

Urban greening & biosystems engineering

Influence of different variables on living wall irrigation

Gregorio Egea
Rafael Fernández-Cañero
University of Seville

Research group AGR-268

Urban greening & biosystems engineering

Who we are

- Research group from the University of Seville
- Working on Living Walls (LW) since 2007
- 3 prototypes for research
- Three patents related to LW

• Several commercial LW in collaboration with terapia urbana

Research group AGR-268

Who we are

Example of projects involving LW:

- Irrigation and lighting systems for LW
- Active LW biofilter & cooling system
- Influence of LW in indoor temperature
- Substrate analysis for LW
- Aquaponics
- Leonardo transfer of innovation

Completely different from a conventional irrigation.

Distinctive Features:

- Vertical movement of water
- Percolation = runoff
- Prevalence of elevation over head losses
- Mixture of localised and surface irrigation
- Difficulty for adapting to species with different water requirements: problems to establish hydrozones
- Design highly dependent on the LW system used

- System completely vertical → low water storage capacity (especially in cloth)
- ullet Only water retained by the substrate is available for plants ullet kept permanently wet
- Irrigation requirements highly variable depending on several factors:
 - location (outdoors or indoors)
 - light exposition (direct sun light, shading...)
 - temperature and humidity conditions
 - functional type (passive or active)
 - vegetation and substrate used
- Example: water consumption of an indoor PLW \rightarrow 3 to 5 l m⁻² day⁻¹ over the warm season in southern Spain (Fernández-Cañero et al. 2011)

Water use

Lost solution ('Run to waste' systems)

Recirculation systems:
reduce water losses and
simplify irrigation scheduling,
but require a more complex
infrastructure.

Type of living wall

Green facade Passive LW Active LW

> Indoor Outdoor

CLOTH SYSTEM

- **Panels**
- Irrigation for each panel
- Higher water retention capacity
- More lateral diffusion: broader wetted area
- Cloth
- More emitters density
- More vertical water flow

Active system

- Higher flow requirements
- Nozzles can be installed inside the structure
- Substrate with very low water retention capacity
- Higher irrigation frequency (the substrate dries out faster)

- Several ways of applying water, most common → drip lines at different heights → water can move vertically and laterally in-between lines by gravity and lateral diffusion
- Design variables: emitters and drip line spacing and emitter type and flow
- Operational variables: irrigation duration and frequency, depending on:
 - type of living wall (indoor/outdoor, passive/active)
 - system design variables
 - environmental conditions (sunlight exposition, evapotranspiration...)
- <u>Challenge:</u> achieving a high degree of water **uniformity** in the entire wall while minimizing **water losses**

• Objective: analyze different configurations of a recirculating irrigation system on two synthetic substrates

Design variables to be studied:

- emitter and drip line spacing
- emitter flow
- Determination of optimum duration of an irrigation event in terms of water distribution uniformity and water losses

- Tested substrates: several synthetic textile sheets with a reduced thickness
 - Inner layers \rightarrow homogeneous distribution of water and nutrients
 - External layers \rightarrow promoting the aeration of the plant root zone
- Sheets sewn together forming a grid of pocket-shaped containers of 0.12 m by 0.12 m where the root ball is inserted
- Geotextile (GT): acrylic textile made of different fibers with a polypropylene base, three sheets of 5 mm (commonly used in PLW)
- Polyamide polypropylene (PA): 6 mm thick polyamide outer sheet + 10 mm polypropylene inner sheet. (commonly used for ALW)

Test bench in the Urban Greening Laboratory (School of Agricultural Engineering, University of Seville)

- Irrigation design variables
 - Three types of inserted pressure compensating button drip:
 J-SC-PC-Plus 2 I/h (NAANDAN®), Euro Plus 4 I/h and 8 I/h (TORO®)

Variable	Options			
Flow (l/h)	8	4	4-2*	2
Emitter spacing (m)	0.12 (sta	andard)	0.24 (double -ds-)	
Line spacing (m)	1	I	2	
Substrate	Geote	Geotextile Polyamide – polypropy		olypropylene

