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Abstract

In a previous paper we introduced various definitions of stability and instabil-

ity for non-autonomous differential equations, and applied these to investigate the

bifurcations in some simple models. In this paper we present a more systematic

theory of local bifurcations in scalar non-autonomous equations.

Keywords: Non-autonomous differential equations, bifurcation theory, pullback at-

tracting sets.
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1 Introduction

In a previous paper (Langa, Robinson, & Suárez [15]) we introduced various definitions of

stability and instability that seemed to be potentially useful in discussing the dynamics

of the solutions of non-autonomous differential equations. In particular we applied these

definitions to various simple model problems that exhibited non-autonomous versions of

standard autonomous bifurcations: an explicitly solvable pitchfork bifurcation problem,

a saddle-node type bifurcation, and a general n-dimensional ‘loss of stability’.

In this paper we develop a more general theory, concentrating on the well-known ‘local

bifurcations’ from the autonomous theory, and finding conditions for similar bifurcations

in the scalar non-autonomous equation

ẋ = f(x, t, λ),

where λ is a parameter. By imposing conditions on the Taylor coefficients in the expansion

of f near x = λ = 0 (which reduce to the standard conditions in the autonomous case)

we are able to prove various general theorems guaranteeing transcritical, pitchfork, and

saddle node bifurcations. Although we require a strong ‘balance hypothesis’ on the terms

in the Taylor expansion, we believe that these results are a further step towards a general

non-autonomous theory of bifurcations. We do not present any concrete examples here,

instead concentrating on the development of an abstract theory which we believe should

be applicable to a wide variety of particular models.

Some particular examples have been analysed in various settings: using the framework

of skew product flows Johnson [8] and Johnson and Yi [9] have considered a generalised

notion of a Hopf bifurcation; Shen and Yi [19] treat almost periodic scalar differential

equations (but leave bifurcation phenomena largely untouched); more recently Kloeden

[12] has analysed transcritical and pitchfork bifurcations in an almost periodic equation;

Johnson, Kloeden, & Pavani [10] have considered a non-autonomous ‘two step bifurcation’;

and Kloeden & Siegmund [14] give a nice discussion of the general problem in the context

of skew product flows.

In this paper we do not adopt the skew product approach and the restrictions on the

generality of f that it would entail, preferring to use the language of processes.
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2 Non-autonomous equations as processes

For the solution of any non-autonomous equation

ẋ = f(x, t) x(s) = x0 with x ∈ Rm (2.1)

the initial time (s) is as important as the final time (t). In order to treat these equations

as dynamical systems we consider a family of solution operators {S(t, s)}t≥s (termed a

“process”, see Dafermos [6] or Sell [18]) that depend on both the final and initial times.

We can then denote the solution of (2.1) at time t by S(t, s)x0. If f is sufficiently smooth

(which it will be in all that follows) then it is clear that S(t, s) : Rm → Rm must satisfy

a) S(t, t) is the identity for all t ∈ R,

b) S(t, τ)S(τ , s) = S(t, s) for all t, τ , and s ∈ R, and

c) S(t, s)x0 is continuous in t, s, and x0.

There may in fact be solutions of (2.1) that do not exist for all time, and some restrictions

to the possible values of s and t may be necessary, giving rise to only a ‘local process’.

Although we pass over them here, we will deal with such technicalities where necessary

in what follows.

Since in this paper we will only treat scalar equations with unique solutions both

forwards and backwards in time, the resulting process will be order-preserving, i.e.

xs > ys ⇒ S(t, s)xs > S(t, s)ys for all t, s ∈ R

(allowing S(t, s)xs or S(t, s)ys to be ±∞ if necessary allows us to take values of t and s

from all of R).

3 Stability & instability in non-autonomous systems

We now recall some of the definitions from Langa et al. [15] which we will use in our

bifurcation analysis. The simple notion of a complete trajectory will be central:

Definition 1 The continuous map x : R→ Rm is a complete trajectory if

S(t, s)x(s) = x(t) for all t, s ∈ R.
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We will investigate the appearance and disappearance of complete trajectories that are

‘stable’ or ‘unstable’ in certain senses that appear to be appropriate for non-autonomous

systems. Note that complete trajectories are merely particular examples of invariant sets

in non-autonomous systems:

Definition 2 A time-varying family of sets {Σ(t)}t∈R is invariant (we say “Σ(·) is in-

variant”) if

S(t, s)Σ(s) = Σ(t) for all t, s ∈ R.

In what follows we make constant use of the Hausdorff semidistance between two sets

A and B, dist[A, B], which is defined as

dist[A,B] = sup
a∈A

inf
b∈B

d(a, b) :

note that this only measures how far A is from B (dist[A,B] = 0 only implies that A ⊆ B).

We also use the notation N(X, ε) to denote the closed ε-neighbourhood of a set X:

N(X, ε) = {y : y = x + z, x ∈ X, z ∈ Rm with |z| ≤ ε}.

3.1 Notions of attraction

First we define formally the familiar notion of a set that is attracting forwards in time,

with a specified domain of attraction D. For any choice of D we say that Σ(·) ⊂ D if

Σ(t) ⊂ D for every t ∈ R.

Definition 3 An invariant set Σ(·) is forwards attracting within D if Σ(·) ⊂ D and for

each s ∈ R
lim
t→∞

dist[S(t, s)K, Σ(t)] = 0

for all compact subsets1 K of D.

In a non-autonomous system the notion of being ‘locally forwards attracting’ is a little

more subtle; we allow the neighbourhood of Σ that is attracted to depend on the initial

time. It is clear that if Σ(·) is forwards attracting within D then it is also locally forwards

attracting within D.

1Note that the definition implies attraction of every initial condition in K at a uniform rate. Our

definition in Langa et al. [15] only required convergence for each fixed initial condition. Contrary to the

statement in the footnote in that paper, the two definitions are most certainly not equivalent, even for

finite-dimensional systems.
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Definition 4 An invariant set Σ(·) is locally forwards attracting within D if Σ(·) ⊂ D

and for each s ∈ R there exists a δ(s) such that

lim
t→∞

dist[S(t, s)K, Σ(t)] = 0

for all compact K ⊂ N(Σ(s), δ(s)) ∩D.

We now introduce the notion of pullback attraction

Definition 5 An invariant set Σ(·) is pullback attracting within D if Σ(·) ⊂ D and for

every t ∈ R and every compact set K ⊂ D,

lim
s→−∞

dist[S(t, s)K, Σ(t)] = 0.

Σ(·) is globally pullback attracting if we can take D = Rm.

For a set Σ(·) to be locally pullback attracting, the neighbourhood of Σ(·) that is

attracted can depend only on the final time. Note that the definition allows a different

collection of compact sets K(·) to be attracted to Σ(t) for each fixed t ∈ R.

Definition 6 We say that Σ(·) is locally pullback attracting within D if Σ(·) ⊂ D and

for every t ∈ R there exists a δ(t) > 0 such that if K(·) ⊂ D is compact and

lim
s→−∞

dist[K(s), Σ(s)] < δ(t)

then

lim
s→−∞

dist[S(t, s)K(s), Σ(t)] = 0. (3.1)

If D is bounded it is once again clear that any set that is pullback attracting within

D is locally pullback attracting within D. However, it is an uncomfortable consequence

of our definitions that a set can be globally pullback attracting but not locally pullback

attracting if D is unbounded. Nevertheless, this cannot occur if the set is ‘bounded in

the past’, as shown by the following lemma.

