p−q)

uniformly on compact subsets of Ω as λ ↑ +∞ and

Fq(λ) = O(λ1/(1−q)) as λ ↓ 0+;

if p < 1,

Fq(λ) = O(λ1/(1−q)) as λ ↑ +∞ and

Fq(λ)
λ1/(p−q)

→
(

1
b(x)

)1/(p−q)

uniformly on compact subsets of Ω as λ ↓ 0+;

and if p = 1,

Fq(λ) = λ1/(1−q)Fq(1).

These results are a first step to obtain non-existence and existence results of systems with nonlinear

diffusion as already it was shown when the diffusion is linear in [4].

Finally, we study how the bifurcation diagram of Figure 2 varies when q ↑ 1. We will show

that if p > 1, θ[λ,q,p] → θλ as q ↑ 1. In the special case p = 1, we prove that if λ < σ1[L+ b] (resp.

λ > σ1[L+ b]) then θ[λ,q,p] tends to 0 (resp. infinity) as q ↑ 1.

An outline of this work is as follows. In Section 2 we study the existence and uniqueness of

positive solution of (2), as well as some monotony properties of Fq. In Section 3 we analyze the

behaviour of the mapping Fq as λ ↓ 0+, λ ↑ +∞ (Theorem 3) and as q ↑ 1.
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2 Existence and comparison results

In this section we study the positive solutions of




dLwm = σw − b(x)wr in Ω,

w = 0 on ∂Ω,
(3)

where Ω is a bounded domain of IRN , N ≥ 1, with smooth boundary ∂Ω, m > 1, r > 1, d > 0,

b ∈ Cα(Ω), α ∈ (0, 1), with b(x) > 0 for all x ∈ Ω, σ is a real parameter and L is a second order

operator of the form

L := −
N∑

i,j=1

aij
∂2

∂xi∂xj
+

N∑

i=1

bi
∂

∂xi

with

aij ∈ C1,α(Ω), bi ∈ Cα(Ω) aij = aji, with 0 < α < 1,

and uniformly elliptic in the sense that

∃ρ > 0 such that
N∑

i,j=1

aij(x)ξiξj ≥ ρ|ξ|2, ∀ξ ∈ IRN , ∀x ∈ Ω. (4)

In the sequel, given any function f ∈ Cα(Ω) we shall denote

fM := sup
Ω

f, fL := inf
Ω

f.

If r 6= m, performing the change

wm = dm/(r−m)u, (5)

(3) can be rewritten as 



Lu = λuq − b(x)up in Ω,

u = 0 on ∂Ω,
(6)

where p and q satisfy

(H) 0 < q < p, q < 1.

5



In the special case r = m, the change wm = u transforms (3) into




(dL+ b(x))u = λuq in Ω,

u = 0 on ∂Ω.
(7)

On the other hand, it is well-known that the linear eigenvalue problem




(L+ f)u = λu in Ω,

u = 0 on ∂Ω,
(8)

with f ∈ L∞(Ω) has a principal eigenvalue σΩ
1 [L+ f ], with a corresponding eigenfunction ϕΩ

1 [L+

f ](x) > 0 for all x ∈ Ω, ∂nϕΩ
1 [L+ f ](x) < 0 for all x ∈ ∂Ω where n is the outward unit normal on

∂Ω and normalized such that ‖ϕΩ
1 [L+ f ]‖∞ = 1 (the superscript Ω will be omitted if no confusion

arises).

The following results characterize the existence and uniqueness of positive solutions for (6) and

(7).

Theorem 1 Assume (H). Then (6) possesses a unique positive solution in C2,α(Ω) for some α ∈

(0, 1) if, and only if, λ > 0.

Proof. We use the sub-supersolution method with Hölder continuous functions, cf. [1] and Theorem

4.5.1 in [15]. It is not hard to show that u := (λ/bL)1/(p−q) is a supersolution of (6). Moreover,

using the maximum principle we can prove that

‖u‖∞ ≤
(

λ

bL

) 1
p−q

(9)

for any u solution of (6).

Take u =: εϕ1[L], with ε > 0 to choose. It is easy to check that we can take ε > 0 sufficiently

small such that u is a subsolution of (6) and u ≤ u. This proves the existence of positive solution

of (6) in C2,α(Ω) for some α ∈ (0, 1). The maximum principle implies that λ > 0 is a necessary

condition for the existence of positive solution of (6). For the uniqueness we are going to use a
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change of variable already used in [17], see also [3], in a slightly different context. We define

z :=
1

1− q
u1−q.

