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Resumen

Esta tesis se enmarca dentro de la Teoŕıa de Nudos. En los Caṕıtulos 1 y 2
se usan herramientas clásicas para estudiar las propiedades de ciertas familias de
enlaces y las relaciones de inclusión entre ellas. En los Caṕıtulos 3 y 4 se estudian
nuevas aproximaciones a invariantes homológicos de enlaces introducidos en este
siglo.

En 1983 Louis Kauffman conjeturó que las familias de enlaces alternativos
y pseudoalternantes eran iguales. En el Caṕıtulo 1 se prueba esta conjetura
para el caso de enlaces cuyo primer número de Betti es menor que 3. También
se dan dos contraejemplos que muestran que, en general, la conjetura no es cierta.

El polinomio de Conway de los enlaces positivos es positivo. En el Caṕıtulo 2
se extiende esta propiedad a la familia de enlaces fuertemente cuasipositivos con
ı́ndice de trenza 3. Aśı mismo, se prueba que esta propiedad no puede ser ex-
tendida a los enlaces fuertemente cuasipositivos con ı́ndice de trenza mayor que 5.

El Caṕıtulo 3 se centra en los intentos de dar una definición de la homoloǵıa
Knot Floer en términos de los estados FKT de Kauffman. Concretamente, se
muestra la no invariancia de una propuesta de Y. Rong bajo el movimiento de
Reidemeister II.

En el Caṕıtulo 4 se da una definición geométrica de la cohomoloǵıa extrema
de Khovanov, en términos del grafo de Lando asociado al diagrama de un enlace.
Este nuevo punto de vista permite construir una familia de nudos H-gruesos cuya
cohomoloǵıa extrema de Khovanov cuenta con tantos grupos no triviales como se
desee.

Los conceptos y resultados básicos asociados a cada caṕıtulo se encuentran
recogidos en sus respectivas introducciones. Aśı mismo, al final de cada uno de
ellos se incluyen cuestiones abiertas a las que da lugar el trabajo desarrollado.
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Abstract

This thesis falls within the scope of Knot Theory. In Chapters 1 and 2 we
use classical tools for studying the properties and relations among some families
of links. In Chapters 3 and 4 we discuss new approaches to homological link
invariants introduced in this century.

In 1983 Louis Kauffman conjectured that the families of alternative and pseu-
doalternating links coincide. In Chapter 1 we prove that this conjecture holds for
the special case of links whose first Betti number is at most 2. We also disprove
the conjecture for the general case by showing two counterexamples.

Positive links have positive Conway polynomial. In Chapter 2 we extend this
property to the family of strongly quasipositive links whose braid index equals 3.
Moreover, we prove that this result cannot be extended when considering strongly
quasipositive links whose braid index is greater than 5.

Chapter 3 focuses in the attemps of giving a definition of Knot Floer homol-
ogy in terms of Kauffman FKT-states. Namely, we show that the definition given
by Y. Rong is not invariant under the Reidemeister II move.

In Chapter 4 we give a geometric realization of the extreme Khovanov co-
homology in terms of the Lando graph associated to a link diagram. This new
approach allows us to give a family of H-thick knots with any number of non-
trivial extreme Khovanov cohomology modules.

Each chapter has its own introduction containing its associated motivation
and background. Moreover, at the end of each of them we have included open
questions related to the results exposed in the chapter.
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Introduction

The main problem in Knot Theory is determining if two given links are equivalent.
In 1927 Reidemeister [44] showed that two diagrams represent equivalent links if
and only if they are related by a sequence of what are known as Reidemeister
moves. However, studying the equivalence problem is still a hard problem. With
this purpose link invariants (functions whose value depends only on the equiva-
lence class of the link) were introduced, and attending to these invariants and to
other aspects, links are grouped into families. Determining the inclusion of an
arbitrary link in a particular family is sometimes a difficult problem.

The starting point of this work has been comparing different families of links
which extend the well known families of alternating and positive links. More pre-
cisely, we have studied those families involved in a conjecture by Louis Kauffman
[27] (alternative, homogeneous and pseudoalternating links) and the family of
strongly quasipositive links, introduced by Lee Rudolph [46]. A nice property for
a link belonging to one of these families is that its genus can be easily computed.

Going back to link invariants, it is a fact that although most of them are
used mainly to distinguish different links, many are related to their geometric
or topological properties. This is the case of Khovanov [28] and Knot Floer ho-
mologies ([40] and [43]), two of the most effective link invariants introduced in
the last two decades which categorify polynomial invariants, giving more infor-
mation about the link. Khovanov homology, whose graded Euler characteristic is
the Jones polynomial, distinguish some knots having the same Jones polynomial.
Knot Floer homology, which categorifies the Alexander polynomial, determines
the genus of a knot and its fiberedness (while the Alexander polynomial gives
only bounds on the genus and obstructions about the fiberedness of a link).

In this work we also deal with these homological invariants. Namely, we
review Khovanov and Knot Floer homologies and discuss a new approach to each
of them.

This work is divided into two parts: in the first one, covering Chapters 1 and
2, we use classical tools for studying the relation among the above mentioned
families of links, and we also give a necessary condition for a subset of links to
be strongly quasipositive. In the second part, including Chapters 3 and 4, taking
as starting point the fact that Khovanov and Knot Floer homologies categorify
Alexander and Jones polynomials respectively, we study new approaches to these
homological invariants in terms of classical tools like Lando graphs or Kauffman
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states.

Let us detail the contents of each chapter, making a brief description of the
main results.

In 1983 Louis Kauffman [27] introduced the family of alternative links as an
extension of the class of alternating links preserving some of their properties.
They are defined in terms of the sign of the edges in their Seifert diagrams.
Previously, in 1976 E.J. Mayland and K. Murasugi [36] introduced the class of
pseudoalternating links as those bounding a special kind of surface called gener-
alized flat surface. It is easy to check that alternative links are pseudoalternating.
In Chapter 1 we deal with these two families of links and the intermediate family
of homogeneous links, introduced by Peter Cromwell in 1989 [19].

More precisely, we study a conjecture posed by Kauffman in [27] which states
that the classes of alternative and pseudoalternating links are identical (Con-
jecture 1.1). This conjecture has been an open problem for 30 years. We dis-
prove it in Section 1.3 by finding a two components link and a knot whose first
Betti numbers equal 3 and 4 respectively, which are pseudoalternating and non-
homogeneous, hence non-alternative (Theorems 1.11 and 1.13). However, Con-
jecture 1.1 holds for the special case of links whose first Betti number is at most
2 and for four components links whose genus equals 0, as we show in Sections 1.4
and 1.5. We also give a complete classification of homogeneous knots of genus 1
in Theorem 1.22.

Chapter 2 deals with strongly quasipositive links, introduced by Lee Rudolph
as those links bounding a special kind of surface called quasipositive surface [46].
This geometric definition can be translated into algebraic language by saying
that strongly quasipositive links are those links which can be seen as closures of
positive braids in terms of band (Birman-Ko-Lee) generators [12]. Positive links
are those links having a diagram with no negative crossings. Rudolph showed
that positive links are strongly quasipositive [48], but the converse is not true,
even when we restrict to the class of links whose braid index equals 3, as we
shown in Proposition 2.11.

By using resolution trees, Cromwell proved that positive links have positive
Conway polynomial (that is, with all its coefficients being non-negative) [19]. In
Chapter 2 we study if this property can be extended to the class of strongly
quasipositive links. By defining a special kind of resolutions trees, in Theorem
2.8 we show that this extension works when considering links whose braid index
equals 3, that is, we prove that strongly quasipositive links with braid index 3
have positive Conway polynomials. In Section 2.5 we show that this result cannot
be extended to a higher number of strands by providing a strongly quasipositive
braid (with 6 strands) whose closure has non-positive Conway polynomial.

Chapter 3 is devoted to present our contribution to the aim of finding a combi-
natorial definition of Knot Floer homology in terms of FKT-states. These states
were introduced by Kauffman in his book Formal Knot Theory in his description
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of the Alexander polynomial. Knot Floer homology was developed independently
Ozsváth and Szabó [40] and Rasmussen [43] as a categorification of Alexander
polynomial. Based on the fact that the Alexander polynomial of a given link can
be computed from the FKT-states associated to a diagram representing the link,
some authors have tried to give a definition of Knot Floer homology in terms of
Kauffman states. Their attempts have not been successful. In Section 3.3 we
focus on a model proposed by Y. Rong [45] and we show that it is not appropri-
ate by finding an example where the model is not invariant under Reidemeister
moves (Example 3.12). Moreover, in Section 3.2 we show that the definition of
Alexander polynomial given by Kauffman in [27] coincides with the one given by
Ozsváth and Szabó in [41].

In Chapter 4 we deal with another homological invariant, Khovanov coho-
mology, introduced by M. Khovanov in [28] and redefined by O. Viro in terms
of enhanced states [57]. In [17] the Lando graph of a given link diagram was
introduced. Morton and Bae proved that the hypothetical extreme coefficient of
the Jones polynomial coming from a link diagram is equal to the independence
number of its Lando graph [7]. Hence, on one hand the Jones polynomial can be
seen as the bigraded Euler characteristic of the Khovanov cohomology, and on
the other hand the formula for the independence number certainly suggests the
formula of an Euler characteristic. In Section 4.4 we combine both ideas, and
as a result we get a new approach to extreme Khovanov cohomology in terms of
Lando graph. More precisely, in Theorem 4.4 we prove that the extreme Kho-
vanov cohomology of a link diagram equals the cohomology of the independence
complex of its Lando graph. In fact, we prove that the extreme Khovanov cochain
complex is a copy, shifted by some degree, of the cochain complex associated to
the independent sets of vertices of the Lando graph.

Using this new approach, in Section 4.5 we find a relation between the ho-
mology of a certain and specific simplicial complex and the extreme Khovanov
cohomology of a specific link diagram (Theorem 4.11). Then in Theorem 4.13
we show a link diagram with exactly two non trivial extreme Khovanov cohomol-
ogy groups. This link is a basic piece in Section 4.6, where we present a family
of knots with an arbitrary number of non-trivial extreme Khovanov cohomology
modules, which are indeed examples of H-thick knots.

Most part of contents in Chapters 1 and 2 are contained in papers [51] and
[52] by myself. Section 3.2 is inspired in a joint work with Louis Kauffman [26]
and Chapter 4 contains some results appearing in [23], a joint work with Juan
González-Meneses and Pedro M. G. Manchón.
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Chapter 1

Kauffman’s conjecture

1.1 Introduction

In this chapter we study a conjecture posed by Louis Kauffman in 1983 in his book
“Formal Knot Theory” [27] involving alternative and pseudoalternating links.

In this book Kauffman introduced alternative links as an extension of the
class of alternating links (remember that an oriented link is alternating if it can
be represented by an alternating diagram, that is, a diagram where the crossings
alternate under, over, under, over... as one travels along each component); this
extension preserves some nice properties from alternating links. For instance, the
canonical surface constructed from an alternative diagram representing a link is
a minimal genus spanning surface for the link [27].

Previously, E.J. Mayland and K. Murasugi introduced the class of pseudoal-
ternating links as those bounding a special kind of surface called generalized flat
surface [36]. These links, which also extend the family of alternating ones, are in-
teresting by themselves, as they have not only topological but algebraic properties
(Proposition 1.7 is such an example).

It is not hard to prove that alternative links are pseudoalternating (in fact,
combining Propositions 1.5 and 1.8 gives a direct proof of this result). Kauffman
conjectured that the converse also holds:

Conjecture 1.1. [27] The classes of alternative and pseudoalternating links are
identical.

Although this conjecture was stated by Kauffman, Mayland and Murasugi
posed a similar question in [36]. As their paper was written 7 years before the
notion of alternative diagram was introduced, they spoke about ∗ - products and
wrote, literally, “(...) we do not know whether every pseudoalternating link is a
∗ - product”.

In addition, in 1989 Peter Cromwell introduced homogeneous links, an in-
termediate class between alternative and pseudoalternating ones [19]. In that
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16 Section 1.2. Definitions

paper he referred explicitly to Conjecture 1.1, noting that its veracity would im-
ply the equality between the three classes of links (alternative, homogeneous and
pseudoalternating). In his own words, “Kauffman conjectures that the class of
alternative links equals the class of pseudoalternating ones, implying that all three
classes are equivalent. This is not obvious”.

One key point regarding the difference between these three concepts is the fact
that alternative and homogeneous links are defined in terms of diagrams, (a link is
alternative [homogeneous] if it can be represented by an alternative [homogeneous]
diagram), but the definition of pseudoalternating links is more geometric, as they
are defined as those links bounding a surface having some properties. There are
some examples in the literature of authors using alternative and homogeneous as
synonyms [54].

In Section 1.4 we prove that Conjecture 1.1 holds for those links whose first
Betti number is at most 2 (this includes the class of knots of genus one). However,
it is not true in general when this value increases, as we show in Section 1.3
by finding two counterexamples: a link and a knot whose first Betti numbers
equal 3 and 4, respectively. In the way we work with the intermediate family of
homogeneous links.

