On the structure of the positive solutions of the logistic equation with nonlinear diffusion

Manuel Delgado and Antonio Suárez *

Depto. de Ecuaciones Diferenciales y Análisis Numérico,

Facultad de Matemáticas, University of Sevilla,

c/ Tarfia s/n, 41012 Sevilla, Spain.

E-mail: delgado@numer.us.es, suarez@numer.us.es

Running title:

logistic equation with nonlinear diffusion

Mailing address:

Antonio Suárez Fernández

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, University of Sevilla

c/ Tarfia, s/n, 41012 Sevilla, Spain. E-mail:
 $\verb"suarez@numer.us.es"$

TF: (34) 95 4556834 - FAX: (34) 95 4552898

*research parcially financed by C.I.C.Y.T project MAR98-0486

1 Introduction

In this work we study the structure of the positive solutions of the degenerate logistic equation, i.e. of the elliptic boundary value problem

$$d\mathcal{L}w^m = \sigma w - b(x)w^r \quad \text{in } \Omega,$$

$$w = 0 \qquad \text{on } \partial\Omega,$$
(1)

where Ω is a bounded domain of \mathbb{R}^N , $N \geq 1$, with a smooth boundary $\partial\Omega$, \mathcal{L} is a general second order uniformly elliptic operator, b is a positive function, $m \geq 1$, r > 1, d is a positive constant and σ is a real parameter. Eq. (1) was introduced in biological models by Gurtin-McCamy [7], see also [13] and [14], in describing the dynamics of biological populations whose mobility is density dependent. In (1), Ω is the inhabiting region, w(x) represents the density of a species and we are assuming that Ω is fully surrounded by inhospitable areas, since the population density is subject to homogeneous Dirichlet boundary conditions. The operator \mathcal{L} measures the diffusivity and the external transport effects of the species. In the case m > 1 the diffusion, i.e. the rate the moving of the species from high density regions to low density ones, is slower than in the linear case (m = 1), which gives to rise a "more realistic" model. Moreover, here d > 0 is the diffusion rate of the species, b(x) and σ are associated with the limiting effect crowding in the population and the growth rate of the species, respectively.

An appropriate change of variable, see (5), transforms (1) into

$$\begin{cases} \mathcal{L}u = \lambda u^{q} - b(x)u^{p} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2)

with $\lambda \in \mathbb{R}$, 0 < q < p and $q \leq 1$. The case q = 1 and $p \geq 1$ has been widely studied in the recent years. When q = 1 and p > 1, it is well known that there exists a unique positive solution θ_{λ} of (2) if, and only if, $\lambda > \sigma_1[\mathcal{L}]$, where $\sigma_1[\mathcal{L}]$ is the principal eigenvalue of \mathcal{L} in Ω subject to homogeneous Dirichlet boundary conditions. Moreover, there exists a continuum of positive solutions of (2) bifurcating from $(\lambda, u) = (\sigma_1[\mathcal{L}], 0)$ which is unbounded. In the particular case q = p = 1 a vertical bifurcation diagram appears at $\lambda = \sigma_1[\mathcal{L} + b]$. Figure 1 shows these cases.

Figure 1: Bifurcation diagrams with q=1

When q < 1, in our knowledge only partial results are known about existence and uniqueness of positive solutions of (2). Indeed, when $\mathcal{L} = -\Delta$ and $b(x) = b \in \mathbb{R}$, it was proved in [12], Corollary 1, that there exists a unique positive solution of (2) if, and only if, $\lambda > 0$. When b is a function in x and $\mathcal{L} = -\Delta$, Pozio and Tesei [16] showed that if $\lambda > 0$ there exists a positive solution of (2). Moreover, if $p \ge 1$ or p < 1 and λ large enough, then the positive solution is unique, see Theorem 5 of [16]. Similar results were obtained by Leung and Fan in [10], see Theorem 2.1. We improve these results in two ways: when \mathcal{L} is a second order uniformly elliptic operator not necessarily selfadjoint and b is a function in x, we prove that there exists a unique positive solution of (2) if, and only if, $\lambda > 0$. This solution will be denoted by $\theta_{[\lambda,q,p]}$. Moreover, there exists a continuum of positive solutions of (2) bifurcating from the trivial solution u = 0 at $\lambda = 0$ which is unbounded, see Figure 2.

We can define the map

$$\mathcal{F}_q: \mathbb{R} \mapsto C^{2,\alpha}_0(\overline{\Omega}), \quad \mathcal{F}_q(\lambda) := \theta_{[\lambda,q,p]}$$

with $\mathcal{F}_q(\lambda) = 0$ if $\lambda \leq 0$. We focus on the study of the map \mathcal{F}_q , specifically we analyze the behaviour of \mathcal{F}_q as $\lambda \downarrow 0^+$ and $\lambda \uparrow +\infty$, through the singular perturbation theory. We generalize

Figure 2: Bifurcation diagram with q < 1.

the results obtained when q = 1. Indeed, when q < 1, q < p, we prove that if 1 < p,

$$\frac{\mathcal{F}_q(\lambda)}{\lambda^{1/(p-q)}} \to \left(\frac{1}{b(x)}\right)^{1/(p-q)} \text{ uniformly on compact subsets of } \Omega \text{ as } \lambda \uparrow +\infty \text{ and}$$
$$\mathcal{F}_q(\lambda) = O(\lambda^{1/(1-q)}) \text{ as } \lambda \downarrow 0^+;$$

if p < 1,

$$\mathcal{F}_q(\lambda) = O(\lambda^{1/(1-q)}) \text{ as } \lambda \uparrow +\infty \text{ and}$$

 $\frac{\mathcal{F}_q(\lambda)}{\lambda^{1/(p-q)}} \to \left(\frac{1}{b(x)}\right)^{1/(p-q)}$ uniformly on compact subsets of Ω as $\lambda \downarrow 0^+$;

and if p = 1,

$$\mathcal{F}_q(\lambda) = \lambda^{1/(1-q)} \mathcal{F}_q(1).$$

These results are a first step to obtain non-existence and existence results of systems with nonlinear diffusion as already it was shown when the diffusion is linear in [4].