Then (6) is equivalent to




Lz − q

(1− q)z

N∑

i,j=1

aij
∂z

∂xi

∂z

∂xj
= λ− b(x)(1− q)(p−q)/(1−q)z(p−q)/(1−q) in Ω,

z = 0 on ∂Ω.

(10)

Let z2 be the maximal solution of (10), which exists by (9). Suppose there exists another solution

z1 of (10) with z1 ≤ z2. We are going to prove that z1 ≥ z2. We argue by contradiction. We

suppose that there exists P ∈ Ω where

Φ := z1 − z2

attains its negative minimum. Let r > 0 be such that 0 < z1(x) < z2(x) for all x ∈ B(P, r), where

B(P, r) is the ball of radius r centered at P . It is not hard to show that Φ satisfies

LΦ− q

1− q
(

N∑

i,j=1

aij [
1
z1

∂z1

∂xi

∂z1

∂xj
− 1

z2

∂z2

∂xi

∂z2

∂xj
]) = −b(x)(1−q)(p−q)/(1−q)(z(p−q)/(1−q)

1 −z
(p−q)/(1−q)
2 ).

On the other hand, it can be proved that

N∑

i,j=1

aij [
1
z1

∂z1

∂xi

∂z1

∂xj
− 1

z2

∂z2

∂xi

∂z2

∂xj
] =

N∑

i=1

ci
∂Φ
∂xi

− c(x)Φ

where

ci =
N∑

j=1

aij
1
z1

(
∂z1

∂xj
+

∂z2

∂xj
), c(x) =

1
z1z2

N∑

i,j=1

aij
∂z2

∂xi

∂z2

∂xj
.

So, Φ verifies

L1Φ +
q

1− q
c(x)Φ = −b(x)(1− q)(p−q)/(1−q)(z(p−q)/(1−q)

1 − z
(p−q)/(1−q)
2 ), in B(P, r), (11)

being

L1 = −
N∑

i,j=1

aij
∂2

∂xi∂xj
+

N∑

i=1

(bi − q

1− q
ci)

∂

∂xi
.
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By (4), c(x) ≥ 0 in B(P, r), and from (H) we have that z
(p−q)/(1−q)
2 > z

(p−q)/(1−q)
1 in B(P, r), and

so by the strong maximun principle of Hopf, see for example Theorem 3.5 in [6], Φ = C < 0 in

B(P, r) with C constant. Thus, the left hand side of (11) is non-positive and right one positive.

This gives a contradiction and completes the proof. ¦

The following result is well known when the operator is selfadjoint, see [2], [9], [10] and [17]

for example, and its proof can be deduced by Theorem 1. So that, we only present an alternative

uniqueness proof in which we use a singular eigenvalue problem.

Theorem 2 If 0 < q < 1, then (7) possesses a unique positive solution in C2,α(Ω) for some

α ∈ (0, 1) if, and only if, λ > 0.

Proof. Let u1, u2, u1 ≥ u2, u1 the maximal positive solution of (7) and u2 an arbitrary positive

solution. Then

σ1[dL+ b− λuq−1
i ] = 0 i = 1, 2. (12)

Observe that this principal eigenvalue is not in the setting of (8) because uq−1
i /∈ L∞(Ω). But, ui is

a positive function satisfying (7) and so, by the strong maximum principle, there exists a positive

constant C such that

CdΩ(x) ≤ ui(x) for all x ∈ Ω,

where dΩ(x) := dist(x, ∂Ω). Hence, d1−q
Ω (x)uq−1

i is bounded and so we can apply the results of [8]

(see also [5] for selfadjoint operators) to define correctly σ1[dL + b − λuq−1
i ]. Now, applying the

mean value theorem

(dL+ b− λqξq−1)(u1 − u2) = 0

for some u2 ≤ ξ ≤ u1. Hence,

0 = σ1[dL+ b− λqξq−1] ≥ σ1[dL+ b− λquq−1
2 ],

but from (12), we get that σ1[dL+b−λquq−1
2 ] > σ1[dL+b−λuq−1

2 ] = 0, which gives a contradiction.

¦
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In the sequel we shall denote θ[λ,q,p] the unique positive solution of (6) if (H) holds, with

θ[λ,q,p] = 0 if λ ≤ 0.

The following result is well known and it will be very useful to compare positive solutions of

different logistic boundary value problems.