Lemma 1 If an invariant set Σ(·) is pullback attracting within D and bounded ‘in the

past’, i.e. ⋃
t<T

Σ(t)

is bounded for some T , then Σ(·) is locally pullback attracting.
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Proof. We show that Σ(·) is locally pullback attracting for any choice of constant δ

(this was called ‘uniformly pullback attracting’ in Langa et al. [15]). If

lim
s→−∞

dist[K(s), Σ(s)] < δ

then for some τ , which we choose to be less than T , we must have dist[K(s), Σ(s)] < 2δ

for all s < τ . Since Σ(s) is bounded for s < T , all such K(s) are contained in a bounded

set Xδ.

Since Σ is globally pullback attracting, this bounded set is (pullback) attracted to Σ:

there exists a σ such that

dist[S(t, s)Xδ, Σ(t)] < ε for all s ≤ σ.

Since K(s) ⊂ Xδ for all s < T , it follows that

dist[S(t, s)K(s), Σ(t)] < ε for all s ≤ σ,

and so Σ is locally pullback attracting. ¤

3.2 Stability

We now give a definition of ‘stability’ in the pullback sense.

Definition 7 Σ(·) is pullback Lyapunov stable if for every t ∈ R and ε > 0 there exists

a δ(t) > 0 such that for any s < t, xs ∈ N(Σ(s), δ(t)) implies that S(t, s)xs ∈ N(Σ(t), ε).

The following result, analogous to the fact that attraction implies stability for sta-

tionary points of scalar autonomous systems, means that in what follows we need not

be concerned with Lyapunov stability properties of complete trajectories, but only their

attraction properties.

Lemma 2 Let x∗(·) be a complete trajectory in a non-autonomous scalar ODE that is

locally pullback attracting; then this trajectory is also pullback Lyapunov stable.

Proof. Fix t ∈ R. Given an ε > 0, we can guarantee that if x±(s) = x∗(s)± 1
2
δ(t) then

lim
s→−∞

|S(t, s)x±(s)− x∗(t)| = 0,

and so in particular there exists a σ such that

|S(t, s)x±(s)− x∗(t)| < ε for all s ≤ σ.
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Since the system is order preserving

|xs − x∗(s)| < δ(t)

2
⇒ |S(t, s)xs − x∗(t)| < ε for all s ≤ σ.

Now we can use the continuous dependence on initial conditions for s ∈ [σ, t], along with

the invariance of x∗(·), to guarantee that for δσ < δ(t) and sufficiently small

|xs − x∗(s)| < δσ ⇒ |S(t, s)xs − x∗(t)| < ε for all σ ≤ s ≤ t.

Thus x∗(·) is pullback Lyapunov stable. ¤
We note here that Kloeden [11] has shown that one can generalise the classical notion

of a Lyapunov function to cover many non-autonomous systems in such a way that there is

a Lyapunov function associated with any pullback attracting set. In particular his results

imply the existence of a Lyapunov function for a bounded locally pullback attracting

trajectory for the equation ẋ = f(x, t) provided that f(x, t) is locally Lipschitz in x.

3.3 Notions of instability

In Langa et al. [15] we introduced two notions of instability. One is simply the converse

of Lyapunov stability, while the other, stronger, property appears to be more useful.

Definition 8 We say that Σ(·) is pullback unstable if it is not pullback Lyapunov stable,

i.e. if there exists a t ∈ R and an ε > 0 such that, for each δ > 0, there exists an s < t

and an x0 ∈ N(Σ(s), δ) such that

dist[S(t, s)x0, Σ(t)] > ε.

We say that Σ(·) is ‘asymptotically unstable’ if its unstable set UΣ(·), defined below

(cf. Crauel [4]), is non-trivial (i.e. if UΣ(t) 6= Σ(t)).

Definition 9 If Σ(·) is an invariant set then the unstable set of Σ, UΣ(·), is defined as

UΣ(s) = {x0 : lim
t→−∞

dist [S(t, s)x0, Σ(t)] = 0}.

We say that Σ(·) is asymptotically unstable if for some t we have

UΣ(t) 6= Σ(t). (3.2)

The power of this definition comes from the following simple result (see Langa et

al. [15] for the proof).
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Proposition 3 If Σ(·) is asymptotically unstable then it is also pullback unstable and

cannot be locally pullback attracting.

Most notions of instability are related to the behaviour of solutions x(t) as t → −∞;

the notion of ‘asymptotic instability’ defined above is essentially a time-reversed notion of

‘forwards attraction’. It should therefore be unsurprising that it is possible to define an

alternative notion of instability based on a time-reversed version of pullback attraction:

Definition 10 An invariant set Σ(·) is (locally) pullback repelling within D if it is (lo-

cally) pullback attracting within D for the time-reversed system, i.e. if Σ(·) ⊂ D and for

any compact set K ⊂ D and for each t ∈ R,

lim
s→+∞

dist[S(t, s)K, Σ(t)] = 0.

3.4 An aside: linear stability in non-autonomous systems

We mention here that we make little use of linear notions of stability in this paper. There

appear to be major problems with deducing anything from such ‘infinitesimal’ behaviour

without further constraints. As an example, consider the equation

ẋ = x− e−t

1 + t2
x2,

whose solution can be given explicitly as

x(t, s; xs) =
et

esx−1
s + tan−1(t)− tan−1(s)

.

It is clear that if xs is fixed then as s → −∞

x(t, s; xs) → x∗(t) =
et

tan−1(t) + π/2
.

The trajectory x∗(t) is globally pullback attracting, and also, since it is bounded as

t → −∞, locally pullback attracting (Lemma 1). Since we are treating a scalar equation,

the trajectory is also pullback Lyapunov stable (Lemma 2). However, suppose that we

linearise about x∗(t), and obtain

Ẋ =

[
1− 2

e−t

1 + t2
x∗(t)

]
X

=

[
1− 2

(1 + t2)(tan−1(t) + π/2)

]
X
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Therefore

X(t, s; X0) = exp

(∫ t

s

1− 2

(1 + r2)(tan−1(r) + π/2)
dr

)
X0

= exp
(
(t− s)− 2 ln[tan−1(r) + π/2]tr=s

)
X0

= et−s

(
tan−1(s) + π/2

tan−1(t) + π/2

)2

X0.

Now, as s → −∞ we have |X(t, s; X0)| → ∞, so that x∗(t) is pullback linearly unstable.

4 Pullback attractors

The use of the pullback notion in the above definitions was inspired by the theory of

pullback attractors (Cheban et al., [2]; Crauel, Debussche, & Flandoli [5]; Kloeden &

Schmalfuß, [13]; Schmalfuß, [17]; Chepyzhov & Vishik, [3]). Although such attractors are

not central to our approach here, they will be a useful tool.

Definition 11 An invariant set {A(t)}t∈R is said to be the pullback attractor of the

process S within D if it is

a) a compact subset of D for each t ∈ R,

b) pullback attracting within D (in the sense of Definition 5), and

c) minimal in the sense that if {C(t)}t∈R is another family of closed sets that are

pullback attracting within D then A(t) ⊂ C(t) for all t ∈ R.

The condition required to guarantee the existence of such a pullback attractor is

simple (see Crauel et al., [5]; Schmalfuß, [17]). The following theorem also provides some

information of the structure of the attractor for scalar systems (for a result valid for more

general order-preserving systems, see Langa & Suárez, [16]).

Theorem 4 Assume that there exists a family of compact pullback absorbing sets, i.e. a

family {K(t)}t∈R of nonempty compact sets such that for each t0 and each compact set

B ⊂ D there exists a T = T (t0, B) such that

S(t0, s)B ⊂ K(t0) for all s ≤ T.
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Then there is a pullback attractor A(t) within D, which is a connected set for each t ∈ R.

If S(t, s) arises from a scalar ODE then

A(t) = [a−(t), a+(t)],

and a±(t) are complete trajectories.