Finally, we study how the bifurcation diagram of Figure 2 varies when $q \uparrow 1$. We will show that if p > 1, $\theta_{[\lambda,q,p]} \to \theta_{\lambda}$ as $q \uparrow 1$. In the special case p = 1, we prove that if $\lambda < \sigma_1[\mathcal{L} + b]$ (resp. $\lambda > \sigma_1[\mathcal{L} + b]$) then $\theta_{[\lambda,q,p]}$ tends to 0 (resp. infinity) as $q \uparrow 1$.

An outline of this work is as follows. In Section 2 we study the existence and uniqueness of positive solution of (2), as well as some monotony properties of \mathcal{F}_q . In Section 3 we analyze the behaviour of the mapping \mathcal{F}_q as $\lambda \downarrow 0^+$, $\lambda \uparrow +\infty$ (Theorem 3) and as $q \uparrow 1$.

2 Existence and comparison results

In this section we study the positive solutions of

$$\begin{cases} d\mathcal{L}w^m = \sigma w - b(x)w^r & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega, \end{cases}$$
(3)

where Ω is a bounded domain of \mathbb{R}^N , $N \ge 1$, with smooth boundary $\partial\Omega$, m > 1, r > 1, d > 0, $b \in C^{\alpha}(\overline{\Omega}), \alpha \in (0,1)$, with b(x) > 0 for all $x \in \overline{\Omega}, \sigma$ is a real parameter and \mathcal{L} is a second order operator of the form

$$\mathcal{L} := -\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial}{\partial x_i}$$

with

$$a_{ij} \in C^{1,\alpha}(\overline{\Omega}), \ b_i \in C^{\alpha}(\overline{\Omega}) \quad a_{ij} = a_{ji}, \quad \text{with } 0 < \alpha < 1,$$

and uniformly elliptic in the sense that

$$\exists \rho > 0 \quad \text{such that} \quad \sum_{i,j=1}^{N} a_{ij}(x)\xi_i\xi_j \ge \rho|\xi|^2, \quad \forall \xi \in \mathbb{R}^N, \ \forall x \in \Omega.$$
(4)

In the sequel, given any function $f \in C^{\alpha}(\overline{\Omega})$ we shall denote

$$f_M := \sup_{\overline{\Omega}} f, \qquad f_L := \inf_{\overline{\Omega}} f.$$

If $r \neq m$, performing the change

$$w^m = d^{m/(r-m)}u,\tag{5}$$

(3) can be rewritten as

$$\mathcal{L}u = \lambda u^{q} - b(x)u^{p} \text{ in } \Omega,$$

$$u = 0 \qquad \text{ on } \partial\Omega,$$
(6)

where p and q satisfy

$$(H) 0 < q < p, q < 1.$$

In the special case r = m, the change $w^m = u$ transforms (3) into

$$\begin{cases} (d\mathcal{L} + b(x))u = \lambda u^{q} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(7)

On the other hand, it is well-known that the linear eigenvalue problem

$$(\mathcal{L} + f)u = \lambda u \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$

(8)

with $f \in L^{\infty}(\Omega)$ has a principal eigenvalue $\sigma_{1}^{\Omega}[\mathcal{L} + f]$, with a corresponding eigenfunction $\varphi_{1}^{\Omega}[\mathcal{L} + f](x) > 0$ for all $x \in \Omega$, $\partial_{n}\varphi_{1}^{\Omega}[\mathcal{L} + f](x) < 0$ for all $x \in \partial\Omega$ where n is the outward unit normal on $\partial\Omega$ and normalized such that $\|\varphi_{1}^{\Omega}[\mathcal{L} + f]\|_{\infty} = 1$ (the superscript Ω will be omitted if no confusion arises).

The following results characterize the existence and uniqueness of positive solutions for (6) and (7).

Theorem 1 Assume (H). Then (6) possesses a unique positive solution in $C^{2,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ if, and only if, $\lambda > 0$.

Proof. We use the sub-supersolution method with Hölder continuous functions, cf. [1] and Theorem 4.5.1 in [15]. It is not hard to show that $\overline{u} := (\lambda/b_L)^{1/(p-q)}$ is a supersolution of (6). Moreover, using the maximum principle we can prove that

$$\|u\|_{\infty} \le \left(\frac{\lambda}{b_L}\right)^{\frac{1}{p-q}} \tag{9}$$

for any u solution of (6).