Lemma 1 Assume (H). Then:

1. If λ ≤ 0, (6) does not admit a positive subsolution.

2. If λ > 0 and u is a positive supersolution of (6), then θ[λ,q,p] ≤ u.

3. If λ > 0 and u is a positive subsolution of (6), then u ≤ θ[λ,q,p].

From Lemma 1 we obtain the following results. The first one shows the monotony of θ[λ,q,p] with

respect to the domain and the second one will be quite useful below.

Corollary 1 Assume (H) and let Ω1 be a subdomain of Ω with boundary ∂Ω1 sufficiently smooth.

If we denote θΩ
[λ,q,p] the unique positive solution of (6) in Ω, then

θΩ1
[λ,q,p] < θΩ

[λ,q,p] in Ω1.

Corollary 2 Assume (H). Then there exists a constant K(λ) := K(Ω, λ, q, p) > 0 such that

K(λ)ϕ1[L] ≤ θ[λ,q,p] <

(
λ

bL

) 1
p−q

. (13)

Proof. We will prove that Kϕ1[L] is a subsolution of (6). Then the first inequality of (13) follows

from Lemma 1. Indeed, Kϕ1[L] is a subsolution of (6) if, for example,

K1−qσ1[L] + bMKp−q = λ. (14)

Now, for fixed λ > 0, (14) has a unique positive solution which we denote K(λ) and which satisfies

lim
λ↓0+

K(λ) = 0 and lim
λ↑+∞

K(λ) = ∞.

The second inequality of (13) follows from (9) and the strong maximum principle. ¦
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Remark 1 It is important to note:

1. If p = 1,

K(λ) =
(

λ

σ1[L] + bM

) 1
1−q

.

2. If 1 < p,

K(λ) = O(λ1/(1−q)) if λ ↓ 0+ and K(λ) = O(λ1/(p−q)) if λ ↑ +∞.

3. If p < 1,

K(λ) = O(λ1/(p−q)) if λ ↓ 0+ and K(λ) = O(λ1/(1−q)) if λ ↑ +∞.

When b(x) = b ∈ IR, Lemma 1 can be used to prove some monotony properties of θ[λ,q,p] with

respect to λ.

Proposition 1 Suppose (H) and that b(x) = b ∈ IR, λ, µ > 0. The following assertions are true:

1. Assume 1 ≤ p. If λ ≥ µ, then

(
λ

µ

)1/(p−q)

θ[µ,q,p] ≤ θ[λ,q,p] ≤
(

λ

µ

)1/(1−q)

θ[µ,q,p].

2. Assume p < 1. If λ ≥ µ, then

(
λ

µ

)1/(1−q)

θ[µ,q,p] ≤ θ[λ,q,p] ≤
(

λ

µ

)1/(p−q)

θ[µ,q,p].

Proof. We only prove the first part; the second one follows similarly. So, assume 1 ≤ p and take

η := (λ/µ)1/(p−q). It can be showed that ηθ[µ,q,p] is a subsolution of (6). Analogously, it can be

proved that (λ/µ)1/(1−q)θ[µ,q,p] is a supersolution of (6). From Lemma 1, the result follows. ¦

As an immediate consequence of Proposition 1, we obtain the following result:

Corollary 3 Assume (H) and that b(x) = b ∈ IR. The following assertions are true:

1. θ[λ,q,p] is increasing in λ.

10



2. If 1 < p, then

θ[λ,q,p]

λ1/(p−q)
is increasing in λ and

θ[λ,q,p]

λ1/(1−q)
is decreasing in λ.

3. If p < 1, then

θ[λ,q,p]

λ1/(p−q)
is decreasing in λ and

θ[λ,q,p]

λ1/(1−q)
is increasing in λ.

4. If p = 1, then

θ[λ,q,1]

λ1/(1−q)
is constant in λ.

Remark 2 1. The case p = 1 is very special. In fact it holds

θ[λ,q,1] = λ1/(1−q)θ[1,q,1]. (15)

2. In the very special case, q = 1 and p = 2, it was shown in [11] that θ[λ,1,2]/λ is increasing in

λ. Thus, our result is a generalization of that one.

3 Asymptotic behaviour of the branch θ[λ,q,p]

We will regard (6) as a bifurcation problem with λ as the bifurcation parameter. By the above

results, from the trivial state u = 0 emanates a curve of positive solutions at λ = 0. This curve

goes to the right and to infinity as λ ↑ +∞. Throughout this section ω[λ,q] will denote the unique

positive solution of (7) with d = 1 and b ≡ 0.

