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1 Introduction

In this paper we present some results of existence and uniqueness of positive solutions of

the following nonlinear problem




ua −∆u + µ(x, a)u = λu + g(u) in Q := Ω× (0, A),

u = 0 on Σ := ∂Ω× (0, A),

u(x, 0) =
∫ A

0
β(x, a)u(x, a)da in Ω,

(1.1)

where Ω is a bounded and regular domain of IRN , N ≤ 3, A > 0, β a regular and positive

function, µ is a measurable, non-negative and non-trivial function blowing up at a = A

and

g(u) = ± u

1 + u
.

Equation (1.1) models the steady-state solutions of its time-dependent counterpart. Hence

u(x, a) represents the density population of a species localized in x ∈ Ω, its habitat, of

age a < A, its maximal age. Here µ denotes the mortality rate of the species, so that µ

blows up at a = A†, β is the fertility rate function and λ will be considered a parameter.

Finally, the reaction function g(u) is a Holling-Tanner type. This kind of was introduced

because the classical Lotka-Volterra model has the defect that the predators must be

capable of consuming an infinite number of preys. For the Holling-Tanner model this

difficulty disappears, and a fixed predator population, the prey follows an equation similar

to (1.1), see [6], for which it is interesting its study.

Observe that (1.1) presents three difficulties roughly speaking: the nonlinearity g,

the blowing-up of µ and the non-local initial condition. In fact, the most of works re-

lated with this problem analyze the time-dependent problem, see for instance [10], [17],

[18] and references therein. However, very little is known about of stationary problems.

Only partial results for specific examples are shown in [18]. In [11] it is proved that the

sub-supersolution method works for equations as (1.1) and it was applied to the logistic

equation, i.e. g(u) = −up, p > 1 basically, showing that a unique bounded positive so-

lution exists. Of course, when applicable, the sub-supersolution method gives us more

information relating to the solution. However, in some equations it is difficult to find, or

simply it does not exist, the sub or supersolution. So, it is interesting to have different
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methods to prove the existence of solution.

In this work, we apply the bifurcation method to (1.1). In our knowledge this is the

first time in which this method is applied in this kind of problem, and of course we think

that this is the first step towards more general nonlinearities. For that, we need the

compactness of certain operators involving the study of the following linear problem




ua −∆u + µ(x, a)u = f(x, a) in Q,

u = 0 on Σ,

u(x, 0) =
∫ A†

0
β(x, a)u(x, a)da in Ω,

(1.2)

where f ∈ L2(Q), f ≥ 0.

Previously, we have to study in detail the eigenvalue problem




ua −∆u + µ(x, a)u = λu in Q,

u = 0 on Σ,

u(x, 0) =
∫ A†

0
β(x, a)u(x, a)da in Ω,

(1.3)

Problem (1.2) was studied in [13] and the authors proved the existence and uniqueness

of positive solution for large µ. Moreover, in [13], see also [11], and using some indirect

reasoning, the authors showed the existence of a principal eigenvalue of (1.3), denoted

by λ0(µ), that is, an eigenvalue with a positive eigenfunction associated to. In [13], the

authors assume a restrictive condition on µ, specifically for any 0 < A0 < A

sup
a∈[0,A0]

∫

Ω
µ2(a, x)dx is continuous with respect to A0 ∈ [0, A].

This condition has been removed in [11] and in this paper, where we also show some

properties of the principal eigenvalue and its associated eigenfunction.

With respect to (1.2) we show that there exists a unique positive solution provided

λ0(µ) > 0, improving one of the main results of [13], (see Theorem 1 and pages 194-195).

Now, we want to apply a bifurcation method to the nonlinear problem (1.1); we have

chosen the natural space L∞(Q), so that we need the compactness of the operator T : f ∈
L∞(Q) 7→ u ∈ L∞(Q), solution of (1.2). For that, we have to impose some restriction on

the growth of µ (see condition (5.2)), similar to the used previously by other authors, see
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for instance [2], and the use the Sobolev spaces. Finally, we apply the bifurcation method

to (1.1) and conclude:

• If g(u) = u/(1 + u), then (1.1) possesses a positive solution if, and only if, λ ∈
(λ0(µ)− 1, λ0(µ)). When the solution exists, this is unique.

• If g(u) = −u/(1 + u), then (1.1) possesses a positive solution if, and only if, λ ∈
(λ0(µ), λ0(µ) + 1).

This paper is arranged as follows. In Section 2 we study problem (1.2). Section 3 is

dedicated to establish some useful properties of the principal eigenvalue, in Section 4 we

analyze problem (1.3), in Section 5 we show the compactness of the map T , and finally the

bifurcation results and the study of (1.1) is made in Section 6. We include an appendix

stating some important known results for reader’s convenience.

2 The eigenvalue problem

Along this work we assume the following hypotheses:

(Hµ) µ is a function such that µ ∈ L∞(Ω× (0, r)) for r < A and

∫ r

0
µM (a)da < ∞,

∫ A

0
µL(a)da = +∞, (2.1)

being µL(a) := essinfx∈Ωµ(x, a) and µM (a) := esssupx∈Ωµ(x, a) and

∇xµ ∈ (L∞(Q))N . (2.2)

(Hβ) β ∈ C2(Q) and

mes{a ∈ [0, A] : βL(a) := inf
x∈Ω

β(x, a) > 0} > 0.