Figure 1.1: The implications between the families of alternative, homogeneous and
pseudoalternating families.

1.2 Definitions

In this section we provide the definitions of the three families of links mentioned in
Section 1.1. We remark that the alternative, homogeneous and pseudoalternating
characters of a link are orientation dependant, so from now on all links will be
oriented (and non-split).

1.2.1 Alternative links

Given an oriented diagram D of a link L, it is possible to smooth every crossing
coherently with the orientation of the diagram, (that is, in the only way preserving
orientation, as in Figure 1.3). Doing this for all crossings in D, we obtain a set
of topological circles called Seifert circles. Following Kauffman, the spaces of the
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Figure 1.2: The sign convention is shown. It will be used throughout this work.

Figure 1.3: The smoothing used in Seifert’s algorithm.

diagram D are the connected components of the complement of its Seifert circles
in S2 (one can also think on their complement in the plane), not to be confused
with the regions of the knot diagram. We can then draw an edge joining two
Seifert circles at the place where there was a crossing in D, and label the edge
with the sign of the corresponding crossing according to Figure 1.2. We will refer
to the resulting set of topological circles and labeled edges as the Seifert diagram
of D, because of the analogy of this process to Seifert’s algorithm for constructing
an orientable surface spanning a link [50].

Definition 1.2. [27] An oriented diagram D is alternative if all edges in any
given space of D have the same sign. An oriented link is alternative if it admits
an alternative diagram.

Notice that there are non-alternative diagrams representing alternative links,
as can be seen in Figure 1.6.

Positive and negative links are alternative (a positive/negative diagram leads
to a Seifert diagram with all edges having the same sign). Alternating links are
alternative. There are nevertheless alternative links which are not alternating:
for instance, every positive (hence alternative) non-alternating link, like the knot
819. Although the following result is not written in terms of links but of diagrams,
it clarifies the relation between both families:

Proposition 1.3. [27, Lemma 9.2] A link diagram is alternating if and only if it
is alternative and the sign of the edges in its Seifert diagram changes alternatively
when passing through adjacent spaces.

Figure 1.4 illustrates the previous Proposition.



18 Section 1.2. Definitions

Figure 1.4: An alternating diagram D representing a two components link and its
associated Seifert diagram SCD. A dark edge has a positive label; a light edge a
negative one. As D is alternating, it is an alternative diagram and the sign of the edges
in SCD alternates when passing through adjacent spaces.

Figure 1.5: A connected graph and its associated blocks. The cut vertices are repre-
sented by grey dots.

1.2.2 Homogeneous links

We consider now the family of homogeneous links, introduced by Peter Cromwell
in 1989 [19]. From the Seifert diagram associated to D, we can construct a
graph GD as follows: associate a vertex to each Seifert circle and draw an edge
connecting two vertices in GD for each edge joining the associated circles in the
Seifert diagram; each edge must be labeled with the sign + or − of its associated
crossing in D. The signed graph GD is called the Seifert graph associated to D.
GD can be obtained from the Seifert diagram of D by collapsing each circle to a
vertex. See Figure 1.6. Note that, as Seifert circles are oriented, Seifert diagrams
have no edges with both endpoints in the same circle, hence Seifert graphs do not
contain loops.

Given a connected graph G with no loops, a vertex v is a cut vertex if removing
it disconnects the graph, that is, if G\{v} is disconnected. A block of G is a
maximal subgraph of G with no cut vertices. Blocks of the graph G can be
thought of in the following way: remove all the cut vertices of G; each remaining
connected component together with its adjacent cut vertices is a block of G. In
Figure 1.5 we show a connected graph and its associated blocks.

Definition 1.4. [19] A Seifert graph is homogeneous if all the edges of a block
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Figure 1.6: Two diagrams D and D′ of the knot 943, their associated Seifert diagrams
and Seifert graphs. A dark edge has a positive label; a light edge a negative one. D
shows that 943 is homogeneous, as the diagram in the figure is so; D is non-alternative,
but since D′ is so, 943 is alternative.

have the same sign, for all blocks in the graph. An oriented diagram D is homo-
geneous if its associated Seifert graph GD is homogeneous. An oriented link is
homogeneous if it admits a homogeneous diagram.

Note that the original diagram D can be recovered from its Seifert diagram,
as the sign and position of the crossings in the diagram are preserved (see Figure
1.6). However, as the relative position of the circles and the order of the edges
are not encoded in the Seifert graph, D cannot be recovered from GD. In this
sense, one can say that there is a loss of information when considering Seifert
graphs instead of Seifert diagrams.

Proposition 1.5. Alternative links are homogeneous.

Proof. The proof lies in the fact that alternative diagrams are homogeneous. The
key point is to notice that the circles “touching” positive and negative edges in
the Seifert diagram become cut vertices in the Seifert graph (hence, there are no
positive and negative edges in the same block).

It is clear that the converse is not true in terms of diagrams, that is, homoge-
neous diagrams are not necessarily alternative (diagram D in Figure 1.6 is such
an example).

Before introducing pseudoalternating links, let us give an answer to a question
posed by Peter Cromwell in [19]. Motivated by the fact that a non-alternating
diagram of a prime alternating link cannot have minimal crossing number [38], he
wondered if there exists any homogenous link with a non-homogeneous diagram
of minimal crossing number. The answer is that there exists such a link. As
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Figure 1.7: Two equivalent diagrams representing Perko pair (D and D′ are the clas-
sical diagrams for knots 10161 and 10162 in Rolfsen’s table, respectively). Both of them
have minimal crossing number (10), however D′ is homogeneous and D is not.

an example, consider the Perko pair given by the equivalent diagrams of knots
10161 ≡ 10162 [9]. The first one is minimal and non-homogeneous, and the sec-
ond one is positive hence homogeneous (see Figure 1.7). [Notice that in some
updated versions knot 10162 has been removed and subsequent knots have been
renumbered, so that knot 10163 is called 10162, and so on.]

1.2.3 Pseudoalternating links

Remember that starting from an oriented diagram D of a link L one can obtain its
associated canonical surface SD by applying Seifert’s algorithm [50]. The graph
GD can also be thought as the spine graph of the corresponding canonical surface.

Primitive flat surfaces [36] are those canonical surfaces arising from positive
or negative diagrams whose Seifert diagrams have no nested circles. A generalized
flat surface is, roughly speaking, an orientable surface obtained by gluing a finite
number of primitive flat surfaces along some of their discs, without overlapping
bands. (Figure 1.8 helps to understand the idea.)

More precisely, given two primitive flat surfaces S1 and S2, choose a disc of
each one, d1 and d2. Now, identify both discs in such a way that there exists a
sphere S2 ⊂ S3 separating S3 into two non empty 3-balls B1 and B2 such that
Si ⊂ Bi and S2∩Si = di, for i = 1, 2. Bands starting at d1 and d2 are not allowed
to overlap when identifying d1 and d2. This special kind of Stallings plumbing
(or Murasugi sum) will be noted by ∗ (see Figure 1.8). Generalized flat surfaces
are obtained as a finite iteration of this process, plumbing a primitive flat surface
at each step.

The first Betti number of a surface S, β(S), is the rank of its first homology
group. For a primitive flat surface this is just the number of holes in the surface,
or equivalently the number of connected components of the complement of its
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Figure 1.8: S1 and S2 are primitive flat surfaces, with β(S1) = 1 and β(S2) = 4. By
an identification of discs d1 and d2 one obtains the generalized flat surface S = S1 ∗S2,
having β(S) = 5. The link spanned by S is a pseudoalternating link.

spine graph in the plane minus 1. As the Euler characteristic of one of these
surfaces can be computed as its number of discs dS minus its number of bands
bS, it follows that β(S) = bS − dS + 1. Notice that the first Betti number is
additive under this special kind of plumbing: each time one plumbs two surfaces
both plumbing discs are identified, so the resulting spine graph can be thought
as gluing the two original graphs along a vertex.

As generalized flat surfaces are orientable, the following definition makes sense:

Definition 1.6. [36] An oriented link is said to be pseudoalternating if it is the
boundary of a generalized flat surface, with the natural inherited orientation.

Proposition 1.7. [36] Let L be a pseudoalternating link with associated gen-
eralized flat surface SL. Then SL has maximal Euler characteristic and it is
algebraically unknotted. Namely, π1(S

3 − S) = F2g+µ−1, a free group of rank
2g + µ− 1, where g is the genus of SL and µ the number of components of L.

The fact that generalized flat surfaces have maximal Euler characteristic (or
equivalently, minimal genus) among all the connected Seifert surfaces that span a
given pseudoalternating link (Proposition 1.7) implies that the first Betti number
of a pseudoalternating link L, β(L) = min{rank(H1(S)) | ∂S = L}, is given by
any generalized flat surface spanning it. It also follows from a well-known result
by Gabai [22, Corollary 6.7].

Proposition 1.8. Homogeneous links are pseudoaltenating.

Proof. Let D be a homogeneous diagram of a link and SD its associated canonical
surface. Let G1, . . . , Gn be the blocks of the associated homogeneous Seifert graph
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Figure 1.9: The surface S spans the diagram D. Although S is a generalized flat
surface, D is not homogeneous, as its associated Seifert graph GD is not homogeneous.

GD, Di the subdiagram of D (together with some arcs) associated to the subgraph
Gi ⊂ GD, and SDi ⊂ SD the projection surface constructed from Di.

Then, SD = SD1∗. . .∗SDn . Since blocks in a graph do not contain cut vertices,
each SDi is a primitive flat surface: all bands are twisted in the same way and the
discs on the surface are either not nested, or there exists a single disc containing
the other ones (and this situation is isotopic to the previous one). Hence, SD is
a generalized flat surface.

Although the canonical surface constructed from a homogeneous diagram is
a generalized flat surface, the converse is not necessarily true, that is, a diagram
spanned by a generalized flat surface is not necessarily homogeneous, as can be
seen in Figure 1.9. Remember that something similar happened with alterna-
tive and homogeneous diagrams. These two observations together with the next
restatement of Conjecture 1.1 are the key points for understanding the difficul-
ties of proving the conjecture, and, at the same time, the “clues” for looking for
counterexamples.

Propositions 1.5 and 1.8 imply that Conjecture 1.1 can be restated as follows:

Conjecture 1.9. [27] The classes of alternative, homogeneous and pseudoalter-
nating links are equal.

In the following section we present two pseudoalternating links which are not
homogeneous, hence non-alternative; these links are counterexamples to Conjec-
ture 1.9, hence to Conjecture 1.1.

1.3 Two counterexamples to the conjecture

The main problem when trying to deal with Kauffman’s conjecture is that iden-
tifying whether a link is alternative or pseudoalternating is not easy, as these
properties are defined in terms of diagrams. Of course, by finding an alternative
diagram one shows the alternativity of a link, but this does not help when the
link is not alternative. In this sense, working with the intermediate family of
homogeneous links will help us.
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Figure 1.10: Diagrams D+, D− and D0.

Cromwell’s paper [19] is devoted to the study of homogeneous links. He pro-
vides some sufficient conditions for determining the non-homogeneous character
of a link. These properties help to determine the homogeneity within some fami-
lies of arborescent links, double knots, and all but 5 knots with crossing number
at most 10.

In particular, we will use the following result :

Theorem 1.10. [19, Corollary 5.1] If L is a homogeneous link and the leading
coefficient of its Conway polynomial ∇(L) is ±1, then the crossing number of L
is at most 2 ·maxdeg ∇(L).

The Alexander-Conway polynomial (or just Conway polynomial) was re-discovered
in 1969 by J. Conway as a normalized version of the Alexander polynomial. Given
an oriented link L, its Conway polynomial ∇(L) is an invariant of L defined
as ∇(L) = P (1, z), where P (v, z) is the HOMFLYPT polynomial ([21] [42]).
More precisely, ∇(L) is the only polynomial in Z[z] satisfying the skein relation
∇(L+)−∇(L−) = z∇(L0), with normalization ∇(unknot) = 1. Here L+, L− and
L0 are links represented by diagrams D+, D− and D0 respectively, which only
differ in the neighborhood of a crossing as shown in Figure 1.10.

At this point, we are ready to show the result refuting Conjecture 1.9:

Theorem 1.11. There exists a pseudoalternating link which is not homogeneous.

Proof. Consider the oriented link L with two components presented by the ori-
ented diagram D shown in Figure 1.11. This link is L9n18{1} in [16], which
corresponds to the two-components link L9n18 in Thistlethwaite table (or 92

53 in
Rolfsen table). Its Conway polynomial is ∇(L) = z3 + 4z, so by Theorem 1.10, if
L were homogeneous its crossing number would be at most 2 · 3 = 6, yielding a
contradiction. Consequently, L is non-homogeneous.