The main result of this section completes the information of Corollary 3.

Theorem 3 Assume (H).

1. If 1 < p, then

lim
λ↓0+

θ[λ,q,p]

λ1/(1−q)
= ω[1,q] in C2(Ω).

lim
λ↑+∞

θ[λ,q,p]

λ1/(p−q)
=

(
1

b(x)

)1/(p−q)

uniformly on compacts of Ω.
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2. If p < 1, then

lim
λ↓0+

θ[λ,q,p]

λ1/(p−q)
=

(
1

b(x)

)1/(p−q)

uniformly on compacts of Ω.

lim
λ↑+∞

θ[λ,q,p]

λ1/(1−q)
= ω[1,q] in C2(Ω).

3. If p = 1, then

lim
λ↓0+

θ[λ,q,1]

λ1/(1−q)
= lim

λ↑+∞
θ[λ,q,1]

λ1/(1−q)
= θ[1,q,1].

To prove this result we need some preliminaries. Consider the following problem




dLw = wq − b(x)wp in Ω,

w = 0 on ∂Ω,
(16)

with d > 0. Observe that this problem is in the setting of (3) and so, fixed d > 0, there exists a

unique positive solution of (16) which we will denote Φ[d,q,p]. The following result provides us with

the behaviour of Φ[d,q,p] as d ↑ +∞ and d ↓ 0+. This is a singular perturbation problem. In fact

we give a proof that is a slight modification of the Theorem 3.4 in [4]; we include it for reader’s

convenience.

Theorem 4 Assume (H) and let Φ[d,q,p] be the unique positive solution of (16). Then

lim
d↓0+

Φ[d,q,p] =
(

1
b(x)

) 1
p−q

uniformly on compact subsets of Ω,

lim
d↑+∞

Φ[d,q,p] = 0 uniformly on Ω. (17)

Proof. We consider ud = d−1ω[1,q]. It is easy to show that ud is a supersolution of (16) provided

that

ωq
[1,q](1− d−q + b(x)d−pωp−q

[1,q]) ≥ 0.

Taking d sufficiently large and a further application of Lemma 1 gives (17).

Let K be a compact subset of Ω. We shall show that given ε > 0 there exists d0 = d0(K, ε) > 0

such that for every d < d0

(
1
b

) 1
p−q

− ε ≤ Φ[d,q,p] ≤
(

1
b

) 1
p−q

+ ε in K. (18)
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Let β = β(ε) be such that

0 < β(ε) <

((
1
b

)1/(p−q)

+ ε

)p−q

− 1
b
.

Take Φ ∈ C∞(Ω) such that

(
1
b

+ β

) 1
p−q

≤ Φ ≤
(

1
b

) 1
p−q

+ ε in Ω.

Then, we have

Φq − b(x)Φp = b(x)Φq(1/b(x)− Φp−q) ≤ −βb(x)Φq ≤ dLΦ in Ω,

for any d < d1, for some d1(ε). Thus, for any d < d1 the function Φ is a supersolution of (16) and

from Lemma 1, we get

Φ[d,q,p] ≤ Φ ≤
(

1
b

) 1
p−q

+ ε.

By a compactness argument, to complete the proof of (18) it suffices to show that given x0 ∈ K

there exist r0 > 0 and d2 = d2(x0) such that for each d < d2

Φ[d,q,p] ≥
(

1
b

) 1
p−q

− ε in B(x0, r0).

For any B(x0, r) ⊂ Ω, r > 0, from Corollary 1 we have

ΦB(x0,r)
[d,q,p] ≤ Φ[d,q,p] in B(x0, r).

Thus, to complete the proof it remains to show that for any d < d2,

ΦB(x0,2r0)
[d,q,p] ≥

(
1
b

) 1
p−q

− ε in B(x0, r0).

We consider two different cases:

Case 1: Suppose there exists r0 > 0 such that b(x) = b ∈ IR in B0 := B(x0, 2r0) ⊂ Ω. Let ϕB0
1 [L]

normalized so that

‖ϕB0
1 [L]‖∞,B0 =

1
2
. (19)
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Set B1 := B(x0, r0). Then, ϕB0
1 [L](x) > 0 for each x ∈ B1 and there exists ϕ0 ∈ C2(B1) such that

ϕ0(x0) = 1 , ‖ϕ0‖∞,B1 = 1 , ϕ0(x) > 0 ∀x ∈ B1 (20)

and the function Ψ : B0 → IR defined by

Ψ(x) =





ϕB0
1 [L](x) if x ∈ B0 \B1,

ϕ0(x) if x ∈ B1,

lies in C2(B0). Given δ ∈ (0, 1), we define

Ψδ := δ

(
1
b

) 1
p−q

Ψ,

Since b ∈ IR, then Ψδ ∈ C2(B0). It is not hard to show that Ψδ is a positive subsolution of (16) if,

and only if,

LΨ
Ψq

≤ 1
d
b(1−q)/(p−q)δq−1(1− δp−qΨp−q) in B0, (21)

and this inequality holds if d is sufficiently small. Indeed, observe that the left hand side of (21) is

bounded above in B0. From (19) and (20), we have that Ψ ≤ Ψq, and so

LΨ
Ψq

≤ LΨ
Ψ

≤ C,

for some C > 0. This last inequality follows by the strong maximum principle. Thus, since δ < 1

and 0 ≤ Ψ ≤ 1, it is sufficient to take d small to satisfy (21). From Lemma 1, we have that for d

sufficiently small

Ψδ ≤ ΦB0
[d,q,p] ≤ Φ[d,q,p] in B0.

Clearly, since Ψ(x0) = 1 if δ is taken sufficiently close to 1, then Ψδ will be as close as we want to

(1/b)1/(p−q) on some ball centered at x0. This completes the proof in this case.

Case 2: Assume b(x) is not constant in some ball centered at x0. We have

dLΦB0
[d,q,p] = (ΦB0

[d,q,p])
q − b(x)(ΦB0

[d,q,p])
p ≥ (ΦB0

[d,q,p])
q − bM,B0(Φ

B0
[d,q,p])

p
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and so, ΦB0
[d,q,p] is a positive supersolution of (16) with b(x) = bM,B0 ∈ IR, and so from Lemma 1

that

ΦB0
[d,q,p] ≥ Φ̂B0

[d,q,p],

where Φ̂B0
[d,q,p] stands for the unique positive solution of (16) with b(x) = bM,B0 ∈ IR. Thus, from

the Case 1, there exists r1 > 0 such that

ΦB0
[d,q,p] ≥ Φ̂B0

[d,q,p] ≥ (1/bM,B0)
1/(p−q) − ε

2
in B(x0, r1).

Therefore, if B0 is chosen so that for each x ∈ B0

(1/bM,B0)
1/(p−q) ≥ (1/b(x))1/(p−q) − ε

2
,

then

ΦB0
[d,q,p] ≥

(
1

b(x)

)1/(p−q)

− ε

for each x ∈ B(x0, r1). This completes the proof. ¦

We consider the equation




Lw = wq − db(x)wp in Ω,

w = 0 on ∂Ω.
(22)

From Theorem 1, given d > 0 there exists a unique positive solution Θ[d,q,p] of (22). The following

result provides us the behaviour of Θ[d,q,p] as d ↓ 0+ and d ↑ +∞.

Theorem 5 Assume (H) and let Θ[d,q,p] be the unique positive solution of (22). Then,

lim
d↓0+

Θ[d,q,p] = ω[1,q] in C2,ν(Ω), for some ν ∈ (0, 1)

lim
d↑+∞

Θ[d,q,p] = 0 uniformly on Ω.

Proof. By Corollary 2,

Θ[d,q,p] ≤ (
1

dbL
)1/(p−q),
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from which the second relation follows.

On the other hand, it is not hard to prove that u = ω[1,q] is a supersolution of (22) and hence,

‖Θ[d,q,p]‖∞ ≤ ‖ω[1,q]‖∞ = K (independent of d).

Thus, according to the Ls theory of elliptic equations, {Θ[d,q,p]}d is a bounded sequence in W 2,s(Ω),

for s > 1, and so we can extract a convergent subsequence, again labeled by d, such that

Θ[d,q,p] → w in C1,α(Ω), where 0 < α = 1−N/s < 1,

as d ↓ 0+. Using (22) we get

Θ[d,q,p] = (L)−1(Θq
[d,q,p] − db(x)Θp

[d,q,p]),

and so 



Lw = wq in Ω,

w = 0 on ∂Ω.

Now, as in Corollary 2, we can get a constant K = K(Ω) > 0, independent of d, such that

K(Ω)ϕ1[L] ≤ Θ[d,q,p], for all d ∈ [0, d0], for some d0 > 0.