Definition 2.1. Denote by L2
+(Q) := {f ∈ L2(Q) : f(x, a) ≥ 0 a. e. (x, a) ∈ Q}. We say

that u ∈ L2
+(Q) is a quasi-interior point of L2

+(Q), and we write u À 0, if

∫∫

Q
u(x, a)f(x, a)da dx > 0, for all f ∈ L2

+(Q) and non-trivial.
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Along the paper we are going to use the following notations: the norm of the spaces Lq(Q),

1 < q ≤ +∞, it will denoted by ‖ · ‖q; and we denote by

V := L2(0, A; H1
0 (Ω)), W := L2(0, A; H1

0 (Ω) ∩H2(Ω)),

with its respective norms ‖ · ‖V and ‖ · ‖W .

Definition 2.2. λ is a principal eigenvalue of (1.3) if there exists u À 0, u ∈ V, ua+µu ∈
L2(0, A; H−1(Ω)) solution of (1.3) in the sense that ∀v ∈ V:

∫ A

0
< ua + µu, v > da +

∫∫

Q
∇u · ∇v da dx = λ

∫∫

Q
uv da dx,

u(x, 0) =
∫ A

0
β(x, a)u(x, a) da, in Ω,

where <,> denotes the duality pairing between H1
0 (Ω) and H−1(Ω).

Our main results in this section is:

Theorem 2.3. There exists a unique principal eigenvalue of (1.3), denoted by λ0(µ). This

eigenvalue is simple and it is the only having a positive eigenfunction, denoted by ϕ1, in

fact ϕ1 À 0. Moreover, ϕ1 ∈ L∞(Q) and if µ ∈ L∞(Q) we have that ϕ1 ∈ W 2,1
q (Q), for

some q > N + 2. Furthermore, if λ is any other real eigenvalue of (1.3), then

λ0(µ) < λ. (2.3)

Remark 2.4. Conditions (2.2) and N ≤ 3 are only used to prove that ϕ1 ∈ L∞(Q).

Before giving the main result in this section, we need the following one, some part yet

showed in [11]. Consider the equation




ua −∆u + µ(x, a)u = f(x, a) in Q,

u = 0 on Σ,

u(x, 0) = φ(x) in Ω.

(2.4)

Proposition 2.5. Suppose that φ ∈ L2(Ω) and f ∈ L2(Q). Then, there exists a unique

solution u of (2.4) such that u ∈ V and ua + µu ∈ L2(0, A;H−1(Ω)).

With respect to the regularity of the solution:
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a) For each 0 < A0 < A we have that u ∈ C([0, A0]; L2(Ω)).

b) If φ ∈ H1
0 (Ω), then u ∈ W and

‖u‖W ≤ C{‖f‖2, ‖φ‖H1
0 (Ω), ‖∇xµ‖∞}. (2.5)

c) If φ ∈ L∞(Ω) and f ∈ L∞(Q), then u ∈ L∞(Q) and

‖u‖∞ ≤ C{‖f‖∞, ‖φ‖∞}. (2.6)

Furthermore, we have the following comparison principles:

d) If f ≥ 0 and φ ≥ 0, then u ≥ 0. If φ ≥ 0 and non-trivial, we deduce that u À 0.

e) If f1 ≥ f2 ≥ 0, φ1 ≥ φ2 ≥ 0 and µ1 ≤ µ2 in their respective domains, then u1 ≥ u2,

where ui, i = 1, 2, is the solution of (2.4) with f = fi, φ = φi and µ = µi.

f) If u is supersolution (resp. u is a subsolution) of (2.4), then u ≥ u (resp. u ≤ u).

Proof. Under the change of variable

w = e−kau, k > 0,

w satisfies 



wa −∆w + (µ + k)w = g := fe−ka in Q,

w = 0 on Σ,

w(x, 0) = φ(x) in Ω,

(2.7)

and so by (Hµ), we can take k large such that µ + k/3 ≥ 0. We study now (2.7) instead

of (2.4).

Define

µn := min{µ, n}, n ∈ IN,

and consider the problem




wa −∆w + (µn(x, a) + k)w = g(x, a) in Q,

w = 0 on Σ,

w(x, 0) = φ(x) in Ω.

(2.8)
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Now, for each n ∈ IN, since µn + k is bounded, there exists a unique wn solution of (2.8)

with wn ∈ V and (wn)a ∈ L2(0, A;H−1(Ω)). Multiplying (2.8) by wn and integrating we

obtain

1
2

∫

Ω
|wn(x, A)|2 +

∫∫

Q
|∇wn|2 +

∫∫

Q
(µn + k)w2

n =
∫∫

Q
gwn +

1
2

∫

Ω
φ2. (2.9)

Applying that 2ab ≤ (ε2a2 + (1/ε2)b2) we get
∫∫

Q
|∇wn|2 +

∫∫

Q
[(µn + k/3)w2

n + (k/3)w2
n] ≤ C. (2.10)

Now, we can extract a sequence (wn) such that

wn ⇀ w in V,

√
µn + (k/3)wn ⇀ h in L2(Q),

(wn)a + (µn + k/3)wn ⇀ z in L2(0, A; H−1(Ω)).