See Figure 1.11. The diagram D can be transformed by a Reidemeister III
and a Reidemeister I move into the diagram D′. The new diagram D′ allows us
to see L as the boundary of a certain surface S. The surface S is clearly isotopic
to S ′, and S ′ is the result of performing two Stallings plumbings of three surfaces,
S1, S2, S3, using discs d1, d2 and d3 as “gluing patches”, this is, S = S1 ∗ S2 ∗ S3.
Each of these surfaces consists on two discs joined by a pair of bands twisted in a
positive way, so S1, S2 and S3 are primitive flat surfaces; hence S is a generalized
flat surface and L is a pseudoalternating link.
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Figure 1.11: D and D′ are diagrams of the link L = L9n18{1} in [16]; S is a Seifert
surface for L, and S′ is obtained from S just by overturning the subsurface S3 over the
disc d. Finally S′ = S1 ∗ S2 ∗ S3.

Figure 1.12: Notice that the diagram D in Figure 1.11 becomes negative after revers-
ing orientation of the dark component. Obviously, this diagram is alternative, as its
associated Seifert diagram has only edges of negative type.

Since every alternative link is homogeneous, the link L9n18{1}, with β(L) =
3, is also a counterexample to Conjecture 1.1.

Corollary 1.12. There exists a pseudoalternating link which is not alternative.

Remember that alternative, homogeneous and pseudoalternating characters
are orientation dependant. In fact, if one changes the orientation of one compo-
nent of L (for example, reversing the orientation of the dark component in Figure
1.11) the resulting link is negative, hence alternative, as can be seen in Figure
1.12.

At this point one can wonder if there exist knots or links which are pseudoal-
ternating and non-alternative with any possible orientation of its components. We
will show such an example by finding a knot of genus two with these properties, as



Chapter 1. Kauffman’s conjecture 25

Figure 1.13: From D1 to D2 and from D3 to D4 just move the grey strand, leaving
unchanged the rest of the diagram; from D2 to D3 perform two Reidemeister III moves
on the dotted strand. By performing a Reidemeister I move on the dotted strand in
D4, we see that S is a Seifert surface for K; S′ is the result of overturning one of the
primitive flat surfaces over the disc d.

pseudoalternating, homogeneous and alternative characters are not orientation-
dependant in the case of knots. This knot, whose first Betti number equals 4,
is pseudoalternating and non-alternative. It would be interesting to find a link
with more than one component being a counterexample to the conjecture with
all possible orientations.

Theorem 1.13. There exists a pseudoalternating knot which is not homogeneous.

Proof. The proof is analogous to that of Theorem 1.11. Let K be the genus two
knot 10145 in Rolfsen table, with the orientation given in Figure 1.13. Its Conway
polynomial is ∇(K) = z4 + 5z2 + 1, so by Theorem 1.10 we deduce that K is not
homogeneous, as 10 > 2 · 4.

See Figure 1.13. By a finite sequence of Reidemeister moves, the classical
diagram representing K in [15], D1, can be transformed into D4 by performing
the following steps: from D1, we obtain D2 by leaving unchanged the diagram
except for the grey strand; perform two Reidemeister III moves on the dotted
strand of D2 in order to get D3; finally, transform D3 into D4 by moving the
grey strand. At this point it is easy to see that the surface S bounds K; S
is a generalized flat surface obtained by performing two Stallings plumbings of
three primitive flat surfaces (two of them consist on a pair of discs joined by
two bands, and the other one consists on two discs together with three bands, as
shown in S ′) using twice the same disc, d, as “gluing patch”. As a result, K is a
pseudoalternating knot.
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Figure 1.14: Description of knot Kn introduced by Stoimenow in [55, Example 6.1].
The integer value of n > 0 represents the number of full twists. As an example, if n = 2
the circle in the diagram contains 4 positive crossings.

Corollary 1.14. There exists a pseudoalternating knot which is not alternative.

Since 10145 is a non-alternating, non-positive knot of genus two, the following
result by Stoimenov detects its non-alternative character (note that our result in
Theorem 1.13 is stronger, as alternative links are homogeneous). We remark that
the definition of homogeneous link given by Stoimenov in [54] is equivalent to our
definition of alternative link, taken from Kauffman [27].

Theorem 1.15. [54, Theorem 4.1] Any alternative genus two knot K is alter-
nating or positive.

As we said before, alternativity, homogeneity and pseudoalternation depend
on the orientation in the case of links but not when working with knots. Moreover,
a knot is alternative, homogeneous or pseudoalternating if and only if its mirror
image is so (remember that the mirror image of a knot K can be thought as the
knot whose diagram is obtained by changing all the crossings in the diagram of
K). Since K = 10145 oriented as in Figure 1.13 is chiral, its mirror image K∗ is
another counterexample to Conjectures 1.1 and 1.9.

Theorems 1.11 and 1.13 provided the first counterexamples disproving Con-
jecture 1.1. After these results were published in our paper [51], Tetsuya Abe
and Keiji Tagami found a family of counterexamples for Kauffman’s conjecture
by using techniques involving Khovanov and Lee homologies and the Rasmussen,
Beliakova and Wehrli’s s-invariant for links [1].

This family of knots is infinite as it depends on an integer parameter n > 0;
write Kn for the knot obtained after fixing n. It contains knot 10145, and its
definition is given in Figure 1.14.

Their proof lies in the following result:

Proposition 1.16. [1, Corollary 1.7] Let L be an almost-positive link (that is, it
is not positive and it can be represented by a diagram with exactly one negative
crossing). Then L is non-homogeneous.

As every knot Kn in the mentioned family is almost-positive, it is non-
homogeneous, hence non-alternative. The procedure given in [1] for getting a
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Figure 1.15: Starting from a diagram such those in Figure 1.14, construct its canonical
Seifert surface S. After performing some isotopies in the surface one gets the generalized
flat surface S′. Figure taken from [1].

generalized flat surface spanning the knot Kn is shown in Figure 1.15. Hence,
each Kn is a pseudoalternating non-alternative knot for every n > 0.

1.4 The case β(L) ≤ 2

Theorems 1.11 and 1.13 show that Conjecture 1.1 does not hold for links or knots
in general. Nevertheless, in this section we prove that all links whose first Betti
number is smaller than 3 satisfy Kauffman’s conjecture (including the particular
case of knots of genus one).

Although in Figures 1.11 and 1.13 we show how to transform the classic dia-
grams of link L9n18{1} and knot 10145 in order to get a generalized flat surface
bounding each of them, our procedure for finding such counterexamples worked
in the opposite way: we started with their generalized flat surfaces, checked that
the associated pseudoalternating links were not homogeneous and after determin-
ing which links they were using topological properties, we found the sequence of
moves transforming the diagrams bounding the surfaces into the ones appearing
in the tables.

In general it is not easy to find a generalized flat surface spanning a link given
by a diagram, even if one knows that the link is pseudoalternating. Here we give
an upper bound for the number of non-trivial (that is, non-isotopic to a disc)
primitive flat surfaces which can be plumbed in order to get a generalized flat
surface spanned by a pseudoalternating link.

Lemma 1.17. Let S be a generalized flat surface spanning a pseudoalternating
link L with first Betti number β(L). If S = S1 ∗ S2 ∗ . . . ∗ Sn, with each Si a



28 Section 1.4. The case β(L) ≤ 2

Figure 1.16: S = S1 ∗S2, with S1 and S2 two primitive flat surfaces plumbed by using
d as gluing disc; S2 has been colored. In A (B), the surface S2 has been overturned
over (under) the disc d.

non-trivial primitive flat surface, then n ≤ β(L).

Proof. As S is a generalized flat surface, β(S) = β(L), by Proposition 1.7. As
the surface Si is connected and non-trivial, β(Si) ≥ 1. Then, after performing n
Stallings plumbings, one gets β(S1 ∗S2 ∗ . . .∗Sn) = β(S1) +β(S2) + . . .+β(Sn) ≥
n.

Lemma 1.18. Let S be a generalized flat surface spanning a pseudoalternat-
ing link L. If S is either a primitive flat surface or a generalized flat surface
constructed as the Stallings plumbing of two primitive flat surfaces, then L is
alternative.

Proof. If S is a primitive flat surface, then L is a positive or negative link, hence
it is alternative.

Otherwise S = S1 ∗ S2, with S1 and S2 two primitive flat surfaces. Now just
turn S2 over (or under) the “gluing disc” (see Figure 1.16 for an example of a
plumbing of two annuli; notice that any primitive flat surface could be turned
over in the same way). Then it is clear that the projection of the boundary of
the new surface on the plane that contains the discs of S1 provides a diagram
for L with just two spaces containing edges; this diagram is alternative, as edges
related to S1 and S2 are in different spaces.

Combining Lemmas 1.17 and 1.18 leads to the following result:

Corollary 1.19. Every pseudoalternating link L with β(L) ≤ 2 is alternative.

The following corollaries are particular cases of Corollary 1.19:
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Corollary 1.20. Every pseudoalternating genus zero link with three or less com-
ponents is alternative.

Proof. Let L be a pseudoalternating genus zero link with µ components, and let S
be a generalized flat surface whose boundary is L. As β(L) = 2g(L)+µ−1 = µ−1,
by Lemma 1.17 the surface S is plumbing of at most µ− 1 non-trivial primitive
flat surfaces. If µ = 1, L is the trivial knot, which bounds a disc, hence it is
alternative. If µ is 2 or 3, the result holds by Lemma 1.18.

We claim that pseudoalternating genus zero links with four or five compo-
nents are also alternative (notice that their first Betti numbers are 3 and 4,
respectively). In order to show this, one must check all different possible ways
of gluing primitive flat surfaces to obtain such links, and take into account that,
when plumbing a surface S with β(S) = 1 to a pseudoalternating surface S ′, the
number of boundary components increases (decreases) by one when both bands
coming from the gluing disc are attached to the same (different) boundary com-
ponent of S ′. This case by case procedure is straightforward but lengthy, so we
include the proof for genus zero links having four components in Section 1.5, and
omit the five components case.

Corollary 1.21. Every pseudoalternating genus one knot is alternative.

Proof. Let K be a pseudoalternating genus one knot, and let S be a generalized
flat surface whose boundary isK. By Lemma 1.17, as β(K) = 2g(K)+µ−1 = 2, S
is plumbing of at most two non-trivial primitive surfaces. Lemma 1.18 completes
the proof.

Let us digress briefly in order to introduce the well-known family of pretzel
links. Start with a set of sequences of half-twists and connect them as in Figure
1.17. The resulting diagram is a pretzel link. One can associate an integer number
to each of these half-twists columns representing the number of crossings and the
sense of the twist. With this notation, the pretzel link P (a1, a2, . . . , ar) is the link
represented by a diagram with r columns, whose i− th column has |ai| half-twists
(the sense of the twists is given by the sign of ai).

From Corollary 1.21 it follows that a knot of genus one is pseudoalternating if
and only if it is homogeneous. As a consequence, we obtain an alternative proof
of the following result:

Theorem 1.22. [33] A genus one knot is homogeneous if and only if it belongs
to one of the two following families of knots:
1.- Pretzel knots with diagram P (a, b, c), where a, b, c are odd integers with the
same sign.
2.- Pretzel knots with diagram P (m, e, k. . . , e), where m and k are non-zero even
integers and e = ±1.
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Figure 1.17: The leftmost part shows two sequence of half-twists having positive
and negative signs, respectively. In the rightmost the three components pretzel link
P (4, 2,−6) and the pretzel knot P (−3, 1,−5, 2) are shown.

Proof. As before, K = ∂S, where S is a primitive flat surface with β(S) = 2 or
S = S1 ∗S2 is the plumbing of two primitive flat surfaces having β(S1) = β(S2) =
1.

In the first case, K is a positive or negative knot. As S is connected and
β(S) = 2, S must be as shown in Figure 1.18 (left). Write A,B,C for each of
the three subsurfaces consisting on “a linear path of bands and discs” in S (A,B
and C in cyclic order when traveling through the two common discs dδ and dγ).
As K is a knot, each of these paths must start and end in discs with different
orientations (otherwise the link bounding the surface would be a 3-components
link). Hence, their respective numbers of bands, a′, b′, c′, are odd. Let ε be their
common sign. K is the Pretzel knot P (ε · a′, ε · b′, ε · c′), as can be seen in Figure
1.18.

Now assume that S = S1 ∗ S2. Note that after the plumbing, the pair of
bands attached to d2 in S2 must alternate with the two bands attached to d1 in
S1 in the gluing disc d = d1 = d2; otherwise, the resulting surface would span
a 3-components link. Let bi be the number of bands in Si and εi their signs,
i = 1, 2. β(S1) = β(S2) = 1, so both S1 and S2 are twisted Hopf-bands, that is,
each of them consists on k discs and k bands joined forming a circle. Since they
are oriented, bi is even and it follows (see an example in Figure 1.19) that K is
the Pretzel knot P (ε1 · b1, ε2, b2. . . , ε2). Write m = ε1 · b1, k = b2 and e = ε2.

1.5 Genus zero four-components links

In this section we prove the following result:

Proposition 1.23. Every pseudoalternating genus zero link with four components
is alternative.

