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1 Introduction

In this paper we study the existence of solution of the nonlinear problem





ua −∆u + q(x, a)u = g(x, a, u) in Q := Ω× (0, A),

u = 0 on Σ := ∂Ω× (0, A),

u(x, 0) =
∫ A

0
β(x, a)u(x, a)da in Ω,

(1)

where Ω is a bounded and regular domain of IRN , A > 0, β a bounded, nonneg-

ative and nontrivial function, q is a measurable function blowing up at a = A

and g is a measurable function with assumptions that will be detailed below.

For that, we are going to employ the sub-supersolution method. Observe that,

mathematically, apart from the nonlinearity, (1) has two main difficulties: the

coefficient q is not bounded and the initial datum is non-local. So, we can not

apply the classical sub-supersolution method for parabolic problem (see for

instance [12] and [6]).

We assure that assuming the existence of an ordered pair of sub-supersolution

of (1), there exists a solution between the sub and the supersolution provided

of, basically, g is a lipschitz function in the variable u. Hence, our result gen-

eralizes the classical ones for parabolic problem in the two ways mentioned

above. We would like to point out that although comparison results have been

used in this framework (see for instance Lemma 2 in [7] and Lemma 4.5 in

[9]), we have not found a sub-supersolution method developed for this kind of

problem.

We apply the above result to study the existence and uniqueness of positive
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solution of the logistic equation





ua −∆u + q(x, a)u = λu− u2 in Q,

u = 0 on Σ,

u(x, 0) =
∫ A

0
β(x, a)u(x, a)da in Ω,

(2)

with λ ∈ IR. Equ. (2) provides us with the steady-state solutions of the cor-

responding time dependent problem, and so, u(x, a) represents the density

population of a species of age a localized in x, being thus Ω the habitat of the

species. Observe that we are assuming that Ω is surrounded by inhospitable

areas because the homogenous Dirichlet boundary condition. A is the maxi-

mal age for the species, λ−q(x, a) is the birth (when positive) or death (when

negative) rate function. In this context, the fact that q(x, a) blows up at a = A

it will assure that the species dies out at the age of A. Finally, β is the rate

fertility function.

In general, the study of the structure of positive solutions set of a problem

similar to (2) is far from to be easy. In fact, to our knowledge only linear

problem in u has been analyzed in [9], although in this case the equation also

depends on the total population P (x) =
∫ A
0 u(x, a)da. Specifically in [9], the

reaction term is the trivial function and q and β verify

q(x, a) = q1(a) + q2(P ), β(x, a) = β1(a),

and moreover P is the positive solution of the classical logistic elliptic equation,

and so it is known (see Theorem 3.5 in [9]). Under these assumptions, the

author proved that only separable solutions exist and he looked at them giving

the explicit solution. Finally, we want to mention that nonlinear problems in u

without diffusion have been studied previously, see for example [13] and [14].

For the nonexistence and uniqueness results of (2) we will study an eigenvalue

problem related to (2) with the coefficient q depending of a and x. Specifically,
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the following eigenvalue problem is analyzed





ua −∆u + q(x, a)u = λu in Q,

u = 0 on Σ,

u(x, 0) =
∫ A

0
β(x, a)u(x, a)da in Ω,

(3)

For that, we follow the main idea of [8] but we have given another point of view

to their results and some of them will be shaped. We prove that there exists

a unique principal eigenvalue (in the sense that it is the unique with positive

eigenfunction associated) denoted by λ0(q). Observe that great difference that

there exists between problem (3) and the classical parabolic one (3) with

u(x, 0) = u0(x) > 0 instead of the non-local initial condition, where a unique

positive solution exists for all λ ∈ IR.

We apply all the above results to show that (2) possesses a positive solution

if, and only if, λ > λ0(q). Moreover, if λ ≤ λ0(q) the only nonnegative solution

of (2) is the trivial one and if λ > λ0(q) there exists a unique positive solution.

Again, a drastic change occurs with respect to the problem (2) with u(x, 0) =

u0(x), which possesses a unique positive solution for all λ ∈ IR.

An outline of the work is as follows: in Section 2 we analyze the eigenvalue

problem related to (2), study the linear case and establish a strong maximum

principle; in Section 3 we prove that the sub-supersolution method works and

in the last section we apply these results to the logistic equation (2).

2 The eigenvalue problem

In this section we study the eigenvalue problem (3) assuming that
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(Hq) q is a function such that q ∈ L∞(Ω× (0, r)) for r < A and

∫ r

0
qM(a)da < ∞,

∫ A

0
qL(a)da = +∞, (4)

being qL(a) := infx∈Ω q(x, a) and qM(a) := supx∈Ω q(x, a).

(Hβ) β ∈ L∞(Q), β ≥ 0, nontrivial and

mes{a ∈ [0, A] : βL(a) := inf
x∈Ω

β(x, a) > 0} > 0.

Remark 1 Condition (4) is necessary to have that lima↑A u(x, a) ≡ 0, for u

solution of (3), see Remark 4 below.

Definition 2 λ is an eigenvalue of (3) if there exists u ∈ L2(0, A; H1
0 (Ω)),

ua + qu ∈ L2(0, A; H−1(Ω)) with u 6= 0 solution of (3) in the sense that

∀v ∈ L2(0, A; H1
0 (Ω)):

∫ A

0
< ua + qu, v > da +

∫

Q
∇u · ∇v da dx = λ

∫

Q
uv da dx,

u(x, a) = 0 on Σ,

u(x, 0) =
∫ A

0
β(x, a)u(x, a) da, in Ω,

where <,> denotes the duality pairing between H1
0 (Ω) and H−1(Ω).

We say that λ is a principal eigenvalue if u > 0 in Q.

Before studying (3) we need to analyze the autonomous case, i.e.,





ua −∆u + m(a)u = λu in Q,

u = 0 on Σ,

u(x, 0) =
∫ A

0
γ(a)u(x, a)da in Ω,

(5)

where

5



(Hm) m ∈ L∞(0, r) for r < A and

∫ A

0
m(a)da = +∞. (6)

(Hγ) γ ∈ L∞(0, A), γ ≥ 0 and nontrivial.

Theorem 3 Assume (Hm) and (Hγ). Then, (5) possesses a positive solution

if, and only if,

λ = λ1 + rm,

where rm is defined by

1 =
∫ A

0
γ(a)erma−

∫ a

0
m(s)dsda, (7)

and λ1 is the principal eigenvalue of the −∆ under homogeneous Dirichlet

boundary condition. Moreover, in this case the solution is

ϕ0(x, a) = erma−
∫ a

0
m(s)dsϕ1(x),

being ϕ1 a positive eigenfunction associated to λ1.

PROOF. First, thanks to Theorem 3.5 of [9], any solution of (5) is separable.

Observe that in the cited result, A = ∞, but we can adapt the proof to the

case A < ∞. Take

u(x, a) = p(a)ϕ(x).

Then,

pa + m(a)p = rp, r ∈ IR;

and so,

p(a) = p0e
ra−

∫ a

0
m(s)ds.

It is not hard to show that p satisfies the initial condition

p(0) =
∫ A

0
γ(a)p(a)da,

if r = rm. On the other hand,

−∆ϕ = (λ− rm)ϕ in Ω, ϕ = 0 on ∂Ω,
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and thus, λ− rm = λ1 and ϕ = ϕ1. This completes the proof.

Remark 4 (1) Observe that thanks to (6) we get that lima↑A ϕ0(x, a) = 0 for

all x ∈ Ω.

(2) A related result was proved in Theorem 1 of [4], using properties of the

infinitesimal generator associated to (5).

To end the autonomous case, we establish a strong maximum principle.

Definition 5 Denote by L2
+(Ω) := {f ∈ L2(Ω) : f(x) ≥ 0 a. e. x ∈ Ω}. We

say that u ∈ L2
+(Ω) is quasi-interior point of L2

+(Ω), and we write u À 0, if

∫

Ω
u(x)f(x)dx > 0, for all f ∈ L2

+(Ω) and nontrivial.

Lemma 6 Assume (Hm) and that u is solution of





ua −∆u + m(a)u = f(x, a) in Q,

u = 0 on Σ,

u(x, 0) = φ(x) in Ω,

(8)

and f ≥ 0, φ ≥ 0 and some of the inequalities strict. Then, u À 0.

If f ≡ φ ≡ 0, then u ≡ 0.

PROOF. Observe that if u is solution of (8), then

v := ue
∫ a

0
m(s)ds,

is the solution of the equation




va −∆v = g(x, a) := f(x, a)e
∫ a

0
m(s)ds in Q,

v = 0 on Σ,

v(x, 0) = φ(x) in Ω.

(9)

7



By [10] (see also [2]), v À 0 and so u À 0.

Similarly, if f ≡ φ ≡ 0, then v ≡ 0, and so that u.

We state now a result for the non-autonomous linear case. Consider the prob-

lem




ua −∆u + q(x, a)u = f(x, a) in Q,

u = 0 on Σ,

u(x, 0) = φ(x) in Ω,

(10)

where q satisfies (Hq) and φ ∈ L2(Ω).

Lemma 7 Suppose that f ∈ L2(Q). Then, there exists a unique solution u

of (10) such that u ∈ L2(0, A; H1
0 (Ω)) and ua + q(x, a)u ∈ L2(0, A; H−1(Ω)).

Moreover, for each 0 < A0 < A we have that u ∈ C([0, A0]; L
2(Ω)).

Furthermore, we have the following comparison principles:

(1) If f ≥ 0 and φ ≥ 0, then u ≥ 0. If some of the inequalities is strict, we

deduce that u À 0.

(2) If f1 ≥ f2 ≥ 0, φ1 ≥ φ2 ≥ 0 and q1 ≤ q2 in their respective domains, then

u1 ≥ u2, where ui, i = 1, 2, is the solution of (10) with f = fi, φ = φi

and q = qi.

PROOF. Under the change of variable

w = e−kau, k > 0,
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w satisfies 



wa −∆w + (q + k)w = g := fe−ka in Q,

w = 0 on Σ,

w(x, 0) = φ(x) in Ω,

(11)

and so by (Hq), we can take k large such that q +k/3 ≥ 0. We study now (11)

instead of (10).

Define

qn := min{q, n}, n ∈ IN,

and consider the problem





wa −∆w + (qn(x, a) + k)w = g(x, a) in Q,

w = 0 on Σ,

w(x, 0) = φ(x) in Ω.

(12)

Now, for each n ∈ IN, since qn+k is bounded, there exists a unique wn solution

of (12) with wn ∈ L2(0, A; H1
0 (Ω)) and (wn)a ∈ L2(0, A; H−1(Ω)). Multiplying

(12) by wn and integrating we obtain

1

2

d

da

∫

Q
|wn|2 +

∫

Q
|∇wn|2 +

∫

Q
(qn + k)w2

n =
∫

Q
gwn,

and so, applying that 2ab ≤ (ε2a2 + (1/ε2)b2) we get

1

2

d

da

∫

Q
|wn|2 +

∫

Q
|∇wn|2 +

∫

Q
(qn + k/3)w2

n + (k/3)w2
n ≤ C.

Now, we can extract a sequence (wn) such that

wn ⇀ w in L2(0, A; H1
0 (Ω)),

√
qn + (k/3)wn ⇀ h in L2(Q),

(wn)a + (qn + k/3)wn ⇀ z in L2(0, A; H−1(Ω)).
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On the other hand, for ϕ ∈ C∞
c (0, A; H1

0 ), and for n large enough, we get

∫ A

0
< (wn)a + (qn + k/3)wn > ϕ =

∫ A

0
(−wnϕa + (q + k/3)wnϕ) →

→
∫ A

0
(−wϕa + (q + k/3)w)ϕ),

and so

z = wa + (q + k/3)w.

This shows that u is solution of (10).

The regularity u ∈ C([0, A0]; L
2(Ω)), A0 < A, follows considering the equation

(10) in Q0 := Ω× (0, A0), see for example Theorem X.1 of [3].

For the uniqueness, take two different solutions u1 and u2. Then, w = u1− u2

satisfies that

wa −∆w + q(x, a)w = 0, in Q, w = 0 on Σ, w(x, 0) = 0 in Ω.

It suffices to multiply this problem by w and obtain that w ≡ 0.

Now, assume that f ≥ 0 and φ ≥ 0 and let u the solution of (10). Then, by the

classical maximum principle (observe that the potential is bounded) applied

to (12) it follows that wn ≥ 0, and so that u ≥ 0. Moreover,

0 ≤ f = ua −∆u + q(x, a)u ≤ ua −∆u + qM(a)u,

and so the fact of u À 0 follows by Lemma 6.

The main result of this section is:

Theorem 8 Assume (Hq) and (Hβ). Then, there exists a unique principal

eigenvalue of (3), denoted by λ0(q). Moreover, it is simple and the only eigen-

value having a positive eigenfunction. The positive eigenfunctions can be taken

bounded. Furthermore, for any other eigenvalue λ of (3), it holds that

Re(λ) > λ0(q). (13)
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Finally, the map

q 7→ λ0(q)

is increasing.

We need some preliminaries before proving this result. For each φ ∈ L2(Ω) we

define zφ the unique solution of (which exists by Lemma 7)





za −∆z + q(x, a)z = 0 in Q,

z = 0 on Σ,

z(x, 0) = φ(x) in Ω,

(14)

and define the operator Bλ : L2(Ω) 7→ L2(Ω) by

Bλ(φ) =
∫ A

0
β(x, a)eλazφ(x, a)da.

The next result plays an important role in this work

Lemma 9 (1) The operator Bλ is a well-defined, compact and positive oper-

ator.

(2) It holds that

Aλ(φ) ≤ Bλ(φ) ≤ Cλ(φ) ∀φ ≥ 0, (15)

where

Aλ(φ) :=
∫ A

0
βL(a)eλawφ(x, a)da, Cλ(φ) :=

∫ A

0
βM(a)eλayφ(x, a)da

being wφ and yφ the solutions of (14) with q(x, a) = qM(a) and q(x, a) =

qL(a), respectively (i. e., wφ and yφ are solutions of autonomous prob-

lems).

(3) Bλ is an irreducible operator.

(4) If φ is a fixed point of Bλ, then λ is an eigenvalue of (3).

(5) Conversely, if (λ, u) is a pair of eigenvalue-eigenfunction of (3), then

φ(x) := u(x, 0) is a fixed point of Bλ.
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PROOF. That Bλ is well-defined follows by Lemma 7. The compactness is

due to the properties of the mapping φ 7→ zφ, see also [8].

Paragraph b) follows by Lemma 7 b). Indeed, since qM(a) ≥ q(x, a), wφ ≤ zφ,

and so Aλ ≤ Bλ because βL(a) ≤ β(x, a).

Now, we are going to show that Bλ is an irreducible operator. Recall that a

positive operator is irreducible if a power of the operator (eventually itself) is

strongly positive. So, we will prove that it is strongly positive, i.e., if φ ≥ 0

and nontrivial then Bλ(φ) À 0. First, observe that

wφ À 0

by Lemma 6. As consequence, using (Hβ) we have

Bλ(φ) ≥ Aλ(φ) À 0.

This implies that Bλ is strongly positive.