On the other hand, for ϕ ∈ C∞
c (0, A;H1

0 (Ω)), and for n large enough, we get
∫ A

0
< (wn)a + (µn + k/3)wn, ϕ >=

∫∫

Q
(−wnϕa + (µ + k/3)wnϕ) →

→
∫∫

Q
(−wϕa + (µ + k/3)wϕ), as n →∞,

and so

z = wa + (µ + k/3)w.

This shows that w is solution of (2.7), so that u is solution of (2.4).

On the other hand, from (2.9) and taking k sufficiently large such that µn + k > 0, we

get

‖wn‖2 ≤ C(‖g‖2, ‖φ‖L2(Ω)) (2.11)

and

‖wn‖V ≤ C(‖g‖L2(Q), ‖φ‖L2(Ω)). (2.12)

Hence, since ‖w‖V ≤ lim inf ‖wn‖V it follows that

‖w‖V ≤ C(‖g‖L2(Q), ‖φ‖L2(Ω)). (2.13)

The regularity u ∈ C([0, A0];L2(Ω)), A0 < A, follows considering the equation (2.4) in

Q0 := Ω× (0, A0) where µ is bounded, see for example Theorem X.11 of [7].
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Assume now that φ ∈ H1
0 (Ω) and multiply the equation of wn by −∆wn, we obtain

1
2

∫

Ω
|∇wn(A)|2 +

∫∫

Q
(∆wn)2 +

∫∫

Q
∇[(µn + k)wn] · ∇wn = −

∫∫

Q
g∆wn +

1
2

∫

Ω
|∇φ|2.

Now,

∫∫

Q
∇[(µn + k)wn] · ∇wn =

∫∫

Q
wn∇(µn + k) · ∇wn +

∫∫

Q
(µn + k)|∇wn|2,

and so taking k large such that µn + k > 0, we get

‖∆wn‖2
2 ≤ C(‖g‖2

2 + ‖φ‖2
H1

0 (Ω) + ‖∇(µn + k)‖∞(‖wn‖2
2 + ‖wn‖2

V)).

Now, using (2.11) and (2.12) we obtain that

‖wn‖W ≤ C‖∆wn‖2 ≤ C{‖g‖2, ‖φ‖H1
0 (Ω), ‖∇xµ‖∞},

whence (2.5) follows .

For the uniqueness, take two different solutions u1 and u2. Then, z = u1 − u2 satisfies

that

za −∆z + µ(x, a)z = 0, in Q, z = 0 on Σ, z(x, 0) = 0 in Ω.

It suffices to multiply this problem by z and obtain that z ≡ 0.

Now, assume that f ≥ 0 and φ ≥ 0 and let u the solution of (2.4). By the classical

maximum principle (observe that the potential µn is bounded) applied to (2.8) it follows

that wn ≥ 0, and so that u ≥ 0. This shows first part of paragraph d). Now e) and f) are

direct consequences.

Now, let us show second part of paragraph d). Observe that if u is solution of (2.4),

then u ≥ z being z the solution of




za −∆z + µM (a)z = f ≥ 0 in Q,

z = 0 on Σ,

z(x, 0) = φ(x) in Ω.

(2.14)

But, if z is the solution of (2.14) then

z = exp(−
∫ a

0
µM (s)ds)q(x, t)
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where q is solution of




qa −∆q = fexp(
∫ a
0 µM (s)ds) in Q,

q = 0 on Σ,

q(x, 0) = φ(x) in Ω.

(2.15)

Hence, since q À 0 it follows that u ≥ z À 0.

Finally, we show c). Take

u := Kexp(−
∫ a

0
g(s)ds),

where g ∈ C[0, A] such that µ− g ≥ δ > 0 for some δ > 0 and K is a positive constant. It

is easy to see that u is a supersolution of (2.4) provided of

K ≥ 1
δ
fexp(

∫ a

0
g(s)ds) and K ≥ ‖φ‖∞.

So, it is clear that we can choose a positive K such that

u ≤ C sup{‖f‖∞, ‖φ‖∞}exp(−
∫ a

0
g(s)ds).

A similar lower bound can be found, and thus we conclude that u ∈ L∞(Q) and (2.6).

Now, define the operator Bλ : L2(Ω) 7→ L2(Ω) by

Bλ(φ) =
∫ A

0
β(x, a)eλazφ(x, a)da,

where zφ is the unique solution of (2.4) with f ≡ 0. Then, it is shown in [11] that Bλ

is a well-defined, compact, positive and irreducible operator. (Recall that a operator T

is irreducible if there exists λ > r(T ) such that (λ − T )−1 is strongly positive operator.

Moreover, for a linear operator T is irreducible if T itself or a power of T is strongly

positive, see pag. 118 in [8]).

Hence, we can apply Theorem 12.3 in [8] and conclude that r(Bλ) > 0, is an alge-

braically simple eigenvalue of Bλ and B∗λ (the adjoint), with a quasi-interior eigenfunction

and a strictly positive eigenfunctional, respectively.

Moreover, in [11] it is proved that λ is a eigenvalue of (1.3) if and only if Bλ has a fixed

point. In fact, λ0 is a principal eigenvalue of (1.3) if, and only if, r(Bλ0) = 1.
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The following result was proved in [11], but there we used a version of Krein-Rutman

Theorem which assumed the existence of a cone with non-empty interior. We give now an

alternative proof.