Proof. The proof of existence of an attractor is standard, as is its connectedness (see

Crauel et al. [5], for example) so we only prove the final part of the theorem here. First,

it is clear that since A(t) is a compact connected set for each t then it must be an interval

[a−(t), a+(t)]; it only remains to show that a±(t) are complete trajectories, i.e. that

S(t, s)a+(s) = a+(t)

(and similarly for a−(·)). Since A(t) is invariant, we must have

a−(t) ≤ S(t, s)a+(s) ≤ a+(t).

Suppose that S(t, s)a+(s) < a+(t); then applying S(s, t) (which is order-preserving)

to both sides we obtain a+(s) < S(s, t)a+(t). Since A(t) is invariant, it follows that

S(s, t)a+(t) ∈ A(s), and so a+(s) < S(s, t)a+(t) ≤ a+(s), a contradiction. So S(t, s)a+(s) =

a+(t) and a+(·) is a complete trajectory as claimed. A similar argument shows that a−(·)
is also a complete trajectory. ¤

5 Non-autonomous transcritical bifurcation

The standard autonomous example of an equation exhibiting a transcritical bifurcation is

ẋ = λx− x2.

For λ < 0 the origin is locally stable and there is an unstable negative fixed point at

x = λ < 0; when λ > 0 the stability is swapped, with the origin becoming unstable and

the fixed point at x = λ > 0 becoming stable.

Our analysis of the general non-autonomous problem will be heavily based on the

explicitly solvable model

ẋ = λf(t)x− g(t)x2 x(s) = xs (5.1)

which we treat in Section 5.1. We then move on to the more general situation, with our

assumptions motivated by the explicit model. We delay a formal definition of a ‘trans-

critical bifurcation’ in a non-autonomous system until after our more informal discussion

of (5.1).
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5.1 An explicitly solvable model

First we treat the model equation

ẋ = λf(t)x− g(t)x2 x(s) = xs, (5.2)

which has the explicit solution

x(t, s; xs) =
eλF (t)

x−1
s eλF (s) +

∫ t

s
eλF (r)g(r) dr

, (5.3)

where F is any anti-derivative of f . Despite the simplicity of the model, and the fact that

it can be solved explicitly, we will need to impose a number of conditions to ensure the

transcritical behaviour we require.

First, we assume that f and g are ‘essentially positive’,
∫ t

−∞
f(s) ds =

∫ t

−∞
g(s) ds = +∞, (5.4)

which in particular implies that lims→−∞ F (s) = −∞. Under this condition if we fix t

and let s → −∞ in (5.3) then for λ > 0 and any xs ∈ R we have

lim
s→−∞

x(t, s; xs) = xλ(t) :=
eλF (t)

∫ t

−∞ eλF (r)g(r) dr
. (5.5)

We naturally impose the positivity of this candidate pullback attracting trajectory, and

assume that it is uniformly bounded above: 0 < xλ(t) ≤ Mλ for all t ∈ R. Note that

the lower bound is equivalent to the assumption that
∫ t

−∞ eλF (r)g(r) dr > 0. (This is

consistent with, but does not follow from, the assumption of the essential positivity of g.)

Although it appears at first that xλ(·) is pullback attracting, we must also be able to

guarantee that for every t ∈ R and for s ≤ σt (for some σt) the solution x(τ , s; xs) exists

for all s ≤ τ ≤ t. Indeed, while the limit in (5.5) is independent of xs, it is clear that

for every fixed xs < 0 if s sufficiently large and negative then x(τ , s; xs) will blow up for

some τ ≥ s (while x−1
s eλF (s) is negative and tends to zero as s → −∞, the integral term

in the denominator of (5.3) is positive and bounded below). When xs > 0, to ensure that

the solution exists on the interval [s, t] we need

x−1
s eλF (s) +

∫ τ

s

eλF (r)g(r) dr > 0 for all τ ∈ [s, t]. (5.6)

While this holds if we allow xs to depend on time and require xs < xλ(s) (which implies

that xλ(·) is pullback attracting ‘from below’) the essential positivity of g alone is not

sufficient to guarantee the existence of solutions that start ‘above’ xλ(·).
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Requiring that for some αt > 0 any solution with xs < (1 + αt)xλ(s) exists on [s, t] is

equivalent (by rearrangement of (5.6)) to the requirement that
∫ τ

−∞
eλF (r)g(r) dr >

αt

1 + αt

∫ s

−∞
eλF (r)g(r) dr (5.7)

for all s ≤ τ ≤ t. The most natural way to ensure this seems to be to require that g is

asymptotically positive as t → −∞, i.e. g(t) ≥ γ− > 0 for all t ≤ T−, for some T− ∈ R.

One can then take s ≤ T− and it then suffices to show that (5.7) holds for τ in the

bounded interval [T−, t], which can easily be done by choosing αt > 0 appropriately.

In order to ensure that xλ(·) is locally pullback attracting we require in addition that

xλ is bounded uniformly away from zero: xλ(t) ≥ mλ > 0 for all t ∈ R. It then follows

that we can apply Definition 6 with δ(t) = αtmλ.

When λ < 0 the essential positivity of f and the asymptotic positivity of g combine

to ensure that ∣∣∣∣x−1
s eλF (s) +

∫ t

s

eλF (r)g(r) dr

∣∣∣∣ →∞

as s → −∞, which implies that lims→−∞ x(t, s; xs) = 0. However, we again have to

ensure that the solution x(τ , s; xs) exists for all τ ∈ [s, t]. Considering the case xs < 0

this requires

|xs|−1eλF (s) >

∫ τ

s

eλF (r)g(r) dr.

This should hold for all s sufficiently large and negative, and so in particular we must

have

lim inf
s→−∞

eλF (s)

∫ τ

s
eλF (r)g(r) dr

> 0

(note that the left-hand side of this expression does not depend on τ). We show in the

proof of the following result that this is in fact sufficient to obtain local pullback attraction

to the origin.

Proposition 5 Consider the equation

ẋ = λf(t)x− g(t)x2. (5.8)

Suppose that f is essentially positive,
∫ t

−∞
f(s) ds = +∞ for all t ∈ R, (5.9)

g is asymptotically positive, i.e. there exists a T− such that

g(t) ≥ γ− > 0 for all t ≤ T−,
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and that there exists a λ0 > 0 such that the ‘balance conditions’

0 < mλ ≤ xλ(t) =
eλF (t)

∫ t

−∞ eλF (r)g(r) dr
≤ Mλ for all t ∈ R, 0 < λ < λ0, (5.10)

and

lim inf
s→−∞

eλF (s)

∫ t

s
eλF (r)g(r) dr

≥ mλ > 0 for all − λ0 < λ < 0 (5.11)

hold, where F is any anti-derivative of f . Then for −λ0 < λ < 0 the zero solution is

locally pullback attracting in R; for λ = 0 the origin is asymptotically unstable but still

locally pullback attracting in R+; and for 0 < λ < λ0 the origin is asymptotically unstable

and the trajectory xλ(t) is locally pullback attracting. In addition for each t we have

xλ(t) → 0 as λ → 0.

Furthermore if there exists a T+ such that

g(t) ≥ γ+ > 0 for all t ≥ T+, (5.12)

and ∫ ∞

t

f(s) ds = +∞, (5.13)

then for −λ0 < λ < 0 the origin is locally forwards attracting, and for 0 < λ < λ0 the

trajectory xλ(·) is locally forwards attracting. Assuming in addition that

0 < mλ ≤ xλ(t) =
eλF (t)

∫∞
t

eλF (r)g(r) dr
≤ Mλ for all t ∈ R, λ < 0 (5.14)

then for −λ0 < λ < 0 the trajectory xλ(t) is both asymptotically unstable and locally

pullback repelling. Once again, for each t ∈ R we have xλ(t) → 0 as λ → 0.

