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Abstract

This work deals with the uniqueness of positive solution for an elliptic equation

whose nonlinearity satisfies an specific monotony property. In order to prove the main

result, we employ a change of variable used in previous papers and the maximum

principle.
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1 Introduction

Let Ω ⊂ IRN be a regular domain and f : Ω × IR 7→ IR a measurable function. We are

interested in the classical and positive solutions of the elliptic problem




−∆u = f(x, u) in Ω,

u = 0 on ∂Ω.

(1.1)
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One of the more difficult problem related to (1.1) is proving the uniqueness of solution of

(1.1). It is well known that if f is decreasing in u then there exists at most one solution

of (1.1), see for instance [1] and [2]. When for a. e. x ∈ Ω the map

u 7→ f(x, u)
u

is decreasing in (0,∞) (1.2)

then, there exists at most one positive solution of (1.1), see [3] and [4].

In this note, we employ an appropriate change of variable (yet used in [5], [6], [7] and

[8]) and the strong maximum principle to prove that if there exists a regular, positive and

concave function g (see Theorem 2.1 and Proposition 2.2 for the exact conditions on g)

such that

u 7→ f(x, u)
g(u)

is non-increasing in (0,∞) for a. e. x ∈ Ω (1.3)

then, there exists a unique positive solution.

When f(x, u) = a(x)g(u) with a ∈ L∞(Ω), the uniqueness was studied in [5], [6], [7]

and [8]. We refer to [6] where a review of the uniqueness question is made. We would like

to remark that although the conditions (1.2) and (1.3) seem rather similar, the techniques

for the proofs of uniqueness are quite different. In fact, the proofs of the uniqueness result

under (1.2) use the monotonicity of the quotient between f(x, t) and exactly the linear

function g(t) = t. Our proof, which allows us to use the monotonicity of the quotient

between f(x, t) and a concave function g(t), does not reach the linear function; whereas

f(x, t)/g(t) is not necessarily decreasing.

In the following section we prove the main result of this work. In the last section we

employ a specific example from population dynamics that shows that our result improves

and complements that obtained under the condition (1.2).

2 Main result

Our main result reads as follows:

Theorem 2.1 Assume that there exists a function g ∈ C1(0, +∞)∩C0([0, +∞)), g(t) > 0

for t > 0, such that

a) g′ is non-increasing and
∫ r

0

1
g(t)

dt < ∞, for r > 0. (2.1)



Uniqueness of positive solution 3

b) The map

u 7→ f(x, u)
g(u)

is non-increasing in (0,∞) for a. e. x ∈ Ω. (2.2)

Then, there exists at most one positive solution of (1.1).

Proof: Consider the change of variable

v =
∫ u

0

1
g(t)

dt (2.3)

which transforms (1.1) into




−∆v = g′(h(v))|∇v|2 +
f(x, h(v))
g(h(v))

in Ω,

v = 0 on ∂Ω,

(2.4)

where

u = h(v), (2.5)

and h satisfies, from (2.3), h′(t) = g(h(t)).

Assume that there exists two positive solutions u1 6= u2 of (1.1). Let Ω1 := {x ∈ Ω :

u1(x) > u2(x)}. Assume that Ω1 is not empty. It is clear that u1 = u2 on ∂Ω1. Thanks

to monotonicity of h, v1 > v2 in Ω1 and v1 = v2 on ∂Ω1, where ui = h(vi) i = 1, 2.

Consider the function

Φ := v1 − v2,

which is positive in Ω1 and Φ = 0 on ∂Ω1. After some calculation, we obtain that Φ

verifies

−∆Φ− g′(h(v1))|∇v1|2 + g′(h(v2))|∇v2|2 =
(

f(x, h(v1))
g(h(v1))

− f(x, h(v2))
g(h(v2))

)
. (2.6)

Since g′ is non-increasing, g′(h(v1)) ≤ g′(h(v2)); and by (2.2), we get that

−∆Φ− g′(h(v1))∇(v1 + v2) · ∇Φ ≤ 0,

which is a contradiction by the maximum principle. This completes the proof. 2

If we look for positive solutions in a more restrictive set, we can weaken the condition

(2.1). Let define

P := {u ∈ C1
0 (Ω) : u(x) ≥ 0, u 6= 0 in Ω},
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whose interior is

int(P ) = {u ∈ P : u(x) > 0 for all x ∈ Ω, ∂u/∂n < 0 on ∂Ω},

where n denotes the outward normal direction.