Proof. Let L be a pseudoalternating genus zero link with four components, and
let SL be a generalized flat surface spanning L. Writing µ(L) for the number of
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Figure 1.18: S is a primitive flat surface; an even number of discs and bands can be
attached in the place of the dotted lines (or removed). One of the three subsurfaces,
say A, has been colored. If one thinks on the example in the picture as if all lines were
non-dotted, then a′ = 5, b′ = 3, c′ = 5 and ε = −.

Figure 1.19: S = S1 ∗S2 is a generalized flat surface; S2 has been colored. After over-
turning S2 over the dotted disc, it is clear that K is the Pretzel knot P = (−6, 1, 1, 1, 1)

components of L, we have β(SL) = β(L) = 2g(L) + µ(L)− 1 = 3, hence Lemma
1.17 implies that SL is plumbing of at most 3 primitive flat surfaces. We can
also say that the number of bands in SL exceeds in 2 its number of discs, as
β(SL) = bSL − dSL + 1.

If SL is a primitive flat surface or SL = S1 ∗S2 with S1 and S2 being primitive
flat surfaces, Lemma 1.18 implies that L is alternative.

We focus now on the case SL = S1 ∗ S2 ∗ S3 with S1, S2 and S3 primitive flat
surfaces. Notice that each time two surfaces are plumbed, we keep all the bands
but two discs are identified, that is, after the first plumbing dS1∗S2 = dS1 +dS2−1
and bS1∗S2 = bS1 + bS2 . As a consequence, each of S1, S2 and S3 has the same
number of discs and bands, so they consist on n discs and n bands joined forming
a circle (they are twisted Hopf-bands).

Twisted Hopf bands have two boundary components, and each time one of
these surfaces H is plumbed to a generalized flat surface S, the number of bound-
ary components of the resulting surface increases (decreases) by one if the two
bands of the gluing disc in H are attached at the same (different) boundary com-
ponent of S. As S1, S2 and S3 are Hopf bands, the only possible configuration
for getting a four components link is increasing by one the number of boundary
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components after each plumbing. Combining both facts in this paragraph, after
the first plumbing S1 ∗ S2 the situation must be as shown in Figure 1.20.

At this point, we need to plumb S3. If the gluing disc in S1 ∗ S2 is different
from the disc used in the first plumbing, then the resulting link is alternative (one
just has to overturn the surfaces as in Figure 1.16 if necessary).

Now consider that the gluing disc is used twice. There are three possible
options attaching the two bands of S3 in the same boundary component, as can
be seen in Figure 1.20. The key point is noticing that in all of them any surface
can be overturned inside the gluing disc, in case its sign is different from the
others, and the resulting diagram would be alternative.

Figure 1.20: The surface S1∗S2 after the first plumbing in the case of a generalized flat
surface constructed as the plumbing of three primitive flat surfaces using the gluing disc
twice. The sign of the twists in the bands coming from S1 (S2) is ε1 (ε2). The number
of bands and discs in each of the primitive flat surfaces can be decreased/increased.



Chapter 2

Strongly quasipositive links and

their Conway polynomials

2.1 Introduction

The notion of positivity related to a link has been deeply studied from many
different points of view. Maybe the simplest class involving this concept is the
family of positive links. Recall that an oriented link is said to be positive if it
has a positive diagram, that is, a diagram with all crossings being positive (see
Figure 2.4).

Many authors have extended this classical notion of positivity by defining new
families of links. Frequently, these definitions depend on finding a representative
(a diagram, a braid, a Seifert surface...) of the link having some properties.
As in general finding such a representative is not easy, giving conditions for the
invariants of a link belonging to a specific family becomes useful.

A well-known result by J. Alexander is the popularly known as Alexander’s
Theorem [2]. It states that every oriented link can be represented as the closure
of a braid β ∈ Bn for some n. Recall that the braid index of a link is the smallest
n such that the link can be represented as a closed braid on n strands (it can
also be defined as the minimum number of Seifert circles in any Seifert diagram
of the link). In this chapter we give a necessary condition for a link with braid
index 3 to be strongly quasipositive.

Strongly quasipositive links are intrinsically related to positive braids, so let us
recall some notions of positivity related to braids. We remark that in the following
cases positivity depends on the choice of presentation of the braid group. Roughly
speaking, a braid is positive if there exists a positive word representing it, that is
a word with all its letters having positive exponents.

Through this chapter we mainly work with two different presentations of the
braid group on n strands, Bn. The first one is the standard presentation due to
Artin ([4], [5]):

33
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Figure 2.1: Braid relations in the Artin presentation, the Artin-positive braid α =
σ3σ3σ2σ3σ2σ3σ1σ2σ3σ2σ1 on 4 strands and its closure α̂, an Artin-positive knot.

Bn =

〈
σ1, σ2, ..., σn−1

∣∣∣∣ σiσjσi = σjσiσj |i− j| = 1
σiσj = σjσi |i− j| > 1

〉
Attending to the presentation above, a braid is said to be Artin-positive if

it can be represented by a positive standard braid word, that is, a braid word
where each Artin generator σi appears with positive exponent. The closure of an
Artin-positive braid is an Artin-positive link. See Figure 2.1

Artin-positive links are, indeed, positive links. However, the converse is not
true. In Proposition 2.2 we show a proof of this well known fact.

The braid group Bn admits another well known presentation due to Birman,
Ko and Lee [12]. The so called BKL generators or band generators, σij, are
related to Artin-generators by the formula σij = (σj−2 . . . σi)

−1σj−1(σj−2 . . . σi),
with i < j. They correspond to a positive crossing of strands in positions i and
j passing in front of the other strands, as shown in Figure 2.2.

Bn =

〈
σrs, 1 ≤ r < s ≤ n

∣∣∣∣ σqrσst = σstσqr (t− r)(t− q)(s− r)(s− q) > 0
σstσrs = σrtσst = σrsσrt 1 ≤ r < s < t ≤ n

〉

Just as before, a BKL-word having only positive exponents is a BKL-positive
word.
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Figure 2.2: Braid relations in the Birman-Ko-Lee presentation, the BKL-positive braid
α = σ34σ14σ23σ12σ24σ23σ12 on 4 strands and its closure α̂, a BKL-positive (or strongly
quasipositive) link.

Definition 2.1. A braid is BKL-positive if it can be expressed by a word written
in terms of the generators given by Birman, Ko and Lee, with all letters having
positive exponents. The closure of a BKL-positive braid is a BKL-positive link.

In [46] Rudolph introduced BKL-positive links as the boundaries of certain
surfaces, and he called them strongly quasipositive links. Rudolph also proved
in [48] that positive links are strongly quasipositive, which is not obvious. The
converse is not true. In fact, Baader [6] showed that a link is positive if and only
if it is strongly quasipositive and homogeneous; in particular, the link L9n18{1}
appearing in the proof of Theorem 1.11 is strongly quasipositive but not positive
[51].

A polynomial with real coefficients is said to be positive if all its coefficients
are non-negative. In 1983 Van Buskirk [56] proved that Artin positive links have
positive Conway polynomial. Six years later Cromwell [19] extended this result
to the class of positive links.

Artin-positive links are indeed positive, and the latter are strongly-quasipositive.
It seems natural to wonder if the positivity of Conway polynomial is preserved
under this extension. The main result in this chapter is the following:

Theorem 2.8 Strongly quasipositive links with braid index 3 have positive
Conway polynomial.

This result cannot be generalized to strongly quasipositive links with arbitrary
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Figure 2.3: Implications between the families of Artin-positive, positive and strongly
quasipositive (or BKL-positive) links, and their relation with the positivity of Conway
polynomial.

braid index, as we prove in Proposition 2.12. Namely, we give an example showing
that for any n ≥ 6 there exists a BKL-positive braid α ∈ Bn whose closure has
non-positive Conway polynomial.

2.1.1 Relations and some properties

In this section we review some details about the families of Artin-positive, positive
and strongly quasipositive links and their relations.

Proposition 2.2. There are positive links which are not Artin-positive.

Proof. In Figure 2.4 a positive diagram of the knot 52 is shown; its braid index
is 3, as it is the closure of the braid α = σ−32 σ−11 σ2σ

−1
1 . Suppose now that 52 is

the closure of a braid γ represented by a positive Artin-word w. We take w with
minimal length. Let D be the associated positive diagram. As projection surfaces
constructed from homogeneous diagrams have minimal genus (Propositions 1.7,
1.8) and positive diagrams are homogeneous, g(SD) = g(52) = 1 leads to s+1 = c,
where s and c are the number of Seifert discs and bands in SD, the projection
surface arising from D. Notice that s is the number of strands and c is the number
of crossings of γ.

Since c ≥ 5, γ must have at least 4 strands, and then some generator σi
must appear at most once. All generators must appear, since 52 is a knot (a
one-component link), so there exists one generator appearing exactly once, and
this is a nugatory crossing. This is a contradiction with the minimality of w since
52 is prime.

The families of strongly quasipositive links and BKL-positive links are equal.
The first name reminds that the link is boundary of a nice kind of surface; the
second one brings to our mind the algebraic presentation of the braid group.

To be more precise, strongly quasipositive links were introduced as the bound-
aries of what Rudolph called quasipositive surfaces [46]. A quasipositive surface
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Figure 2.4: We remind the chosen convention of signs and a positive diagram repre-
senting the positive knot 52.

Figure 2.5: The quasipositive surface associated to the closed BKL-positive braid in
Figure 2.2. Its boundary is a strongly quasipositive link (or BKL-positive link).

is an orientable surface which is ambient isotopic to a surface consisting of a finite
number of parallel discs joined by some bands twisted in a positive way, as in
Figure 2.5. Each of these bands corresponds to a BKL-generator.

Strongly quasipositive links should not be confused with quasipositive links,
which are closures of products of conjugates of Artin-positive braids. We are not
going to deal with quasipositive links through this chapter.

Quasipositive surfaces satisfy many interesting properties, such as being of
minimal genus for the strongly quasipositive links they span, or like the following
fact:

Theorem 2.3. [47, Theorem 4.3] The Stallings plumbing (or Murasugi sum) of
two surfaces S1 and S2 is quasipositive if and only if both S1 and S2 are quasi-
positive.

Primitive flat surfaces (see Subsection 1.2.3) with their bands twisted in a pos-
itive sense are quasipositive, so their boundaries are strongly quasipositive links.
Recall that pseudoalternating links are the boundary of generalized flat surfaces,
which are constructed as a finite number of plumbings of primitive flat surfaces
(see Definition 1.6). Hence Theorem 2.3 implies that a given pseudoalternating
link is strongly quasipositive if and only if there exists an associated generalized
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flat surface coming from the plumbing of positive primitive flat surfaces. The link
L9n18{1} is such an example (see Figure 1.11 in Chapter 1).

2.2 Conway polynomial from Burau representa-

tion

Burau [14] introduced a linear representation of the braid group on n strands,
Bn, by squared matrices of order n over the ring of Laurent polynomials Z[t, t−1].
This representation has been widely studied, being its faithfulness one of the
remaining open problems (it is known to be faithful when n ≤ 3 and unfaithful
when n ≥ 5, but the case n = 4 is still unsolved).

We will use the reduced Burau representation ψ : Bn → GL(n − 1,Z[s, s−1])
defined by the formula ψ(σi) = Ai, where

A1 =

 −s2 0 0
1 1 0
0 0 In−3

 , An−1 =

 In−3 0 0
0 1 s2

0 0 −s2


and for 1 < i < n− 1

Ai =


Ii−2 0 0 0 0

0 1 s2 0 0
0 0 −s2 0 0
0 0 1 1 0
0 0 0 0 In−i−2


with Ik being the identity matrix or order k.

In [25] the reduced Burau representation is noted ψrn : Bn → GL(n− 1,Z[t, t−1]),
and it is equal to the above definition after the substitution t = s2. Then Lemma
3.12 and Theorem 3.13 in [25] can be restated to give the following well-known
presentation of the Conway polynomial in terms of the reduced Burau represen-
tation:

Theorem 2.4. [25] Let α ∈ Bn be a braid and α̂ the link obtained as the closure
of α. Then the Conway polynomial of α̂ is given by

∇(α̂)(z) = (−1)n+1 s
−eα

[n]
|ψ(α)− In−1|

after the substitution s−1 − s = z, where [n] = s−n−sn
s−1−s and eα ∈ Z denotes the

image of α under the homomorphism Bn → Z sending each generator σi to 1.

Note that eα coincides with the exponent sum of any braid word representing
the braid α, which is invariant under the (homogeneous) relations of the braid
group. Moreover, eα is invariant under conjugation.
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In the proof of Theorem 2.6 we study the case of braids with three strands,
so we specify the case n = 3. The reduced Burau representation of B3 is given by
the matrices

B1 =

(
−s2 0

1 1

)
and B2 =

(
1 s2

0 −s2
)
.

Since for a square matrix A of order two |A− xI2| = x2 − xTr(A) + |A|, one
has |ψ(α)−I2| = 1−Tr(ψ(α))+ |ψ(α)| when working with a braid with 3 strands.
Note that, as |ψ(B1)| = |ψ(B2)| = −s2, then |ψ(α)| = (−s)2eα , ∀α ∈ B3.

At this point, we find useful to show a slight modification of a result by P.
V. Koseleff and D. Pecker [30] which simplifies the substitution s−1 − s = z
in the formula above by using Fibonacci polynomials. Recall that Fibonacci
polynomials are defined by the recurrence relation Fn(z) = z Fn−1(z) + Fn−2(z)
for n ≥ 2, starting with F0(z) = 0 and F1(z) = 1.

There exist closed combinatorial formulas to express the Fibonacci polynomi-
als; however, we will not use them through this chapter. For our purposes we
need to extend these polynomials to the case when the subindex is negative; we
do it in the natural way, by defining F−n(z) = (−1)n+1Fn(z).

Now we are ready to state our adapted version of Lemma 4.1 in [30]:

Lemma 2.5. [30] Let Fn(z) be the nth Fibonacci polynomial. After the substitu-
tion z = s−1−s, the identity (s−1)n+ (−s)n = Fn+1(z) +Fn−1(z) holds for every
integer n.

The following sections in this chapter are fully devoted to present our new
results.

2.3 Conway polynomial of 3-braids differing by

∆2

From now on, we consider the braid group on 3 strands B3, unless otherwise
stated. Although the results contained in this section are interesting on their
own, they become really useful in Section 2.4 when proving Corollary 2.10, which
completes the proof of the main theorem in this chapter (Therorem 2.8).

Recall that the Garside element ∆ ∈ Bn is defined as the half twist of the
strands, ∆ = (σ1σ2 . . . σn−1)(σ1 . . . σn−2) . . . (σ1σ2)σ1. Since ∆σi = σn−i∆ it fol-
lows that ∆2 is in the center of Bn. Moreover, the whole center of Bn is generated
by ∆2 [18].

The following result provides a relation between the Conway polynomials of
two closed braids differing in an even power of the Garside element ∆ = σ1σ2σ1
in B3. See Figure 2.6 for getting an example of two braids α and β as the ones
on the statement for the case k = 1.
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Figure 2.6: The Garside element in B3, ∆ = σ1σ2σ1, the (dark) braid α =
σ−12 σ1σ1σ2σ

−1
1 σ2σ1 ∈ B3 and the braid β = ∆2 α.

Theorem 2.6. Let α, β ∈ B3 with β = ∆2k α and k > 0. Then the difference
between the Conway polynomials of their closures is given by

∇(β̂)−∇(α̂) = z
k−1∑
i=0

(Feα+6i+4 + Feα+6i+2)

with Fn being the nth Fibonacci polynomial for any integer n.

Proof. We proceed by induction on k. We start with the case k = 1, that is, the
case when the braid β is obtained after multiplying the braid α by a full twist.

As the Garside element in B3 is ∆ = σ1σ2σ1, it follows that eβ = eα+6. Since
ψ(∆2) = s6I2, we have that Tr(ψ(β)) = s6 · Tr(ψ(α)). We now combine these
facts with Theorem 2.4 for computing the Conway polynomial of both closed
braids.

Taking into account the substitution s−1 − s = z, we have

∇(α̂) =
s−eα

[3]
|ψ(α)− I2| =

s−eα

[3]
(1− Tr(ψ(α)) + |ψ(α)|)

=
1

[3]

(
s−eα − s−eαTr(ψ(α)) + (−1)eαseα

)
and

∇(β̂) =
s−eβ

[3]
|ψ(β)− Id| =

s−eβ

[3]
(1− Tr(ψ(β)) + |ψ(β)|)

=
1

[3]

(
s−eα−6 − s−eαTr(ψ(α)) + (−1)eαseα+6

)
.

Now we compute the difference:
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∇(β̂)−∇(α̂) =
1

[3]

(
s−eα−6 − s−eα + (−1)eα(seα+6 − seα)

)
=
(
(−s)eα+4 + (s−1)eα+4

)
−
(
(−s)eα+2 + (s−1)eα+2

)
.

The second equality comes from the fact that(
s−1 − s

)
·
(
s−eα−6 − s−eα + (−1)eα(seα+6 − seα)

)
=
(
s−3 − s3

)
·
(
(−s)eα+4 + s−eα−4 − (−s)eα+2 − s−eα−2

)
.

Applying twice Lemma 2.5 we obtain

∇(β̂)−∇(α̂) = (Feα+5 + Feα+3)− (Feα+3 + Feα+1)

= (Feα+5 − Feα+3) + (Feα+3 − Feα+1)

= z (Feα+4 + Feα+2) .

Now, suppose the statement true for 1, 2, . . . , k − 1, and let β = ∆2kα. If we
write γ = ∆2(k−1)α, then by induction

∇(β̂)−∇(α̂) = ∇(β̂)−∇(γ̂) +∇(γ̂)−∇(α̂)

= z
(
Feγ+4 + Feγ+2

)
+ z

k−2∑
i=0

(Feα+6i+4 + Feα+6i+2)

= z
k−1∑
i=0

(Feα+6i+4 + Feα+6i+2)

where the third equality holds since eγ = eα + 6(k − 1).

With some extra work, the theorem above can be deduced from work by Mura-
sugi in [37, Proposition 4.1]. He compares the normalized Alexander polynomial
of two closed braids differing in an even power of ∆ and provides an expression
for their difference, with an indeterminacy on a power of −t. We think that
the formula we present in Theorem 2.6 is quite simpler even in the case of the
Alexander polynomial (that is, just before the change of variables s−1 − s = z).

As a consequence of Theorem 2.6 we get an interesting corollary. The result
for the even case was proved by Joan Birman in [11]; as far as we know there is
no reference for the odd case.

Corollary 2.7. Let α ∈ B3 with eα = −3k and k > 0, and consider β = ∆2kα.
We have that:

• If k is even, then ∇(β̂) = ∇(α̂).
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• If k is odd, then ∇(β̂) = ∇(α̂) + 2z
k−1∑
i=0

F−3k+6i+4.

Proof. By applying Theorem 2.6 we get

∇(β̂) = ∇(α̂) + z
k−1∑
i=0

(F−3k+6i+4 + F−3k+6i+2)

= ∇(α̂) + z

k−1∑
i=0

(F−3k+6i+4 + F3k−6i−4)

= ∇(α̂) + z

k−1∑
i=0

[
F−3k+6i+4 + (−1)k+1F−3k+6i+4

]
= ∇(α̂) + [1 + (−1)k+1] z

k−1∑
i=0

F−3k+6i+4.

The second equality holds since F−3k+6i+2 = F3k−6j−4 when j = (k − 1) − i.
The third one holds since F−n = (−1)n+1Fn. This completes the proof.

2.4 Strongly quasipositive links with braid in-

dex 3

2.4.1 Resolution trees

The skein relation defining the Conway polynomial of a link, ∇(L+)−∇(L−) =
z∇(L0) (see the first part of Section 1.3), is a recurrence relation for computing
the value of this invariant for any link. This process can be codified by using
resolution trees.

Given an oriented diagram D representing a link L, we construct a resolution
tree rooted at D in the following way. Starting from the root, each node would
form a triple (parent, leftchild, rightchild) either of the form (D+, D−, D0) or
(D−, D+, D0). See Figure 2.7. In the first case, the edge joining D+ and D− is
labeled with 1, and the one joining D+ and D0 with z; in the second case the
edge joining D− and D+ is labeled with 1, and the one joining D− and D0 with
−z (of course this labeling comes from the skein relation). Let L1, L2, . . . , Ln be
the leaves in the tree and Pi, 1 ≤ i ≤ n the product of the labels in the edges
on the unique path connecting the leaf Li and the root of the tree. Then, if we
know ∇(Li), we can compute the Conway polynomial of the link L:

∇(L) =
n∑
i=1

Pi · ∇(Li).
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Figure 2.7: A resolution tree for the trefoil knot 31 represented by the diagram D. It
has three leaves, L1, L2 and L3, and three paths joining them to the root: P1 = 1,
P2 = z and P3 = z2. As the value of the Conway polynomial of the unknot and split
links is 1 and 0 respectively, one gets ∇(31) = 1 · 1 + z · 0 + z2 · 1 = 1 + z2.

In [19] P. Cromwell proved that starting from a diagram D, it is possible to
construct a resolution tree rooted in D with terminal nodes being trivial links,
in such a way that in every path from a terminal node of the tree to the root no
crossing is changed more than once. As a consequence, he proved that positive
links have positive Conway polynomials [19, Corollary 2.1], that is, a polynomial
in the variable z with non-negative coefficients.

In Proposition 2.9 we give an algorithm for constructing a resolution tree
whose nodes are D+ and its terminal nodes are not necessarily trivial links. The
reason for choosing D+ in the nodes position in our construction is marking all
branches with positive labels. As a consequence, the fact that all leaves in a
resolution tree have positive Conway polynomial ensures the positivity of the
Conway polynomial of the link in the root.

2.4.2 Positivity of Conway polynomial

In this section we continue working with braids on 3 strands. First of all, we want
to remark that the class of positive links and the class of strongly quasipositive
links are not equal even when considering links with braid index 3. We provide
such an example in Proposition 2.11, by showing a family of links with braid
index 3 which are not positive but strongly quasipositive.

From the point of view of the presentation given by Artin, B3 has two gen-
erators, σ1 and σ2. However, if we consider the presentation given by Birman,
Ko and Lee, B3 has three generators: σ12 = σ1, σ23 = σ2 (corresponding to the
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Figure 2.8: BKL-generators σ12 = σ1, σ23 = σ2 and σ13 = σ−11 σ2σ1.

Artin-generators) and σ13 = σ−11 σ2σ1. See Figure 2.8. From now on, we are
going to work with BKL-generators, as strongly quasipositive links are closure of
positive braids in terms of these generators.

We are now ready to state our main result in this chapter:

Theorem 2.8. Strongly quasipositive links with braid index 3 have positive Con-
way polynomial.

A result by Stoimenov [53] states that any strongly quasipositive link with
braid index 3, is the closure of a BKL-positive braid on 3 strands. Hence, we just
have to focus on proving the positivity of the Conway polynomial of those closed
braids.

The proof of Theorem 2.8 lies on two results. The first one gives a proce-
dure to construct a particular resolution tree starting from a BKL-positive braid
word, whose branches have positive labels and each leaf is of one of 4 types. In
the second one we show that all possible leaves obtained by following the algo-
rithm above, have positive Conway polynomial. The combination of both results
completes the proof of Theorem 2.8.

At this point we find convenient to introduce a special braid on three strands
which is going to be used several times in the following results. This braid is
υ = σ1σ2σ13 ∈ B3.

Proposition 2.9. Let α ∈ B3 be a BKL-positive braid; then, it is possible to
construct a resolution tree for the link α̂, whose branches have positive labels and
whose leaves are closed braids belonging to the set {ε, σ1, σ1σ2} ∪ {υk, k > 0},
with ε being the trivial braid in B3.

Proof. Let w be a BKL-positive word representing the braid α and n its length.
If n = 1, then w is contained in M1, the set containing BKL-positive words of
length 1. If n = 2, then w is either in M2, the set containing those BKL-positive
words of length 2 with two different letters, or it consists on two repeated letters,
w = σiσi, and it can be split into the trivial word, ε, and one word of length one,
σi, which is in M1.

Suppose now that n ≥ 3. If w = Pσ2
iQ, with P and Q BKL-positive words,

split it by writing w as a node whose left child and right child are w1 = PQ and
w2 = PσiQ respectively; the left branch would be labeled with 1, and the right
one with z. Note that w1 and w2 have length n−2 and n−1 respectively. Repeat
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Figure 2.9: This image illustrates the algorithm in the proof of Proposition 2.9. The
sign “=” represents a cyclic move in the order of the letters (that is, a conjugation).
Letters 1, 2 and 3 represent generators σ1, σ2 and σ13, respectively.

this procedure with the BKL-positive words obtained each time. Notice that we
are not interested in each particular word, but in the link closure of the braid
represented by the word (that is, each node in the tree is a BKL-positive word
up to conjugation). Hence, we can replace any positive word by another positive
word representing the same braid, or by another positive word corresponding to
a cyclic permutation of its letters (which corresponds to a conjugate braid, hence
to the same link).

Now let us see that every braid which does not belong to {ε} ∪M1 ∪M2 ∪
{υk, k > 0} can be split by the above procedure.

Consider a BKL-positive braid word of length at least 3, with no equal con-
secutive letters. Note that the braids σ2σ1 = σ13σ2 = σ1σ13 are equivalent. Now,
start reading the braid word from the left; each time you find either a σ2σ1, σ13σ2
or σ1σ13 occurrence, write this syllable in such a way that its last letter equals the
first letter after it (in cyclic order), so you get two repeated generators together.
If no occurrence of σ2σ1, σ13σ2, σ1σ13, σ1σ1, σ2σ2, σ13σ13 appears in any cyclic per-
mutation of the word, then the letter after every σ1 must be σ2, the letter after
every σ2 must be σ13, and the letter after every σ13 must be σ1, in every cyclic
permutation of the word. Therefore, up to a cyclic permutation, the word equals
υk for some k > 0.

As all the BKL-words in M1 and M2 are conjugated to σ1 and σ1σ2 respec-
tively, this procedure allows us to construct a resolution tree rooted in w, where
all the branches have positive labels (either 1 or z), and all the leaves belong to
the set {ε, σ1, σ1σ2} ∪ {υk, k > 0}.



46 Section 2.4. Strongly quasipositive links with braid index 3

At this point, we just need to show that the closure of the braids in the above
set have positive Conway polynomials. As closing the trivial braid or σ1 gives a
split link, their Conway polynomials are null. The closure of a braid represented
by a word with two different letters, lets say σ1σ2, is the trivial knot, so its
Conway polynomial is 1.

It remains to prove the case of links which are closure of braids of the form
υk. These are non-split links with 2 or 3 components, depending on the parity
of k, and for large enough n computing their Conway polynomial is not trivial.
Corollary 2.7 applied to this particular case allows us to give the following result
(the case k even was also computed by Stoimenov in [53]):

Corollary 2.10. The closure of the braid on 3 strands υk has positive Conway
polynomial for any integer k > 0. In fact,

∇(υ̂k) = 2z
k−1∑
i=0

F−3k+6i−4

when k is odd, and it is null when k is even.

Proof. It is easy to check that υ = ∆2(σ−12 )3, so υk = ∆2k(σ−12 )3k, since ∆2

is central. Now apply Corollary 2.7, with α = (σ−12 )3k (hence eα = −3k) and
β = ∆2k(σ−12 )3k = υk.

If k is even, then ∇(υ̂k) = ∇( ̂(σ−12 )3k) = 0, since the closure of (σ−12 )3k in B3

is a split link.

If k is odd, then ∇(υ̂k) = 2z
∑k−1

i=0 F−3k+6i+4. As the Fibonacci polynomials in
the summation have odd subindices, all their coefficients are positive, since these
polynomials satisfy F−n(z) = (−1)n+1Fn(z).

This completes the proof of Theorem 2.8.

2.4.3 Non-positive but strongly quasipositive links

We conclude this section by showing a family of links with braid index 3 which
is not positive but strongly quasipositive, as we promised in the first lines of this
section. This ensures that Theorem 2.8 is a real extension of the well known
result about positivity of the Conway polynomial of positive links when working
with links having braid index equals 3.

Proposition 2.11. If k > 0 is even then the closure of the braid υk ∈ B3 is a
strongly quasipositive but non-positive link.

Proof. Let k be a fixed even integer number and L the closure of the braid

υk ∈ B3, that is, L = υ̂k. From the definition, it is immediate to check that the
link L is strongly quasipositive. The proof of its non-positivity lies in a couple of
additional results.
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Figure 2.10: The quasipositive surface S spanning the link ̂(σ1σ2σ13)2.

The first one is a result by Baader [6] which states that a strongly quasipositive
link is positive if and only if it is homogeneous. Peter Cromwell proved in [19]
that, given an homogeneous link K of µ(K) components, its Conway polynomial
is related to its genus by the formula 2g(K) = maxdeg (∇(K))−µ(K)+1, where
maxdeg (∇(K)) is the maximum degree of the Conway polynomial of K.

We proceed by contradiction. Suppose that L is positive. Since L has 3
components, as a consequence of the above results L should satisfy 2g(L) =
maxdeg (∇(L))− 2.

Let S be the quasipositive surface associated to L (see Figure 2.10). The Euler
characteristic of this kind of surfaces can be computed as χ(S) = dS−bS, with bS
and dS being the number of bands and discs in S respectively; as a consequence,
2g(S) = 2− µ(L) + bS − dS = −1 + bS − dS.

Rudolph proved in [47] that quasipositive surfaces have minimal genus for the
link they are spanning. Hence, L should satisfy maxdeg (∇(L)) = 1 + bS − dS.
As we are working in B3, there are 3 discs in S, so maxdeg (∇(L)) + 2 = bS.

Hence, if L were positive the number of bands in S and its Conway polynomial
should be related in the way above. We proved in Corollary 2.10 that ∇(L) = 0.
However, the number of bands in S equals 3k, yielding a contradiction.

2.5 The result cannot be extended

In this section we consider the problem of extending the previous result to a higher
number of strands, that is, we study whether every strongly quasipositive link
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Figure 2.11: The BKL-positive braid α = σ16σ16σ46σ35σ24σ13σ25. Its closure is a
strongly quasipositive link having non-positive Conway polynomial.

has positive Conway polynomial. The following result gives a negative answer to
this question by showing a counterexample:

Proposition 2.12. There are strongly quasipositive links having non-positive
Conway polynomial.

Proof. Consider the BKL-positive braid on 6 strands α = σ16σ16σ46σ35σ24σ13σ25.
Its closure (Figure 2.11) is a strongly quasipositive link, whose Conway polyno-
mial is ∇(α̂) = −z2 + 1, which is non-positive. (We computed ∇(α̂) by using a
C++ version of the program br9z.p, developed by Short and Morton in 1985:
http://www.liv.ac.uk/ ∼ su14/knotprogs.html).

In [49], in the proof of Corollary 88, Rudolph stated that every Seifert matrix
of a given link can be obtained as the Seifert matrix of a strongly quasipositive
link. As a consequence, given a link L with Conway polynomial ∇(L), there
would exist a strongly quasipositive link L′ having the same Conway polynomial,
that is, satisfying ∇(L) = ∇(L′). He also gives a procedure for constructing L′

as a closed BKL-positive braid, starting from a braid diagram of L. This result
would provide an infinite family of examples of strongly quasipositive links having
non-positive Conway polynomial. However, we think that there is a problem with
the proof of this result: it is claimed that the procedure for obtaining L′ starting
from L (a sequence of doubled-delta moves, also called trefoil insertion) preserves
the Seifert matrix. After applying this move to the braid β = σ1σ1σ

−1
1 ∈ B2, one

obtains β′ = σ16σ16σ25σ13σ24σ35σ46. The closure of β is the trivial knot, hence
∇(β̂) = 1; however ∇(β̂′) = 7z2 + 1. This contradicts the fact that doubled-delta
moves preserve the Seifert matrix.

It follows from Proposition 2.12 that for any n ≥ 6 there exist BKL-positive
braids β ∈ Bn whose closures have non-positive Conway polynomial. To get such
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an example, it suffices to take the braid in the proof of Proposition 2.12 and per-
form iterated positive stabilizations (that is, replace α ∈ B6 with βσ6σ7 . . . σn−1 ∈
Bn).

Despite applying some well-known results for giving a boundary on the braid
index of a link, we do not know whether the braid index of the closure of the
braid α in the proof of Proposition 2.12 is 4, 5 or 6. At Knotinfo [15] one can
find 103 and 90 strongly quasipositive knots having braid index equal to 4 and
5 respectively; all of these knots have positive Conway polynomial. Using the
computer program above, we have also checked many examples of links being the
closure of BKL-positive braids on 4 strands and all of them have positive Conway
polynomial. Hence, determining if the result in Theorem 2.8 can be extended to
the case of 4 and 5 strands is an open question.
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Chapter 3

Knot Floer Homology and FKT

states

3.1 Introduction

In this chapter we present our contribution to a project by some authors, aiming
to find a combinatorial definition of Knot Floer homology in terms of the states
defined in Formal Knot Theory [27] (from now on FKT states), in a similar way
as that given by Viro [57] for the Khovanov homology in terms of Jones states
(see Section 4.2). More specifically, taking FKT states as the generators of the
chain complex the goal is to try to find an appropriate differential in such a way
that the resulting homology matches with Knot Floer homology.

The aim of this chapter is not to give an extensive formal definition of Knot
Floer homology, but to explain its relations with the classical concepts introduced
in FKT.

Knot Floer homology is a relatively new link invariant developed indepen-
dently by Ozsváth and Szabó [40] and Rasmussen [43]. There has been an inten-
sive study of this theory, as it provides important geometric information about
a link, such as its genus or its fibredness, and even characterizes the trivial knot
[31].

One of the main properties about Knot Floer Homology is that it categorifies
the Alexander polynomial. To be more specific, Knot Floer homology is a bi-
graded homology whose Euler characteristic is the Alexander polynomial, that
is: ∑

i,j

(−1)j · rank(Hi,j(K)) · ti = ∆K(t),

where Hi,j(K) is the Knot Floer homology module of the knot K and ∆K(t) is
the normalized version of the Alexander-Conway polynomial of K as defined in
Sections 1.3 and 3.2.

There are several approaches for proving this fact. For example, in [10]
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M. Benheddi and D. Cimasoni used the purely combinatorial version of Knot
Floer Homology (the one based on grid diagrams) for verifying it. But this ver-
sion is not directly related to the FKT model.

For our purposes, the most interesting proof of this categorification is the
one given by Ozsváth and Szabó in [39, 41], as they identify the graded Euler
characteristic of Knot Floer homology theory as a state summation related to
the Formal Knot Theory model. There is a technical difference in that they sum
over different local weights and use a different sign convention. They claim that
the resulting state sum is the Alexander-Conway polynomial by reference to the
FKT model (Theorem 11.3 in [41]). In section 3.2 we include both definitions
of the polynomial and prove their equality by providing a proof using classical
concepts. The key point in this proof is Proposition 3.8, where we relate the parity
of the white and black holes for the states in the FKT model. These results are
contained in a joint paper with Louis Kauffman [26].

Going back to the problem of finding a definition of Knot Floer Homology in
terms of FKT states, there have been many attempts to find such a differential.
In particular, we want to present a differential proposed by Y. Rong [45]. As
far as we know, they could prove neither its validity nor find an example where
its invariance fails; we found such an example, revealing that this differential is
not correct. In Section 3.3 we present this counterexample and give an extended
explanation of the ideas behind Rong’s differential, as his approach could be the
starting point for finding the “good differential”.

3.2 Parities of black and white holes

At the level of combinatorial knot theory, this section shows that a reformulation
of the Alexander-Conway polynomial following the FKT model using white hole
rather than black hole counts gives the same topological result. In proving this
we obtain an interesting result (Proposition 3.8) relating the parities of the white
and black holes for the states in the FKT model. We include in this section some
of the results contained in a joint paper with Louis Kauffman [26].

We start by explaining classical notions such as marker, region or state.

Given an oriented non-split link L in S3, fix an associated diagram D, and
write v1, . . . , vn for its crossings. If one forgets the under-over information, one
obtains a planar diagram PD dividing the plane into n + 2 regions, one of them
unbounded. Choose two adjacent regions and mark each of them with a star.

Definition 3.1. In the previous conditions, a (FKT) state S associated to D is
an assignment of markers to each vi (that is, a choice of an adjacent unstarred
region for each crossing) so that no region of PD contains more than one marker.
Let S denote the set of all possible states in D.

In Figure 3.1 we present two types of labels for the crossings of an oriented link
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Figure 3.1: The left part of the first (second) row shows the Alexander-Conway labeling
defining 〈· | ·〉 ([· | ·]); the rightmost part shows the state marker producing a black
(white) hole.

diagram. The labeling shown in the first row will be called the Alexander-Conway
labeling. It gives rise, as we will see in Theorem 3.2, to a normalized version of
the Alexander polynomial and gives a state summation for the Alexander-Conway
polynomial in z = t1/2 − t−1/2. We call these Alexander-Conway labels because
they are different from labels that derive directly from Alexander’s original paper
on his polynomial [3]. In [27] Kauffman reformulates the Alexander polynomial
as a state summation by using the Alexander-Conway labels.

More precisely, given a state S, let 〈D|S〉 denote the product of the Alexander-
Conway labels associated to each marker in S (see Figure 3.1). A marker is called
a black hole if it occurs between two ingoing lines to the corresponding crossing.
A marker is called a white hole if it occurs between outgoing lines at a crossing.
Write BS (WS) for the set of double points whose markers are black (white) holes.

Theorem 3.2. [27, Theorem 4.3] Let D be a diagram representing an oriented

link L. Then the polynomial in Z[t
1
2 , t−

1
2 ]

∆L(t) =
∑
S∈S

(−1)]BS〈D|S〉.

is independent of the choice of the diagram D, and it is in fact, up to unit ±tn,
the original Alexander polynomial of L as defined in [3]. In particular ∆©(t) = 1
and if L+, L− and L0 are three links with identical diagrams D+, D− and D0

except in a small neighborhood where they differ as shown in Figure 1.10, then
they satisfy the skein relation

∆L+(t)−∆L−(t) = (t1/2 − t−1/2)∆L0(t).

In [41] an alternative definition of the Alexander polynomial is given in the
following terms:
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ΘL(t) =
∑
S∈S

(−1)]WS [D|S],

where D is a diagram representing the oriented link L and the square bracket is
defined in terms of the labels in the second row of Figure 3.1. This definition is
a state sum using white holes and labels that are essentially the inverses of the
ones in Theorem 3.2.

We will show that this alternative definition of the Alexander polynomial is,
in fact, equal to the Alexander-Conway polynomial as expressed in Theorem 3.2.
Before proving that fact, we will show an interesting result relating the parities
of white and black holes in a given state in Proposition 3.8.

Definition 3.3. A flat Reidemeister move is a move performed in a planar di-
agram representing a link (a link diagram with double points, that is with no
specification of over or under crossings). Such diagrams are called universes in
[27]. Flat Reidemeister moves are diagrammatically the same as the usual Reide-
meister moves, but have no constraint about patterns of over and under crossings,
as shown in Figure 3.2.

Lemma 3.4. Let D be a planar diagram representing an oriented link L; write
s(D) and c(D) for the number of (Seifert) circles and edges in the Seifert diagram
associated to D (defined in Subsection 1.2.1). The parity of e(D) = c(D)−s(D)+
1 is invariant under flat Reidemeister moves. Hence, the parity is a link invariant
which will be called E(L).

Proof. The proof is given in Figure 3.2.

Corollary 3.5. Let L be an oriented link with µ components. Then the parity of
µ is opposite to E(L).

Proof. By a finite sequence of flat Reidemeister moves, any planar diagram rep-
resenting L can be transformed into the trivial link with µ components, which
satisfies e(Uµ) = 1− µ.

Lemma 3.6. Let D be a planar diagram of an oriented link L. There always
exists an FKT state S for D satisfying ]BS + ]WS = c(D)− s(D) + 1, where BS

and WS are the sets of black and white holes in S respectively.

Proof. We give an algorithm for constructing such an state, following some ideas
in [27]. Starting from D, construct its associated Seifert diagram. Choose an
innermost Seifert circle si and choose one of the edges joining si to another circle
sj. Joint the two circles in the place of the edge by considering the opposite
smoothing as the one given by Seifert’s algorithm. The resulting configuration
has one fewer circle, and after repeating this procedure s(D)−1 times using each
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Figure 3.2: The proof of Lemma 3.4 for first and second Reidemeister moves with
all possible orientations and Seifert circles configurations are shown in this picture
(D0 and D are the diagrams before and after the corresponding Reidemeister move,
respectively). For the third Reidemeister move the many different possibilities can be
checked as in the example.

*

*

*

*

Figure 3.3: The figure shows the trail T associated to the planar diagram D together
with a choice of the starred regions and the two rooted trees. It also shows the associated
Kauffman state S.
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Figure 3.4: A clock move transposition and the lattice obtained from the 41 classic
diagram with a fixed choice of unmarked regions.

edge at most once, we obtain a simple closed curve or Jordan trail T , as shown
in Figure 3.3.

Kauffman proved that there exists a bijection between the collection of states
of D sharing a fixed choice of adjacent stars and the collection on all Jordan trails
arising from D. Choose two adjacent regions in D and draw an star in each of
them; let S be the Kauffman state associated to T constructed in the following
way: construct two trees, each one rooted at one of the stars, in such a way that
their branches visit each region once (see Figure 3.3). If we consider the tree
starting at the root, draw in each vertex a marker in the place where the branch
enters a new region.

Let us see that S satisfies the condition in the statement. The markers coming
from a re-smoothing are neither black nor white holes. Each marker coming from
a smoothing preserving orientation is either a black or a white hole. As we did
s(D)− 1 re-smoothings, it follows that ](BS) + ](WS) = c(D)− s(D) + 1.

A clock move is a modification of two adjacent markers as shown in the left-
most part of Figure 3.4. In [27] Kauffman proved that the collection of possible
states arising from a given planar diagram with a fixed choice of adjacent un-
marked regions is a lattice, where all the states are related by a finite sequence
of clock moves. In Figure 3.4 we show the example of knot 41.
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Corollary 3.7. Let D be a planar diagram of an oriented link L. Every FKT
state S for D satisfies ]BS + ]WS = c(D)− s(D) + 1, where BS and WS are the
sets of black and white holes in S respectively.

Proof. Notice that clock moves preserve the number of black plus white holes.
This remark together with Lemma 3.6 leads to the fact that every state S arising
from a diagram D satisfies

]BS + ]WS = c(D)− s(D) + 1.

Corollary 3.5 together with Corollary 3.7 leads to the following result:

Proposition 3.8. Let L be an oriented link with µ components and S any FKT
state of a diagram D representing L. Then, the parities of the number of black
and white holes in S are equal when µ is odd, and opposite when µ is even. That
is, (−1)]WS = (−1)µ+1(−1)]BS .

The following result shows that the definition of Knot Floer Homology given
by Ozsváth and Szabó in [41] categorifies the Alexander-Conway polynomial via
the Formal Knot Theory state sum shown in [27].

Theorem 3.9. Both versions of the Alexander polynomial, that given by Ozsváth
and Szabó [41] and that by Kauffman [27] coincide. Precisely,

ΘL(t) = ∆L(t).

Proof. Let L denote the mirror image of L. Since ∆L(t) satisfies the skein relation

in Theorem 3.2, after substituting z = t
1
2 − t− 1

2 and using an inductive argument,
it follows

∆L(z) = ∆L(−z) = (−1)µ+1∆L(z).

Hence ∆L(z) = (−1)µ+1∆L(z).

Note that the labels used in [·|·] for positive (negative) crossings are equal to
those used in 〈·|·〉 for negative (positive) crossings. As a consequence

∆L(z) =
∑
S∈S

(−1)]BS〈D|S〉 =
∑
S∈S

(−1)]BS [D|S].

Combining these facts with Proposition 3.8 one gets:

∆L(t) = (−1)µ+1∆L(t) =

= (−1)µ+1
∑
S∈S

(−1)]BS [D|S] =
∑
S∈S

(−1)µ+1(−1)]BS [D|S] =

=
∑
S∈S

(−1)]WS [L|S] = ΘL(t).
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3.3 Disproving a proposed differential

In this section we focus on the attempts of giving a combinatorial definition of
Knot Floer homology in terms of FKT states. Namely, we focus on a model
proposed by Y. Rong, presented in an AMS meeting at Ohio in 2007. As far as
we know, he could not prove or disprove his model. In this subsection we disprove
his model by finding an example where the proposed differentials do not work,
namely, we prove that the model is not invariant under Reidemeister moves.

However, we think that the ideas in the mentioned model are interesting, and
they can be thought as a starting point for finding appropriate gradings in order
to define the groups in the chain complex, and specially for finding an accurate
differential in terms of FKT states in such a way that Knot Floer homology
coincides with the homology of the complex.

The original definition of Knot Floer homology was given by Ozsváth and
Szabó in 2002. We will not review this definition, as its understanding requires
some familiarity with symplectic geometry. However, since Proposition 3.11 can
be thought as an evidence of the relation between Knot Floer homology and FKT
states, we find interesting to introduce the generators of Knot Floer homology as
they were introduced in its first definition, that is, in terms of Heegaard diagrams.

Definition 3.10. Given an oriented knot K ∈ S3, a doubly-pointed Heegaard
diagram (Σ, α, β, w, z) for K consists of
· A surface Σ ⊂ S3 of genus g ≥ 0, splitting S3 into two handlebodies U0 and U1,
with Σ oriented as the boundary of U0.
· A collection α = {α1, . . . , αg} (β = {β1, . . . , βg} consisting of g pairwise disjoint,
simple closed curves on Σ, such that each αi (βi) bounds a properly embedded disk
in U0 (U1).
· Two distinct points w and z on Σ\(α1 ∪ . . . ∪ αg ∪ β1 ∪ . . . ∪ βg).
We require that K intersects Σ exactly at w and z and that the intersections of
K with U0 and U1 consist of two properly embedded intervals.

Every knot admits a doubly-pointed Heegaard diagram. Although there are
several ways of finding such a Heegaard diagram, we are interested in the following
one:

See Figure 3.5. Let D be a knot diagram and consider its planar projection
PD, which splits the plane into g regions R0, . . . Rg, with R0 being unbounded.
Take Σ as a boundary of a tubular neighborhood of PD in R3. Let αi be a
curve parallel to the boundary of the region Ri, for i = 1, . . . , g, and let βi be
a curve in a neighborhood of the i-th crossing of D, as shown in Figure 3.5, for
i = 1, . . . , g − 1 (notice that D has g − 1 crossings). Draw an additional curve
βg as a meridian of Σ next to an edge on the boundary of R0. Finally, place the
basepoints w and z on each side of βg.

Following Manolescu [35], we review the formal definition of the generators in
the original version of Knot Floer Homology. Let Σ×g be the Cartesian product
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*

*

Figure 3.5: A doubly-pointed Heegaard diagram for the trefoil knot. Diagram D is
represented in the Heegaard diagram in light color. The curve β1 is detailed (β2 and
β3 are similar).

of g copies of Σ. The symmetric group Sg acts on Σ×g by permuting the factors.
The quotient is the symmetric product Symg(Σ) := Σ×g/Sg. Consider the sub-
manifolds Tα = α1× . . .×αg and Tβ = β1× . . .× βg obtained by projection from
Σ×g.

Every intersection point x ∈ Tα
⋂
Tβ consists of an unordered g-tuple of points

of Σ, one on each α curve and one on each β curve. These are the generators
of Knot Floer complex. Notice that each intersection point x corresponds to a
collection of markers as in Definition 3.1, hence to a FKT state. Hence, the above
construction of a doubly-pointed Heegaard diagram for any given knot diagram
leads to the following result:

Proposition 3.11. [41, Proposition 12.1] Let K be a knot in S3. Fix a diagram
D representing K together with a choice of starred regions in the planar diagram
PD. Then there is a Heegaard diagram for K, whose generators are in one-to-one
correspondence with the FKT states of D.

The previous theorem reveals that Knot Floer homology could be defined in
terms of FKT states in a similar way to that introduced by Viro for defining
Khovanov homology (we explain his approach in Section 4.2). However, as the
differentials in the original definitions are defined in terms of pseudo-holomorphic
disks counting, translating them to the language of FKT states is not easy.

One could think that it may be easier to translate the differentials of Knot
Floer homology defined in terms of grid diagrams, as this combinatorial version
can be easily understood. However, in this approach the relation between gener-
ators in the grid and FKT states is not clear.

In fact, finding an appropriate differential in terms of KFT states is a hard
problem. There have been some attempts to give such a definition, but they
failed. We focus now on an attempt by Y. Rong.
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Figure 3.6: The labelings associated to Alexander and Markov gradings.

Taking as starting point the fact that Knot Heegaard Floer homology cate-
gorifies Alexander polynomial and the definition of this polynomial in terms of
FKT states (Theorem 3.2), Rong’s model was introduced in a talk entitled “A
homology theory via clock moves” presented at the AMS Spring Central Sectional
Meeting in Ohio (March 2007) [45].

Let D be an oriented diagram representing the knot K. Any state S of D has
two associated gradings. Write c(D) for the number of crossings of D, w(D) for
its writhe and rot(D) for its rotation number (also known as winding number),
and define the Alexander and Maslov gradings of S as

A(S) =

c(D)∑
i=1

ai(S)− 1

2
(c(D) + rot(D))

M(S) =

c(D)∑
i=1

mi(S)− 1

4
(3c(D) + 2rot(D)− w(D)),

where ai and mi are given by the labels in Figure 3.6.

Note that in both Alexander and Maslov gradings, the terms c(D), w(D) and
rot(D) only depend on the chosen diagram D representing K. For this reason,
we will sometimes forget these terms and write

A(S) =

c(D)∑
i=1

ai(S) and M(S) =

c(D)∑
i=1

mi(S)

for the reduced versions of Alexander and Maslov gradings.

The state T is adjacent to S if both states assign the same labels except in two
(changing) crossings, where they are related as shown in Figure 3.7. Notice that if
T is adjacent to S, then the relations between their gradings do not depend on the
orientation of the strands involved in the changing crossings, namelyA(T ) = A(S)
and M(T ) = M(S)− 1.

We define now the chain complex in Rong’s model. Let Ci,j(D) be the free
abelian group generated by the set of states S of D with A(s) = j and M(s) = i.
Now fix an integer j and consider the descendant complex

. . . → Ci,j(D)
di−→ Ci−1,j(D) −→ . . .
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Figure 3.7: T is adjacent to S if they differ in one of these two situations.

with differential
di(S) =

∑
T adjacent to S

T.

Taking coefficients in Z2 it is not hard to check that di−1 ◦ di = 0, so one can
consider the corresponding homology modules over Z2

H i,j(D) =
ker(di−1)

im(di)
.

Note that the only effect of considering the reduced gradings A(S) and M(S)
instead of A(S) and M(S) is a shifting in the gradings of the homology modules.

In was claimed in [45] that, up to some shiftings in the gradings, these homol-
ogy groups were independent on the diagram representing the knot, that is, they
were link invariants, and they categorify Alexander polynomial in the same way
as Knot Floer homology:∑

i,j

(−1)i · rank(Hi,j(D)) · tj = ∆K(t).

However, we show this is not true by finding the following counterexample
which is not invariant under Reidemeister moves.

Example 3.12. Let D and D′ be the diagrams shown in Figure 3.8 representing
the knot K = 51. They are related by a Reidemeister II move, and they have 7
and 9 crossings respectively.