Proof. When λ < 0. As remarked above we have x(t, s; xs) → 0 for any xs 6= 0, but we

must also guarantee that the solution x(τ , s; xs) exists for all τ ∈ (s, t).

For xs > 0 we need to ensure that

x−1
s eλF (s) +

∫ τ

s

eλF (r)g(r) dr > 0 for all s ≤ τ ≤ t. (5.15)

Since there exists a T− such that g(r) ≥ γ > 0 for all r ≤ T−, (5.15) is assured provided

that

x−1
s eλF (s) +

∫ τ

T−
eλF (r)g(r) dr > 0 for all T− ≤ τ ≤ t.
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Since λ < 0 and F (s) → −∞ as s → −∞, for s small enough it is certainly true that

eλF (s) is bounded below on (−∞, T−]. Thus (5.15) follows provided that we choose

xs <
infs≤T− eλF (s)

supτ∈[T−,t]

∣∣∫ τ

T− eλF (r)g(r) dr
∣∣

(note that the right-hand side depends only on t).

For xs < 0 the argument is a little more involved, and requires the balance condition

(5.11). First we note that the asymptotic positivity of g implies that there exists a Tt

such that ∫ t

τ

eλF (r)g(r) dr > 0 for all τ ≤ Tt,

Given this Tt, it follows from (5.11) and the fact that eλF (s) →∞ as s → −∞ that there

exists a σt such that
eλF (s)

∫ t

s
eλF (r)g(r) dr

≥ mλ

2
(5.16)

and
eλF (s)

∫ Tt

s
eλF (r)g(r) dr + infτ∈[Tt,t]

∫ τ

Tt
eλF (r)g(r) dr

≥ mλ

2
(5.17)

for all s ≤ σt: in that follows we will take s ≤ σt. We now require that the denominator

in (5.3) is negative, i.e. that

x−1
s eλF (s) +

∫ τ

s

eλF (r)g(r) dr

︸ ︷︷ ︸
I(s,τ)

< 0 for all s ≤ τ ≤ t. (5.18)

We consider three cases. (i) If I(s, τ) < 0 then clearly (5.18) is satisfied. (ii) If

I(s, τ) > 0 and τ ≤ Tt then I(τ , t) > 0 and

x−1
s eλF (s) + I(s, τ) < x−1

s eλF (s) + I(s, τ) + I(τ , t) = x−1
s eλF (s) + I(s, t).

For x−1
s eλF (s) + I(s, t) to be negative we require

|xs| < eλF (s)

∫ t

s
eλF (r)g(r) dr

,

but the right-hand side of this expression is bounded below by mλ/2 using (5.16). (iii) If

I(s, τ) > 0 and Tt < τ ≤ t then we require

|xs| < eλF (s)

∫ Tt

s
eλF (r)g(r) dr +

∫ τ

Tt
eλF (r)g(r) dr

,
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and once again the right-hand side is bounded below by mλ/2, this time using (5.17).

Thus for each fixed t there exists a σt such that if s ≤ σt and |xs| is sufficiently small

the solution exists on [s, t] and hence the origin is locally pullback attracting.

When λ = 0. When λ = 0 the explicit solution is

x(t) =
1

x−1
s +

∫ t

s
g(r) dr

, (5.19)

and for xs > 0 it follows from the asymptotic positivity of g and a simplified version of the

above argument that the origin is locally pullback attracting in R+; and that for xs < 0

but sufficiently small (depending on s), x(t, s; xs) → 0 as t → −∞, and so the origin is

asymptotically unstable.

When λ > 0. This case was treated before the formal statement of the proposition. Only

the asymptotic instability of the origin and the convergence of xλ to zero remain.

We deal first with the asymptotic instability of the origin. Since x(t) ≡ 0 and xλ(·) are

solutions and the equation is order-preserving, any solution with 0 < xs < xλ(s) exists

for all t ≤ s. Since 0 <
∫ s

−∞ eλF (r)g(r) dr < +∞ and eλF (t) → 0 as t → −∞ it follows

that for such a solution x(t, s; xs) → 0 as t → −∞.

To show that xλ(t) → 0 as λ → 0, fix t and ε > 0. Choose T such that
∫ t

T

g(r) dr > 2eλF (t)/ε

(which is possible since g is asymptotically positive). Then

∫ t

−∞
eλF (r)g(r) dr =

∫ T

−∞
eλF (r)g(r) dr +

∫ t

T

eλF (r)g(r) dr >

∫ t

T

eλF (r)g(r) dr.

Now, choose λ sufficiently small that

sup
r∈[T,t]

|eλF (r) − 1| < eλF (t)

ε
∫ t

T
|g(r)| dr

,

and then ∫ t

−∞
eλF (r)g(r) dr > eλF (t)/ε,

which implies that xλ(t) < ε.

Including the extra ‘forwards’ conditions in (5.13) and (5.12), when λ < 0 the origin is

locally forwards attracting when xs is sufficiently small, since (5.12) guarantees that

inf
t≥s

∫ t

s

eλF (r)g(r) dr > −∞.
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When λ = 0 the origin becomes locally forwards attracting. When λ > 0 the trajectory

xλ(·) is now locally forwards attracting: to show this we can rearrange the explicit solution

into the alternative form(
1

x(t)
− 1

xλ(t)

)
= eλ(F (s)−F (t))

(
1

xs

− 1

xλ(s)

)
. (5.20)

Therefore

|x(t)− xλ(t)| = xλ(t)x(t)

eλF (t)

eλF (s)

xλ(s)xs

|xλ(s)− xs|. (5.21)

The balance condition in (5.10) implies that any solution with xs > 0 is bounded as

t → +∞. To see this, consider

eλF (t)

x−1
s eλF (s) +

∫ t

s
eλF (r)g(r) dr

≤ Mλ

∫ t

−∞ eλF (r)g(r) dr

x−1
s eλF (s) +

∫ t

s
eλF (r)g(r) dr

= Mλ

∫ s

−∞ eλF (r)g(r) dr +
∫ t

s
eλF (r)g(r) dr

x−1
s eλF (s) +

∫ t

s
eλF (r)g(r) dr

.

Condition (5.12) guarantees that the second terms in the numerator and denominator are

positive for t sufficiently large, and so

lim sup
t→∞

x(t) ≤ Mλ max

(
1,

xs

xλ(s)

)
.

It therefore follows from (5.21) that xλ(·) is forwards attracting while solutions exist.

To show that solutions do not blow up for xs < (1 + αs)xλ(s), observe that

x−1
s eλF (s) +

∫ t

s

eλF (r)g(r) dr >
1

1 + αs

∫ s

−∞
eλF (r)g(r) dr +

∫ t

s

eλF (r)g(r) dr

=

∫ t

−∞
eλF (r)g(r) dr − αs

1 + αs

∫ s

−∞
eλF (r)g(r) dr.

Using the asymptotic positivity of g this expression is positive for αs sufficiently small.

This implies that xλ(·) is locally forwards attracting.

Under the final condition the results follow by making the transformations

λ 7→ −λ, x 7→ −x, and t 7→ −t.

¤
We note here that an alternative to requiring stronger conditions at infinity (such as

the asymptotic positivity of g) might be to make assumptions on integrals of f and g that

are uniform in time, e.g.
∫ t+T

t

g(s) ds ≥ γ > 0 and

∫ t+T

t

|g(s)| ds ≤ Γ < +∞ for all t ∈ R.
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Since (see Bohr [1]) almost periodic functions ϕ(·) have time averages that converge

uniformly,

sup
t∈R

∣∣∣∣
∫ t+T

t

ϕ(s) ds− ϕ̄

∣∣∣∣ → 0

as T →∞ (here ϕ̄ is the time average of ϕ), such conditions would naturally include this

important class of specific examples.

5.2 Conditions for localised bifurcating solutions

We now give stronger, but perhaps more natural, conditions on f(t) and g(t) that ensure

that the balance conditions (5.10) and (5.11) hold.

Lemma 6 Suppose that

lim inf
t→−∞

g(t) > 0 (5.22)

and that

0 < m = lim inf
t→−∞

f(t)

g(t)
≤ lim sup

t→−∞

f(t)

g(t)
= M < +∞. (5.23)

Then for λ > 0

λm ≤ lim inf
t→−∞

xλ(t) ≤ lim sup
t→−∞

xλ(t) ≤ λM, (5.24)

while for λ < 0 we have

lim inf
s→−∞

eλF (s)

∫ t

s
eλF (r)g(r) dr

≥ −mλ, (5.25)

where F is an antiderivative of f .

Proof. For any K > M there exists a T such that for all t ≤ T we have g(t) > 0 and

f(t)

g(t)
≤ K.

For such t it follows that
∫ t

−∞
eλF (s)g(s) ds ≥ 1

K

∫ t

−∞
eλF (s)f(s) ds

≥ 1

K

[
eλF (s)

λ

]t

s=−∞

=
1

λK
eλF (t),
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since F (t) → −∞ as t → −∞ by (5.22) and (5.23). Therefore

xλ(t) =
eλF (t)

∫ t

−∞ eλF (s)g(s) ds
≤ Kλ for all t ≤ T,

and hence

lim sup
t→−∞

xλ(t) ≤ Mλ.

For the lower bound the proof is similar, but now using the fact that for any k < m there

exists a T such that
f(t)

g(t)
> k for all t ≤ T.

The proof of (5.25) follows the same lines. ¤

5.3 The general case

We will now consider the general equation ẋ = G(t, x, λ), and prove a bifurcation theorem

based on assumptions on the Taylor coefficients of G. Since we will impose conditions

on these coefficients similar to those in Lemma 6, we will be able to show that the

system undergoes a transcritical bifurcation that is a little more akin to its autonomous

counterpart than that in Proposition 5.

We now give our formal definition of a ‘transcritical bifurcation’ in a non-autonomous

system. Note that we insist in the definition that the non-zero trajectory is in some sense

‘localised’ near the origin, and that the required behaviour depends only on the system in

the past (pullback attraction and asymptotic instability). In our results we will be able

to deduce further details of the behaviour of solutions by making additional assumptions

on the system in the future.

Definition 12 The system ẋ = f(x, t, λ) undergoes a local transcritical bifurcation at

x = 0, λ = 0 if there exists a λ0 > 0 and an ε > 0 such that

(i) for all −λ0 < λ < 0 the zero solution is locally pullback attracting within (−ε, 0] and

pullback attracting within [0, ε); and there is another negative complete trajectory

xλ(t) within (−ε, 0) that is asymptotically unstable and satisfies

xλ(t) → 0 as λ → 0; (5.26)

(ii) for λ = 0 the zero solution is asymptotically unstable but still pullback attracting

within [0, ε); and
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(iii) for 0 < λ < λ0 the zero solution is asymptotically unstable, and there is another

positive complete trajectory xλ(t) within (0, ε) that satisfies

xλ(t) → 0 as λ → 0 (5.27)

and is pullback attracting within (0, ε).

While we only require pointwise convergence in (5.26) and (5.27), we will in fact

obtain uniform convergence in Theorem 7, which treats the equation ẋ = G(t, x, λ) whose

right-hand side has the Taylor expansion

G(t, x, λ) = G + Gxx + Gλλ + 1
2
Gxxx

2 + Gxλxλ + 1
2
Gλλλ

2

+1
6
Gxxxx

3 + 1
3
Gxxλx

2λ + 1
3
Gxλλxλ2 + 1

6
Gλλλλ

3 + . . .

(all expressions involving G and its derivatives on the right-hand side are evaluated at

(t, 0, 0)). We assume that G(t, 0, λ) = 0 for all t and λ, and furthermore that Gx(t, 0, 0) =

0. This implies that ∂kG/∂λk(t, 0, 0) = 0 for all t and k ∈ Z+.

We therefore have

G(t, x, λ) = λ
[
Gxλ + 1

3
Gxλλλ + . . .

]
x +

[
1
2
Gxx + 1

6
Gxxxx + 1

3
Gxxλλ + . . .

]
x2

and this motivates the following theorem.

Theorem 7 Consider

ẋ = G(t, x, λ),

and assume that

G(t, 0, λ) = 0 for all λ ∈ R and Gx(t, 0, 0) = 0.

Set f(t) = Gxλ(t, 0, 0) and g(t) = −1
2
Gxx(t, 0, 0), and rewrite the equation as

ẋ = λ[f(t) + λφ(t, λ)]x− [g(t) + γ(t, x, λ)]x2,

where

φ(t, 0) = 1
3
Gxλλ(t, 0, 0) and γ(t, 0, 0) = 0. (5.28)

Assume that

lim inf
t→±∞

g(t) > 0, (5.29)
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that

0 < m = lim inf
t→±∞

f(t)

g(t)
≤ lim sup

t→±∞

f(t)

g(t)
= M < +∞, (5.30)

and that

|φ(t, λ)| ≤ h(t), |γλ(t, x, λ)| ≤ h(t), and |γx(t, x, λ)| ≤ h(t), (5.31)

where

lim sup
t→±∞

h(t)

g(t)
≤ K.

Then there is a local transcritical bifurcation as λ passes through zero. Furthermore when

λ < 0 the ‘unstable’ trajectory is pullback repelling in (−ε, 0); when λ = 0 the origin is

locally forwards attracting in R+; and when λ > 0 the pullback attracting trajectory xλ(·)
is forwards attracting in (0, ε).

Note that the standard conditions for a transcritical bifurcation in the autonomous equa-

tion ẋ = f(x, λ) are (see Glendinning, [7]):

f(0, λ) = 0, fx(0, 0) = 0, fxλ(0, 0) > 0, and fxx(0, 0) < 0.

If G(t, x, λ) = f(x, λ) then we recover these conditions in our theorem.

Proof. We assume throughout that |λ| ≤ ε, where ε will be chosen ‘sufficiently small’.

Note that it follows from (5.28) and (5.31) that

|γ(t, x, λ)| ≤ h(t)[|x|+ |λ|]. (5.32)

The origin is locally pullback attracting in (−ε, ε) for λ < 0. While 0 < x(t, s; xs) ≤ ε we

have 0 ≤ x(t, s; xs) ≤ v(t, s; xs) where v(t) solves

v̇ = λ[f(t) + εh(t)]v − [g(t)− 2εh(t)]v2 with v(s) = xs.

There exists a T such that if s ≤ t ≤ T then we can neglect the second term; changing the

definition of T if necessary, we can use the bound |h(t)| ≤ K ′f(t)/m (for some K ′ > K)

to deduce that

v̇ ≤ λ(1− (εK ′/m))f(t)v,

from which it follows that

v(t) ≤ e(1−(εK′/m))λ(F (t)−F (t0))v(t0).
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Once more decreasing T if necessary, so that f(t) > 0 for all t ≤ T , it follows that

for s ≤ t ≤ T we have v(t, s; xs) ≤ ε provided that 0 < xs ≤ ε and hence, since the

comparison x(t, s; xs) ≤ v(t, s; xs) remains valid, it follows that

lim
s→−∞

S(t, s)xs = 0 for all t ≤ T.

Since S(τ , t) is continuous and zero is invariant we have

lim
s→−∞

S(τ , s)xs = S(τ , t)

[
lim

s→−∞
S(t, s)xs

]
= S(τ , t)0 = 0 for all τ ∈ R,

and the origin is pullback attracting within [0, ε).

While −ε ≤ x(t, s; xs) ≤ 0 we have u(t, s; xs) ≤ x(t, s; xs) ≤ 0 where u(t) solves

u̇ = λ[f(t)− εh(t)]u− [g(t) + 2εh(t)]u2 with u(s) = xs;

therefore while u ≥ −ε

u̇ ≥ λf(t)[(1− εK/m)u]− (1 + 2εK)u2/m.

For T chosen such that f(t) > 0 for all t ≤ T , and for 0 ≥ xs ≥ −λ(m− εK)/m(1+2εK)

it follows that

lim
s→−∞

S(t, s)xs = 0 for all t ≤ T,

and arguing as above the origin is locally pullback attracting within (−ε, 0].

When λ = 0. While |x| ≤ ε we have

ẋ ≤ −[g(t)− 2εh(t)]x2,

which immediately gives the pullback attraction of the zero solution within [0, ε), and the

asymptotic instability of zero, since for xs < 0 we have x(t, s; xs) → 0 as t → −∞.

There is a positive trajectory that is pullback attracting in [0,∞) when λ > 0. While

|x(t, s; xs)|, |λ| < ε we have

u(t, s; xs) ≤ x(t, s; xs) ≤ v(t, s; xs), (5.33)

where u(t, s; xs) and v(t, s; xs) are the solutions of

u̇ = λ [f(t)− εh(t)]︸ ︷︷ ︸
f−(t)

u− [g(t) + 2εh(t)]︸ ︷︷ ︸
g+(t)

u2 with u(s) = xs
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and

v̇ = λ [f(t) + εh(t)]︸ ︷︷ ︸
f+(t)

v − [g(t)− 2εh(t)]︸ ︷︷ ︸
g−(t)

v2 with v(s) = xs. (5.34)

In particular, we have an explicit form for the solution of (5.34), namely

v(t) =
eλF+(t)

x−1
s eλF+(s) +

∫ t

s
eλF+(r)g−(r) dr

.

Using the balance condition (5.23) it follows that for λ and xs sufficiently small, v(t) ≤ ε

for all t ≤ 0. In this case the comparison (5.33) remains valid for all such t.

Due to the two-sided balance and the balance between h and g it follows that we can

define the upper and lower solutions

x+(t) =
eλF+(t)

∫ t

−∞ eλF+(r)g−(r) dr

and

x−(t) =
eλF−(t)

∫ t

−∞ eλF−(r)g+(r) dr
,

the pullback attractors of the upper and lower equations. We then have

x−(t) ≤ lim inf
s→−∞

x(t, s; xs) ≤ lim sup
s→−∞

x(t, s; xs) ≤ x+(t).

Therefore there exists a pullback attractor A(t) within the phase space consisting of the

interval (0, ε). Since the system is order-preserving, there are two solutions x1(t) and x2(t)

such that A(t) = [x1(t), x2(t)], and so we have x−(t) ≤ xj(t) ≤ x+(t) for j = 1, 2.

If we set z(t) = x1(t)− x2(t) then

dz

dt
≤ λ[f(t) + εh(t)]z − g(t)(x1 + x2)z − [γ(t, x1, λ)x2

1 − γ(t, x2, λ)x2
2]

≤ λf+(t)z − g(t)(x1 + x2)z − γ(t, x1, λ)(x2
1 − x2

2)

+[γ(t, x1, λ)− γ(t, x2, λ)]x2
2

≤ λf+(t)z − g(t)(x1 + x2)z + 2εh(t)[x1 + x2]z + εx1h(t)z

≤ [λf+(t)− (2g(t)− 5εh(t))x−(t)]z.

Since

2g(t)− 5εh(t) ≥ 2− 5εK

1 + εK
g+(t)

this gives

dz

dt
≤

[
λf+(t)− 2− 5εK

1 + 2εK

g+(t)eλF−(t)

∫ t

−∞ eλF−(r)g+(r) dr

]
z.
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We have

z(t) ≤ z(t0)e
I(t,t0),

where

I(t, t0) :=

∫ t

t0

λf+(s)− 2− 5εK

1 + 2εK

g+(s)eλF−(s)

∫ t

−∞ eλF−(r)g+(r) dr
ds

= λ(F+(t)− F+(t0))− 2− 5εK

1 + 2εK

[
ln

∫ s

−∞
eλF−(r)g+(r) dr

]t

s=t0

.

Now,
f−
M

≤ g+ ≤ 1 + 2εK

m− εK
f−,

and so
[
ln

∫ s

−∞
eλF−(r)g+(r) dr

]t

s=t0

≥ ln

(
1

λM
eλF−(t)

)
− ln

(
1 + 2εK

λ(m− εK)
eλF−(t0)

)

= λ(F−(t)− F−(t0)) + ln
m− εK

M(1 + 2εK)
.

Therefore

I ≤ λ(F+(t)− F+(t0))− 2− 5εK

1 + 2εK
λ(F−(t)− F−(t0)) + Cε,

where

Cε = −2− 5εK

1 + 2εK
ln

m− εK

M(1 + 2εK)
> 0.

Since

f− ≥ 1− (εK/m)

1 + (εK/m)
f+

we also have

F−(t)− F−(t0) ≥ 1− (εK/m)

1 + (εK/m)
[F+(t)− F+(t0)],

and so

I ≤ λ(F+(t)− F+(t0))

[
1− 2

(1− 5
2
εK)(1− εK/m)

(1 + 2εK)(1 + εK/m)

]
+ Cε.

It follows that for ε sufficiently small we can guarantee that z(t) = 0, and hence that

there is a single pullback attracting positive trajectory x∗(·).
Now note that the above argument is in fact valid for any two trajectories x1(·) and

x2(·) that are bounded below by x−(t). Now also note that any trajectory x(t, s; xs) with

xs > 0 has x(t, s; xs) > 3
4
x−(t) for t large enough (cf. argument following (5.20) in the

proof of Proposition 5); this is also enough to apply the above argument, and so x∗(·) is

attracting in (0, ε) as t → +∞.
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The origin is unstable ‘downwards’ when λ > 0. We have 0 ≥ x(t) ≥ u(t) where u(t)

solves

u̇ = λ[f(t)− εh(t)]u.

As t → −∞ we therefore have u(t) → 0, and so we have x(t) → 0 too.

The unstable trajectory when λ < 0. The transformation x 7→ −x, t 7→ −t, gives the

existence of a candidate for the negative unstable trajectory; its instability follows from

the fact that x∗(·) is attracting ‘from above’ as t → +∞. ¤

6 Non-autonomous ‘simple pitchfork’ bifurcation

The canonical autonomous example of an equation exhibiting a pitchfork bifurcation is

ẏ = µy − y3. (6.1)

For µ < 0 the only fixed point is the origin, which is stable; while for µ > 0 the origin is

unstable and there are two new fixed points at ±√µ which are stable.

We now give a formal definition of what we understand by a ‘pitchfork bifurcation’ for

a non-autonomous system. Note that as before all the behaviour in the definition only

relies on the properties of the equation ‘in the past’.

Definition 13 The system ẋ = f(x, t, λ) undergoes a localised pitchfork bifurcation at

x = 0, λ = 0 if there exists a λ0 > 0 and an ε > 0 such that

(i) for all −λ0 < λ ≤ 0 the zero solution is pullback attracting within (−ε, ε);

(ii) when 0 < λ < λ0 the zero solution is asymptotically unstable, and there exist bounded

trajectories x+
λ (t) and x−λ (t) that are pullback attracting in (0, ε) and (−ε, 0) respec-

tively, and satisfy

x±λ (t) → 0 as λ ↓ 0

uniformly on compact subsets of R.

Since equation (6.1) is invariant under the transformation y 7→ −y it is convenient to

consider the new variable x = 2y2, which satisfies the equation

ẋ = 2µx− x2.
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With a rescaled bifurcation parameter λ = 2µ, we have

ẋ = λx− x2,

where we can restrict attention to x ≥ 0.

For our general non-autonomous example we retain the simplifying factor of reflec-

tional symmetry to ease our treatment, but as in the autonomous case this requirement

could be weakened. With an original equation

ẏ = H(y, t, λ)

that is invariant under the transformation y 7→ −y we set x = y2 and consider instead

ẋ = G(x, t, λ) = 2yH(y, t, λ).

The existence of a non-autonomous pitchfork bifurcation under appropriate conditions

is now a simple consequence of Theorem 7:

Theorem 8 Let the conditions of Theorem 7 hold for the transformed equation ẋ =

G(x, t, λ), except that all limit conditions are only required as t → −∞. Then there is a

local pitchfork bifurcation as λ passes through zero for ẏ = H(y, t, λ).

7 The non-autonomous saddle node bifurcation

The canonical example of an autonomous equation in which a saddle-node bifurcation

occurs is

ẋ = λ− x2. (7.1)

For λ < 0 every trajectory tends to −∞ (in a finite time), while for λ > 0 there are two

fixed points: a stable point at x =
√

λ and an unstable point at x = −
√

λ.

In the non-autonomous case we make the following definition, consistent with our

practice of requiring only behaviour that depends on the past.

Definition 14 The equation ẋ = f(x, t, λ) undergoes a local saddle node bifurcation at

x = 0, λ = 0 provided that there exists a λ0 > 0, an ε > 0, and a δ with 0 < δ < ε such

that

(i) for −λ0 < λ ≤ 0 there are no complete trajectories lying within (−ε, ε);
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(ii) for 0 < λ < λ0 there exists a complete trajectory x+
λ (·) that is pullback attracting

within (−δ, ε) and another complete trajectory x−λ (·) that lies within (−ε, ε) and is

asymptotically unstable. Furthermore

lim
λ→0

x±λ (t) → 0

uniformly on compact subintervals of R.

Note that a more natural definition might require the ‘unstable’ complete trajectory

x−λ (·) to be pullback repelling within (−ε, δ), rather than asymptotically unstable.

7.1 The simple case

First we treat the simplest non-autonomous version of (7.1).

Theorem 9 Consider the equation

ẋ = λf(t)− g(t)x2 (7.2)

where f is ‘essentially positive’

∫ t

−∞
f(s) ds =

∫ ∞

t

f(s) ds = +∞, (7.3)

and the balance conditions

lim inf
t→±∞

g(t) > 0 and 0 < m ≤ lim
t→±∞

f(t)

g(t)
≤ M

hold. Then for λ ≤ 0 there are no nonzero bounded complete trajectories: when λ < 0

for any fixed xs there is a σ such that, for s ≤ σ, x(t, s; xs) → −∞ as t → t∗(s) < ∞,

and similarly for any fixed t we have x(t, s; xs) → −∞ as s → s∗(t) > −∞. For λ = 0

the zero solution is locally forwards and locally pullback attracting within [0,∞), while for

negative initial conditions we have the same behaviour as for λ < 0.

For λ > 0 there are two trajectories ±x∗(t), such that x∗(t) is both forwards and

pullback attracting,

lim
s→−∞

S(t, s)x0 = x∗(t) for all x0 > −
√

λm

and

lim
t→+∞

dist[S(t, s)x0, x
∗(t)] = 0 for all x0 > −

√
λm,
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and −x∗(t) is asymptotically unstable and pullback repelling,

lim
s→+∞

S(t, s)x0 = −x∗(t) for all x0 <
√

λm

and

lim
t→−∞

dist[S(t, s)x0,−x∗(t)] = 0 for all x0 <
√

λm.

Proof. First we consider λ < 0, and assume initially that xs < 0. Since there exists a

T such that for t ≤ T the functions f and g are positive, we have

ẋ ≤ −g(t)x2

for all such t. It follows that

x(t, s; xs) ≤ 1

x−1
s +

∫ t

s
g(r) dr

for all s ≤ t ≤ T,

and hence, since g is essentially positive, that there exists an s∗(t) > −∞ such that

lim
s→s∗(t)

x(t, s; xs) = −∞.

Similarly if xs is fixed there exists a σ(t) such that if s ≤ σ(t) we have

lim
t→t∗(s)

x(t, s; xs) = −∞

for some t∗ < +∞.

If xs > 0, observe that we can argue from the above results applied for xs = −1: there

exists a σ1 such that if s ≤ σ1 then x(t, s;−1) → −∞ as t → t∗(s) < ∞. Now, since for

t ≤ T we have ẋ ≤ λf(t) < 0, and so

x(t, s; xs) < xs + λ

∫ t

s

f(r) dr. (7.4)

The essential positivity of f now implies that there exists a σ2 such that if s ≤ σ2 then

x(t, s; xs) ≤ −1 for some t ≤ σ1; it follows that for some t∗(s) we have x(t, s; xs) → −∞
as t → t∗(s).

It is also the case that for each fixed t we have x(t, s;−1) → −∞ as s → s1(t) > −∞.

Using (7.4) once again there exists an s2(t) such that x(t, s; xs) → −1 as s → s2: it follows

that x(t, s; xs) → −∞ as s → s1(s2).

When λ = 0 the local attractivity of the origin follows from the explicit solution

x(t, s; xs) =
1

x−1
s +

∫ t

s
g(r) dr

,
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while the behaviour for xs < 0 is a consequence of the argument used above for λ < 0.

When λ > 0 we have

ẋ ≤ g(t)[Mλ− x2]

and

ẋ ≥ g(t)[mλ− x2].

It follows that if x0 > −
√

mλ then

√
mλ ≤ lim

s→−∞
x(t, s; x0) ≤

√
Mλ.

Considering the difference of two solutions of (7.2), z = x1 − x2, we have

dz

dt
= −g(t)[x1 + x2]z.

Since g is essentially positive, and x1, x2 ≥
√

mλ it follows that x1(t) = x2(t). This

gives a positive solution x∗(t) that attracts (pullback and forwards) all trajectories with

x0 > −
√

λm.

Without the assumption on what happens as t → +∞, we can only note that for x0 <

−
√

λM the solution tends to −∞ (pullback and forwards). There is some indeterminate

band of conditions between −
√

λM and −
√

λm.

Since the conditions on f and g are symmetric in t we can consider the time-reversed

problem. The same argument now shows that there is a negative solution y∗(t) that

attracts all trajectories with x0 <
√

mλ both backwards in time and is ‘pullback repelling’,

lim
t→∞

x(s, t; x0) = y∗(s). (7.5)

We want to show that in fact that if xs > y∗(s) then

lim
t→∞

[x(t, s; xs)− x∗(t)] = 0.

We now that this convergence holds if xs > −
√

λm. So now consider an initial condition

xs > y∗(s). We know that (7.5) holds in particular for x0 = 0; i.e.

lim
t→∞

x(t, s; 0) = y∗(s).

In particular, for t large enough we must have

x(t, s; 0) < xs.
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Since the equation is order-preserving, it follows that

x(s, t; xs) > 0;

from time t this solution is therefore (since it is greater than
√−mλ) attracted to x∗(t).

Reversing the argument shows that y∗(t) attracts any initial condition less than x∗(t)

as t → −∞, and the result follows. ¤

7.2 General saddle node

We now consider

ẋ = G(t, x, λ),

where the right-hand side has Taylor expansion (where expressions on the right-hand side

involving G are evaluated at (t, 0, 0))

G(t, x, λ) = G + Gxx + Gλλ + 1
2
Gxxx

2 + Gxλxλ + 1
2
Gλλλ

2

+1
6
Gxxxx

3 + 1
3
Gxxλx

2λ + 1
3
Gxλλxλ2 + 1

6
Gλλλλ

3 + . . .

We assume that G(t, 0, 0) = Gx(t, 0, 0) = 0, and so have

G(t, x, λ) = λ[Gλ + Gxλx + 1
2
Gλλλ + 1

3
Gxxλx

2 + 1
3
Gxλλxλ + 1

6
Gλλλλ

2 + . . .]

+[1
2
Gxx + 1

6
Gxxxx + . . .]x2.

This motivates the following theorem.

Theorem 10 Consider

ẋ = G(t, x, λ),

and assume that

G(t, 0, 0) = Gx(t, 0, 0) = 0.

Set f(t) = Gλ(t, 0, 0) and g(t) = −1
2
Gxx(t, 0, 0), and rewrite the equation as

ẋ = λ[f(t) + φ(t, x, λ)]− x2[g(t) + ψ(t, x)],

where ψ(t, 0) = 0. Assume that

lim inf
t→±∞

g(t) > 0, (7.6)

that

0 < m = lim inf
t→±∞

f(t)

g(t)
≤ lim sup

t→±∞

f(t)

g(t)
= M < +∞, (7.7)
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and that

|φ(t, x, λ)| ≤ h(t)[|x|+ |λ|] with |φx(t, x, λ)| ≤ h(t), (7.8)

and finally

|ψx(t, x)| ≤ h(t),

where

lim sup
t→±∞

h(t)

g(t)
≤ K.

Then there is a local saddle node bifurcation as λ passes through zero. Furthermore when

λ > 0 the pullback attracting trajectory xλ(·) is forwards attracting in (0, ε), and the

unstable trajectory is pullback repelling within (−ε, δ).

The standard conditions for a saddle-node bifurcation in the autonomous equation ẋ =

f(x, λ) are (see Glendinning, [7]):

f(0, 0) = 0, fx(0, 0) = 0, fxλ(0, 0) > 0, and fxx(0, 0) < 0.

Once again we recover these conditions above if we set G(t, x, λ) = f(x, λ).

Proof. First note that the two assumptions on the x derivatives of φ and ψ imply the

Lipschitz bounds

|φ(t, x1, λ)− φ(t, x2, λ)| ≤ h(t)|x1 − x2| and |ψ(t, x1)− ψ(t, x2)| ≤ h(t)|x1 − x2|.

For λ < 0 and ε sufficiently small we have

ẋ ≤ λ[f(t)− εh(t)] ≤ λf(t)[1 + (Kε/m)]

for t ≤ −T or t ≥ T . It follows as in the proof of Theorem 9 that there are no complete

nonzero trajectories that lie entirely within (−ε, ε).

When λ = δ2 we have, for all |x| ≤ ε,

ẋ ≤ g(t)[δ2(M + εK)− x2(1− εK)]

and

ẋ ≥ g(t)[δ2(m− εK)− x2(1 + εK)].

With the choice

δ = ε

√
1− εK

M + εK
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it follows that any trajectory with

x− := −δ

√
m− εK

1 + εK
< xs ≤ ε

has |x(t, s; xs)| ≤ ε for all t ≥ s, and hence that

δ

√
m− εK

1 + εK
≤ lim

s→−∞
x(t, s; xs) ≤ ε.

Thus the pullback attractor in (x−, ε] consists of the interval [x1(t), x2(t)]. Considering

the difference z = x1 − x2 this satisfies

dz

dt
= λ[φ(t, x1, λ)− φ(t, x2, λ)]− (x1 + x2)g(t)z − x2

1ψ(t, x1) + x2
2ψ(t, x2)

≤ δ2h(t)z − (x1 + x2)g(t)z + (x2
2 − x2

1)ψ(t, x1) + [ψ(t, x2)− ψ(t, x1)]x
2
1

≤ δ2h(t)z − (x1 + x2)g(t)z + [ε + δ2]h(t)(x1 + x2)z + h(t)zε2

≤ C[ε2h(t)− εg(t)]z

≤ −C(1−Kε)εg(t)z

as ε → 0. It follows that for ε chosen sufficiently small, z(t) = 0.

Using the same argument for the time-reversed systems gives a saddle-node bifurcation.

¤

8 The balance hypothesis: examples

In this final section we give some examples demonstrating that without some kind of

‘balance’ between successive terms in the Taylor series we cannot expect the type of bi-

furcation results above. Note that while all these examples are asymptotically autonomous

(as t → ∞), the behaviour of the non-autonomous equation is different from that of its

autonomous limit.

Our simplest example is

ẋ = λx− e−tx2 with x(s) = xs ≥ 0,

where the exponential term produces very strong dissipativity as t → −∞. From the

explicit solution

x(t, s; xs) =
eλt

x−1
s eλs + (λ− 1)−1(e(λ−1)t − e(λ−1)s)
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it is clear that while for λ < 0 the origin is pullback attracting in R+, this is also the

case when 0 < λ < 1. Thus the ‘one-sided pitchfork’ type bifurcation that we might

expect is suppressed. [Note, however, that the complete (but unbounded) trajectory

x∗(t) = (λ− 1)et is forwards attracting for all λ > 0.]

In the previous example we made one of the terms of the Taylor expansion that plays

a prime rôle in the bifurcation blow up as t → −∞. However, we can also shift this

behaviour to the higher-order terms and run into similar problems. For the equation

ẋ = λx− x2 − e−tx3 with x(s) = xs ≥ 0

it is clear that for λ < 0 the origin is globally pullback (and forwards) attracting; while

for λ > 0 we have

λx− x2 − e−tx3 ≤ λx− e−tx3,

so that the continued pullback attraction of the zero solution follows the previous example

after setting y = x2 and µ = 2λ (see Section 6).

A similar example, but one in which the higher-order terms produce instability (rather

than enhance the stability), is

ẋ = λx− 2x2 + e−tx3.

Given an initial condition xs, whatever the value of λ we can choose T sufficiently large

and negative that

λx− 2x2 + e−tx3 ≥ 1
2
e−tx3 for all t ≤ T.

It follows that for any xs,

lim
s→−∞

x(t, s; xs) = +∞,

and there is never a pullback attracting trajectory.

9 Conclusion

We have tried to develop a general theory for bifurcations in non-autonomous scalar

systems, in particular giving a set of possible definitions for transcritical, pitchfork, and

saddle-node bifurcations that depend only on properties of the system in the past.

There are, of course, many ways in which these results could be improved. The main

problem is the restrictive nature of some of the conditions that we have required on the
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terms in our Taylor expansion. As we remarked at the end of Section 5.1, it should be

possible to prove similar results replacing assumptions such as the asymptotic positivity

of terms in the equation by time integrated (or perhaps time-averaged) conditions such

as ∫ t+T

t

g(s) ds ≥ γ > 0 for all t ∈ R.

There are higher-dimensional bifurcation results for certain systems, in particular in

the almost periodic case (see Kloeden [12], for example). We hope to extend the results

here to general higher dimensional systems, by considering the scalar systems obtained

by restricting attention to an appropriate centre manifold, as is done in the autonomous

case.
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[15] J.A. Langa, J.C. Robinson, & A. Suárez. Stability, instability, and bifurcation phe-

nomena in non-autonomous differential equations, Nonlinearity 15 (2002) pp. 887–

903.
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