Take $\underline{u} =: \varepsilon \varphi_1[\mathcal{L}]$, with $\varepsilon > 0$ to choose. It is easy to check that we can take $\varepsilon > 0$ sufficiently small such that \underline{u} is a subsolution of (6) and $\underline{u} \leq \overline{u}$. This proves the existence of positive solution of (6) in $C^{2,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$. The maximum principle implies that $\lambda > 0$ is a necessary condition for the existence of positive solution of (6). For the uniqueness we are going to use a change of variable already used in [17], see also [3], in a slightly different context. We define

$$z := \frac{1}{1-q}u^{1-q}.$$

Then (6) is equivalent to

$$\begin{cases} \mathcal{L}z - \frac{q}{(1-q)z} \sum_{i,j=1}^{N} a_{ij} \frac{\partial z}{\partial x_i} \frac{\partial z}{\partial x_j} = \lambda - b(x)(1-q)^{(p-q)/(1-q)} z^{(p-q)/(1-q)} & \text{in } \Omega, \\ z = 0 & \text{on } \partial\Omega. \end{cases}$$
(10)

Let z_2 be the maximal solution of (10), which exists by (9). Suppose there exists another solution z_1 of (10) with $z_1 \leq z_2$. We are going to prove that $z_1 \geq z_2$. We argue by contradiction. We suppose that there exists $P \in \Omega$ where

$$\Phi := z_1 - z_2$$

attains its negative minimum. Let r > 0 be such that $0 < z_1(x) < z_2(x)$ for all $x \in B(P, r)$, where B(P, r) is the ball of radius r centered at P. It is not hard to show that Φ satisfies

$$\mathcal{L}\Phi - \frac{q}{1-q} (\sum_{i,j=1}^{N} a_{ij} [\frac{1}{z_1} \frac{\partial z_1}{\partial x_i} \frac{\partial z_1}{\partial x_j} - \frac{1}{z_2} \frac{\partial z_2}{\partial x_i} \frac{\partial z_2}{\partial x_j}]) = -b(x)(1-q)^{(p-q)/(1-q)} (z_1^{(p-q)/(1-q)} - z_2^{(p-q)/(1-q)}).$$

On the other hand, it can be proved that

$$\sum_{i,j=1}^{N} a_{ij} \left[\frac{1}{z_1} \frac{\partial z_1}{\partial x_i} \frac{\partial z_1}{\partial x_j} - \frac{1}{z_2} \frac{\partial z_2}{\partial x_i} \frac{\partial z_2}{\partial x_j} \right] = \sum_{i=1}^{N} c_i \frac{\partial \Phi}{\partial x_i} - c(x)\Phi$$

where

$$c_i = \sum_{j=1}^N a_{ij} \frac{1}{z_1} \left(\frac{\partial z_1}{\partial x_j} + \frac{\partial z_2}{\partial x_j} \right), \quad c(x) = \frac{1}{z_1 z_2} \sum_{i,j=1}^N a_{ij} \frac{\partial z_2}{\partial x_i} \frac{\partial z_2}{\partial x_j}.$$

So, Φ verifies

$$\mathcal{L}_1 \Phi + \frac{q}{1-q} c(x) \Phi = -b(x)(1-q)^{(p-q)/(1-q)} (z_1^{(p-q)/(1-q)} - z_2^{(p-q)/(1-q)}), \quad \text{in } B(P,r),$$
(11)

being

$$\mathcal{L}_1 = -\sum_{i,j=1}^N a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^N (b_i - \frac{q}{1-q}c_i) \frac{\partial}{\partial x_i}.$$

By (4), $c(x) \ge 0$ in B(P, r), and from (H) we have that $z_2^{(p-q)/(1-q)} > z_1^{(p-q)/(1-q)}$ in B(P, r), and so by the strong maximum principle of Hopf, see for example Theorem 3.5 in [6], $\Phi = C < 0$ in B(P, r) with C constant. Thus, the left hand side of (11) is non-positive and right one positive. This gives a contradiction and completes the proof.

The following result is well known when the operator is selfadjoint, see [2], [9], [10] and [17] for example, and its proof can be deduced by Theorem 1. So that, we only present an alternative uniqueness proof in which we use a singular eigenvalue problem.

Theorem 2 If 0 < q < 1, then (7) possesses a unique positive solution in $C^{2,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ if, and only if, $\lambda > 0$.

Proof. Let $u_1, u_2, u_1 \ge u_2, u_1$ the maximal positive solution of (7) and u_2 an arbitrary positive solution. Then

$$\sigma_1[d\mathcal{L} + b - \lambda u_i^{q-1}] = 0 \qquad i = 1, 2.$$
(12)

Observe that this principal eigenvalue is not in the setting of (8) because $u_i^{q-1} \notin L^{\infty}(\Omega)$. But, u_i is a positive function satisfying (7) and so, by the strong maximum principle, there exists a positive constant C such that

$$Cd_{\Omega}(x) \leq u_i(x)$$
 for all $x \in \overline{\Omega}$,

where $d_{\Omega}(x) := dist(x, \partial \Omega)$. Hence, $d_{\Omega}^{1-q}(x)u_i^{q-1}$ is bounded and so we can apply the results of [8] (see also [5] for selfadjoint operators) to define correctly $\sigma_1[d\mathcal{L} + b - \lambda u_i^{q-1}]$. Now, applying the mean value theorem

$$(d\mathcal{L} + b - \lambda q\xi^{q-1})(u_1 - u_2) = 0$$

for some $u_2 \leq \xi \leq u_1$. Hence,

$$0 = \sigma_1[d\mathcal{L} + b - \lambda q\xi^{q-1}] \ge \sigma_1[d\mathcal{L} + b - \lambda qu_2^{q-1}],$$

but from (12), we get that $\sigma_1[d\mathcal{L}+b-\lambda qu_2^{q-1}] > \sigma_1[d\mathcal{L}+b-\lambda u_2^{q-1}] = 0$, which gives a contradiction.

