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there is great interest in the retrograde pathway because it is
assumed to fulfill the role of returning escaped ER resident
proteins, which eventually reach the Golgi complex (Lewis and
Pelham, 1992; Pelham, 1988) as well as misfolded proteins that
are not suitable to proceed along the exocytic pathway
(Hammond and Helenius, 1994). On the basis of observations
made on cells treated with the fungal metabolite brefeldin A
(BFA), the retrograde pathway has been described to occur by
the microtubule-dependent extension of tubule processes
which emanate from the Golgi cisternae and fuse with the ER
(Lippincott-Schwartz et al., 1990). By contrast, anterograde
membrane transport is thought to be mediated by carrier
vesicles which transport both proteins and lipids from the ER
to the cis-Golgi and between the different Golgi compartments
(Rothman and Orci, 1992; Takizawa and Malhotra, 1993).
Conditions that alter the normal balance existing between
anterograde and retrograde membrane pathways lead to dis-
ruption of the Golgi organization. Thus, treatment with BFA
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process that influences both Golgi structural maintenance and
function. 

The mechanism underlying anterograde transfer between
membrane compartments of the exocytic pathway has been
extensively investigated using both biochemical and genetic
approaches (Rothman and Orci, 1992). By contrast, little
attention has been given to the factors that regulate retrograde
transport. Studies using BFA have indicated that redistribution
of Golgi membranes to the ER is inhibited by both the non-
hydrolyzable analog of GTP, GTP

 

γS, and the activator of
trimeric G proteins, AlF(3-5), suggesting that GTP-binding
proteins might be involved (Donaldson et al., 1991b; Tan et
al., 1992). However, both GTPγS and AlF(3-5) primarily
interfere with the association/disassociation cycle of the coat
proteins to Golgi membranes and therefore they also inhibit
anterograde transport as well (Donaldson et al., 1991a;
Melançon et al., 1987). Part of the difficulty in understanding
the basic mechanism of retrograde transport is due to the lim-
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DUCTION

 interphase the cisternal organization of the Golgi
x is maintained by a controlled balance of membrane
nd output. The input pathway consists of anterograde
asmic reticulum (ER)-Golgi membrane transport. The
depends on both the production of sorting and exocytic
s from the trans-Golgi network (TGN) and the existence
lgi-ER retrograde pathway (Klausner et al., 1992; Lip-
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mposed by the use of BFA, a drug that also induces
ocesses from the TGN, endosomes, and lysosomes

ott-Schwartz et al., 1991; Tooze and Hollinshead,
ood et al., 1991). Thus there is no direct evidence that
 retrograde transport in the absence of BFA is tubule-
 (Pelham, 1991). Recently tubule formation from
sternae has been reported to occur in vitro in the
of BFA and under conditions of low ATP or cytosol

luett et al., 1993; Weidman et al., 1993). Although
ule processes have been assimilated to those formed

during retrograde transport their physiological
 is uncertain. In the present study we show disas-
f the Golgi complex and redistribution into the ER in
sin O (SO)-permeabilized cells incubated with a high
ation (5-10 mg/ml) of cytosolic proteins. This process
ATP, is independent of tubule formation, and is
 by trimeric G proteins. 
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at 37°C in transport buffer containing bovine brain cytosol (0.1-10 mg

Fig. 1. Redistribution of Golgi α-mannosidase II in SO-
permeabilized cells incubated with a high concentration of cytosolic
proteins. NRK cells grown on coverslips were SO-permeabilized and
incubated for 1 hour at 37°C in transport buffer containing ATP-
generating system plus cytosol at either 0.1 mg/ml (A,A′) or 5 mg/ml
(B,B′) protein concentration. Cells were fixed and processed for
indirect immunofluorescence with anti-mannosidase II antibodies.
Arrows in B′ indicate the localization of possible tubulovesicular
networks seen in Fig. 5C. Bar, 20 µm.
ALS AND METHODS

ture reagents were obtained from GIBCO BRL (Gaithers-
). SO was purchased from Wellcome Diagnostics

m, UK). N-ethylmaleimide (NEM), GTPγS, nocodazole,
nobenzidine tetrahydrochloride, saponin, and components
P-generating system were from Sigma Chemical Co (St
). Mastoparan was from Fluka Chemika (Buchs, Switzer-

terial toxins were purchased from Calbiochem (San Diego,
bodies against α-mannosidase II, β-COP, KDEL, galacto-
ase, and TGN38 were kindly provided by Drs M. G.
University of California San Diego, CA), T. Kreis (Uni-
 Genève, Switzerland), S. Fuller (European Molecular
aboratory, Heidelberg, Germany), E. Berger (Universität
itzerland), and G. Banting (University of Bristol, UK),

ly. FITC-, TRITC-, and peroxidase-conjugated goat
 antibodies against rabbit and mouse IgG were purchased
O (Burlingame, CA). Purified transducin βγ subunits were
vided by Dr Y. K. Ho (University of Illinois at Chicago,
et al., 1993). 

reparation
as prepared as described (Taylor et al., 1992). Briefly,

ins were homogenized at 4°C in 25 mM Tris-HCl (pH 8.0),
Cl, 250 mM sucrose, 1 mM DTT, 1 mM PMSF and cen-

t 125,000 g for 90 minutes. Supernatant was extensively
gainst 25 mM Hepes-KOH (pH 7.2), 50 mM KAcO, 1 mM
 and then centrifugated at 10,000 g for 20 minutes to
ecipitates. Aliquots (15-20 mg protein/ml) were frozen in
ogen and stored at −70°C.

re, permeabilization, and incubation conditions
t kidney (NRK) and HeLa cells were cultured in high
ME containing 2 mM glutamine, 50 U/ml penicillin, 50
ptomycin, and 10% FCS. Cells grown on poly-L-lysine-
ss coverslips were incubated on ice for 5 minutes with 1
 in 20 mM Hepes-KOH (pH 7.2), 110 mM KOAc, 2 mM
, 1 mM DTT. Excess SO was removed by washing with
 at 0°C. Permeabilization was then achieved by incubating
t 37°C for 5 minutes in transport buffer (25 mM Hepes-
7.2, 75 mM KOAc, 2.5 mM Mg(AcO)2, 5 mM EGTA, 1.8
2). Cells were thoroughly rinsed in this buffer to release
s cytosolic proteins (i.e. more than 50% of the total lactate
nase activity was usually lost). They were then incubated

protein/ml) and ATP-generating system (1 mM ATP, 5 mM creatine
phosphate, 0.2 i.u. rabbit muscle creatine phosphokinase). 

Immunofluorescence
Cells were fixed for 30 minutes in 3% paraformaldehyde in phosphate
buffer, pH 7.4, and then incubated for 10 minutes with 0.05% saponin
and 0.5% BSA in PBS. Cells to be processed for β-COP staining were
permeabilized with 0.2% Triton X-100 plus 0.5% SDS. Incubation
with antibodies was performed at room temperature for 1-2 hours.
Coverslips were mounted in 10% PBS/90% glycerol. 

Immunoelectron microscopy
Conventional electron microscopy was performed on 2.5% glu-
taraldehyde fixed cells as described (Hidalgo et al., 1992). For
immunoperoxidase, cells were fixed in periodate-lysine-
paraformaldehyde fixative for 4 hours and permeabilized with 0.005%
saponin in PBS/0.5% BSA. They were incubated overnight at 4°C
with anti-mannosidase II antibody and 2 hours at room temperature
with HRP-conjugated secondary antibody. Cells were then processed
as described (Velasco et al., 1993). 



Cytosol-induced G

RESULTS

Redistribution of the Golgi complex into the ER
occurs in SO-permeabilized cells incubated with a
high concentration of cytosolic proteins
SO-permeabilized NRK cells incubated with transport buffer
containing 0.05-0.1 mg/ml cytosolic proteins and ATP-gener-
ating system maintained the organization of the Golgi complex
as viewed by indirect immunofluorescence. Thus, under these
conditions α-mannosidase II, a mid-Golgi resident in this cell
type (Velasco et al., 1993), was detected in the perinuclear
region (Fig. 1A,A′). In contrast, a reticular staining pattern,
reminiscent of the ER, was observed in cells similarly
incubated with a high concentation (5-10 mg/ml) of cytosolic
proteins (Fig. 1B,B′). We studied the time-course of this
process by performing double immunofluorescence staining of
the cells with both anti-mannosidase II and an antibody rec-
ognizing the KDEL sequence, here used as an ER marker.
Golgi disruption began after 10-15 minutes incubation and
after 40 minutes or longer extensive immunofluorescence colo-
calization of both Golgi and ER antigens occurred (Fig. 2).
This effect was not observed when normal cytosol was
replaced by heat-inactivated cytosol or bovine serum albumin
(not shown). 

These results suggested that cytosolic factors induced the
fusion of Golgi membranes with the ER. Indeed, we detected

by electron microscopy mannosid
staining in the ER and nuclear envel
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cytosolic factors induce Golgi disas
ER.

Golgi disruption induced by cy
involves vesicle budding
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d (Fig. 5C). Following 40-

. 2. Time-course of Golgi α-
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Fig. 3. Immuno
of α-mannosida
of SO-permeab
incubated with 
es incubation the number of vesicles decreased as they
ly fused with the ER (Fig. 5C). At this time extensive
sicular networks were also seen. The latter were rem-
of those observed in BFA-treated cells (Hidalgo et al.,
imilar structures were not detected in normal, intact
ey have been proposed to represent Golgi remnants
 in Golgi reorganization during recovery from BFA
t (De Lemos-Chiarandini et al., 1992; Hendricks et al.,
idalgo et al., 1992). The tubulovesicular networks
eakly with anti-mannosidase II by immunoperoxidase
n). In addition, membrane structures that might cor-

to tubulovesicular networks were often seen in the per-
region of cells stained with this antibody by immuno-
nce (Fig. 1B′). 

lic factors induce the redistribution of
t Golgi compartments into the ER
on to mannosidase II we also studied by immunoflu-
e the redistribution of other Golgi integral proteins
R. Both the trans-Golgi enzyme galactosyltransferase

d Berger, 1982) (Fig. 2) and the trans-Golgi network
protein TGN38 (Luzio et al., 1990) (Fig. 6) showed
al relocation after incubation with an excess of
 proteins. Redistribution of these two proteins,
, occurred slower than that of mannosidase II and it
me to completion (Figs 2,6). 
so examined the redistribution of the coat protein β-
SO-permeabilized NRK cells incubated with a high
ation of cytosolic proteins. As shown in Fig. 6 β-COP
arily found associated with Golgi membranes and, in
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m. During redistribution of mannosidase II into the ER
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 II redistribution was completed β-COP localized in
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Fig. 5. Ultrastructural visualization of Golgi disassembly induced by cytosolic proteins. SO-permeabilized NRK cells were incubated at 37°C
in complete incubation medium containing 5 mg/ml cytosolic proteins and ATP-generating system for 5 (A), 20 (B), and 60 minutes (C) before
fixation and processing for electron microscopy. (A,B) Non-clathrin coated vesicles (arrowheads) are originated from Golgi cisternae during
the initial disassembly of the Golgi complex. (C) After Golgi redistribution to the ER is completed extensive tubulovesicular networks (NT)
persisted in the perinuclear region. Arrows indicate connections between convoluted tubules and ER elements. Bar, 0.2 µm.
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depolymerization by nocodazole is known to induce Golgi
fragmentation into individual stacks (Turner and Tartakoff,
1989). Thus, when nocodazole treated cells were permeabi-
lized and processed for indirect immunofluorescence with anti-
mannosidase II antibody the Golgi complex appeared frag-
mented into spots distributed throughtout the cytoplasm (Fig.
7C). Staining of these cells with anti-tubulin antibody showed
that microtubules were indeed depolymerized (not shown).
Nocodazole-treated cells were also permeabilized and
incubated with a high concentration of cytosolic proteins and
in the continuous presence of nocodazole to prevent micro-
tubule reassembly. In these cells mannosidase II staining
showed an ER-like reticular pattern (Fig. 7D). This result
indicated that Golgi redistribution into the ER induced by
cytosolic factors did not depend upon an intact microtubule
system for it to take place. 

Inhibition by GTPγS and NEM
The above ultrastructural results provided evidence that redis-
tribution of Golgi enzymes into the ER induced by cytosolic
factors might be vesicle-mediated. Both GTPγS and NEM are
potent inhibitors of the vesicular anterograde transport (Balch
et al., 1984; Melançon et al., 1987). We determined by
immunofluorescence the effects of these two agents on Golgi
redistribution (Fig. 8). Permeabilized cells were incubated with

a high concentration of cytosolic prot
NEM was added at different time 
continued for 1 hour in the presence 
completely blocked Golgi redistributio
was only effective if GTPγS was adde
minutes) of incubation. Addition of G
medium after this time did not inhibit 
that GTP-binding proteins are require
breakdown. In contrast, NEM was in
during the first 15-20 minutes of incu
process became insensitive to this agent
concluded that both GTPγS and NEM i
the Golgi redistribution process. 

We exploited these differences in ord
mediates in the route by electron micros
cells exposed for 1 hour to 5 mg/ml 
GTPγS we detected the presence of coa
intact Golgi cisternae (Fig. 9A). We tr
these coated vesicles. Following 10 mi
cytosolic proteins and no inhibitor, NE
bation continued for 1 hour. This a
process to occur during the preincubat
disappearance of the Golgi complex 
instead of coated vesicles different ki
were seen in these cells (Fig. 9B). We 

Fig. 8. Time-course of GTPγS and NEM inhibitions on Golgi redistribution induced by cytosolic proteins. SO-permea
incubated with 5 mg/ml cytosolic proteins and ATP-generating system at 37°C. Either 100 µM GTPγS or 1 mM NEM
and 25 minutes and the incubation continued for 1 hour. Cells were then fixed and processed for immunofluorescence 
II antibody. Bar, 20 µm.
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 bacterial toxins known to carry out ADP-
icular Gα subunits and hence affect their
987). Pretreatment of cells with either
ussis toxin stimulated Golgi redistribution.
Golgi disassembly and redistribution into
a low concentration of cytosolic proteins

was indicative of the involvement of both
s, the former being irreversibly activated

thway. (A) Cells were SO-permeabilized and
M GTPγS. (B) Following a 10 minute

 was added and incubation continued for 1
of uncoated vesicles. Bar, 0.2 µm.
 of the Golgi complex into the ER induced by
 factors is mediated by coated vesicles that bud from
ternae and then lose their coats before fusion with the

c G proteins are involved in Golgi
mbly
n by GTPγS was indicative of the involvement of

bating the cells with
ribosylation of part
activity (Gilman, 1
cholera toxin or pert
Thus, in both cases 
the ER occurred at 
(Fig. 10D-F). This 
αs and αi G protein

aracterization of vesicular intermediates in the cytosol-induced Golgi-ER retrograde pa
 for 1 hour at 37°C with 5 mg/ml cytosolic proteins, ATP-generating system, and 100 µ
n with 5 mg/ml cytosolic proteins, ATP-generating system, and no inhibitor, 1 mM NEM
ls were fixed and processed for electron microscopy. Arrowheads indicate the presence 
ding proteins in an early step of the cytosol-induced
distribution into the ER. GTPγS activates both

ric and trimeric GTP-binding proteins whereas only
G proteins are activated by AlF(3-5) (Kahn, 1991). We
ed the effect of adding AlF(3-5) to our assay. As shown
B AlF(3-5) inhibited mannosidase II redistribution into
Further support for the involvement of trimeric G
in the process was obtained by adding transducin βγ
 (Fig. 10C) and mastoparan (not shown), both of which
y inhibited Golgi redistribution. 
on of βγ subunits should give rise to inactivation of G
as the βγ subunits complex with the free α subunits
 and Mostov, 1992). In contrast, mastoparan, which
n activated receptor, should render the opposite effect,
ation of G proteins (Higashijima et al., 1990; Wein-
 al., 1990). Inhibition by both agents can be explained
 redistribution into the ER would be controlled by

 proteins exerting opposite regulatory roles. To test
thesis we examined the effects resulting from incu-

by cholera toxin treatment and αi being inhibited by pertussis
toxin. The emerging idea was that Golgi redistribution into the
ER was stimulated by either αs activation or αi inhibition.

DISCUSSION

In this paper we have described the redistribution of Golgi
components into the ER originated by the incubation of SO-
permeabilized cells with an excess of cytosolic proteins. A
similar phenomenon occurs in BFA-treated cells that also
undergo Golgi disassembly and fusion with the ER (Klausner
et al., 1992; Lippincott-Schwartz et al., 1989). However,
important differences between both processes were noted.
First, we did not observe by immunofluorescence tubule
processes emerging from the Golgi cisternae during their redis-
tribution into the ER. Instead, our ultrastructural observations
indicate that the cytosol-induced Golgi redistribution occurs by
budding of coated vesicles from the Golgi cisternae. In
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eems unlikely since the fragmented Golgi membranes
fically fuse with the ER and morphological changes in
 organelles were not observed during incubation of SO-
eabilized cells with cytosolic proteins. 

Fig. 10. Involvement of trimeric G
proteins in Golgi disassembly.
NRK cells were treated or not with
1 µg/ml cholera toxin (CT), 0.5
µg/ml pertussis toxin (PT) for 16
hours at 37°C. Following SO
permeabilization the cells were
incubated at 37°C for 1 hour in
complete incubation medium
containing low (0.1 mg/ml) or
high (5 mg/ml) concentration of
cytosolic proteins plus ATP-
generating system. Effects
resulting from adding either 50
µM AlCl3 plus 30 mM NaF (B) or
5 µM of transducin βγ subunits
(C) on Golgi redistribution are
shown. Cells were fixed and
stained for immunofluorescence
with anti-α-mannosidase II
antibody. Bar, 20 µm.
n, the mechanism of Golgi disruption induced by
lic factors is different from that activated by BFA since
rently occurs without previous β-COP dissociation from
membranes. Furthermore, in the case of permeabilized

ity s
speci
other
perm
cubated with a high concentration of cytosolic proteins
microtubules are not required for Golgi redistribution
e ER. Finally, unlike the BFA effect, cytosol-induced
edistribution does not seem to be a consequence of inhi-
of the ER-Golgi anterograde transport. Instead, our

 suggest the presence in the cells of cytosolic factors that
tively promote the Golgi-ER retrograde pathway by a
determined mechanism. 

f cytosolic factors in promoting Golgi
ribution
l-induced Golgi redistribution into the ER may be the
erived from an exaggeration of the Golgi-ER retrograde
y taking place in vivo during retrieval from the Golgi
x of either ER resident molecules (Pelham, 1988) or
ed proteins (Hammond and Helenius, 1994). Alterna-
this redistribution process may be unrelated with the
 Golgi-ER retrograde pathway. However, this possibil-

The Golgi-ER retrograde pathway has been shown to be
regulated by both the amount of ER proteins to be recycled
from the Golgi and the number of specific receptors available
for them. For instance, a BFA-like effect has been described
in cells overexpressing ELP-1, a putative receptor for lumenal
ER proteins bearing the KDEL sequence (Hsu et al., 1992). In
addition, a striking redistribution of the KDEL receptor from
the Golgi region to the ER occurs in cells overexpressing
proteins with this retention sequence (Lewis and Pelham,
1992). The conclusion derived from these studies is that the
retrograde pathway is somehow activated by the formation of
ligand-receptor complexes in the Golgi. In this regard, involve-
ment of cytosolic factors could introduce additional controls in
the pathway. For instance, by influencing the activity of par-
ticular trimeric G proteins cytosolic factors might modulate the
association of coat proteins with membranes. This, in turn,
could be responsible for maintaining a controlled balance
between anterograde and retrograde membrane routes. It has
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ently reported that both the association of coat proteins
 membranes and the constitutive release of secretory
are stimulated by the activation of cell surface

s and by protein kinase C activators (De Matteis et al.,
n addition, Golgi-ER retrograde transport of shiga
s been shown to be stimulated by both butyric acid and

andvig et al., 1994). Therefore it is likely that second
ers and other cytosolic factors might regulate
ne traffic. 

n Golgi redistribution
 of a permeabilized cell system allowed us to dissect
lgi redistribution process into different stages.
ng to our data Golgi disassembly is achieved by
 of non-clathrin coated vesicles from Golgi cisternae.
cess is regulated by trimeric G proteins. The vesicles
r lose their coat and fuse to the ER in a microtubule-

Other evidence indicates that tubule processes are normally
formed in vivo. For instance, tubules have been described to
occur in cells incubated at low (16°C) temperature (Lippincott-
Schwartz et al., 1990; Tang et al., 1993). In this case, however,
mid- and trans-Golgi proteins do not enter the tubules while
p53, a protein localized at the intermediate compartment
situated between the ER and the Golgi, does (Lippincott-
Schwartz et al., 1990). Therefore, whereas it is evident that
tubule processes can be originated from the Golgi region under
certain conditions, it remains to be determined if they really
account for the recycling pathway existing between the Golgi
and the ER.

Regulation of Golgi redistribution by trimeric G
proteins
Our data indicate that the Golgi-ER retrograde transport
studied in SO-permeabilized cells is modulated by both αs and

. Hidalgo, M. Muñiz and A. Velasco
ent, temperature- and NEM-sensitive manner. αi. These two Gα proteins, however, should have opposite reg-
 vs tubule-mediated retrograde transport
isassembly and redistribution into the ER induced by
c proteins does not occur by the extension of tubule
s from Golgi cisternae. This is a significant difference
 redistribution caused by BFA treatment (Klausner et
). Thus we could not observe by immunofluorescence

rocesses emerging from the Golgi during incubation of
eabilized cells with cytosol. Instead, ultrastructural

ions indicated that Golgi disassembly was achieved by
 budding of 50-60 nm coated vesicles from Golgi
. GTPγS was an efficient inhibitor of this budding

consistent with recent data indicating an inhibitory role
agent in vesicle formation (Weidman et al., 1993).
nt with NEM, on the other hand, inhibited targeting
fusion of these vesicles with the ER membranes.
re these results suggest the existence of a vesicle-
d Golgi-ER retrograde pathway. In intact cells this
uld coexist with others mediated by tubules and shown
s with BFA or in cells depleted of ATP (Cluett et al.,
ippincott-Schwartz et al., 1990). Alternatively, the
athway could be the normal route operating between

gi and the ER in cells whose coat proteins are not
 from becoming associated with membranes; lack of

ulatory roles, since either αs activation (by cholera toxin
treatment) or αi inhibition (by pertussis toxin treatment) stim-
ulates Golgi redistribution into the ER. Similar findings have
been described for the production of secretory vesicles from
the TGN (Leyte et al., 1992). This suggests the existence of a
basic, G protein-regulated mechanism common to the two
processes. 
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