In fact, in this case we can take K satisfying

dbMKp−q + K1−qσ1[L] = 1.

It can be proved that the map

d ∈ [0, d0] 7→ K(d)

is continuous, and so there exists the constant K(Ω). We can deduce that w = ω[1,q] and by

Ascoli-Arzela’s Theorem all sequence converges in C2,ν(Ω) for some ν ∈ (0, 1) and the result

follows. ¦

Proof Theorem 3. Let us define

Ψ[λ,q,p] :=
θ[λ,q,p]

λ1/(p−q)
.
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It is easy to check that Ψ[λ,q,p] is the unique positive solution of the equation




1
λ(p−1)/(p−q)Lw = wq − b(x)wp in Ω,

w = 0 on ∂Ω,

included in the setting (16). Now, Theorem 4 proves two relations of Theorem 3.

If we write,

χ[λ,q,p] :=
θ[λ,q,p]

λ1/(1−q)
,

then χ[λ,q,p] is the unique positive solution of




Lw = wq − λ(p−1)/(1−q)b(x)wp in Ω,

w = 0 on ∂Ω.

From Theorem 5, the other relations follow.

Finally, for p = 1 the result follows by (15). The proof of Theorem 3 is completed. ¦

Now, we denote θλ the unique positive solution of (6) for q = 1 and p > 1 if λ > σ1[L], with

θλ = 0 if λ ≤ σ1[L]. The next results provide us the behaviour of θ[λ,q,p] as q ↑ 1. We consider two

different cases: p > 1 and p = 1.

Theorem 6 Assume p > 1 > q and λ > 0. Then

lim
q↑1

θ[λ,q,p] = θλ in C2,ν(Ω) for some ν ∈ (0, 1).

Proof. Fix δ ∈ (0, 1). We know from Corollary 2 that for q ∈ [1− δ, 1],

‖θ[λ,q,p]‖∞ ≤
(

λ

bL

) 1
p−q

≤ K (independent of q.)

We can reason as in Theorem 5 and conclude that there exists a subsequence {θ[λ,q,p]}q such that

θ[λ,q,p] → w ≥ 0 in C1,α(Ω), with 0 < α < 1,

as q ↑ 1 with w satisfying 



Lw = λw − b(x)wp in Ω,

w = 0 on ∂Ω.
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So, if λ ≤ σ1[L], w = 0. On the other hand, if λ > σ1[L], we can choose K(λ), independent of q,

such that

K(λ)ϕ1[L] ≤ θ[λ,q,p].

Again the Ascoli-Arzela’s Theorem completes the proof. ¦

The case p = 1 is more complicated. We are going to prove that θ[λ,q,p] tends to 0 when

λ < σ1[L + b] and to infinity when λ > σ1[L + b] as q ↑ 1, showing that the bifurcation diagram

with q < 1 (see Figure 2) “converges”to the one with q = p = 1 (see Figure 1).

Theorem 7 Assume 0 < q < p = 1. Then:

1. If λ < σ1[L+ b], then ‖θ[λ,q,1]‖∞ → 0 as q ↑ 1.

2. If λ > σ1[L+ b], then ‖θ[λ,q,1]‖∞ →∞ as q ↑ 1.

Proof. For the first part, we fix λ < σ1[L+b]. From the continuous dependence of σ1[L+b] respect

to the domain, there exists a regular domain Ω′ ⊃ Ω such that

λ < σΩ′
1 [L+ b] < σΩ

1 [L+ b]. (23)

Let ϕ′1 := ϕΩ′
1 [L+b] be with ‖ϕ′1‖∞,Ω′ = 1. It is not difficult to see that u := Mϕ′1 is a supersolution

of (6) being

M =
(

λ

σΩ′
1 [L+ b]

)1/(1−q) 1
(ϕ′1)L,Ω

,

and so, by Lemma 1,

‖θ[λ,q,1]‖∞,Ω ≤ M‖ϕ′1‖∞,Ω.

Now, it suffices to use (23) and to tend q ↑ 1.

For the second part, we are going to build a subsolution whose norm tends to infinity. We take

ϕ1[L + b] normalized such that ‖ϕ1[L + b]‖∞ = 1. It is easy to prove that u := Cϕ1[L + b] is a

subsolution of (6) with

C =
(

λ

σ1[L+ b]

)1/(1−q)

.
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Again, taking q ↑ 1, the proof concludes since λ > σ1[L+ b]. ¦
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