In the sequel we shall denote $\theta_{[\lambda,q,p]}$ the unique positive solution of (6) if (H) holds, with $\theta_{[\lambda,q,p]} = 0$ if $\lambda \leq 0$.

The following result is well known and it will be very useful to compare positive solutions of different logistic boundary value problems.

Lemma 1 Assume (H). Then:

- 1. If $\lambda \leq 0$, (6) does not admit a positive subsolution.
- 2. If $\lambda > 0$ and \overline{u} is a positive supersolution of (6), then $\theta_{[\lambda,q,p]} \leq \overline{u}$.
- 3. If $\lambda > 0$ and \underline{u} is a positive subsolution of (6), then $\underline{u} \leq \theta_{[\lambda,q,p]}$.

From Lemma 1 we obtain the following results. The first one shows the monotony of $\theta_{[\lambda,q,p]}$ with respect to the domain and the second one will be quite useful below.

Corollary 1 Assume (H) and let Ω_1 be a subdomain of Ω with boundary $\partial \Omega_1$ sufficiently smooth. If we denote $\theta_{[\lambda,q,p]}^{\Omega}$ the unique positive solution of (6) in Ω , then

$$\theta_{[\lambda,q,p]}^{\Omega_1} < \theta_{[\lambda,q,p]}^{\Omega} \qquad in \ \Omega_1.$$

Corollary 2 Assume (H). Then there exists a constant $K(\lambda) := K(\Omega, \lambda, q, p) > 0$ such that

$$K(\lambda)\varphi_1[\mathcal{L}] \le \theta_{[\lambda,q,p]} < \left(\frac{\lambda}{b_L}\right)^{\frac{1}{p-q}}.$$
(13)

Proof. We will prove that $K\varphi_1[\mathcal{L}]$ is a subsolution of (6). Then the first inequality of (13) follows from Lemma 1. Indeed, $K\varphi_1[\mathcal{L}]$ is a subsolution of (6) if, for example,

$$K^{1-q}\sigma_1[\mathcal{L}] + b_M K^{p-q} = \lambda.$$
(14)

Now, for fixed $\lambda > 0$, (14) has a unique positive solution which we denote $K(\lambda)$ and which satisfies

$$\lim_{\lambda\downarrow 0^+} K(\lambda) = 0 \quad \text{and} \quad \lim_{\lambda\uparrow +\infty} K(\lambda) = \infty.$$

The second inequality of (13) follows from (9) and the strong maximum principle.

 \diamond

Remark 1 It is important to note:

$$K(\lambda) = \left(\frac{\lambda}{\sigma_1[\mathcal{L}] + b_M}\right)^{\frac{1}{1-q}}$$

2. If 1 < p,

1. If p = 1,

$$K(\lambda) = O(\lambda^{1/(1-q)}) \quad \text{if } \lambda \downarrow 0^+ \quad \text{and} \quad K(\lambda) = O(\lambda^{1/(p-q)}) \quad \text{if } \lambda \uparrow +\infty.$$

3. If p < 1,

$$K(\lambda) = O(\lambda^{1/(p-q)}) \quad \text{if } \lambda \downarrow 0^+ \quad \text{and} \quad K(\lambda) = O(\lambda^{1/(1-q)}) \quad \text{if } \lambda \uparrow +\infty.$$

When $b(x) = b \in \mathbb{R}$, Lemma 1 can be used to prove some monotony properties of $\theta_{[\lambda,q,p]}$ with respect to λ .

Proposition 1 Suppose (H) and that $b(x) = b \in \mathbb{R}$, $\lambda, \mu > 0$. The following assertions are true:

1. Assume $1 \leq p$. If $\lambda \geq \mu$, then

$$\left(\frac{\lambda}{\mu}\right)^{1/(p-q)}\theta_{[\mu,q,p]} \le \theta_{[\lambda,q,p]} \le \left(\frac{\lambda}{\mu}\right)^{1/(1-q)}\theta_{[\mu,q,p]}.$$

2. Assume p < 1. If $\lambda \ge \mu$, then

$$\left(\frac{\lambda}{\mu}\right)^{1/(1-q)}\theta_{[\mu,q,p]} \le \theta_{[\lambda,q,p]} \le \left(\frac{\lambda}{\mu}\right)^{1/(p-q)}\theta_{[\mu,q,p]}$$

Proof. We only prove the first part; the second one follows similarly. So, assume $1 \leq p$ and take $\eta := (\lambda/\mu)^{1/(p-q)}$. It can be showed that $\eta \theta_{[\mu,q,p]}$ is a subsolution of (6). Analogously, it can be proved that $(\lambda/\mu)^{1/(1-q)}\theta_{[\mu,q,p]}$ is a supersolution of (6). From Lemma 1, the result follows. \diamond

As an immediate consequence of Proposition 1, we obtain the following result:

Corollary 3 Assume (H) and that $b(x) = b \in \mathbb{R}$. The following assertions are true:

1. $\theta_{[\lambda,q,p]}$ is increasing in λ .

2. If 1 < p, then

$$rac{ heta_{[\lambda,q,p]}}{\lambda^{1/(p-q)}}$$
 is increasing in λ and $rac{ heta_{[\lambda,q,p]}}{\lambda^{1/(1-q)}}$ is decreasing in λ .