Lemma 2.6. The map λ 7→ r(Bλ) is continuous and increasing.

Proof. First, we show that the map λ 7→ r(Bλ) is increasing. Take λ1 < λ2 and consider

ϕi À 0 and ϕ∗i the eigenfunction and the eigenfunctional associated to r(Bλi), of Bλi and

B∗λi
, i = 1, 2, respectively. Then,

r(Bλ2) < ϕ∗2, ϕ1 >=< B∗λ2
ϕ∗2, ϕ1 >=< ϕ∗2,Bλ2ϕ1 >>< ϕ∗2,Bλ1ϕ1 >= r(Bλ1) < ϕ∗2, ϕ1 >,

whence we deduce that r(Bλ2) > r(Bλ1).

Now, we deduce the continuity of the map λ 7→ r(Bλ). Indeed, take a sequence

λn → λ0, then for all ε > 0 we have that λ0 − ε ≤ λn ≤ λ0 + ε for n ≥ n0, for some

n0 ∈ IN. We can show that

eεAr(Bλ0)ϕ0 − Bλ0+ε(ϕ0) ≥ 0,

and so by Corollary 12.4 in [8] we deduce that eεAr(Bλ0) > r(Bλ0+ε), and thus

e−εAr(Bλ0) ≤ r(Bλ0−ε) ≤ r(Bλn) ≤ r(Bλ0+ε) ≤ eεAr(Bλ0),

whence the continuity follows.

Proof of Theorem 2.3: With the previous notation and considerations, we need to prove

that there exists a real value λ0 such that r(Bλ0) = 1.

Finally, in [11] we construct two operators Aλ and Cλ such that Aλ ≤ Bλ ≤ Cλ. With

a similar argument to the used in Lemma 2.6, we can deduce that

r(Aλ) ≤ r(Bλ) ≤ r(Cλ).

Finally, in [11] we show that there exist λA > λC such that 1 = r(AλA
) = r(CλC

). Hence,

we get that there exists a unique real value λ0 such that r(Bλ0) = 1.

Let λ be a real eigenvalue of (1.3) such that λ 6= λ0. Then, 1 is an eigenvalue of Bλ,

and so r(Bλ) ≥ 1, and so λ > λ0.

Now we show that ϕ1 ∈ L∞(Ω). Indeed, ϕ1 ∈ L2(Q) and so

ϕ1(x, 0) = φ(x) :=
∫ A†

0
β(x, a)ϕ1(x, a)da ∈ L2(Ω),
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and then ϕ1 ∈ V. So, ϕ1 is a solution of an equation as (1.3) with µ− λ0(µ) instead of µ

and φ(x) ∈ H1
0 (Ω), and then by Proposition 2.5 b), ϕ1 ∈ W. So, since N ≤ 3, it follows

that φ ∈ L∞(Ω), and so ϕ1 ∈ L∞(Q) again by Proposition 2.5 c).

Finally, assume that µ is bounded. Denote by ϕ1 the positive eigenfunction asso-

ciated to λ0(µ). Then, (ϕ1)a − ∆ϕ1 = F := (−µ + λ0)ϕ1 ∈ L2(Q) and ϕ1(x, 0) =
∫ A
0 β(x, a)ϕ1(x, a)da ∈ L2(Ω), and then ϕ1 ∈ V. So, ϕ1(x, 0) ∈ H1

0 (Ω) and by Theorem

X.11 of [7] it follows that ϕ1 ∈ W. Then,

ϕ1(x, 0) =
∫ A†

0
β(x, a)ϕ1(x, a)da ∈ H2(Ω) ↪→ W 2−2/q0,q0(Ω),

by Lemma 7.1, with q0 = 2(N + 2)/N . So, by Theorem 7.3, ϕ1 ∈ W 2,1
q0 (Q). Hence

ϕ1(x, 0) ∈ W 2,q0(Ω) ↪→ W 2−2/q1,q1(Ω)

with q1 = q0(N + 2)/N = 2((N + 2)/N)2. Again, by Theorem 7.3, ϕ1 ∈ W 2,1
q1 (Q).

Repeating this argument, we obtain that

ϕ1 ∈ W 2,1
qn

(Q), qn = 2((N + 2)/N)n+1,

where we have used that qn+1 > qn and 2 − N/qn + N/qn+1 ≥ 0. It suffices to take n

sufficiently large such that qn > N + 2, and by Lemma 7.2 it follows that ϕ1 ∈ C1(Q). ¤

3 Some properties of the principal eigenvalue

Our first result provides us with some properties of the principal eigenvalue with respect

to the potential:

Proposition 3.1. a) The map µ 7→ λ0(µ) is increasing. Specifically, if µ1 ≤ µ2 and

µ1 < µ2 in a subset of positive measure, then λ0(µ1) < λ0(µ2).

b) Denote by µn := min{µ, n}. Then,

λ0(µn) ↑ λ0(µ) as n →∞.

Proof. Take µ1 < µ2 in a set of positive measure. Denote by B1
λ and B2

λ the operators

defined previously for µ1 and µ2, respectively, and ϕi À 0 the eigenfunctions associated to
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r(Bi
λ) = for i = 1, 2. It is easy to show that B2

λϕ1 > B1
λϕ1 and so, with a similar argument

to the proof of the increasing of r(Bλ) in Lemma 2.6, we deduce that

r(B2
λ) > r(B1

λ).