Let φ be a fixed point of Bλ. It is not difficult to show that u = eλazφ is an

eigenfunction associated to λ.

Conversely, let (λ, u) be an eigenvalue and an associated eigenfunction of (3).

By the regularity of u, see Lemma 7, we have that φ(x) := u(x, 0) ∈ L2(Ω).

Moreover,

zφ = zu(x,0) = e−λau(x, a), (16)

and so Bλφ = φ. This completes the proof.

Now, define by

r(Bλ),

the spectral radius of Bλ. Since Bλ is a positive compact irreducible linear

operator on a Banach lattice, r(Bλ) is positive, see Theorem 3 in [11]. By the

Krein-Rutman Theorem (see Theorem 12.3 of [5] for a very general version),
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r(Bλ) is an algebraically simple eigenvalue with a quasi-interior eigenfunction,

and it is the only eigenvalue having a positive eigenfunction. So, we have the

following result

Corollary 10 λ0 is a principal eigenvalue of (3) if, and only if, r(Bλ0) = 1.

PROOF. Let u0 > 0 be a principal eigenfunction associated to λ0. By Lemma

6 it follows that u0 À 0. Now, thanks to (Hβ) we obtain that φ0(x) :=

u0(x, 0) À 0. Now, by Lemma 9 e), φ0 is a strongly positive fixed point of Bλ0

and by Krein-Rutman Theorem we get that r(Bλ0) = 1.

Conversely, if r(Bλ0) = 1 there exists a strongly positive fixed point φ0 of Bλ0 .

In this case, by Lemma 9 d) u0(x, a) = eλ0azφ0 À 0 is a principal eigenfunction

of (3).

As consequence of Theorem 3, we have for the autonomous problem that

Proposition 11 Assume (Hm) and (Hγ). Then,

r(Dλ1+rm) = 1,

being

Dλ(φ) =
∫ A

0
γ(a)eλapφ(x, a)da,

with pφ the unique solution of (14) with q(x, a) = m(a).

PROOF. Observe that for φ = ϕ1 we get that

pϕ1 = e−λ1a−
∫ a

0
m(s)dsϕ1,

and so,

Dλ(ϕ1) = ϕ1

∫ A

0
γ(a)e(λ−λ1)a−

∫ a

0
m(s)dsda.

Thus,

Dλ1+rm(ϕ1) = ϕ1,
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i.e., 1 is an eigenvalue with a positive eigenfunction. Then, by the Krein-

Rutman Theorem r(Dλ1+rm) = 1.

PROOF. [Theorem 8] First, recall that the map λ 7→ r(Bλ) is increasing

(see for instance Theorem 3.2 (v) in [1]). Second, we will prove that the map

λ 7→ r(Bλ) is continuous. Take λn → λ0 as n → +∞, then for all ε > 0 we

have that λ0 − ε ≤ λn ≤ λ0 + ε for n ≥ n0, for some n0 ∈ IN. We claim that

e−εAr(Bλ0) ≤ r(Bλ0−ε) ≤ r(Bλn) ≤ r(Bλ0+ε) ≤ eεAr(Bλ0), (17)

whence the continuity follows, and so if there exists a principal eigenvalue,

this is unique.

Take φ0 a principal eigenfunction associated to r(Bλ0). Then,

eεAr(Bλ0)φ0 − Bλ0+ε(φ0) ≥ 0,

and so by Theorem 3.2 (iv) in [1] we obtain that eεAr(Bλ0) ≥ r(Bλ0+ε). This

proves (17).

Now, applying Proposition 11 to Aλ and Cλ and Lemma 9 b), it follows that

1 = r(Aλ1+rqM
) ≤ r(Bλ1+rqM

), 1 = r(Cλ1+rqL
) ≥ r(Bλ1+rqL

),

and so, there exists λ0(q) ∈ (λ1+rqL
, λ1+rqM

) such that r(Bλ0(q)) = 1 . Again,

the Krein-Rutman Theorem proves the character simple of λ0(q) and (13).

Now, take q1 ≤ q2. Then the solutions of (14) with q = q1 (resp. q = q2),

denoted by z1 (resp. z2), satisfy that

z1 ≥ z2,

whence it follows that λ0(q1) ≤ λ0(q2).
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We will prove that the positive eigenfunctions are bounded. Take ϕ an eigen-

function associated to λ0(q). Then, by (16) we get that

ϕ(x, a) = eλ0(q)azϕ(x,0)(x, a).

On the other hand, it is not hard to prove that

zϕ(x,0)(x, a) ≤ e−
∫ a

0
qL(s)dscϕ(x,0)(x, a),

where cϕ(x,0) denotes the solution of (9) with g ≡ 0 and φ(x) = ϕ(x, 0) ∈
L2(Ω). Then,

ϕ(x, a) ≤ eλ0(q)a−
∫ a

0
qL(s)dscϕ(x,0)(x, a),

and so, since cϕ(x,0) ∈ C∞((0, A) × Ω) see Theorem X.1 of [3], it follows that

ϕ is bounded.

3 The sub-supersolution method

Now, we want to study the nonlinear problem (1) where β and q satisfy (Hβ)

and (Hq) respectively, and g : Ω× (0, A)× IR 7→ IR is a measurable function.

Definition 12 (1) We say that a function u ∈ L2(0, A; H1
0 (Ω)), ua + qu ∈

L2(0, A; H−1(Ω)), g(x, a, u) ∈ L2(Q) is a solution of (1) if it satisfies that

for all v ∈ L2(0, A; H1
0 (Ω))

∫ A

0
< ua + qu, v > da +

∫

Q
∇u · ∇v da dx =

∫

Q
g(x, a, u)v da dx,

u(x, a) = 0 on Σ,

u(x, 0) =
∫ A

0
β(x, a)u(x, a) da, in Ω.

(2) We say that a function u ∈ L2(0, A; H1(Ω)), ua +qu ∈ L2(0, A; [H1(Ω)]′),

g(x, a, u) ∈ L2(Q) is a supersolution of (1) if it satisfies that:
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(a) For all v ∈ L2(0, A; H1
0 (Ω)), v ≥ 0

∫ A

0
< ua + qu, v > da +

∫

Q
∇u · ∇v da dx ≥

∫

Q
g(x, a, u)v da dx,

(b) u ≥ 0 on Σ,

(c)

u(x, 0) ≥
∫ A

0
β(x, a)u(x, a)da in Ω.

Similar definition for a subsolution, interchanging the inequalities.

Theorem 13 Assume (Hβ), (Hq) and that

|g(x, a, s1)− g(x, a, s2)| ≤ L|s1 − s2|, for a.e. x ∈ Ω, a ∈ (0, A), s1, s2 ∈ IR.

(18)

Then, if there exists a pair of sub-supersolution of (1) such that u ≤ u there

exists a minimal u∗ and maximal u∗ solutions of (1), in the sense that for any

other solution u ∈ [u, u] := {u ∈ L2(Q) : u ≤ u ≤ u}, it holds that

u ≤ u∗ ≤ u ≤ u∗ ≤ u.

PROOF. Take M > 0 a positive constant to be chosen later, and define the

sequence un as u0 = u and for n ≥ 1





(un)a −∆(un) + q(x, a)un + Mun = g(x, a, un−1) + Mun−1 in Q,

un = 0 on Σ,

un(x, 0) =
∫ A

0
β(x, a)un−1(x, a)da in Ω,

(19)

u0 = u and un defined by





(un)a −∆(un) + q(x, a)un + Mun = g(x, a, un−1) + Mun−1 in Q,

un = 0 on Σ,

un(x, 0) =
∫ A

0
β(x, a)un−1(x, a)da in Ω.