3. If p < 1, then

$$\frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(p-q)}} \quad is \ decreasing \ in \ \lambda \ and \quad \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(1-q)}} \quad is \ increasing \ in \ \lambda.$$

4. If p = 1, then

$$rac{ heta_{[\lambda,q,1]}}{\lambda^{1/(1-q)}}$$
 is constant in $\lambda.$

Remark 2 1. The case p = 1 is very special. In fact it holds

$$\theta_{[\lambda,q,1]} = \lambda^{1/(1-q)} \theta_{[1,q,1]}.$$
(15)

In the very special case, q = 1 and p = 2, it was shown in [11] that θ_[λ,1,2]/λ is increasing in λ. Thus, our result is a generalization of that one.

3 Asymptotic behaviour of the branch $heta_{[\lambda,q,p]}$

We will regard (6) as a bifurcation problem with λ as the bifurcation parameter. By the above results, from the trivial state u = 0 emanates a curve of positive solutions at $\lambda = 0$. This curve goes to the right and to infinity as $\lambda \uparrow +\infty$. Throughout this section $\omega_{[\lambda,q]}$ will denote the unique positive solution of (7) with d = 1 and $b \equiv 0$.

The main result of this section completes the information of Corollary 3.

Theorem 3 Assume (H).

1. If 1 < p, then

$$\begin{split} \lim_{\lambda \downarrow 0^+} \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(1-q)}} &= \omega_{[1,q]} \qquad in \ C^2(\overline{\Omega}). \\ \lim_{\lambda \uparrow +\infty} \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(p-q)}} &= \left(\frac{1}{b(x)}\right)^{1/(p-q)} \qquad uniformly \ on \ compacts \ of \ \Omega \end{split}$$

2. If p < 1, then

$$\lim_{\lambda \downarrow 0^+} \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(p-q)}} = \left(\frac{1}{b(x)}\right)^{1/(p-q)} \quad \text{uniformly on compacts of } \Omega.$$
$$\lim_{\lambda \uparrow +\infty} \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(1-q)}} = \omega_{[1,q]} \quad \text{in } C^2(\overline{\Omega}).$$

3. If p = 1, then

$$\lim_{\lambda \downarrow 0^+} \frac{\theta_{[\lambda,q,1]}}{\lambda^{1/(1-q)}} = \lim_{\lambda \uparrow +\infty} \frac{\theta_{[\lambda,q,1]}}{\lambda^{1/(1-q)}} = \theta_{[1,q,1]}$$

To prove this result we need some preliminaries. Consider the following problem

$$d\mathcal{L}w = w^{q} - b(x)w^{p} \text{ in } \Omega,$$

$$w = 0 \qquad \text{ on } \partial\Omega,$$
(16)

with d > 0. Observe that this problem is in the setting of (3) and so, fixed d > 0, there exists a unique positive solution of (16) which we will denote $\Phi_{[d,q,p]}$. The following result provides us with the behaviour of $\Phi_{[d,q,p]}$ as $d \uparrow +\infty$ and $d \downarrow 0^+$. This is a singular perturbation problem. In fact we give a proof that is a slight modification of the Theorem 3.4 in [4]; we include it for reader's convenience.

Theorem 4 Assume (H) and let $\Phi_{[d,q,p]}$ be the unique positive solution of (16). Then

$$\lim_{d\downarrow 0^+} \Phi_{[d,q,p]} = \left(\frac{1}{b(x)}\right)^{\frac{1}{p-q}} \quad uniformly \ on \ compact \ subsets \ of \ \Omega,$$
$$\lim_{d\uparrow +\infty} \Phi_{[d,q,p]} = 0 \quad uniformly \ on \ \Omega.$$
(17)

Proof. We consider $\overline{u}_d = d^{-1}\omega_{[1,q]}$. It is easy to show that \overline{u}_d is a supersolution of (16) provided that

$$\omega_{[1,q]}^q (1 - d^{-q} + b(x)d^{-p}\omega_{[1,q]}^{p-q}) \ge 0.$$

Taking d sufficiently large and a further application of Lemma 1 gives (17).

Let \mathcal{K} be a compact subset of Ω . We shall show that given $\varepsilon > 0$ there exists $d_0 = d_0(K, \varepsilon) > 0$ such that for every $d < d_0$

$$\left(\frac{1}{b}\right)^{\frac{1}{p-q}} - \varepsilon \le \Phi_{[d,q,p]} \le \left(\frac{1}{b}\right)^{\frac{1}{p-q}} + \varepsilon \quad \text{in } \mathcal{K}.$$
(18)

Let $\beta = \beta(\varepsilon)$ be such that

$$0 < \beta(\varepsilon) < \left(\left(\frac{1}{b}\right)^{1/(p-q)} + \varepsilon \right)^{p-q} - \frac{1}{b}.$$

Take $\Phi \in C^{\infty}(\overline{\Omega})$ such that

$$\left(\frac{1}{b}+\beta\right)^{\frac{1}{p-q}} \le \Phi \le \left(\frac{1}{b}\right)^{\frac{1}{p-q}} + \varepsilon \quad \text{in } \Omega.$$

Then, we have

$$\Phi^q - b(x)\Phi^p = b(x)\Phi^q(1/b(x) - \Phi^{p-q}) \le -\beta b(x)\Phi^q \le d\mathcal{L}\Phi \quad \text{in } \Omega,$$

for any $d < d_1$, for some $d_1(\varepsilon)$. Thus, for any $d < d_1$ the function Φ is a supersolution of (16) and from Lemma 1, we get

$$\Phi_{[d,q,p]} \le \Phi \le \left(\frac{1}{b}\right)^{\frac{1}{p-q}} + \varepsilon.$$

By a compactness argument, to complete the proof of (18) it suffices to show that given $x_0 \in \mathcal{K}$ there exist $r_0 > 0$ and $d_2 = d_2(x_0)$ such that for each $d < d_2$

$$\Phi_{[d,q,p]} \ge \left(\frac{1}{b}\right)^{\frac{1}{p-q}} - \varepsilon \quad \text{in } B(x_0,r_0).$$

For any $B(x_0, r) \subset \Omega$, r > 0, from Corollary 1 we have

$$\Phi^{B(x_0,r)}_{[d,q,p]} \le \Phi_{[d,q,p]}$$
 in $B(x_0,r)$.

