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ABSTRACT
Mining data streams is a challenging task that requires on-
line systems based on incremental learning approaches. This
paper describes a classification system based on decision
rules that may store up–to–date border examples to avoid
unnecessary revisions when virtual drifts are present in data.
Consistent rules classify new test examples by covering and
inconsistent rules classify them by distance as the nearest
neighbor algorithm. In addition, the system provides an
implicit forgetting heuristic so that positive and negative
examples are removed from a rule when they are not near
one another.

1. INTRODUCTION
Classification and rule learning are important, well–studied

tasks in machine learning and data mining. In order to clas-
sify and model large–scale databases, important works have
been recently addressed to scale up inductive classifiers and
learning algorithms [3, 15]. However, a growing number of
emerging business and scientific applications, where high–
rate streams of detailed data are constantly generated, is
frequently challenging the scalability of such methods. Ex-
amples of such data streams include networks event logs,
telecommunications records, and financial and retail chain
transactions. Applications of such streams include credit
card fraud protection, target marketing, and intrusion de-
tection, for which it is not possible to collect all relevant
input data before applying the learning process. In these
environments, KDD systems have to operate continuously
- online - and process each item in real–time [4] so that
memory and time limitations make multi–pass scalable al-
gorithms unfeasible due to data are received at a higher rate
than they can be repeatedly analyzed. Furthermore, real–
world data streams are not generated in stationary environ-
ments, requiring incremental learning approaches to track
trends and adapt to changes in the target concept.
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This paper describes FACIL1 (Fast and Adaptive Classifier
by Incremental Learning), an incremental classifier based on
decision rules that extends a previous work [1] by processing
symbolic attributes. Our approach is based on filtering the
examples lying near to decision boundaries so that every
rule may retain both positive and negative examples. This
model makes possible to ignore false alarms in order to avoid
hasty modifications.

Paper Organization. The rest of the paper is organized
as follows. The next section outlines a background and re-
lated work of classification, incremental learning, concept
drift and data streams classification systems. In Section 3,
we motivate and describe the basis of our algorithm. Sec-
tion 4 describes the data sets used in our experiments and
shows the results achieved. In Section 5, we discuss the con-
clusions we reached based on the experimental results and
outline possible directions for future works.

2. BACKGROUND
In the problem of classification, an input data set of train-

ing examples T = {e1, . . . , en} is given. Every training ex-
ample ei = (−→xi , yi) is a pair formed by a vector −→xi and a
discrete value yi, named class label and taken of a finite
set Y . Every vector −→xi has the same dimensionality, each
dimension is named attribute and each component xij is
an attribute value (numeric or symbolic). Under the as-
sumption there is an underlying mapping function f so that
y = f(−→x ), the goal is to obtain a model from T that ap-

proximates f as f̂ in order to classify or decide the label
of non–labelled examples (tests), so that f̂ maximizes the
prediction accuracy.

Within incremental learning, a whole training set is not
available a priori but examples arrives over time, normally
one at a time t and not time–dependent necessarily (e.g.,
time series). Despite online systems continuously review,
update, and improve the model, not all of them are based
on an incremental approach. According to the taxonomy
in [12], if Tt = {(−→x , y) : y = f(−→x )} for t =< 1, . . . ,∞ >,

then now f̂t approximates f . In this context, if an algorithm
discards f̂t−1 and generates f̂t from Ti, for i =< 1, . . . t >,
then it is on–line batch or temporal batch with full instance
memory. If the algorithm modifies f̂t using f̂t−1 and Tt, then
it is purely incremental with no instance memory. A third
approach is that of systems with partial instance memory,
which select and retain a subset of past training examples
to use them in future training episodes.

1Fácil is the spanish word for easy
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Along with the ordering effects, incremental learning from
real-world domains faces two problems known as hidden con-
text and concept drift, respectively [19]. The problem of
hidden context is when the target concept may depend on
unknown variables, which are not given as explicit attrib-
utes. In addition, hidden contexts may be expected to recur
due to cyclic or regular phenomena (aka recurring contexts)
[5]. The problem of concept drift is when changes in the
hidden context induce changes in the target concept. In
general, two kinds of concept drift depending on the rate
of the changes are distinguished in the literature: sudden
(abrupt) and gradual. In addition, changes in the hidden
context may change the underlying data distribution, mak-
ing incremental algorithms to review the current model in
every learning episode. This latter problem is called virtual
concept drift [19]. In [13] virtual concept drift is referred
to as sampling shift, and real concept drift is referred to
as concept shift. In [10] concept drift is formally defined
in terms of consistency and persistence. Consistency refers
to the change εt = θt − θt−1 that occurs between consec-
utive examples of the target concept from time t − 1 to t,
with θt being the state of the target function in time t. A
concept is consistent if εt is smaller or equal than a consist-
ency threshold εc. A concept is persistent if it is consistent
during p times, where p ≥ w

2
and w is the size of the win-

dow. The drift is therefore considered permanent (real) if
it is both consistent and persistent. Virtual drift is consist-
ent but it is not persistent. Noise has neither consistency
nor persistence. In practice, the output model needs to be
updated independently the concept drift is real or virtual.

Above problems make incremental learning be more com-
plex than batch learning, so effective learners ought to quick-
ly distinguish noise from actual concept drift and adapt the
model to a new concept, specially in a data streams envir-
onment. Formally, a data stream is an ordered sequence
of data items read in increasing order. In practice, a data
stream is an unbounded sequence of items liable to both
noise and concept drift, and received at a so high rate that
each one can be read at most once [4]. Thus, data streams
contexts compel to learning systems to give approximate
answers using small and constant time per example [6].

3. RELATED WORK
There are two common approaches that can be applied

altogether to detect changes in the target concept [8]. The
former one consists in repeatedly applying the learner to a
single window of training examples whose size can be dy-
namically adjusted whenever target function starts to drift.
In [10] problems with this approach are studied and an un-
supervised algorithm that uses three windows of different
sizes is proposed. The second approach consists in weight-
ing the training examples according to the time they arrive,
reducing the influence of old examples. Weighting based
approaches are partial instance memory methods.

Incremental rule learners based on the above approaches
include STAGGER [14] (the first system designed expressly
for coping with concept drift), the FLORA family [19] (with
FLORA3 being the first system able to deal with recurring
contexts), and the AQ–PM family [12]. A decision rule is
a logic predicate of the form if antecedent then label. The
antecedent is a conjunction of conditions Attribute|=Values
where |= is a operator that states a relation between a par-
ticular attribute and values of its domain.

Since fundamental rule learners take into account every
training example, many of them have not still adapted to a
data streams environment, especially those featuring numer-
ical attributes. Recent works on data streams classification
has been mainly addressed by two different approaches: de-
cision trees [2, 6, 7] and ensemble methods [16, 18].

Domingos & Hulten’s VFDT and CVFDT systems [6] build
a decision tree based on Hoeffding bounds, which guaran-
tee constant time and memory per example and an out-
put model asymptotically nearly identical to that given by
a batch conventional learner from enough examples. Since
VFDT and CVFDT are evaluated for data streams with sym-
bolic attributes, Jin & Agrawal propose in [7] a numerical
interval pruning approach to reduce the processing time for
numerical attributes, without loss in accuracy. Gama et al.’s
VFDTc system [2] extends the VFDT properties in two dir-
ections: the ability to deal with numerical attributes and
the ability to apply nave Bayes classifiers in tree leaves.

Ensemble batch learning algorithms such as Boosting and
Bagging have proven to be highly effective from disk–resident
data sets. These techniques perform repeated resampling of
the training set, making them a priori inappropriate in a
data streams environment. Despite what might be expec-
ted, novel ensemble methods are increasingly gaining atten-
tion because of they have proved to offer an improvement in
prediction accuracy. In general, every incremental ensemble
approach uses some criteria to dynamically delete, reactiv-
ate, or create new ensemble learners in response to the base
models’ consistency with the current data. SEA [16] is a fast
algorithm that requires approximately constant memory. It
builds separate classifiers on sequential chunks of training
examples, combining them into a fixed–size ensemble ac-
cording to a heuristic replacement strategy. From sequential
blocks as well, Wang et al. [18] propose using ensemble of
classifiers weighted based on their expected classification ac-
curacy on the test examples. In [9] Kolter & Maloof propose
DWM, an ensemble method based on the Weighted Majority
algorithm [11].

As pointed out in [18], a drawback of decision trees is that
even a slight drift of the target function may trigger several
changes in the model and severely compromise learning ef-
ficiency. On the other hand, ensemble methods avoid ex-
pensive revisions by weighting the members, but may run
the risk of building unnecessary learners when virtual drifts
are present in data. Rule sets take advantage of not be-
ing hierarchically structured, so concept descriptions can be
updated or removed when becoming out–of–date without
hardly affecting the learning efficiency. Contrary to parti-
tions obtained with decision tree based approaches, the re-
gions given by decision rules do not model the whole space,
so that new test examples may not satisfy - be covered by -
any rule.

4. RULES WITH BORDER EXAMPLES
Within rule learning, a rule is said consistent when does

not cover any negative (different label) example. On the
other hand, each training example is said a maximally spe-
cific rule. The core of our approach lies in avoiding spe-
cific rules and allowing they may be inconsistent by linking
them to positive and negative examples which are very near
one another (border examples). The aim is to seize bor-
der examples up to a threshold is reached. This threshold
is given as an user parameter and sets the minimum pur-
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ity of a rule. The purity of a rule is the ratio between the
number of positive examples that it covers and its total num-
ber of covered examples, positive and negative. When the
threshold is reached, the examples associated with the rule
are used to generate new positive and negative consistent
rules. This approach is similar to the AQ11–PM system
[12], which selects positive examples from the boundaries
of its rules (hyper–rectangles) and stores them in memory.
When new examples arrive, AQ11–PM combines them with
those held in memory, applies the AQ11 algorithm to modify
the current set of rules, and selects new positive examples
from the corners, edges, or surfaces of such hyper–rectangles
(extreme examples).

Our approach differs from AQ11–PM in that a rule stores
two positive example per negative example covered. The
stored examples are not necessary extreme and the rules are
not repaired every time they become inconsistent, reducing
the computational complexity. Since the number ne of neg-
ative examples that a rule can store increases as the number
of covered positive examples does, every time ne increases
by one unit, a new positive example is stored. Although this
approach suffers the ordering effects, it does not compromise
the learning efficiency and guarantees that an impure rule
is always modified from as positive as negative examples.

5. PARAMETERIZED GENERALIZATION
Henceforth, the next notation is used to describe our pro-

posal. Let m be the number of attributes Aj (j ∈ {1, . . . , m}).
Let Y = {y1, . . . , yz} be the set of class labels. Let ei =
(−→xi , yi) be the ith example arriving, where −→xi is a vector
with m attribute values and yi is a discrete value in Y. The
antecedent of a rule r is given by a conjunction of m condi-
tions Ij which defines a region inside the multidimensional
attribute space. Ij is a closed interval [Ijl, Iju] when Aj is
a numerical attribute so that l denotes lower bound and u
upper bound. If Aj is symbolic, then Ij is a set of values
aj ∈ D(Aj) belonging to the attribute domain D(Aj) and
standing for a disjunction of all those values.

Definition 1 (Growth of a rule). Let r be a rule
whose antecedent is formed by m conditions Ij. Let e =
(x, y) be an example. The growth G(r, x) of the rule r to
cover the point x is defined according to Equation 1:

G(r, x) =

mX

j=1

∆(Ij , xj); (1)

∆(Ij , xj) =

�
δ(xj , Ij), if Aj is numerical;
∂(xj , Ij), if Aj is symbolic.

(2)

δ(xj , Ij) = min(| Ijl − xj |, | xj − Iju |); (3)

∂(xj , Ij) =

� 1
|D(Aj)| , if xj /∈ Ij;

0, if xj ∈ Ij;
(4)

This heuristic roughly estimates the new region of the at-
tribute space that is taken by a rule r in order to describe
an example e, biasing in favour of the rule that involves
the smallest changes in the minimum number of attributes.
While visiting the rules associated with yi, the one with the
minimum growth is marked as candidate. However, a rule is
taken into account as a possible candidate only if the new
example can be seized with a moderate growth, so that:

∀ j ∈ {1, . . . , m} : gj − rj ≤ κ; κ ∈ (0, 1]

Algorithm 1 FACIL

INPUT κ, s: integer; e = (x, y): example
INPUT/OUTPUT M: Set of rules;
begin

failure←positive–covering(κ, e, My, candidate)
if failure then

Ry ←generalize(candidate, x)
failure←negative–covering(Ry, M, intersection)
if failure and intersection= ∅ then

if candidate �= ∅ then
replace(candidate, Ry)

else if size(y)< s then
My ← My ∪ {Ry}

else
update(Ry, intersection, M)

end

6. LINEAR UPDATING
Rules are stored in different sets My according to their

associated label. Since no global training window is used
but each rule handles a different set of examples (a window
per rule), every time a new example e = (−→x , y) arrives the
model is updated. In this process, three tasks are at most
performed in the next order:

1. Positive covering : x is covered by a rule associated
with the same label y.

2. Negative covering : x is covered by a rule associated
with a different label y′ �= y.

3. New description : x is not covered by any rule in the
model.

Positive covering. First, the rules associated with y are
visited and the generalization necessary to describe the new
example x is measured according to Equation 1.

Negative covering. If x is not covered by a rule asso-
ciated to y, then the rest of rules associated with a label
y′ �= y are visited. If a different label rule r′ does not cover
x, the intersection between r′ and the candidate is com-
puted. If the intersection is not empty, the candidate is
rejected. When the first different label rule r′′ covering xi

is found, its negative support is increased by one unit, and
x is added to its window. If the new purity of r′′ is smaller
than the minimum given by the user, then new consistent
rules according to the examples in its window are included
in the model. r′′ is marked as unreliable so that it can not
be generalized and has not taken into account to generalize
other rules associated with a different label. In addition, its
window is reset.

New description. After above tasks, the candidate rule
is generalized if does not intersect with any other rule associ-
ated with a label y′ �= yi. If no rule covers the new example
and there is not a candidate that can be generalized to cover
it, then a maximally specific rule to describe it is generated.

Furthermore, the set of rules is simultaneously refined
while the first two tasks are accomplished. Before comput-
ing a rule covers the new example, it is removed if the last
extended rule associated with the same label (the last can-
didate) covers it. After computing a rule does not cover the
new example, it is removed if satisfies one of two conditions:

• It is an unreliable rule whose support is smaller than
the support of any rule generated from it.
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• The number of times the rule hindered a different label
rule to be generalized is greater than its support.

7. FORGETTING HEURISTICS
Similarly to AQ–PM, our approach also involves a for-

getting mechanism that can be either explicit or implicit.
Explicit forgetting takes places when the examples are older
than an user defined threshold. Implicit forgetting is per-
formed by removing examples that are no longer relevant
as they do not enforce any concept description boundary.
When a negative example x in a rule r has not a same label
example as the nearest one after the number pe of positive
examples that r can store is increased two times since x was
covered, the system removes it. Analogously, a positive ex-
ample is removed if it has not a different label example as
the nearest one after pe is increased by two units.

In worst case, a new example involves a new description,
visiting therefore every rule in each set. The computational
complexity associated with this case is O(m · s · e), with m
being the number of attributes and s as the model size or
total number of rules. e estimates the average number of
examples per rule.

Finally, to classify a new test example, the systems searches
the rules that cover it. If there are reliable and unreliable
rules covering it, the latter ones are rejected. Consistent
rules classify new test examples by covering and inconsist-
ent rules classify them by distance as the nearest neighbour
algorithm. If there is no rule covering it, the example is
classified based on the label associated with the reliable rule
that involves the minimum growth and does not intersect
with any different label rule.