This concludes that λ0(µ1) < λ0(µ2).

For the second paragraph, denote by λn := λ0(µn). Thanks to the first part of this

result, we have that λn is increasing and bounded by λ0(µ) and λn ↑ λ∗ ≤ λ0(µ). Denote

by ϕn the positive eigenfunction associated to λn normalized such that ‖ϕn‖∞ = 1. Then,

multiplying by ϕn, we obtain

1
2

∫

Ω
|ϕn(x,A†)|2+

∫∫

Q
|∇ϕn|2+

∫∫

Q
(µn+R)ϕ2

n = (λn+R)
∫∫

Q
ϕ2

n+
1
2

∫

Ω
[
∫ A†

0
βϕn]2 < C,

for some C > 0. Then, for R > 0 large, we can apply the same argument used previously

and conclude ϕn ⇀ ϕ1 in V as n → +∞ being ϕ1 a positive solution of

ua −∆u + µu = λ∗u, u = 0, u(x, 0) =
∫ A†

0
β(x, a)u(x, a)da.

Moreover, by Proposition 2.5 we deduce that ϕ1 À 0, and so Theorem 2.3 assures that

λ∗ = λ0(µ).

Now, we prove the monotonicity of the principal eigenvalue with respect to the domain.

For that, we need the following result, whose idea of the proof comes from [22] (see also

[19]).

Lemma 3.2. Assume that µ ∈ L∞(Q) and there exists 0 < φ ∈ W 2,1
q (Q), q > N +2, such

that 



φa −∆φ + µ(x, a)φ ≥ 0 in Q,

φ > 0 on Σ,

φ(x, 0) ≥
∫ A†

0
β(x, a)φ(x, a)da in Ω.

(3.1)

Then,

λ0(µ) > 0.

Proof. Assume that λ0(µ) ≤ 0, denote by ϕ1 the principal eigenfunction associated to

λ0(µ) normalized such that ‖ϕ1‖∞ = 1 and consider the set

Γ := {ε ∈ IR : φ + εϕ1 ≥ 0 in Q}.
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Denote by ε0 = min Γ and u0 = φ + ε0ϕ1. It is clear that ε0 < 0 and that u0 6= 0, u0 > 0.

Then, using (3.1) we get




(u0)a −∆u0 + µ(x, a)u0 ≥ ε0λ0(µ)ϕ1 ≥ 0, in Q,

u0 > 0 on Σ,

u0(x, 0) ≥
∫ A†

0
β(x, a)u0(x, a)da in Ω.

Observe that u0(x, 0) > 0, and so by the strong maximum principle, see for instance

Theorem 13.5 in [9], u0 is strictly positive, in the sense that it is positive and its normal

derivative at ∂Ω is negative. This contradicts that ε0 is the infimum of Γ. This concludes

the proof.

The proof of the following result is routine, and so we omit it.

Lemma 3.3. Consider two regular domains Ω1 ⊂ Ω2, Qi := Ωi × (0, A†), i = 1, 2 and

µ ∈ L∞(Q2), β a regular (OJO CON ESTO SI ES POSIBLE AHORA) and non-negative

function in Q2 verifying (Hβ). If we denote by λi
0(µ), i = 1, 2 the corresponding principal

eigenvalues of (1.3) in Qi, then:

λ2
0(µ) < λ1

0(µ).

The next result shows that the principal eigenvalue is continuous with respect to the

domain. Its proof follows the lines of Theorem 3.1 in [8]. First, we introduce a particular

definition of convergence of domains (see [8]):

Definition 3.4. We say that a sequence of domain Ωn, with Ω ⊂ Ωn+1 ⊂ Ωn, converges

to Ω, we write Ωn ↓ Ω, if:

a) For all Ω′ such that Ω′ ⊂ Ω implies Ω′ ⊂ int(Ωn) for large n ∈ IN.

b) For any open set U with Ω ⊂ U we have Ωn ⊂ U for large n ∈ IN.

Lemma 3.5. Assume that µ ∈ L∞(Q). Take a sequence Ωn of domain such that Ωn ↓ Ω

and Ωn+1 ⊂ Ωn. If we denote by λn
0 (µ) the corresponding principal eigenvalues on Ωn,

with µ prolonged by zero and β in a regular way in Ωn \ Ω and verifying (Hβ), then

λn
0 (µ) ↑ λ0(µ) as n →∞.
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Proof. Denote by µ̃, β̃ the prolongations of µ and β to Ωn, respectively, and λn := λn
0 (µ).

Then, by Lemma 3.3 the sequence λn is increasing and bounded, and so λn ↑ λ∗ ≤ λ0(µ).

Denote by ϕn the eigenfunction associated to λn, normalized such that ‖ϕn‖∞ = 1. Then,

(ϕn)a −∆ϕn + (µ̃− λn)ϕn = 0, in Qn, ϕn = 0 in ∂Ωn × (0, A†),

ϕn(x, 0) := ϕ0n =
∫ A†

0
β̃ϕn in Ωn.