Proposition 2.2 Assume that there exists g as in Theorem 2.1 but verifying

lim
s→0

s

g(s)
= 0, (2.7)

instead of (2.1). Then, there exists a unique solution in int(P ) of (1.1).

Proof: Observe first that if u ∈ int(P ), there exist positive constants 0 < k1 ≤ k2 such

that

k1dist(x) ≤ u(x) ≤ k2dist(x), (2.8)

where dist(x) := dist(x, ∂Ω). Assume that there exists two positive u1 6= u2 of (1.1) with

ui ∈ int(P ), i = 1, 2 . Let Ω1 := {x ∈ Ω : u1(x) > u2(x)}. We define now for x ∈ Ω1

Φ(x) :=
∫ u1(x)

u2(x)

1
g(t)

dt.

First, observe that function Φ is continuous in Ω1 and

Φ = 0 on ∂Ω1.

Indeed, for x ∈ ∂Ω1 ∩ Ω it is clear that Φ(x) = 0. For each x ∈ Ω1 there exists ξ(x) with

u2(x) ≤ ξ(x) ≤ u1(x) such that

Φ(x) =
u1(x)− u2(x)

g(ξ(x))
≤ Cdist(x)

g(ξ(x))
→ 0, as dist(x) → 0,

where we have used (2.7) and (2.8).

On the other hand, as in the proof of Theorem 2.1, we get that

−∆Φ− g′(u1)
( ∇u1

g(u1)
+
∇u2

g(u2)

)
· ∇Φ ≤ 0.

This last inequality leads to a contradiction to the maximum principle in the same way as

in the proof of Theorem 2.1. 2

Remark 2.3 a) Observe that, for example, g(s) = s log2(s) verifies (2.7) but not (2.1).



Uniqueness of positive solution 5

b) Conditions on f can be imposed in order that every non-negative and non-trivial

solution of (1.1) belongs to int(P ), see for instance [9].

c) The same results hold for second order uniformly elliptic operator of the form

L := −
N∑

i,j=1

aij
∂2

∂xi∂xj
+

N∑

i=1

bi
∂

∂xi

with aij ∈ C0(Ω), bi ∈ C0(Ω), aij = aji, see [12].

d) If g is positive only in (0, R) for some R > 0, and

∫ R

0

1
g(t)

dt < +∞ (2.9)

then, we deduce a uniqueness result for positive solutions, u, such that ‖u‖∞ ≤ R.

3 Example and comparison

In this section we apply our result to the nonlinearity

f(x, u) = a(x)uq + b(x)up

with different values of q and p, and a, b ∈ L∞(Ω). This nonlinearity arises from the study

of the population density of a species whose mobility depends upon its density, see [10]

and [11]. Some uniqueness results were obtained in [12] and [13]. For this function, the

condition (1.2) is equivalent to

(q − 1)a(x) + (p− 1)b(x)up−q < 0. (3.1)

Now, we distinguish between the different cases:

Case q = 1, p < 1: In this case, (3.1) holds if b > 0. Theorem 2.1 complements this result.

Indeed, taking g(u) = up we obtain uniqueness of positive solution for a ≤ 0 and any

function b.

Case q < 1, p > 1: (3.1) holds, for example, if a is positive and b ≤ 0; a positive and b

positive or changes sign and ‖u‖∞ small, see [14] and [11]. By Theorem 2.1, there exist

at most one positive solution if b ≤ 0 and any function a.
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Case q < 1, p < 1: In this case (3.1) is satisfied if, for example, a and b are both positive.

In the particular case p = q, (3.1) is equivalent to a + b > 0.

By Theorem 2.1 we consider three cases:

a) If p < q, then we have uniqueness of positive solution for any function a and b ≥ 0

(taking g(u) = uq) and for any function b and a ≤ 0 (taking g(u) = up).

b) If p > q, then the result is similar to case a) changing a by b and b by a.

c) If p = q, then there exists at most one positive solution if a + b is non-negative or

changes sign. Observe that if a+b is non-positive, (1.1) does not posses non-negative

solution.

In the cases p = 1, q < 1 and p < 1, q > 1 similar results to the first and third cases

respectively can be obtained interchanging the roles of a and b.
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