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tIn this paper we study in detail the pullba
k and forwards attra
tionsto non-autonomous 
ompetition Lotka-Volterra system. In parti
ular,under some 
onditions on the parameters, we prove the existen
e of aunique non-degenerate global solution for these models, whi
h attra
tsany other 
omplete bounded traje
tory. For that we present thesub-supertraje
tory tool as a generalization of the now 
lassi
al sub-supersolution method.Key words: Sub-supertraje
tory method, Lotka-Volterra 
ompetition system,attra
ting 
omplete traje
tories.AMS subje
t 
lassi�
ations: 35B40, 35K55, 92D25, 37L05.1 Introdu
tionIn this paper we 
olle
t some results from [6℄ and [7℄ to analyze the asymptoti
dynami
s of the following non-autonomous Lotka-Volterra 
ompetition model





ut − ∆u = u(λ(t, x) − a(t, x)u − b(t, x)v) x ∈ Ω, t > s
vt − ∆v = v(µ(t, x) − c(t, x)u− d(t, x)v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.
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92 J.A. Langa, A. Rodríguez-Bernal, A. SuárezHere, u and v represent the population densities of two spe
ies within a habitat
Ω, a bounded and smooth domain in IRN , N ≥ 1, whi
h 
ompete in the habitat.
λ, µ are the growth rates of the spe
ies, b, c are the intera
tion rates between thespe
ies, a, d des
ribe the limiting e�e
ts of 
rowding in ea
h population. We areassuming that Ω is fully surrounded by inhospitable areas, sin
e the populationdensities are subje
t to homogeneous Diri
hlet boundary 
onditions. us, vs areregular and positive fun
tions whi
h implies that the solution of (1) satis�es
u, v ≥ 0.In this work we are interested in determining the asymptoti
 behaviour ofsolutions of the system (1). This is a very 
ompli
ated task, and only partialresults are known. For example in the autonomous 
ase (all the 
oe�
ients in(1) are 
onstants) and denoting by Λ0 the prin
ipal eigenvalue asso
iated to−∆,then if λ or µ ≤ Λ0, then one of the two spe
ies (or both of them) will be drivento extin
tion. However, there exist two in
reasing maps F,G : [Λ0,∞) 7→ IRsu
h that if

λ > G(µ) and µ > F (λ),then (1) is permanent and moreover there exists a positive equilibrium solution(see Cantrell et al. [2℄ and López-Gómez [9℄).When non-autonomous terms are allowed in the equations, this is usuallydone under the assumption of periodi
ity, quasiperiodi
ity or almost periodi
ity,and in this 
ase similar results 
an be obtained to those for autonomousequations (see Hess [4℄, Hetzer and Shen [5℄ and referen
es there in).Cantrell and Cosner [1℄ assume general non-autonomous terms that arebounded by periodi
 fun
tions, and using a 
omparison method give 
onditionson λ and µ that guarantee that (1) is permanent.In [6℄ we show that, under a smallness 
ondition on the 
oupling 
oe�
ients
bc, if there exists a bounded and bounded away from zero 
omplete traje
toriesof (1), it is the unique su
h traje
tory, and it also des
ribes the unique pullba
kand forwards attra
ting for (1), i.e. (u∗, v∗) is a bounded traje
tory su
h that,for any s ∈ IR and for any positive solution (u(t, s), v(t, s)) of (1) de�ned for
t > s, one has

(u(t, s) − u∗(t), v(t, s) − v∗(t)) → (0, 0) as t→ ∞, or s→ −∞. (2)In this work (see [7℄) we show that this traje
tory really exists. To thisend we introdu
e the sub-supertraje
tory method as a tool to get existen
e ofintermediate 
omplete traje
tories asso
iated to (1). Note that our 
onstru
tionis independent of whether or not (1) has monotoni
ity properties. Note alsothat the usual way in previous works (for instan
e [6℄, [11℄) to get existen
eof 
omplete traje
tories asso
iated to a parti
ular system is by means of thepullba
k attra
tor. The sub-supertraje
tory method adopts a di�erent and, inthis 
ase, more fruitful strategy. Moreover, we also get the existen
e of minimaland maximal global bounded traje
tories asso
iated to ordered systems.In Se
tion 2 we present the sub-supertraje
tory tool, Se
tion 3 is devotedto the logisti
 equation whi
h appears when one spe
ies is absent. Finally, inSe
tion 4 we show the results of system (1).