Multiplying this equation by ϕn and integrating, and using a similar argument to the used

in the second paragraph of Proposition 3.1, we obtain that

‖ϕn‖L2(0,A†;H1
0 (Ωn)), ‖ϕn‖L2(Qn) ≤ C,

If we extend ϕn outside Ωn by zero, we have that ϕn is uniformly bounded in L2(0, A†;W 1,2(IRN )),

and so there exists ϕ such that

ϕn ⇀ ϕ in L2(0, A†; W 1,2(IRN )),

and so

ϕ0ncΩ ⇀ ϕ0 :=
∫ A†

0
βϕ, in L2(Ω).

On the other hand, since Ω is regular, Ω satisfies condition (3.6) of [8], see Theorem 3.7

of [23]. Then, we can apply Theorem 3.1 in [8], and conclude that ϕn → ϕ, where ϕ is a

positive function verifying

ϕa −∆ϕ + (µ− λ∗)ϕ = 0, in Q, ϕ = 0 in ∂Ω, ϕ(x, 0) =
∫ A†

0
βϕ in Ω,

whence we can deduce that λ∗ = λ0(µ).

4 The linear problem

In a similar way to Definition ??, it can be defined the concepts of solution and sub-

supersolution of (1.2). The main result in this section is:

Theorem 4.1. Assume that f ∈ L2(Q) and λ0(µ) > 0. Then, there exists a unique

solution u of (1.2). Moreover, u ∈ W. Finally, if f ≥ 0 and non-trivial, then u > 0.
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Proof. Consider the equation

ϕ− B0(ϕ) = F (x), (4.1)

with

F (x) :=
∫ A

0
β(x, a)zf

0 (x, a)da,

being zf
0 the unique solution of (2.4) with ψ = 0. If the homogeneous equation ϕ−B0(ϕ) =

0 has a non-trivial solution, then 1 is an eigenvalue of B0, and so r(B0) ≥ 1, an contradiction

because λ0(µ) > 0. Hence, by the Fredholm alternative Theorem we can assure the

existence of a unique solution of (4.1). Now, it is not difficult to show that if ϕ is solution

of (4.1) then zf
ϕ is solution of (1.2).

On the other hand, if f ≥ 0 and non-trivial, then F > 0. Now, we can apply Corollary

12.4 in [8] to conclude that the solution ϕ of (4.1) is positive. So, zf
ϕ > 0.

ESTA NOTA NO IRA AHORA AQUI.

Remark 4.2. a) Observe that if µ verifies (Hµ) then lima↑A ϕ1(x, a) = 0. Indeed, it

suffices to check that ϕ1 is a subsolution of (2.4) with µ = µL − λ0(µ), f ≡ 0 and

φ = βA‖ϕ1‖∞, and so

ϕ1 ≤ exp(λ0(µ)a−
∫ a

0
µL(s)ds)q(x, a),

where q is the solution of (2.15) with f = 0 and φ = βA‖ϕ1‖∞. Since q is bounded,

it is clear that, by (Hµ), lima↑A ϕ1(x, a) = 0.

b) However, if µ is bounded by the strong maximum principle there exists φ(x) > 0 such

that lima↑A ϕ1(x, a) ≥ φ À 0.

5 Compactness of the operator T in L∞

Our aim now is to prove that the operator T : L∞(Q) 7→ L∞(Q), f 7→ T (f) := u solution

of (1.2) is well defined and compact.

Proposition 5.1. Assume that λ0(µ) > 0.

a) The operator T is well-defined. Specifically, if f ∈ L∞(Q), and u is solution of (1.2),

then u ∈ L∞(Q), and moreover

‖u‖∞ ≤ C‖f‖∞, for some positive constant C > 0. (5.1)
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b) Moreover, assume that

µ(x, a)
∫ a

0
e−
R a

σ µL(s)dsdσ ∈ Lq(Q), for some q > 2(N + 2)/N . (5.2)

The map T is compact.

Proof. Take µn0 = min{µ, n0} such that λ0(µn0) > 0 and fix n0. This choice is possible

by Proposition 3.1 b). Consider now a sequence of domains Ωn ↓ Ω as Lemma 3.5. For

µn0 ∈ L∞(Q) fixed, using Lemma 3.5 there exists another n1 ∈ IN such that λn1
0 (µn0) > 0,

where this number denotes the principal eigenvalue in Ωn1 . It is not hard to show that

if ξ is the positive eigenfunction associated to λn1
0 (µn0), then u := Kξ is supersolution of

(1.2) for K > 0 a positive constant. Indeed, it must hold that

K(µ− µn0 + λn1
0 (µn0))ξ ≥ f.

Taking into account that µ− µn0 ≥ 0 in Ω, it suffices that

K ≥ 1
λn1

0 (µn0)ξL
‖f‖∞,

where ξL := infΩ×[0,A†] ξ > 0 because µn0 is bounded, see Remark 4.2 b). This concludes

the proof of the first paragraph.