^{*}Combination of 4 l/h (upper line) and 2 l/h emitters (lower line)

- System performance assessment
 - Two tests: run-off losses and water distribution uniformity
 - Five replicates for each irrigation system configuration
 - Run-off test: measuring run-off rate (water collected at the bottom of the substrate every 30 seconds)
 - Uniformity test: evaluating the water distribution uniformity
 - Thermographic images every 30 s (thermal imaging camera PCE-TC 3, PCE Instruments, UK): resolution 160 x 120 px, sensitivity 0.15°C

$$MI_{t} = \frac{T_{i} - T_{min}}{T_{max} - T_{min}}$$

• Irrigation event duration: determined for each configuration in a previous test. Irrigation stopped when run-off rate was constant

End of irrigation (minutes) for different flows and substrate materials

Flow	GT	GT(ds)	PA
8 1/h	8.5	14.5	6.5
4 1/h	12.5	19.5	5
4-2 1/h	18.5	-	4.5
2 1/h	22.5	33	3.5

Run-off test

GT

(a) 8 l/h

(b) 4 l/h

(c) 4-2 l/h

(d) 2 l/h

Results

- Run-off test GT
- tendency towards lower retention values with higher flows
- 4 l/h and 4-2 l/h had a very similar performance
- less water retained when using double emitter spacing
- 2 l/h → lower run-off losses and higher volume of water retained

Run-off test GT

Effect of <u>initial moisture content</u>:

- Higher total run-off and peak value under initial wet conditions
- BUT during the first minutes of irrigation, run-off rate and thus water lost was higher under initial dry conditions

Urban greening & biosystems engineering Research group AGR-268

3° 29 29 29 29 29 29 29 29 29 29 29

10

Cumulative run-off (I)

1

0.8

Run-off 30s (I) 9.0 7.0

0.2

- Run-off testPA
 - (a) 8 l/h
 - (b) 4 l/h
 - (c) 4-2 l/h
 - (d) 2 l/h

Uniformity test

Example of a set of images taken for 4 l/h in GT before (a), during (b) and after (c) an irrigation event

Uniformity test

MMI values denote average moisture

SD values indicate noisture variability ss uniformity)

- Irrigation event duration
 - Irrigation lengths used in this experiment, optimal in terms of water retention but not if run-off losses are considered -> recirculation
 - Retention curve patterns showed an inflection point before reaching maximum duration
 - Shorter irrigation lengths are advised
 - Optimum times depend on slopes of cumulative run-off and retention curves, and water distribution uniformity attained (denoted by the MMI and SD curves)

Conclusions

- Considerable differences between GT and PA substrates in terms of water retention and distribution uniformity
- 2. Difficulty to determine irrigation uniformity → Thermal imaging and MI as an indicator of the substrate moisture content
- Distribution uniformity higher in the lower parts of the living wall
 → plan species selection (the lower section will retain more water)
- 4. When water is not reused, 2 l/h emitters with standard emitter and pipeline spacing (highest water retention capacity though less uniformity)

Conclusions

- 5. Double emitter or drip line spacing not advisable with 2 I/h
- 6. Recirculation systems → 8 l/h emitters installed on standard-spaced (1 m) pipelines: highest distribution uniformity
- 7. When using PA, only recirculation systems are recommended, 4 l/h
- 8. Good irrigation strategy: shorten the irrigation events by applying water when the substrate is still relatively wet
- 9. For larger living walls, pressure compensating emitters

Research group AGR-268

Urban greening & biosystems engineering

Influence of different variables on living wall irrigation

For more information:

Perez-Urrestarazu, Luis; Egea, Gregorio; Franco-Salas, Antonio; Fernandez-Cañero, Rafael. 2014. Irrigation systems evaluation for living walls. Journal of Irrigation and Drainage Engineering 140 (4): 04013024-1/11

E-mail contact:

Research group AGR-268

Urban greening & biosystems engineering

Influence of different variables on living wall irrigation

Thank you for your attention

Rafael Fernández-Cañero

Gregorio Egea

E-mail contact:

