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Fac. de Matemáticas, Univ de Sevilla, Sevilla, Spain.

E-mails: rafa.ufpa@hotmail.com, cristianm@us.es, suarez@us.es

abstract. In this paper we study an elliptic eigenvalue problem with non-local boundary

condition. We prove the existence of the principal eigenvalue and its main properties. As

consequence, we show the existence and uniqueness of positive solution of a nonlinear

problem arising from population dynamics.

AMS Mathematics Subject Classification 2010: 35J60, 45K05

key words: Non-local boundary condition, eigenvalue problem.

1 Introduction

In this paper we consider the following nonlinear equation with non-local boundary con-

ditions  −∆u = λu− up in Ω,

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω,
(1)

where Ω ⊂ IRN is a bounded domain with smooth boundary, λ ∈ IR, p > 1, K ∈ C(Ω) is

a nonnegative and nontrivial function satisfying some hypotheses that we will establish

later and

Bu := α0∂ηu+ β(x)u,
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where β ∈ C(∂Ω), η is the outward unit vector and two cases are considered: α0 = 1 and

β could change sign (Robin case) or α0 = 0 and β ≡ 1 (Dirichlet case).

Parabolic nonlinear problems with non-local boundary conditions

(2)


ut −∆u = f(x, u) in Ω× (0,∞),

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

have been extensively studied. Some physical phenomena can be formulated as (2), for

instance problems arise from quasi-static thermoelasticity, where u(x, t) describes entropy

per volume of the material, see [3]. Also, (2) can model the behaviour of a population

inhabiting in Ω, where the flux across the boundary ∂Ω at any given point is proportional

to the total population, in this case in a linear way. We refer to [2] for the case in which

this flux is proportional to the density.

In [7] the sub-supersolution method is used to show some existence and comparison

results for (2), see also [5] and [6] and references therein for the case f(x, u) = −c(x)up.

However, the elliptic case associated to (2) has been only analyzed in some specific case. In

[7], the author showed that the sub-supersolution method can be applied to the stationary

problem associated to (2). Moreover, when f is decreasing in u and imposing the condition

(3) K(x) ≥ 0,

∫
Ω

K(x)dx < 1

the author proved the uniqueness of solution. Condition (3) was used to assure the validity

of the maximum principle. This condition was relaxed in [8] allowing that
∫

Ω
K(x)dx = 1

and either α0 > 0 or K(x) > 0.

In the first part of this paper, we analyze the validity of the maximum principle by

means of the existence of a principal eigenvalue. For that, we study the eigenvalue problem

(4)

 −∆u+ c(x)u = λu in Ω,

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω.

Our first result can be summarized as follows:

Theorem 1.1 1. There exists the principal eigenvalue of (4), denoted by λ1[−∆ +

c;B;K], that is, the only eigenvalue of (4) possessing a positive eigenfunction.

2. λ1[−∆ + c;B;K] is increasing in c and decreasing in K.
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3. The maximum principle for the linear equation

(5)

 −∆u+ c(x)u = f(x) in Ω,

Bu =

∫
Ω

K(x)u(x)dx+ g(x) on ∂Ω,

is satisfied if, and only if, λ1[−∆ + c;B;K] > 0. We say that (5) satisfies the

maximum principle, if given f ∈ C(Ω), g ∈ C(∂Ω), f ≥ 0, g ≥ 0 and some of them

non-trivial, then u ≥ 0 in Ω for any solution u of (5).

We mention that (4) was only analyzed in [9] when K(x) ≡ k is a positive constant and

Dirichlet boundary condition. The author proved that if there exists a negative eigenvalue

then k > 1/|Ω| and if k < 1/|Ω| then all the eigenvalues are positive. Our results improve

this one, because we prove the existence of principal eigenvalue for general function K,

not only constant, see Remark 2.7. On the other hand, in [7] it is proved that when

c ≡ 0, β ≡ 1 and K verifies (3), then the maximum principle is satisfied. We prove that

in this particular case λ1[−∆ + c;B;K] > 0 and then the maximum principle is satisfied.

Obviously our result generalizes and improves the above result, see again Remark 2.7

where a detailed comparison with the results of [7] and [8] is made.

With respect to the nonlinear problem (1), our main result is:

Theorem 1.2 Equation (1) possesses at least a positive solution if, and only if, λ >

λ1[−∆;B;K]. In this case, (1) possesses a unique positive solution.

We apply the sub-supersolution method to prove the existence and we use properties

of the principal eigenvalue, to show that in fact this condition is also necessary to have

positive solution and also to show the uniqueness of positive solution.

An outline of the paper is as follows: Section 2 is devoted to study in detail the

eigenvalue problem (4). In Section 3, using the sub-supersolution method, we study (1).

2 Eigenvalue problems

In this section, we consider the eigenvalue problem −∆u+ c(x)u = λu in Ω,

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω.
(6)

We will show the existence of a principal eigenvalue of (6), that is, an eigenvalue with

a positive eigenfunction. Before proving our main result, we introduce some notations.
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Consider the space X = C(Ω) and its respective cone P =: {u ∈ X : u ≥ 0 in Ω}. Recall

that

int(P ) =: {u ∈ P : u > δ0 in Ω for some δ0 > 0}.

We say that a function u is positive, we write u ≥ 0, if u ∈ P ; u is strongly positive if

u ∈ int(P ).

Given f ∈ X, we denote by

fL := min
x∈Ω

f(x) and fM := max
x∈Ω

f(x).

Finally, we denote by λ1[−∆ + c;B] the principal eigenvalue of the problem{
−∆u+ c(x)u = λu in Ω,

Bu = 0 on ∂Ω.
(7)

We are ready to state our first main result:

Theorem 2.1 There exists the principal eigenvalue of (6), denoted by λ1[−∆ + c;B;K].

This eigenvalue is simple and possesses a unique eigenfunction, up to multiplicative con-

stants, which can be taken positive. Moreover, the principal eigenfunction is strongly posi-

tive and λ1[−∆+c;B;K] is the only eigenvalue of (6) possessing a positive eigenfunction.

Furthermore, any other eigenvalue σ of (6) satisfies

(8) Re σ > λ1[−∆ + c;B;K].

The proof of this result consists of several steps. Let R > 0 be an enough large

constant such that cR(x) := c(x) +R > 0. Then, the above equation (6) becomes −∆u+ cR(x)u = (λ+R)u in Ω,

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω.
(9)

We are going to apply the Krein-Rutmann Theorem to this equation. So, we consider the

following linear equation:

(10)

 −∆u+ cR(x)u = f(x) in Ω,

Bu =

∫
Ω

K(x)u(x)dx on ∂Ω.

for f ∈ X.
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Proposition 2.2 Consider the operator T : X 7→ X defined by T (f) := u, where u is the

solution of (10). Then, there exists R0 > 0 such that for R ≥ R0, T is well defined and it

is compact. Moreover,

T (P \ {0}) ⊂ int(P ),

that is, T is a strongly positive operator.

Proof: First, take R large enough such that λ1[−∆ + cR;B] > 0. The proof depends on

the boundary condition. So, we distinguish two cases:

1.- Assume that α0 = 1. Consider the unique positive solution eR ∈ C(Ω) of{
−∆eR + cR(x)eR = K(x) in Ω,

BeR = 0 on ∂Ω.
(11)

First, we will prove that for R large we have that∫
∂Ω

eRdS < 1.

Consider ϕ1 > 0 a positive eigenfunction associated to λ1[−∆;B], that is,

−∆ϕ1 = λ1ϕ1 in Ω, Bϕ1 = 0 on ∂Ω.

Then, Mϕ1 is supersolution of (11) if

Mϕ1(λ1 + c(x) +R) ≥ K(x),

for which is sufficient that (for R large)

M =
KM

(λ1 + cL +R)(ϕ1)L
.

Hence

eR ≤
KM

(λ1 + cL +R)(ϕ1)L
ϕ1,

from where ∫
∂Ω

eR(x)dS ≤ KM

(λ1 + cL +R)(ϕ1)L

∫
∂Ω

ϕ1dS → 0 as R→∞.

Now, multiplying (10) by eR and integrating we get∫
Ω

K(x)udx

(
1−

∫
∂Ω

eRdS

)
=

∫
Ω

f(x)eR(x)dx
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and we conclude for some R > 0 large enough that

∫
Ω

K(x)udx =

∫
Ω

feRdx(
1−

∫
∂Ω

eRdS

) .
Hence, (10) is equivalent to

(12)


−∆u+ cR(x)u = f(x) in Ω,

Bu =

∫
Ω

feRdx(
1−

∫
∂Ω

eRdS

)dx on ∂Ω.

Now, it is clear that (12) possesses a unique solution, and so T is well defined and compact.

Moreover, if f ≥ 0, f 6= 0, the strong maximum principle implies that u is strongly

positive.

2.- For the Dirichlet case, α0 = 0 and β ≡ 1, the argument is completely different. For

each M ∈ IR constant, denote by eR,M the unique solution of

(13)

{
−∆u+ cR(x)u = f(x) in Ω,

u = M on ∂Ω.

Define the map

h(M) :=

∫
Ω

K(x)eR,Mdx.

We claim that u is a solution of (10) if, and only if, h has a fixed point, M = h(M).

Indeed, assume that u is solution of (10), denote by

M0 =

∫
Ω

K(x)udx.

Now, it is clear that M0 = h(M0).

On the other hand, assume that there exists M0 ∈ IR such that M0 = h(M0). Then,

u = eR,M0 is solution of (10).

We study now the map h. Observe that h′′(M) = 0, and then

h(M) = aM + b,

where

b =

∫
Ω

K(x)eR,0dx, a =

∫
Ω

K(x)e′R,0dx
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and e′R,0 is the unique solution of

(14)

{
−∆u+ cR(x)u = 0 in Ω,

u = 1 on ∂Ω.

Now, we prove that there exists R0 > 0 such that for R ≥ R0 we have that

a =

∫
Ω

K(x)e′R,0dx < 1,

concluding that h possesses a unique fixed point. Take ϕ ∈ C2(Ω), ϕ > 0 and ϕ = 0 on

∂Ω. Then, e−Cϕ is supersolution of (14) if

C2|∇ϕ|2 − C∆ϕ− (c(x) +R) ≤ 0,

for which is enough that

C2(|∇ϕ|2)M − C(∆ϕ)L − (cL +R) = 0.

Then, it is clear that for each R > 0 large enough, there exists C(R) such that C(R) →
+∞ as R→∞. Then,

e′R,0 ≤ e−C(R)ϕ,

and hence

a =

∫
Ω

K(x)e′R,0dx ≤
∫

Ω

K(x)e−C(R)ϕdx < 1, for R large.

This implies that h(M) = M has a unique solution, denoted by M0. Hence, (10) possesses

at least a solution u. We show now that this solution is unique. Assume that (10) has

two solutions u1 6= u2. It is clear that if∫
Ω

K(x)u1dx =

∫
Ω

K(x)u2dx,

then u1 = u2. If
∫

Ω
K(x)u1dx 6=

∫
Ω
K(x)u2dx, then h has two fixed points. This shows

that (10) possesses a unique solution.

Moreover, when f ≥ 0, f 6= 0, we get that a, b > 0, and then M0 > 0; that is,

the unique solution is strictly positive. This proves that T is well-defined and strongly

positive. Finally, by the elliptic regularity, it follows that T is compact. �

We are ready to prove the result.

7



Proof of Theorem 2.1: It is enough to apply the Krein-Rutmann Theorem, see for

instance [1], and conclude the existence of a positive spectral radius of T . Then,

λ1[−∆ + cR;B;K] =
1

spr(T )
,

and hence,

λ1[−∆ + c;B;K] =
1

spr(T )
−R.

�

Now, we want to study the relation of the principal eigenvalue with the maximum

principle and its properties. The first result compares the eigenvalues λ1[−∆ + c;B] and

λ1[−∆ + c;B;K] and characterizes the sign of λ1[−∆ + c;B;K].

Proposition 2.3 1. It holds that

λ1[−∆ + c;B;K] ≤ λ1[−∆ + c;B].

2. Assume that λ1[−∆ + c;B] ≤ 0, then λ1[−∆ + c;B;K] ≤ 0.

3. Assume that λ1[−∆ + c;B] > 0, then

sgn(λ1[−∆ + c;B;K]) = sgn

(
1−

∫
∂Ω

e(x)dS

)
,

for the Robin case, and

sgn(λ1[−∆ + c;B;K]) = sgn

(
1 +

∫
∂Ω

∂ηe(x)dS

)
,

for the Dirichlet case, where e is the unique positive solution of{
−∆e+ c(x)e = K(x) in Ω,

Be = 0 on ∂Ω.
(15)

Proof: Denote by ϕ1 and ψ1 the positive eigenfunction associated to λ1[−∆+ c;B;K] and

λ1[−∆ + c;B], respectively. Multiplying the equation of ϕ1 by ψ1, we can integrate by

parts and obtain∫
∂Ω

(∂ηψ1ϕ1 − ∂ηϕ1ψ1)dS = (λ1[−∆ + c;B;K]− λ1[−∆ + c;B])

∫
Ω

ψ1ϕ1dx.
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For both boundary conditions, we obtain the first statement, and consequently also the

second one. Observe that in the Dirichlet case we have used that ∂ηψ1 < 0 on ∂Ω.

Assume now that λ1[−∆ + c;B] > 0, then there exists a unique positive solution of

(15). Multiplying (15) by ϕ1 and integrating by parts, we obtain∫
Ω

K(x)ϕ1dx+

∫
∂Ω

(∂ηeϕ1 − ∂ηϕ1e)dS = λ1[−∆ + c;B;K]

∫
Ω

eϕ1dx.

When α0 = 1, we have∫
Ω

K(x)ϕ1dx

(
1−

∫
∂Ω

edS

)
= λ1[−∆ + c;B;K]

∫
Ω

eϕ1dx,

and for α0 = 0∫
Ω

K(x)ϕ1dx

(
1 +

∫
∂Ω

∂ηedS

)
= λ1[−∆ + c;B;K]

∫
Ω

eϕ1dx,

that is, the third statement is satisfied. This completes the result.

�

In the following result, we give a useful result to prove that the principal eigenvalue

is positive. First, we need a definition:

Definition 2.4 Given f ∈ C(Ω), g ∈ C(∂Ω), f ≥ 0, g ≥ 0 and some of them non-trivial.

We say that

(16)

 −∆u+ c(x)u = f(x) in Ω,

Bu =

∫
Ω

K(x)u(x)dx+ g(x) on ∂Ω,

satisfies the maximum principle, if for any solution u of (16) lies in P . If u ∈ int(P ), we

say that (16) satisfies the strong maximum principle.

Proposition 2.5 The following conditions are equivalent:

1. λ1[−∆ + c;B;K] > 0,

2. There exists a strict positive supersolution, that is, a function u > 0 in Ω such that

(−∆ + c(x))u ≥ 0 in Ω, Bu ≥
∫

Ω

K(x)udx on ∂Ω,

with some inequality strict.
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3. (16) satisfies the maximum principle.

4. (16) satisfies the strong maximum principle.

Proof: It is clear that if λ1[−∆ + c;B;K] > 0, then the positive eigenfunction ϕ1 is a

strict positive supersolution.

Assume now the existence of a strict positive supersolution u. Multiplying the equation

(15) by u we obtain∫
Ω

(−∆u+ c(x)u)edx+

∫
∂Ω

(∂ηue− ∂ηeu)dS =

∫
Ω

K(x)udx,

and then for the case α0 = 1,

0 ≤
∫

Ω

K(x)udx

(
1−

∫
∂Ω

edS

)
,

whence, using Proposition 2.3, we conclude that λ1[−∆+c;B;K] > 0. A similar argument

works for the case α0 = 0.

Suppose that λ1[−∆ + c;B;K] > 0 and f ≥ 0, g ≥ 0, some of them non-trivial and

consider u the solution of (16). Since λ1[−∆+c;B;K] > 0, by Proposition 2.3 we get that

λ1[−∆ + c;B] > 0, and so there exists a unique positive solution e of (15). Multiplying

the above inequality by e, we obtain∫
Ω

fedx ≤
∫

Ω

K(x)udx

(
1−

∫
∂Ω

edS

)
,

whence we obtain that
∫

Ω
K(x)udx ≥ 0 and so u ≥ 0 in Ω. Since, some inequality is strict,

it follows that u is strongly positive, and so the strong maximum principle is satisfied.

Finally, it is clear that if the strong maximum principle is satisfied, then there exists

a positive supersolution. This completes the proof.

�

Finally, we get the following properties:

Proposition 2.6 The principal eigenvalue λ1[−∆ + c;B;K] is increasing in c and de-

creasing in K.

Proof: Assume that K1 ≥ K2, K1 6= K2 in Ω, and denote ϕ1 the positive eigenfunction

associated to λ1[−∆ + c;B;K1]. Then,

(−∆ + c(x)− λ1[−∆ + c;B;K1])ϕ1 = 0 in Ω,
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and

Bϕ1 =

∫
Ω

K1(x)ϕ1dx >

∫
Ω

K2(x)ϕ1dx on ∂Ω,

hence, ϕ1 is a supersolution of the above problem. So, by Proposition 2.5 we obtain that

λ1[−∆ + c− λ1[−∆ + c;B;K1];B;K2] > 0,

that is,

λ1[−∆ + c;B;K2] > λ1[−∆ + c;B;K1].

In a similar way, it can be proved that the principal eigenvalue is increasing in c.

�

Remark 2.7 We show that our results improve those in [7], [8] and [9].

1. Assume as in [7] that c ≡ 0 and β ≡ 1. If K verifies (3), then positive constants are

supersolutions and then the maximum principle is satisfied, as it is proven in [7].

In fact, this condition is also necessary for the maximum principle holds. Indeed,

observe that in this case, equation (15) is

−∆e = K(x) in Ω, Be = 0 on ∂Ω,

and then, when α0 = 1 we have that∫
∂Ω

e(x)dS =

∫
Ω

K(x)dx,

and for α0 = 0

−
∫
∂Ω

∂ηe(x)dS =

∫
Ω

K(x)dx.

So, by Proposition 2.3, sgn(λ1[−∆;B;K]) = sgn(1−
∫

Ω
K(x)ds). Hence, by Propo-

sition 2.5, (3) is a necessary and sufficient condition to hold the maximum principle.

2. Assume that c ≥ 0, c 6= 0, β ≡ 1 and
∫

Ω
K(x) = 1 as in [8]. Again, positive

constants are supersolutions, and so the maximum principle is satisfied.

3. Assume that K(x) = k as in [9]. So,∫
Ω

K(x)dx = k|Ω|.

Then, if k|Ω| < 1 and by (8) all the real eigenvalues are positive. On the other hand,

if k|Ω| > 1 then λ1[−∆;B;K] < 0, implying Proposition 2.1 in [9].
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3 Nonlinear Problem

In this section we study the nonlinear problem (1) and prove Theorem 1.2.

Proof of Theorem 1.2: Assume that (1) has a unique positive solution u. Then, using

Proposition 2.6

λ = λ1[−∆ + up−1;B;K] > λ1[−∆;B;K].

Reciprocally, let us suppose that λ > λ1[−∆;B;K] and let ϕ1 be an eigenfunction

related to λ1[−∆;B;K]. If we consider 0 < ε < [(λ− λ1[−∆;B;K])/(ϕ1)M ]
1

p−1 , it follows

that

−∆ (εϕ1) = λ1εϕ1 ≤ λ (εϕ1)− (εϕ1)p .

So, by denoting u := εϕ1, we have that u is a lower solution of (1). By the other hand, if

we consider M > [(λ− λ1[−∆;B;K])/(ϕ1)L]
1

p−1 , it follows that

−∆ (Mϕ1) = λ1Mϕ1 ≥ λ (Mϕ1)− (Mϕ1)p .

Then, by denoting u := Mϕ1, we have that u is an upper solution of (1). Hence, using

for example Theorem 3.1 in [7], we conclude that (1) has a positive solution.

Now, we will prove that the solution of (1) is unique. If u1 and u2 are solutions of the

equation (1) such that ∫
Ω

K(x)u1dx =

∫
Ω

K(x)u2dx,(17)

then we have that u1 = u2. Indeed, observe that u1 is a positive solution of the logistic

equation

(18) −∆w = λw − wp in Ω, Bw =

∫
Ω

K(x)u2dx.

But, this equation possesses a unique positive solution, see for instance [4], and so u1 = u2.

Then, we will prove uniqueness when (17) does not occur. Let us suppose that∫
Ω

K(x)u1dx >

∫
Ω

K(x)u2dx.

Observe that u1 is supersolution of (18), and so u1 > u2. Denoting w := u1 − u2 > 0, we

get that  −∆w = λw − (up1 − u
p
2) in Ω,

Bw =

∫
Ω

K(x)w(x)dx on ∂Ω,
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and then 
−∆w +

up1 − u
p
2

u1 − u2

w = λw in Ω,

Bw =

∫
Ω

K(x)w(x)dx on ∂Ω.

But,
up1 − u

p
2

u1 − u2

> up−1
1

and then

λ = λ1[−∆ +
up1 − u

p
2

u1 − u2

;B;K] > λ1[−∆ + up−1
1 ;B;K] = λ,

which is an absurd.

�
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