Thus, to complete the proof it remains to show that for any $d < d_2$,

$$\Phi^{B(x_0,2r_0)}_{[d,q,p]} \ge \left(\frac{1}{b}\right)^{\frac{1}{p-q}} - \varepsilon \quad \text{in } B(x_0,r_0).$$

We consider two different cases:

Case 1: Suppose there exists $r_0 > 0$ such that $b(x) = b \in \mathbb{R}$ in $B_0 := B(x_0, 2r_0) \subset \Omega$. Let $\varphi_1^{B_0}[\mathcal{L}]$ normalized so that

$$\|\varphi_1^{B_0}[\mathcal{L}]\|_{\infty,B_0} = \frac{1}{2}.$$
(19)

Set $B_1 := B(x_0, r_0)$. Then, $\varphi_1^{B_0}[\mathcal{L}](x) > 0$ for each $x \in \overline{B}_1$ and there exists $\varphi_0 \in C^2(B_1)$ such that

$$\varphi_0(x_0) = 1, \qquad \|\varphi_0\|_{\infty, B_1} = 1, \qquad \varphi_0(x) > 0 \quad \forall x \in \overline{B}_1$$
 (20)

and the function $\Psi: B_0 \to \mathbb{R}$ defined by

$$\Psi(x) = \begin{cases} \varphi_1^{B_0}[\mathcal{L}](x) & \text{if } x \in B_0 \setminus B_1, \\ \varphi_0(x) & \text{if } x \in \overline{B}_1, \end{cases}$$

lies in $C^2(B_0)$. Given $\delta \in (0, 1)$, we define

$$\Psi_{\delta} := \delta \left(\frac{1}{b}\right)^{\frac{1}{p-q}} \Psi,$$

Since $b \in \mathbb{R}$, then $\Psi_{\delta} \in C^2(B_0)$. It is not hard to show that Ψ_{δ} is a positive subsolution of (16) if, and only if,

$$\frac{\mathcal{L}\Psi}{\Psi^{q}} \le \frac{1}{d} b^{(1-q)/(p-q)} \delta^{q-1} (1 - \delta^{p-q} \Psi^{p-q}) \quad \text{in } B_0,$$
(21)

and this inequality holds if d is sufficiently small. Indeed, observe that the left hand side of (21) is bounded above in B_0 . From (19) and (20), we have that $\Psi \leq \Psi^q$, and so

$$\frac{\mathcal{L}\Psi}{\Psi^q} \leq \frac{\mathcal{L}\Psi}{\Psi} \leq C,$$

for some C > 0. This last inequality follows by the strong maximum principle. Thus, since $\delta < 1$ and $0 \le \Psi \le 1$, it is sufficient to take d small to satisfy (21). From Lemma 1, we have that for d sufficiently small

$$\Psi_{\delta} \le \Phi^{B_0}_{[d,q,p]} \le \Phi_{[d,q,p]} \qquad \text{in } B_0.$$

Clearly, since $\Psi(x_0) = 1$ if δ is taken sufficiently close to 1, then Ψ_{δ} will be as close as we want to $(1/b)^{1/(p-q)}$ on some ball centered at x_0 . This completes the proof in this case. **Case 2:** Assume b(x) is not constant in some ball centered at x_0 . We have

$$d\mathcal{L}\Phi^{B_0}_{[d,q,p]} = (\Phi^{B_0}_{[d,q,p]})^q - b(x)(\Phi^{B_0}_{[d,q,p]})^p \ge (\Phi^{B_0}_{[d,q,p]})^q - b_{M,B_0}(\Phi^{B_0}_{[d,q,p]})^p$$

and so, $\Phi_{[d,q,p]}^{B_0}$ is a positive supersolution of (16) with $b(x) = b_{M,B_0} \in \mathbb{R}$, and so from Lemma 1 that

$$\Phi^{B_0}_{[d,q,p]} \ge \hat{\Phi}^{B_0}_{[d,q,p]},$$

where $\hat{\Phi}^{B_0}_{[d,q,p]}$ stands for the unique positive solution of (16) with $b(x) = b_{M,B_0} \in \mathbb{R}$. Thus, from the Case 1, there exists $r_1 > 0$ such that

$$\Phi^{B_0}_{[d,q,p]} \ge \hat{\Phi}^{B_0}_{[d,q,p]} \ge (1/b_{M,B_0})^{1/(p-q)} - \frac{\varepsilon}{2} \qquad \text{in } B(x_0,r_1).$$

Therefore, if B_0 is chosen so that for each $x \in B_0$

$$(1/b_{M,B_0})^{1/(p-q)} \ge (1/b(x))^{1/(p-q)} - \frac{\varepsilon}{2}$$

then

$$\Phi^{B_0}_{[d,q,p]} \ge \left(\frac{1}{b(x)}\right)^{1/(p-q)} - \varepsilon$$

for each $x \in B(x_0, r_1)$. This completes the proof.

We consider the equation

$$\begin{cases} \mathcal{L}w = w^q - db(x)w^p & \text{in }\Omega, \\ w = 0 & \text{on }\partial\Omega. \end{cases}$$
(22)

From Theorem 1, given d > 0 there exists a unique positive solution $\Theta_{[d,q,p]}$ of (22). The following result provides us the behaviour of $\Theta_{[d,q,p]}$ as $d \downarrow 0^+$ and $d \uparrow +\infty$.

Theorem 5 Assume (H) and let $\Theta_{[d,q,p]}$ be the unique positive solution of (22). Then,

$$\begin{split} \lim_{d\downarrow 0^+} \Theta_{[d,q,p]} &= \omega_{[1,q]} & \text{ in } C^{2,\nu}(\overline{\Omega}), \text{ for some } \nu \in (0,1) \\ \\ \lim_{d\uparrow +\infty} \Theta_{[d,q,p]} &= 0 & \text{ uniformly on } \Omega. \end{split}$$

Proof. By Corollary 2,

$$\Theta_{[d,q,p]} \leq (\frac{1}{db_L})^{1/(p-q)},$$

 \diamond

from which the second relation follows.

On the other hand, it is not hard to prove that $\overline{u} = \omega_{[1,q]}$ is a supersolution of (22) and hence,

$$\|\Theta_{[d,q,p]}\|_{\infty} \le \|\omega_{[1,q]}\|_{\infty} = K \text{ (independent of } d\text{)}.$$

Thus, according to the L^s theory of elliptic equations, $\{\Theta_{[d,q,p]}\}_d$ is a bounded sequence in $W^{2,s}(\Omega)$, for s > 1, and so we can extract a convergent subsequence, again labeled by d, such that

$$\Theta_{[d,q,p]} \to \overline{w}$$
 in $C^{1,\alpha}(\overline{\Omega})$, where $0 < \alpha = 1 - N/s < 1$,

as $d \downarrow 0^+$. Using (22) we get

$$\Theta_{[d,q,p]} = (\mathcal{L})^{-1} (\Theta_{[d,q,p]}^q - db(x) \Theta_{[d,q,p]}^p),$$

and so

$$\begin{cases} \mathcal{L}\overline{w} = \overline{w}^q & \text{in } \Omega, \\ \overline{w} = 0 & \text{on } \partial\Omega. \end{cases}$$

Now, as in Corollary 2, we can get a constant $K = K(\Omega) > 0$, independent of d, such that

$$K(\Omega)\varphi_1[\mathcal{L}] \leq \Theta_{[d,q,p]}, \quad \text{for all } d \in [0, d_0], \text{ for some } d_0 > 0.$$

In fact, in this case we can take K satisfying

$$db_M K^{p-q} + K^{1-q} \sigma_1[\mathcal{L}] = 1$$

It can be proved that the map

$$d \in [0, d_0] \mapsto K(d)$$

is continuous, and so there exists the constant $K(\Omega)$. We can deduce that $\overline{w} = \omega_{[1,q]}$ and by Ascoli-Arzela's Theorem all sequence converges in $C^{2,\nu}(\overline{\Omega})$ for some $\nu \in (0,1)$ and the result follows. \diamond

Proof Theorem 3. Let us define

$$\Psi_{[\lambda,q,p]} := rac{ heta_{[\lambda,q,p]}}{\lambda^{1/(p-q)}}.$$

It is easy to check that $\Psi_{[\lambda,q,p]}$ is the unique positive solution of the equation

$$\frac{1}{\lambda^{(p-1)/(p-q)}}\mathcal{L}w = w^q - b(x)w^p \text{ in }\Omega,$$
$$w = 0 \text{ on }\partial\Omega,$$

included in the setting (16). Now, Theorem 4 proves two relations of Theorem 3. If we write,

$$\chi_{[\lambda,q,p]} := \frac{\theta_{[\lambda,q,p]}}{\lambda^{1/(1-q)}},$$

then $\chi_{[\lambda,q,p]}$ is the unique positive solution of

$$\mathcal{L}w = w^q - \lambda^{(p-1)/(1-q)}b(x)w^p \text{ in }\Omega,$$
$$w = 0 \qquad \text{ on }\partial\Omega.$$

From Theorem 5, the other relations follow.

Finally, for p = 1 the result follows by (15). The proof of Theorem 3 is completed.

Now, we denote θ_{λ} the unique positive solution of (6) for q = 1 and p > 1 if $\lambda > \sigma_1[\mathcal{L}]$, with $\theta_{\lambda} = 0$ if $\lambda \leq \sigma_1[\mathcal{L}]$. The next results provide us the behaviour of $\theta_{[\lambda,q,p]}$ as $q \uparrow 1$. We consider two different cases: p > 1 and p = 1.

 \diamond

Theorem 6 Assume p > 1 > q and $\lambda > 0$. Then

$$\lim_{q\uparrow 1} \theta_{[\lambda,q,p]} = \theta_{\lambda} \qquad in \ C^{2,\nu}(\overline{\Omega}) \ for \ some \ \nu \in (0,1).$$

Proof. Fix $\delta \in (0, 1)$. We know from Corollary 2 that for $q \in [1 - \delta, 1]$,

$$\|\theta_{[\lambda,q,p]}\|_{\infty} \le \left(\frac{\lambda}{b_L}\right)^{\frac{1}{p-q}} \le K \quad (\text{independent of } q.)$$

We can reason as in Theorem 5 and conclude that there exists a subsequence $\{\theta_{[\lambda,q,p]}\}_q$ such that

$$\theta_{[\lambda,q,p]} \to \overline{w} \ge 0$$
 in $C^{1,\alpha}(\overline{\Omega})$, with $0 < \alpha < 1$,

as $q \uparrow 1$ with \overline{w} satisfying

$$\mathcal{L}\overline{w} = \lambda \overline{w} - b(x)\overline{w}^p \quad \text{in } \Omega,$$
$$\overline{w} = 0 \qquad \text{on } \partial\Omega.$$

So, if $\lambda \leq \sigma_1[\mathcal{L}]$, $\overline{w} = 0$. On the other hand, if $\lambda > \sigma_1[\mathcal{L}]$, we can choose $K(\lambda)$, independent of q, such that

$$K(\lambda)\varphi_1[\mathcal{L}] \le \theta_{[\lambda,q,p]}.$$

Again the Ascoli-Arzela's Theorem completes the proof.