On the other hand, by (5.1), u, solution of (1.2), is subsolution of (2.4) with φ =

C‖f‖∞, for some positive constant C, denote by z this solution. Now, it can be shown

that

z := exp(−
∫ a

0
µL(s)ds)g(a),

where

g(a) := ‖f‖∞(C +
∫ a

0
e
R σ
0 µL(s)dsdσ)

is supersolution of z. Hence, u ≤ z and so

u ≤ ‖f‖∞exp(−
∫ a

0
µL(s)ds)(C +

∫ a

0
e
R σ
0 µL(s)dsdσ). (5.3)

Take a sequence fn with ‖fn‖∞ ≤ K and un := T (fn). Then, thanks to (5.2) and

(5.3) we get

|µun| ≤ K|µ|exp(−
∫ a

0
µL(s)ds)(C+

∫ a

0
e
R σ
0 µL(s)dsdσ) ∈ Lq(Q), q > 2(N +2)/N. (5.4)
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So, un is solution of a parabolic equation with

(un)a −∆un = −µun + fn, un(0, x) =
∫ A

0
β(a, x)un(a, x)da := φn(x).

By Theorem 4.1, it follows that un ∈ W, and so φn ∈ H2(Ω) ∩H1
0 (Ω). By Lemma 7.1, it

follows that

H2(Ω) ↪→ W 2−2/q0,q0(Ω)

if q0 = 2(N +2)/N and so that φn ∈ W 2−2/q0,q0(Ω). Thanks to (5.4), −µun +fn ∈ Lq0(Ω).

On the other hand, by Theorem 7.3 with m ≡ 0, un ∈ W 2,1
q0 (Q), and

‖un‖W 2,1
q0

(Q)
≤ C(‖ − µun + fn‖q0 , ‖φn‖W 2−2/q0,q0 (Ω)). (5.5)

First, observe that ‖ − µun + fn‖q0 is uniformly bounded by (5.4). Second, observe that

by (5.3)

‖un‖2 ≤ C (independent of n.)

Now, multiplying the equation of un by un, integrating and taking into account that

q0 > 2, we get that

1
2

∫

Ω
|un(A)|2 +

∫∫

Q
|∇un|2 =

∫∫

Q
(−µun + fn)un +

1
2

∫

Ω

[∫ A

0
βun

]2

≤ C(β)‖un‖2
2,

and so

‖un‖V ≤ C(β).

Finally, multiplying by −∆un, and with a similar argument to the used in Proposition 2.5

b), we get

‖un‖W ≤ C(‖ − µun + fn‖2, ‖un(x, 0)‖H1
0 (Ω)) ≤ C(‖ − µun + fn‖q0 , ‖un‖V) ≤ C(β).

Hence

‖φn‖W 2−2/q0,q0 (Ω) ≤ C‖φn‖H2(Ω) ≤ C(β)‖un‖W ≤ C(β, µ),

and so by (5.5),

‖un‖W 2,1
q0

(Q)
≤ C(β, µ).

Since q0 > (N + 2)/2, by Lemma 7.2 we have that W 2,1
q0 (Q) ↪→ L∞(Q) compactly. The

proof is accomplished.



18 M. Delgado, M. Molina-Becerra and A. Suárez

Remark 5.2. If we consider, for instance, the function

µ(a) =
1

A† − a
,

then the condition (5.2) is equivalent to

ln(1− a

A†
) ∈ Lq(0, A†),

which it is true for all 1 ≤ q < ∞.

6 A bifurcation result

Along this section we assume (5.2). We can use the above results to study the following

nonlinear problem, a Holling-Tanner model,




ua −∆u + µ(x, a)u = λu± u

1 + u
in Q,

u = 0 on Σ,

u(x, 0) =
∫ A†

0
β(x, a)u(x, a)da in Ω.

(HT±)

We look for positive solutions, by physical meaning, in L∞(Q). We prolong the non-

linearity λu± u/(1 + u) by zero for u ≤ 0.

In order to apply the above results, we need:

Proposition 6.1. If u ∈ V is solution of (HT±), then u ∈ L∞(Q). Moreover, if u > 0

then u À 0.

Proof. Observe that if u is a solution of (HT±), then

ua −∆u + (µ− λ)u = ± u

1 + u
∈ L∞(Q), u(x, 0) ∈ H1

0 (Ω),

and so u ∈ W. Hence, since N ≤ 3 it follows that u(x, 0) ∈ L∞(Ω) and so by Proposition

2.5 c) that u ∈ L∞(Q). Assume now that u > 0. If u(x, 0) = 0, then the unique solution

of (HT±) is u = 0. Hence, we have that u(x, 0) > 0, and then by Proposition 2.5 d) we

get that u À 0. This proves the result.

Our main result is:
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Theorem 6.2. a) From the trivial solution u = 0 bifurcates an unbounded continuum

C± of positive solutions of (HT±) at λ = λ0(µ)∓ 1, respectively.

b) In the case (HT+), there exists a positive solution if, and only if, λ ∈ (λ0(µ) −
1, λ0(µ)). When the solution exists, this is unique.

c) In the case (HT−), there exists a positive solution if, and only if, λ ∈ (λ0(µ), λ0(µ)+

1).

Proof. Observe that since
u

1 + u
= u− u2

1 + u
,

(HT±) can be written as

u = (λ± 1)T u +Nu in L∞(Q),

where Nu := T (∓u2/(1 + u)). It is clear that λ = λ0(µ) ∓ 1 are simple eigenvalues of

T in L2(Q), and so also in L∞(Q). Now, taking into account that N (u) = o(‖u‖∞) for

‖u‖∞ ∼ 0, it suffices to apply the classical Rabinowitz’s Theorem [21] and conclude the

first paragraph.

For the second one, observe that if u is a positive solution of (HT+), then

ua −∆u + (µ− 1
1 + u

)u = λu,

and so, thanks to that u À 0, λ = λ0(µ− 1/(1 + u)). Then, by Theorem 2.3 we have

λ0(µ)− 1 = λ0(µ− 1) < λ = λ0(µ− 1
1 + u

) < λ0(µ),

where we have used that 1/(1 + u) < 1.

Now, it remains to show that if (λn, un) solution of (HT+) with λn → λ1 and ‖un‖∞ →
∞ then λ1 = λ0(µ). Indeed, if we denote

wn =
un

‖un‖∞ ,

then wn verifies

(wn)a −∆wn + µwn = λnwn + wn
1

1 + un
, ϕn(x) := wn(x, 0) =

∫ A

0
β(x, a)wn(x, a)da.



20 M. Delgado, M. Molina-Becerra and A. Suárez

Now, observe that 1/(1 + un) is bounded in L∞(Q) and so there exists h ∈ L2(Q) such

that
1

1 + un
⇀ h in L2(Q).

We multiply the equation of wn by wn and integrating, we get

1
2

∫

Ω
|wn(x,A)|2+

∫∫

Q
|∇wn|2+

∫∫

Q
(µ+k)w2

n =
∫∫

Q
((λn+k)w2

n+w2
n

1
1 + un

)+
1
2

∫

Ω
[
∫ A

0
βwn]2.

Since ‖wn‖∞ = 1, it follows that
∫∫

Q
|∇wn|2 +

∫∫

Q
(µ + k/3)w2

n ≤ C,

and so,

‖wn‖V ≤ C. (6.1)

Moreover, with a similar argument to the used in Proposition 2.5 we have that

wn ⇀ w in V,

√
µ + k/3wn ⇀

√
µ + k/3w in L2(Q),

(wn)a + (µ + k/3)wn ⇀ wa + (µ + k/3)w in L2(0, A; H−1(Ω)),

for some k > 0.

Finally, we can repeat exactly the proof of Proposition 5.1 b) with fn = (λn + k)wn +

1/(1 + un)wn ∈ L∞(Ω) and conclude that wn is bounded in W 2,1
q0 (Q). Since this space is

compactly imbedded in L∞, it follows that

wn
1

1 + un
⇀ wh in L2(Q).

Therefore, we can conclude that w ≥ 0 and ‖w‖∞ = 1 and verifies

wa −∆w + µw = λ1w + wh,

By the strong maximum principle we can deduce w À 0 and so

1
1 + un

=
1

1 + ‖un‖∞wn
→ 0, in L2(Q),

and hence

wa −∆v + µw = λ1w,
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whence we obtain that λ1 = λ0(µ). Hence, the unbounded continuum C+ of positive

solution verifies that ProjIR(C+) = (λ0(µ)− 1, λ0(µ)). This concludes the result.

For the uniqueness we follow the idea of [15]. Take two positive solutions, u1 and u2.

Then, λ = λ0(µ− 1/(1 + u1)) and so

λ0(µ− λ− 1
1 + u1

) = 0. (6.2)

Denote w := u1 − u2 6= 0, then

wa −∆w + (µ− λ− 1
(1 + u1)(1 + u2)

)w = 0,

and so, for some j ∈ IN,

λj(µ− λ− 1
(1 + u1)(1 + u2)

) = 0,

for some λj eigenvalue of (1.3) with µ−λ− 1
(1+u1)(1+u2) instead of µ. Using now Theorem

2.3 we have

0 = λj(µ− λ− 1
(1 + u1)(1 + u2)

) ≥ λ0(µ− λ− 1
(1 + u1)(1 + u2)

) >

λ0(µ− λ− 1
(1 + u1)

) = 0,

a contradiction with (6.2).

The third paragraph follows by the same lines that the second one.

7 Appendix

We have employed along the work the following results and notations.

Lemma 7.1. ([1]) Assume that Ω is regular. Let s > 0, 1 < p < q < +∞ and denote

χ := s−N/p + N/q. If χ ≥ 0 we have

W s,p(Ω) ↪→ Wχ,q(Ω).

For q ≥ 1 define

W 2,1
q (Q) := {u ∈ Lq(Q) : ∂au, ∂α

x u ∈ Lq(Q) for |α| ≤ 2}.

Lemma 7.2. ([5]) We have that W 2,1
q (Q) ↪→ C(Q) if q > (N + 2)/2 and W 2,1

q (Q) ↪→
C1(Q) if q > N + 2.
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Consider the linear problem




ua −∆u + m(x, a)u = f(x, a) in Q,

u = 0 on Σ,

u(x, 0) = ϕ(x) in Ω.

(7.3)

Theorem 7.3. ([16]) Assume that f ∈ Lq(Q), m ∈ L∞(Q), ϕ ∈ W 2−2/q,q(Ω) and ϕ = 0

on ∂Ω. Then, there exists a unique solution u ∈ W 2,1
q (Q) of (7.3) and

‖u‖
W 2,1

q (Q)
≤ C{‖m‖∞, ‖f‖q, ‖ϕ‖W 2−2/q,q(Ω)}.
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