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Abstract

In this paper we study in detail the pullback and forwards attractions
to non-autonomous competition Lotka-Volterra system. In particular,
under some conditions on the parameters, we prove the existence of a
unique non-degenerate global solution for these models, which attracts
any other complete bounded trajectory. For that we present the
sub-supertrajectory tool as a generalization of the now classical sub-
supersolution method.
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1 Introduction

In this paper we collect some results from [6] and [7] to analyze the asymptotic
dynamics of the following non-autonomous Lotka-Volterra competition model

ur — Au = u(Nt,x) —a(t,x)u — b(t,z)v) € Q, t>s
v — Av =ov(pu(t,x) — c(t,x)u —d(t,z)v) x€Q, t>s
u=v=0 €I, t>s
u(s) = us, v(s) = vs.

(1)
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Here, u and v represent the population densities of two species within a habitat
2, a bounded and smooth domain in R, N > 1, which compete in the habitat.
A, i are the growth rates of the species, b, ¢ are the interaction rates between the
species, a, d describe the limiting effects of crowding in each population. We are
assuming that €2 is fully surrounded by inhospitable areas, since the population
densities are subject to homogeneous Dirichlet boundary conditions. us, vs are
regular and positive functions which implies that the solution of (1) satisfies
u,v > 0.

In this work we are interested in determining the asymptotic behaviour of
solutions of the system (1). This is a very complicated task, and only partial
results are known. For example in the autonomous case (all the coefficients in
(1) are constants) and denoting by Ao the principal eigenvalue associated to —A,
then if A or u < Ay, then one of the two species (or both of them) will be driven
to extinction. However, there exist two increasing maps F,G : [Ag,00) — R
such that if

A>G(p) and p> F(N),

then (1) is permanent and moreover there exists a positive equilibrium solution
(see Cantrell et al. [2] and Lopez-Gomez [9]).

When non-autonomous terms are allowed in the equations, this is usually
done under the assumption of periodicity, quasiperiodicity or almost periodicity,
and in this case similar results can be obtained to those for autonomous
equations (see Hess [4], Hetzer and Shen [5] and references there in).

Cantrell and Cosner [1] assume general non-autonomous terms that are
bounded by periodic functions, and using a comparison method give conditions
on A and p that guarantee that (1) is permanent.

In [6] we show that, under a smallness condition on the coupling coefficients
be, if there exists a bounded and bounded away from zero complete trajectories
of (1), it is the unique such trajectory, and it also describes the unique pullback
and forwards attracting for (1), i.e. (u*,v*) is a bounded trajectory such that,
for any s € R and for any positive solution (u(t,s),v(t,s)) of (1) defined for
t > s, one has

(u(t,s) —u*(t),v(t,s) —v*(t)) — (0,0) as t— o0, or §— —oo. (2)

In this work (see [7]) we show that this trajectory really exists. To this
end we introduce the sub-supertrajectory method as a tool to get existence of
intermediate complete trajectories associated to (1). Note that our construction
is independent of whether or not (1) has monotonicity properties. Note also
that the usual way in previous works (for instance [6], [11]) to get existence
of complete trajectories associated to a particular system is by means of the
pullback attractor. The sub-supertrajectory method adopts a different and, in
this case, more fruitful strategy. Moreover, we also get the existence of minimal
and maximal global bounded trajectories associated to ordered systems.

In Section 2 we present the sub-supertrajectory tool, Section 3 is devoted
to the logistic equation which appears when one species is absent. Finally, in
Section 4 we show the results of system (1).
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2 The sub-supertrajectory method for complete solutions
Consider the general problem

uy — Au = f(t,x,u,v) x€Q, t>s
ve — Av = g(t,z,u,v) x€Q, t>s
u=v=0 r€eEI, t>s
u(s) = us, v(s) = vs,

(3)

where f, g are bounded on bounded sets of R x Q x R? and are locally Holder
continuous in time. We denote the solutions of (3) as

u(t, s;us,vs), v(t,s;us,vs), fort>s.

Definition 1 A pair of functions (u,v) € C;f(]R x Q) is a complete trajectory
of (3), if for all s <t in R, (u(t),v(t)) is the solution of (3) with initial data
us = u(s), vs = v(s).

Definition 2 A positive function u(t,z) is non—degenerate at co (respectively
—o0) if there exists to € R such that u is defined in [tg,00) (respectively
(—o0,t0]) and there exists a CL(Q) function po(z) > 0 in Q, such that for
all x € Q, u(t,x) > @o(x) for all t > to (respectively for all t < tg).

The use of sub-supertrajectory pairs to construct complete solutions can be
found in Chueshov [3] or Langa and Suarez [8]. Both references use monotonicity
properties of the equations, see Corollaries 2 and 3 below. In particular this
applies to scalar equations. Here we use similar ideas to construct bounded
complete trajectories, without such monotonicity assumptions.

Given Ty < oo and two functions w,z € C((—o0,Tp) x Q) with w < z we
denote

[w, 2] == {u € C((—00,Tp) x Q) 1w < u < 2}

Now we introduce the concept of complete sub-supertrajectory pair.

Definition 3 Let Ty < oo and (u,v), (u,0) € X = Ctl’f((—oo,To) x Q). We
say that (u,v) — (u,v) is a complete sub-supertrajectory pair of (3) if

1. u(t) <a(t) and v(t) <o(t) in Q, for all t < Tp.
2. u<0<Tuwandv <0<7T on I, for all t < Tj.
3. Forallz e Q,t<Ty

ﬂt _Aﬂ_f(tvxvﬂvv)

u — Au — f(t,z,w,v), Y€ [v,7),
vy — Av —g(t, z,u,v) vy — AV —

0<
<0< g(t,x,u,v), Vu € [u,ul.

Note that the concept of a sub-supersolution pair, defined for ¢ > s, has

been widely used and developed, see e.g. Pao [10], to construct solutions for

the initial value problem (3). The main result of this section is:
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Theorem 1 Assume that there exists a complete sub-supertrajectory pair of
(8), (u,v) — (u,v), in the sense of Definition 8. Moreover, assume w, v, U and
v are bounded at —oo. Then, there exists a complete trajectory (u*,v*) € X of
(3) such that

(u*,v*) € T := [u,T] X [v,7].

When f and g have some monotonicity properties, we can go further:

Corollary 2 Under the assumptions of Theorem 1, assume moreover that f is
increasing in v and g in w. Then, there exist two complete trajectories (u., vy )
and (u*,v*) of (3) with (u.,v.), (u*,v*) € T := [u,u] X [v,7] such that they
are minimal and mazimal in Z in the following sense: for any other complete
trajectory (u,v) € T we have:

u(t) < ua(t) < u(t) <w(t) <a(t),
t

v(t) < v () < ut) < v*(t) < B(), for all t < Ty. (4)

Corollary 3 Under the assumptions of Theorem 1, assume moreover that f is
decreasing in v and g in u. Then, there exist two complete trajectories (us,v™)
and (u*,v.) of (3) with (us,v*),(u*,v.) € T := [u, 7] X [v,7] and such that
they are minimal-maximal and mazimal-minimal in the following sense: for
any other complete trajectory (u,v) € T we have:

u(t) < u(t) < u*(t)

<
(t) < va(t) < 0(t) < v* (1) for all t < T. (5)

IN A
2|
=

3 The non-autonomous logistic equation

Note that (1) always admits semi-trivial trajectories of the form (u,0) or (0,v).
In this case, when one species is not present, the other one satisfies the logistic
equation
—Au=h(t,z)u—g(t,x)u? inQ, t>s
u=0 on 09, (6)
u(s) =us >0 in €.

It is well known that if
hy :=suph(t,z) < oo and gz :=infg(t,x) >0, (7)
Q Q
then, for every non-trivial us € C(Q), us > 0, there exists a unique positive

solution of (6) denoted by O, g1(t, 53 us).
On the other hand, for m € L*>(€Q) we denote by A(m), the first eigenvalue of

—Au =X u+m(z)u in, w=0 on Q.

In particular, we denote by Ay := A(0). It is well known that A(m) is a
simple eigenvalue with a positive eigenfunction, and a continuous and decreasing
function of m.
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Finally, for h,g € L>(Q) with g := inf{g(x), = € Q} > 0 consider the
elliptic equation

—Au = h(z)u — g(x)u? in Q,
{ u=0 ’ on ON. (8)

It is well known that (8) possesses a unique positive solution if, and only if,
A(h) < 0, which we denote by wy, g)().

In the following result (see [12], [11] and [7] for a complete study of (6)) we
show the existence and properties of a complete nonnegative trajectory for (6).
For this we will assume henceforth that h(t,z) and g(¢, x) satisfy (7) and there
exist bounded functions hZ (z) and H () defined in Q such that

lim sup sup (h(t, x) — Hgt(x)) <0, O0<liminf inf (h(t,x) - hat(x)) 9)
t—+oo ze0 t—too zeQ

Proposition 4 Assume (7) and (9). Then:

i) There exists a maximal bounded complete trajectory, denoted by @, 5(t), of

(6), in the sense that, for any other non-negative complete bounded trajectory

&(t) of (6) we have
0< S(t) < go[h,g](t), t € R.

Moreover, if @i g(t,7) is nondegenerate at —oo then it is the only one of
such solutions.
i) If A(Hy') > 0, then @, g(t) = 0 for all t € R. Therefore all non-negative
solutions of (6) converge to 0, uniformly in Q, in the pullback sense.
i) If A(hg ') <0 then @y, g is the unique complete bounded and non-degenerate
trajectory at —oo of (6), and for t in compact sets of R, if s — us > 0 is
bounded and non-degenerate, then

Orn,g)(t, 8;Us) — @ing(t) — 0 as s — —oo uniformly in Q.

w) If A(HS) > 0, then for all us € C(Q), us > 0, the positive solution of
(6) satisfies Oy, g(t,s;us) — 0 uniformly in Q as t — oo. In particular,
Plh,g)(t) — 0 uniformly in Q as t — oo.

v) If A(hg) < 0 and Plh,g) 7 0, then @y g is non-degenerate at oo and for any
s and any non-trivial initial data us > 0,

Otn,g)(t, 83Us) — Qng(t) — 0 in Cl(ﬁ) as t — oo.

4 Applications to the Lotka-Volterra competition model

We assume from now on that A\, u € R and
CLL,dL,bL,CL > 0. (10)

We will assume that there exist quantities af,[ < a§, bIi < b§, cf,[ < c§ and
df < d% such that

+< < qE + - < pE
O<aj]E 7a(t,x)7aj§, 0<b§[7b(t,x)7bs£ 1)
0<cy <clt,r) <cg, 0<dy <d(t,z)<djg,
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for all x € Q and for all ¢t > ¢y or t < ty. In the following result we show the
existence of a complete trajectory of (1).

Proposition 5 (Competitive case) There exists a complete trajectory
(u*,v*) of (1) with

P—bgpa.al (L) S U () < opna)(t), Plu—rcop.ad(t) S V() < @pqt), teR.
Moreover, if (11) is satisfied for very negative t and
A> A(—bgw[u,d;]) and > A(_ng[x,a,‘])ﬂ (12)

then (u*,v*) is non-degenerate at —oo.
If moreover (11) is satisfied for large and very negative t, (12) and

A > A(—bgw[u,dﬂ) and [ > A(—cgfw[)\,a?]) (13)
holds, then (u*,v*) is non-degenerate at co.

Proof. Note that in this case f is decreasing in v and ¢ in u. It is enough
to take

(ﬂa ﬂ) = (@[Afbgo[u’dha]a (p[)\,a]) and (Qa E) = ((p[ufcga[,\,ahd]v @[u,d])'

Moreover, if A\ and p satisfy (12), resp. (13), then by Proposition 6 we obtain
that v and v are non-degenerate at —oo, resp. +oo. O

Now, we can summarize the results for the system (1).
Theorem 6 (Competitive case)

1. If X< Ap and < Ag

lim (u(t, s;us, vs), v(t, $;us,vs)) = lim (u(t, s;us, vs), v(t, s;us,vs)) = (0,0).

§——00 t—o0

2. If X\ < Ay and p > Ay, then

lim wu(t, s;us,vs) = 0,

t—o0

and for every monnegative nontrivial vs we have

lim (v(t, 83 Us, Vs) — Oryq(t, s;f)s)) = tlggo (v(t, 83 Usy Vs) = Plu,d] (t)) =0.

t—o0

3. If X>Ap and p < Ay , then

lim v(t, s;us,vs) =0,

t—o0

and for every monnegative nontrivial U5 we have

lim (u(t, 53U, Us) — O (L, s;ﬁs)) = tlim (u(t, 53 Us, Vs) = P[x,a] (t)) =0.

t—o0
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4. 1f
A > A(—bgw[%d;]) and > A(—cgw[k’a”), (14)

there exists a complete bounded non-degenerate at —oo trajectory of (1)
(u*(t),v*(t)). Moreover, if b or ¢ are small at —oo, that is,

lim sup [|b]| Lo () lim sup [|¢|| Lo () < po
t——o0 t——o0

for some suitable constant py > 0, then this is the unique bounded non-
degenerate at —oo trajectory of (1) and it is pullback attracting, that is

lim (u(t, s;us,vs) —u™(s),v(t, s;us,vs) —v*(s)) = (0,0).

If moreover
A > A(_bgw[#,dﬂ) and > A(—c:gw[)\?a;]), (15)

then (u(t, s;us, vs), v(t, $;us,vs)) is non-degenerate at co. If additionally
b or ¢ are small at co, that is,

lim sup ||b]| (o) limsup [|¢|| L (a) < po
t—o0 t—o0

for some suitable constant py > 0, then all solutions of (1) have the same
asymptotic behavior as t — oco. If (14) is also satisfied, then (u*(t),v*(t))
is non-degenerate at oo and it is also forwards attracting, that is,

tlim (u(t, s;us,vs) —u*(t),v(t, s;us, vs) — v*(t)) = (0,0).

—00

Remark 1 Similar results can be presented for the prey-predator and symbiosis
cases.

In Figure 1 we describe the asymptotic dynamical regimes (pullback -Case
a)- and forwards -Case b)) when A and p are constant functions. Region A:
extinction of both species; Regions B and C: stability of semitrivial complete
trajectories; Regions Dp and Dp: permanence regions (existence of global non-
degenerate global solutions). The limiting curves are given in (14) and (15).
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