The case p = 1 is more complicated. We are going to prove that $\theta_{[\lambda,q,p]}$ tends to 0 when $\lambda < \sigma_1[\mathcal{L} + b]$ and to infinity when $\lambda > \sigma_1[\mathcal{L} + b]$ as $q \uparrow 1$, showing that the bifurcation diagram with q < 1 (see Figure 2) "converges" to the one with q = p = 1 (see Figure 1).

Theorem 7 Assume 0 < q < p = 1. Then:

- 1. If $\lambda < \sigma_1[\mathcal{L} + b]$, then $\|\theta_{[\lambda,q,1]}\|_{\infty} \to 0$ as $q \uparrow 1$.
- 2. If $\lambda > \sigma_1[\mathcal{L} + b]$, then $\|\theta_{[\lambda,q,1]}\|_{\infty} \to \infty$ as $q \uparrow 1$.

Proof. For the first part, we fix $\lambda < \sigma_1[\mathcal{L}+b]$. From the continuous dependence of $\sigma_1[\mathcal{L}+b]$ respect to the domain, there exists a regular domain $\Omega' \supset \Omega$ such that

$$\lambda < \sigma_1^{\Omega'}[\mathcal{L} + b] < \sigma_1^{\Omega}[\mathcal{L} + b].$$
⁽²³⁾

Let $\varphi'_1 := \varphi_1^{\Omega'}[\mathcal{L}+b]$ be with $\|\varphi'_1\|_{\infty,\Omega'} = 1$. It is not difficult to see that $\overline{u} := M\varphi'_1$ is a supersolution of (6) being

$$M = \left(\frac{\lambda}{\sigma_1^{\Omega'}[\mathcal{L}+b]}\right)^{1/(1-q)} \frac{1}{(\varphi_1')_{L,\Omega}},$$

and so, by Lemma 1,

$$\|\theta_{[\lambda,q,1]}\|_{\infty,\Omega} \le M \|\varphi_1'\|_{\infty,\Omega}.$$

Now, it suffices to use (23) and to tend $q \uparrow 1$.

For the second part, we are going to build a subsolution whose norm tends to infinity. We take $\varphi_1[\mathcal{L} + b]$ normalized such that $\|\varphi_1[\mathcal{L} + b]\|_{\infty} = 1$. It is easy to prove that $\underline{u} := C\varphi_1[\mathcal{L} + b]$ is a subsolution of (6) with

$$C = \left(\frac{\lambda}{\sigma_1[\mathcal{L}+b]}\right)^{1/(1-q)}.$$

 \diamond

Again, taking $q \uparrow 1$, the proof concludes since $\lambda > \sigma_1[\mathcal{L} + b]$.

References

- H. Amann, On the existence of positive solution of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Diff. Eqns. 39 (1981), 378-412.
- C. Bandle, M. A. Pozio and A. Tesei, The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. A.M.S., 303 (1987), 487-501.
- M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with diffusion and transport effects, J. Diff. Eqns. 160 (2000), 175-262.
- M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations, J. Diff. Eqns., 57 (1985), 373-405.
- D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order", Springer, Berlin, 1983.
- M. E. Gurtin and R. C. McCamy, On the diffusion of biological populations, Math. Bios. 33 (1977), 35-49.
- J. Hernández, F. Mancebo and J. M. Vega de Prada, On the linearization of some singular nonlinear elliptic problem and applications, to appear in Ann. Inst. H. Poincare Anal. Non-Lineaire.
- 9. T. Laetsch, Uniqueness for sublinear boundary value problems, J. Diff. Eqns., 13 (1973), 13-23.

- A. Leung and G. Fan, Existence of positive solutions for elliptic systems- degenerate and nondegenerate ecological models, J. Math. Anal. Appl. 151 (1990), 512-531.
- P. J. McKenna and W. Walter, On the Dirichlet problem for elliptic systems, Appl. Anal. 21 (1986), 207-224.
- P. De Mottoni, A. Schiaffino and A. Tesei, Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems, Annali Mat. Pura Appl. 136 (1984), 35-48.
- J. D. Murray, "Mathematical Biology", Biomaths. Texts, Vol. 19, Springer-Verlag, Berlin, 1989.
- 14. A. Okubo, "Diffusion and Ecological Problems: Mathematical Models", Springer, Berlin, 1980.
- 15. C. V. Pao, "Nonlinear Parabolic and Elliptic Equations", Plenum Press, New York, 1992.
- M. A. Pozio and A. Tesei, Support properties of solutions for a class of degenerate parabolic problems, Comm. Partial Diff. Eqns., 12, (1987), 47-75.
- J. Spruck, Uniqueness in a diffusion model of population biology, Comm. Partial Diff. Eqns., 15, (1983), 1605-1620.