8. EMPIRICAL EVALUATION
Although the STAGGER concepts [14] provide a standard

benchmark of tracking the drift from examples with sym-
bolic attributes, data streams classifiers so far lacks a stand-
ard experimental method to evaluate them with numerical
attributes.

In [17] an framework for incremental learning with SVMs
is proposed and two incremental variants of the cross–valida-
tion experimental method are presented to evaluate them
using real databases available at the UCI repository. The
problem here is that both methods are designed to evaluate
BBL algorithms (block by block learning). FACIL is based on
instance by instance learning (IIL) where the algorithm does
not wait for receive a block of examples - or to complete
the window - to update the model, but every time a new
example arrives it is processed online. Precisely, that is why
standard cross validation can be applied to evaluate (IIL)
learning algorithms similarly to multi–pass methods so that
one–pass processing of the training examples in a sequential
manner according to the order they arrive is enough.

Similarly to [17], we also evaluate our algorithm as gen-
eral purpose classifier using 10–folds cross validation. Res-
ults can be found in [1]. Both experiments were conducted
on a PC with CPU 1.7GHz and 512 MB of RAM running
Windows XP.

8.1 Moving Hyperplane
In [6, 18] both robustness and reliability of incremental

classifiers are evaluated using synthetic data streams gener-
ated from a moving hyperplane.

A hyperplane in m–dimensional space is denoted by equa-
tion:

mX

i=1

aixi = a0

First, examples are randomly generated and uniformly
distributed in multidimensional space [0, 1]m. The examples
satisfying

P m
i=1 aixi ≥ a0 are labelled as positive, and ex-

amples satisfying
P m

i=1 aixi < a0 as negative. Weights ai

(1 ≤ i ≤ m) are initialized by random values in the range
of [0, 1]. The value of a0 is chosen so that the hyperplane
cuts the multi–dimensional space in two parts of the same
volume, that is, a0 = 1

2

P m
i=1 ai. Thus, roughly half of the

examples are positive, and the other half are negative.
As in [18], concept drifts are simulated with three para-

meters. Parameter α specifies the total number of dimen-
sions whose weights are involved in changing. Parameter
β ∈ R specifies the magnitude of the change (every N ex-
amples) for weights a1, . . . , aα, and γi ∈ {−1, 1} specifies the
direction of change for each weight. Each time the weights
are updated, a0 = 1

2

P m
i=1 ai is recomputed so that the class

distribution is not disturbed.
In addition, class noise is introduced by randomly switch-

ing the labels of 5% of the examples. As in [18], 40% dimen-
sions’ weights are changing at ±0.10 per 10000 examples.
Figures 1–3 show the results with explicit forgetting after
100000 examples are processed. Minimum purity was set
to 90%. Training and test examples are generated on the
fly and directly passed to the algorithm. After 900 train-
ing examples are generated, 100 test examples are used to
evaluate the algorithm.

Figure 1 shows the prediction accuracy obtained by FA-
CIL. Figure 2 shows the time in seconds spent on build-
ing the model and classifying new test examples. Figure 3
shows the final number of rules per label. Since running
time depends on the number of rules, this factor is altern-
ately limited to 50 and 100 rules per label. The goal here is
evaluate the computational cost as a function of the num-
ber of attributes. Average explicit accuracy is higher than
90% and average running time is higher than 100 examples
per second. However, the latter holds satisfactory trade–
offs between learning time and model complexity from low
dimensionality data, so that:

• With ten attributes, learning time is greater than 3500
examples per second and accuracy exceeds 98%.

• With fifty attributes, learning time is greater than 600
examples per second and accuracy exceeds 88%.

9. CONCLUSIONS AND FUTURE WORK
FACIL is an incremental rule learner with partial instance

memory based on parameterized generalization and border
examples. Similarly to AQ–PM, our proposal is not based on
a global window policy but examples are rejected when they
do not describe a decision boundary. On the contrary, FACIL
builds and refines inconsistent rules simultaneously without
adversely affecting the learning efficiency since unnecessary
revisions are avoided.

Our future research directions are oriented to drop irrelev-
ant dimensions, and recover dropped attributes turned rel-
evant later.
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