Non-autonomous Lotka-Volterra 
ompetition model 932 The sub-supertraje
tory method for 
omplete solutionsConsider the general problem




ut − ∆u = f(t, x, u, v) x ∈ Ω, t > s
vt − ∆v = g(t, x, u, v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

(3)where f, g are bounded on bounded sets of IR × Ω × IR2 and are lo
ally Hölder
ontinuous in time. We denote the solutions of (3) as
u(t, s;us, vs), v(t, s;us, vs), for t > s.De�nition 1 A pair of fun
tions (u, v) ∈ C1,2

t,x (IR×Ω) is a 
omplete traje
toryof (3), if for all s < t in IR, (u(t), v(t)) is the solution of (3) with initial data
us = u(s), vs = v(s).De�nition 2 A positive fun
tion u(t, x) is non�degenerate at ∞ (respe
tively
−∞) if there exists t0 ∈ IR su
h that u is de�ned in [t0,∞) (respe
tively
(−∞, t0]) and there exists a C1

0 (Ω) fun
tion ϕ0(x) > 0 in Ω, su
h that forall x ∈ Ω, u(t, x) ≥ ϕ0(x) for all t ≥ t0 (respe
tively for all t ≤ t0).The use of sub-supertraje
tory pairs to 
onstru
t 
omplete solutions 
an befound in Chueshov [3℄ or Langa and Suárez [8℄. Both referen
es use monotoni
ityproperties of the equations, see Corollaries 2 and 3 below. In parti
ular thisapplies to s
alar equations. Here we use similar ideas to 
onstru
t bounded
omplete traje
tories, without su
h monotoni
ity assumptions.Given T0 ≤ ∞ and two fun
tions w, z ∈ C((−∞, T0) × Ω) with w ≤ z wedenote
[w, z] := {u ∈ C((−∞, T0) × Ω) : w ≤ u ≤ z}.Now we introdu
e the 
on
ept of 
omplete sub-supertraje
tory pair.De�nition 3 Let T0 ≤ ∞ and (u, v), (u, v) ∈ X = C1,2

t,x ((−∞, T0) × Ω). Wesay that (u, v) − (u, v) is a 
omplete sub-supertraje
tory pair of (3) if1. u(t) ≤ u(t) and v(t) ≤ v(t) in Ω, for all t < T0.2. u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω, for all t < T0.3. For all x ∈ Ω, t < T0

ut − ∆u− f(t, x, u, v) ≤ 0 ≤ ut − ∆u− f(t, x, u, v), ∀v ∈ [v, v],
vt − ∆v − g(t, x, u, v) ≤ 0 ≤ vt − ∆v − g(t, x, u, v), ∀u ∈ [u, u].Note that the 
on
ept of a sub-supersolution pair, de�ned for t > s, hasbeen widely used and developed, see e.g. Pao [10℄, to 
onstru
t solutions forthe initial value problem (3). The main result of this se
tion is:



94 J.A. Langa, A. Rodríguez-Bernal, A. SuárezTheorem 1 Assume that there exists a 
omplete sub-supertraje
tory pair of(3), (u, v) − (u, v), in the sense of De�nition 3. Moreover, assume u, v, u and
v are bounded at −∞. Then, there exists a 
omplete traje
tory (u∗, v∗) ∈ X of(3) su
h that

(u∗, v∗) ∈ I := [u, u] × [v, v].When f and g have some monotoni
ity properties, we 
an go further:Corollary 2 Under the assumptions of Theorem 1, assume moreover that f isin
reasing in v and g in u. Then, there exist two 
omplete traje
tories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] su
h that theyare minimal and maximal in I in the following sense: for any other 
ompletetraje
tory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (4)Corollary 3 Under the assumptions of Theorem 1, assume moreover that f isde
reasing in v and g in u. Then, there exist two 
omplete traje
tories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] and su
h thatthey are minimal-maximal and maximal-minimal in the following sense: forany other 
omplete traje
tory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (5)3 The non-autonomous logisti
 equationNote that (1) always admits semi-trivial traje
tories of the form (u, 0) or (0, v).In this 
ase, when one spe
ies is not present, the other one satis�es the logisti
equation 



ut − ∆u = h(t, x)u − g(t, x)u2 in Ω, t > s
u = 0 on ∂Ω,
u(s) = us ≥ 0 in Ω. (6)It is well known that if

hM := sup
Q

h(t, x) <∞ and gL := inf
Q
g(t, x) > 0, (7)then, for every non-trivial us ∈ C(Ω), us ≥ 0, there exists a unique positivesolution of (6) denoted by Θ[h,g](t, s;us).On the other hand, for m ∈ L∞(Ω) we denote by Λ(m), the �rst eigenvalue of

−∆u = λu +m(x)u in Ω, u = 0 on ∂Ω.In parti
ular, we denote by Λ0 := Λ(0). It is well known that Λ(m) is asimple eigenvalue with a positive eigenfun
tion, and a 
ontinuous and de
reasingfun
tion of m.



Non-autonomous Lotka-Volterra 
ompetition model 95Finally, for h, g ∈ L∞(Ω) with gL := inf{g(x), x ∈ Ω} > 0 
onsider theellipti
 equation {
−∆u = h(x)u − g(x)u2 in Ω,
u = 0 on ∂Ω. (8)It is well known that (8) possesses a unique positive solution if, and only if,

Λ(h) < 0, whi
h we denote by ω[h,g](x).In the following result (see [12℄, [11℄ and [7℄ for a 
omplete study of (6)) weshow the existen
e and properties of a 
omplete nonnegative traje
tory for (6).For this we will assume hen
eforth that h(t, x) and g(t, x) satisfy (7) and thereexist bounded fun
tions h±0 (x) and H±
0 (x) de�ned in Ω su
h that

lim sup
t→±∞

sup
x∈Ω

(
h(t, x) −H±

0 (x)
)
≤ 0, 0 ≤ lim inf

t→±∞
inf
x∈Ω

(
h(t, x) − h±0 (x)

)
. (9)Proposition 4 Assume (7) and (9). Then:i) There exists a maximal bounded 
omplete traje
tory, denoted by ϕ[h,g](t), of(6), in the sense that, for any other non-negative 
omplete bounded traje
tory

ξ(t) of (6) we have
0 ≤ ξ(t) ≤ ϕ[h,g](t), t ∈ IR.Moreover, if ϕ[h,g](t, x) is nondegenerate at −∞ then it is the only one ofsu
h solutions.ii) If Λ(H−

0 ) > 0, then ϕ[h,g](t) = 0 for all t ∈ IR. Therefore all non-negativesolutions of (6) 
onverge to 0, uniformly in Ω, in the pullba
k sense.iii) If Λ(h−0 ) < 0 then ϕ[h,g] is the unique 
omplete bounded and non-degeneratetraje
tory at −∞ of (6), and for t in 
ompa
t sets of IR, if s 7→ us ≥ 0 isbounded and non-degenerate, then
Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 as s→ −∞ uniformly in Ω.iv) If Λ(H+

0 ) > 0, then for all us ∈ C(Ω), us ≥ 0, the positive solution of
(6) satis�es Θ[h,g](t, s;us) → 0 uniformly in Ω as t → ∞. In parti
ular,
ϕ[h,g](t) → 0 uniformly in Ω as t→ ∞.v) If Λ(h+

0 ) < 0 and ϕ[h,g] 6= 0, then ϕ[h,g] is non-degenerate at ∞ and for any
s and any non-trivial initial data us ≥ 0,

Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 in C1(Ω) as t→ ∞.4 Appli
ations to the Lotka-Volterra 
ompetition modelWe assume from now on that λ, µ ∈ IR and
aL, dL, bL, cL > 0. (10)We will assume that there exist quantities a±I ≤ a±S , b±I ≤ b±S , c±I ≤ c±S and

d±I ≤ d±S su
h that
0 < a±I ≤ a(t, x) ≤ a±S , 0 < b±I ≤ b(t, x) ≤ b±S ,
0 < c±I ≤ c(t, x) ≤ c±S , 0 < d±I ≤ d(t, x) ≤ d±S ,

(11)



96 J.A. Langa, A. Rodríguez-Bernal, A. Suárezfor all x ∈ Ω and for all t ≥ t0 or t ≤ t0. In the following result we show theexisten
e of a 
omplete traje
tory of (1).Proposition 5 (Competitive 
ase) There exists a 
omplete traje
tory
(u∗, v∗) of (1) with
ϕ[λ−bϕ[µ,d],a](t) ≤ u∗(t) ≤ ϕ[λ,a](t), ϕ[µ−cϕ[λ,a],d](t) ≤ v∗(t) ≤ ϕ[µ,d](t), t ∈ IR.Moreover, if (11) is satis�ed for very negative t and

λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (12)then (u∗, v∗) is non-degenerate at −∞.If moreover (11) is satis�ed for large and very negative t, (12) and

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]) (13)holds, then (u∗, v∗) is non-degenerate at ∞.Proof . Note that in this 
ase f is de
reasing in v and g in u. It is enoughto take
(u, u) = (ϕ[λ−bϕ[µ,d],a], ϕ[λ,a]) and (v, v) = (ϕ[µ−cϕ[λ,a],d], ϕ[µ,d]).Moreover, if λ and µ satisfy (12), resp. (13), then by Proposition 6 we obtainthat u and v are non-degenerate at −∞, resp. +∞. �Now, we 
an summarize the results for the system (1).Theorem 6 (Competitive 
ase)1. If λ < Λ0 and µ < Λ0

lim
s→−∞

(u(t, s;us, vs), v(t, s;us, vs)) = lim
t→∞

(u(t, s;us, vs), v(t, s;us, vs)) = (0, 0).2. If λ < Λ0 and µ > Λ0, then
lim

t→∞
u(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have

lim
t→∞

(
v(t, s;us, vs) − Θ[µ,d](t, s; ṽs)

)
= lim

t→∞

(
v(t, s;us, vs) − ϕ[µ,d](t)

)
= 0.3. If λ > Λ0 and µ < Λ0 , then

lim
t→∞

v(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have
lim

t→∞

(
u(t, s;us, vs) − Θ[λ,a](t, s; ṽs)

)
= lim

t→∞

(
u(t, s;us, vs) − ϕ[λ,a](t)

)
= 0.



Non-autonomous Lotka-Volterra 
ompetition model 974. If
λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (14)there exists a 
omplete bounded non-degenerate at −∞ traje
tory of (1)

(u∗(t), v∗(t)). Moreover, if b or c are small at −∞, that is,
lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ0for some suitable 
onstant ρ0 > 0, then this is the unique bounded non-degenerate at −∞ traje
tory of (1) and it is pullba
k attra
ting, that is
lim

s→−∞
(u(t, s;us, vs) − u∗(s), v(t, s;us, vs) − v∗(s)) = (0, 0).If moreover

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]), (15)then (u(t, s;us, vs), v(t, s;us, vs)) is non-degenerate at ∞. If additionally
b or c are small at ∞, that is,

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0for some suitable 
onstant ρ0 > 0, then all solutions of (1) have the sameasymptoti
 behavior as t→ ∞. If (14) is also satis�ed, then (u∗(t), v∗(t))is non-degenerate at ∞ and it is also forwards attra
ting, that is,
lim

t→∞
(u(t, s;us, vs) − u∗(t), v(t, s;us, vs) − v∗(t)) = (0, 0).Remark 1 Similar results 
an be presented for the prey-predator and symbiosis
ases.In Figure 1 we des
ribe the asymptoti
 dynami
al regimes (pullba
k -Casea)- and forwards -Case b)) when λ and µ are 
onstant fun
tions. Region A:extin
tion of both spe
ies; Regions B and C: stability of semitrivial 
ompletetraje
tories; Regions DP and DF : permanen
e regions (existen
e of global non-degenerate global solutions). The limiting 
urves are given in (14) and (15).Referen
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