(20)
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First, we show that un is well-defined. Since g(x, a, u0) = g(x, a, u) ∈ L2(Q),

we can apply Lemma 7 and conclude the existence of u1. Moreover, since

−L|u1 − u0|+ g(x, a, u0) ≤ g(x, a, u1) ≤ L|u1 − u0|+ g(x, a, u0),

it follows that g(x, a, u1) ∈ L2(Q), and so the existence of u2, and analogously

un. Similarly, it can proved the existence of un.

We will show that un (resp. un) is increasing (resp. decreasing) and that

u ≤ . . . ≤ un ≤ un+1 ≤ un+1 ≤ un ≤ . . . ≤ u. (21)

Indeed, taking w := u1 − u0, it satisfies





wa −∆w + q(x, a)w + Mw ≥ 0 in Q,

w ≥ 0 on Σ,

w(x, 0) ≥ 0 in Ω.

(22)

Using Lemma 7 we conclude that w ≥ 0, i.e.,

u = u0 ≤ u1.

Now assume that un−1 ≤ un. Observe that

g(x, a, un)− g(x, a, un−1) + M(un − un−1) ≥ (M − L)(un − un−1) ≥ 0,

for M > L. Then w := un+1 − un satisfies





wa −∆w + q(x, a)w + Mw ≥ 0 in Q,

w = 0 on Σ,

w(x, 0) =
∫ A

0
β(x, a)(un − un−1)(x, a)da ≥ 0 in Ω,

(23)

again Lemma 7 shows that un ≤ un+1.

Similarly, it can be proved the rest of inequalities of (21).
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Now, we multiply (19) by un and obtain

1

2

d

da

∫

Q
|un|2 +

∫

Q
|∇un|2 +

∫

Q
(q + M)u2

n =
∫

Q
(g(x, a, un−1) + Mun−1)un.

On the other hand, observe that

g(x, a, un−1) ≤ L(un−1 − u) + g(x, a, u) ≤ L(u− u) + g(x, a, u),

and

g(x, a, un−1) ≥ g(x, a, u)− L(un−1 − u) ≥ g(x, a, u)− L(u− u),

and so,
1

2

d

da

∫

Q
|un|2 +

∫

Q
|∇un|2 +

∫

Q
(qn + M)u2

n ≤ C,

with C independent of n. With a similar reasoning to the used in Lemma 7,

we can extract a subsequence (un) such that

un ⇀ u∗ in L2(0, A; H1
0 (Ω)),

√
qnun ⇀ w in L2(Q),

(un)a + qnun ⇀ z in L2(0, A; H−1(Ω)).

By the monotony of un and the Monotone Convergence Theorem, we can

conclude

un → u∗ in L2(Q). (24)

Now, using that

−L(un − u∗) + g(x, a, u∗) ≤ g(x, a, un) ≤ L(un − u∗) + g(x, a, u∗),

and so, g(x, a, un) ⇀ g(x, a, u∗) weakly in L2(Q), it follows that u∗ a solution

of (1).

Finally, the continuity of the trace application on a = 0 and (24) imply that

u∗(x, a) =
∫ A

0
β(x, a)u∗(x, a)da.
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That u∗ is the minimal solution of (1) is not difficult to show. Indeed, if u is

a solution of (1) such that u ∈ [u, u], it can be shown that the sequence un

built in (19) satisfies that u ≤ un ≤ u. So,

un ↑ u∗ ≤ u.

Similarly, we can reason with the sequence un and conclude the existence of

a maximal solution u∗ of (1). This ends the proof.

4 Application to the logistic equation

The main result of this section is:

Theorem 14 Problem (2) possesses a positive solution if, and only if, λ >

λ0(q). Moreover, in the case that the solution exists, then it is unique.

PROOF. Suppose that u > 0 is solution of (2). Then, we can write the

equation (2) as

ua −∆u + (q(x, a) + u(x, a)− λ)u = 0, u(x, 0) > 0,

with q+u−λ satisfying (Hq). Hence, by Lemma 7, u À 0, and so by Theorem 8,

and taking into account that ua − ∆u + (q(x, a) + u(x, a))u = λu, it follows

that

λ = λ0(q + u) (25)

and by the monotony of the map q 7→ λ0(q),

λ = λ0(q + u) > λ0(q).

Assume now that λ > λ0(q). Take

u := εϕ(x, a)
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with ε > 0 sufficiently small and ϕ a positive eigenfunction associated to λ0(q).

It is not difficult to show that u is subsolution of (2). Indeed, u = 0 on Σ and

u(x, 0) = εϕ(x, 0) = ε
∫ A

0
β(x, a)ϕ(x, a)da =

∫ A

0
β(x, a)u(x, a)da.

Finally,

ua −∆u + q(x, a)u ≤ λu− u2,

provided that

εϕ(x, a) ≤ λ− λ0(q),

which is true taking ε sufficiently small (observe that ϕ is bounded, cf. Theo-

rem 8).

We will build a supersolution. Define

Fµ(a) := µa−
∫ a

0
qL(s)ds, µ ∈ IR,

and take µ ∈ IR sufficiently large so that

∫ A

0
eFµ(a)da ≥ 1

β
. (26)

where β := supQ β(x, a). Consider the function

G(x) :=
∫ A

0

eFµ(a)

1 + x
∫ a
0 eFµ(s)ds

da.

Observe that G is a continuous function and by (26) we have that

lim
x↓0

G(x) ≥ 1

β
, lim

x→+∞G(x) = 0,

and so, there exists y0 > 0 such that G(y0) = 1/β, i.e.,

∫ A

0

eFµ(a)

1 + y0

∫ a
0 eFµ(s)ds

da =
1

β
. (27)

Define Y (a) the unique solution of the differential equation

ya + qL(a)y = µy − y2, y(0) = y0;
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where y0 is defined by (27). Solving the above equation, we get that

Y (a) =
eFµ(a)

1
y0

+
∫ a
0 eFµ(s)ds

. (28)

Take

u(a) := KY (a),

with K a positive constant large. It can be proved that u is a supersolution

of (2) for µ large. Indeed, u > 0 on Σ and

ua −∆u + q(x, a)u ≥ λu− u2,

provided that

µ− λ + q(x, a)− qL(a) + (K − 1)Y ≥ 0,

which is satisfied if µ ≥ λ, and K ≥ 1. On the other hand, using (27) we have

that

∫ A

0
β(x, a)u(x, a)da ≤ Ky0β

∫ A

0

eFµ(a)

1 + y0

∫ a
0 eFµ(s)ds

da = Ky0 = u(x, 0).

Now, it is clear that we can choose ε > 0 and K > 0 such that u ≤ u. This

completes the proof of the existence of positive solution.

For the uniqueness we assume that there exist two different positive solutions

u1 and u2. Define

w := u2 − u1 6= 0.

It is clear that w satisfies




wa −∆w + (q(x, a) + u1 + u2)w = λw in Q,

w = 0 on Σ,

w(x, 0) =
∫ A

0
β(x, a)w(x, a)da in Ω,

(29)

and so, since w 6= 0, by (13), we have that

λ ≥ λ0(q + u1 + u2) > λ0(q + u1),
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which is an absurdum. Indeed, since u1 is positive solution of (1) we have that

λ = λ0(q + u1), see (25).

Remark 15 (1) Observe that the unique solution u of (2) satisfies that

lim
a↑A

u(x, a) = 0, for x ∈ Ω.

Indeed, by (Hq) it follows that lima↑A Fµ(a) = −∞, and thanks to (28)

we conclude the claim.

(2) In the autonomous case, q(x, a) = q(a) and β(x, a) = β(a), we have

shown that

λ0(q) = λ1 + rq,

where rq is defined in (7) with γ(a) = β(a).
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