Let us start by studying Rong’s model when considering diagram D. Fix two
starred regions in its planar projection PD: the unbounded and the shaded regions
in Figure 3.8.

As there are 21 possible states associated to D, its chain complex has 21 gen-
erators. If one considers the reduced gradings A(S) and M(S) the chain complex
is the following (we draw the generators of each module, together with arrows
indicating adjacent states):
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Figure 3.8: Diagrams D and D′ representing knot 51. The starred regions in the
associated planar diagrams PD and PD′ are the unbounded and the shaded ones.
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Hence the non-trivial homology groups associated to D are

H 15
2
,6(D) ' H 13

2
,5(D) ' H 11

2
,4(D) ' H 9

2
,3(D) ' H 7

2
,2(D) ' Z2.

In fact, this computation matches with the one expected for knot 51: since
this knot is alternating, its Knot Floer homology is known to have five non-trivial
groups disposed in a diagonal (that is, appearing in Hi,i+k with k being a constant).

Now consider the diagram D′. According to Rong’s model its chain complex,
which has 49 generators, is the following:
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If one computes its homology the non-trivial groups are

H9,7(D
′) ' H9,6(D

′) ' H5,3(D
′) ' Z2, H8,6(D

′) ' H8,5(D
′) ' H7,4(D

′) ' Z2
2,

H7,5(D
′) ' H6,4(D

′) ' Z3
2.

The computations of the homology groups in these examples are summarized
in Figure 3.9. One can see that both homologies are not equivalent, even when
allowing some shifting on the gradings.
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Figure 3.9: The first (second) board summarizes Hi,j(D) (Hi,j(D
′)). A cell indexed

by (i, j) represents Hi,j . Blank cells correspond to trivial groups.

Although we have shown that this model is not accurate enough, we think
that there are some interesting ideas in Rong’s approach which could be used as
a start point for finding an appropriate differential. Focusing on the obstructions
found in Example 3.12, our idea is to extend the definition of adjacency between
two different states, that is, allowing other moves in addition to those shown in
Figure 3.7. I have been discussing these ideas with Louis Kauffman and this is
the topic of an ongoing joint project.
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Chapter 4

A geometric realization of the

extreme Khovanov cohomology

4.1 Introduction

The Khovanov cohomology of knots and links was introduced by Mikhail Kho-
vanov at the end of last century (see [28]) and nicely explained by Bar-Natan
in [8]. In [57] Viro interpreted it in terms of enhanced states of diagrams. This
chapter is devoted to explain a new approach to the extreme Khovanov cohomol-
ogy of a link in terms of the independence complex of a graph. More precisely,
using Viro’s point of view, in Theorem 4.4 we prove that the hypothetical extreme
Khovanov cohomology of a link is equal to the cohomology of the independence
simplicial complex of its Lando graph.

The Lando graph [17] of a link diagram was studied by Morton and Bae
in [7], where they proved that the hypothetical extreme coefficient of the Jones
polynomial is equal to certain numerical invariant of the graph, named in Section
4.3 independence number. Hence, on one hand the Jones polynomial can be seen
as the bigraded Euler characteristic of the Khovanov cohomology, and on the other
hand the formula for the independence number certainly suggests the formula of
an Euler characteristic. Both ideas together gave us the key for understanding
the extreme Khovanov cohomology in terms of Lando graph. This new approach
to Khovanov cohomology is detailed in Section 4.4.

There are many other interesting constructions of graphs starting with a link
diagram (see for example [20]), not to be confused with the Lando graph. In
addition, there are other very interesting ways of trying to understand the Kho-
vanov cohomology as the cohomology of something. For example in [32] Lipshitz
and Sarkar construct, in an explicit and combinatorial way, a chain bicomplex
that produces the Khovanov cohomology.

In [34] it was shown that the independence number can take any value, hence
there are links (in fact knots) with arbitrary extreme coefficients. We also ex-
tended this idea to Khovanov cohomology in Theorem 4.16, by proving that there

69
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Figure 4.1: The smoothing of a crossing according to its A or B-label. A-chords
(B-chords) are represented by dark (light) segments.

are links (in fact knots) with an arbitrary number of non-trivial extreme Kho-
vanov cohomology modules. These knots are examples of H-thick knots (see
[29]). The basic piece of these examples is a link with exactly two non-trivial
extreme Khovanov cohomology modules, constructed in Theorem 4.13. Not only
this result but the construction of the example is interesting in itself, as it shows
an interesting relation between the homology of a simplicial complex and the ex-
treme Khovanov cohomology of a link. We develop these results in Sections 4.5
and 4.6.

The next two sections are mainly devoted to review concepts as Khovanov co-
homology, independence complex or Lando graph, in order to fix the conventions
about signs, gradings and notation that we are going to use through the chapter.

4.2 Khovanov cohomology

In this section we review Khovanov cohomology in a concise way by following
Viro’s approach in terms of enhanced states [57] and precise some concepts like
extreme complexes and extreme cohomology modules.

Let D be an oriented diagram of a link L with c crossings and writhe w = p−n,
with p and n being the number of positive and negative crossings in D, according
to the sign convention shown in Figure 1.2. A state s assigns a label, A or B, to
each crossing of D. Let S be the collection of 2c possible states of D. For s ∈ S
assigning a(s) A-labels and b(s) B-labels, write σ = σ(s) = a(s) − b(s). The
result of smoothing each crossing of D according to its label following Figure 4.1
is a collection sD of disjoint circles embedded in the plane together with some A
and B-chords (segments joining the circles in the site where there was a crossing).
We represent A-chords as dark segments, and B-chords as light ones. See Figure
4.2.

Enhance the state s with a map e which associates a sign εi = ±1 to each of
the |s| circles in sD. Unless otherwise stated, we will keep the letter s for the

enhanced state (s, e) to avoid cumbersome notation. Write τ = τ(s) =
∑|s|

i=1 εi,
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Figure 4.2: The first row shows a diagram D representing 31, a state s and sD. Here
|s| = 2. The four related enhanced states are shown in the second row. From left to
right the values of τ are 2,−2, 0, 0.

and define, for the enhanced state s, the integers

i = i(s) =
w − σ

2
, j = j(s) = w + i+ τ.

The enhanced state t is adjacent to s if the following conditions are satisfied:

1. i(t) = i(s) + 1 and j(t) = j(s).

2. The labels assigned by t are identical to those assigned by s except in one
(change) crossing x = x(s, t), where s assigns an A-label and t a B-label.

3. The signs assigned to the common circles in sD and tD are equal.

Note that the circles which are not common to sD and tD are those touching
the crossing x. In fact, passing from sD to tD can be realized by melting two cir-
cles into one, or splitting one circle into two. The different possibilities according
to the previous points are shown in Figure 4.3.

Figure 4.3: All possible enhancements when melting two circles are: (++ →
+), (+− → −), (−+ → −). The possibilities for the splitting are: (− → −−), (+ →
+−) or (+→ −+).

We review now the chain complex and cohomology modules associated to a
diagram D representing a link as presented by Viro in [57].
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Let R be a commutative ring with unit. Let Ci,j(D) be the free module over R
generated by the set of enhanced states s of D with i(s) = i and j(s) = j. Order
the crossings in D. Now fix an integer j and consider the ascendant complex

. . . → Ci,j(D)
di−→ Ci+1,j(D) −→ . . .

with differential di(s) =
∑

(s : t)t, where (s : t) = 0 if t is not adjacent to s and
(s : t) = (−1)k otherwise, with k being the number of B-labeled crossings coming
after the change crossing x. It turns out that di+1 ◦ di = 0 and the corresponding
cohomology modules over R

H i,j(D) =
ker(di)

im(di−1)

are independent of the diagram D representing the link L and the ordering of
its crossings, that is, these modules are link invariants. They are the Khovanov
cohomology modules H i,j(L) of L ([28], [8]), as presented by Viro in [57] in terms
of enhanced states.

Let jmin = jmin(D) = min{j(s) / s is a enhanced state of D}. We will refer
to the complex {Ci,jmin(D), di} as the extreme Khovanov complex, and to the cor-
responding modules H i,jmin(D) as the (hypothetical) extreme Khovanov modules.
Indeed, there are analogous definitions for a certain jmax.

Note that the integers jmin and jmax depend on the diagram D, and may differ
for two different diagrams representing the same link, as can be seen in Figure
4.4.

Figure 4.4: Two diagrams D and D′ representing knot 41. jmin(D) = −5 and
jmin(D′) = −7. (Proposition 4.1 makes these computations easier.)

4.3 Lando graph and its cohomology

Let G be a graph. A set σ of vertices of G is said to be independent if no vertices
in σ are adjacent. The independence number of G is defined to be

I(G) =
∑
σ

(−1)|σ|

where the sum is taken all over the independent sets of vertices of G. The empty
set is considered as an independent set of vertices with |∅| = 0. A point has
independence number 0, an hexagon 2.
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Figure 4.5: A diagram D representing a link with 4 trivial components, sAD and the
corresponding Lando graph GD.

Starting from a link diagram D we review now the construction of its Lando
graph ([7], [34]). An A or B-chord of sD is admissible if its ends are both in the
same circle of sD. Let sA be the state assigning A-labels to all the crossings of
D. The Lando graph associated to D is constructed from sAD by considering a
vertex for every admissible A-chord, and an edge joining two vertices if the ends
of the corresponding A-chords alternate in the same circle. Figure 4.5 exhibits a
diagram D, the corresponding sAD and its Lando graph GD.

In [7] it was proved that the coefficient of the hypothetical lowest degree
monomial of the Jones polynomial of a link L is, up to sign, the independence
number I(GD) of the Lando graph GD of D, where D is a diagram of L. In [34]
it was shown that I(GD) can take arbitrary values.

The Jones polynomial can be seen as the bigraded Euler characteristic of the
Khovanov cohomology [28]. The formula for the independence number suggests
that each extreme coefficient of the Jones polynomial is the Euler characteristic
of a certain cohomology given in terms of independent sets of vertices of the
Lando graph. Combining both facts was the key for thinking in the approach of
the extreme Khovanov cohomology in terms of Lando graph that we present in
Section 4.4.

Let XD be the independence simplicial complex of the graph GD. By def-
inition, the simplices σ of XD are the independent subsets of vertices of GD.
Let Ci(XD) be the free module over R generated by the simplices of dimension
i, where the dimension of a simplex σ is the number of its vertices minus one.
Associated to this simplicial complex we have the (standard) cochain complex

. . .→ Ci(XD)
δi−→ Ci+1(XD)→ . . .

with differential δi(σ) =
∑

v(−1)kσ ∪ {v} where v runs over the set of vertices of
GD which are not adjacent to any vertex of σ, and k = k(σ, v) is the number of
vertices of σ coming after v in the predetermined order of the vertices of GD. It
turns out that δi+1 ◦ δi = 0 and the corresponding reduced cohomology modules
of XD are

H i(XD) =
ker(δi)

im(δi−1)
.
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We will refer to {Ci(XD), δi} as the Lando ascendant complex, and to H i(XD)
as the Lando cohomology modules.

4.4 Lando and extreme Khovanov cohomologies

In this section we show our new approach to the extreme Khovanov cohomology
of a link diagram in terms of the independence complex of its Lando graph. This
idea is synthesized in Theorem 4.4, which is the key point for developing Sections
4.5 and 4.6 in this chapter.

Let D be an oriented link diagram and s−A the enhanced state assigning an
A-label to each crossing and the sign −1 to each circle of sAD. Let

Smin = {enhanced states s / |s| = |sA|+ b(s), τ(s) = −|s|}.

Proposition 4.1. With the previous notation jmin = j(s−A), and j(s) = jmin if
and only if s ∈ Smin.

Proof. Recall that j(s) = 3w−σ
2

+ τ with σ = a(s) − b(s) and τ(s) =
∑|s|

i=1 εi,
where εi is the sign (+1 or -1) associated to the circle ci in sD.

Given a diagram D let s be an enhanced state associating a positive sign to at
least one of the circles in sD. Then j(s) 6= jmin, as the state given by associating
negative signs to every circle in sD has a smaller value of j. Hence, all states s
realizing jmin assign −1 to their circles, or equivalently τ(s) = −|s| (the second
condition in the definition of Smin).

Now identify a state with the set of crossings of D where the state assigns a
B-label. Let s = {y1, . . . , yb} be an enhanced state assigning b = b(s) B-labels
(at the crossings y1, . . . , yb) and negative signs to all its circles. Consider the
sequence of enhanced states

s0 = s−A, s1, . . . , sb = s

where sk = {y1, . . . , yk} for k = 1, . . . , b, and all circles in skD have sign −1.

Since w is invariant and σ(sk) = σ(sk−1) − 2, there are two possibilities: if
|sk| = |sk−1|+1, then τ(sk) = τ(sk−1)−1 and j(sk) = j(sk−1); if |sk| = |sk−1|−1,
then τ(sk) = τ(sk−1) + 1 and j(sk) = j(sk−1) + 2. Note that this is independent
of the ordering of the crossings.

A first consequence is that j(s−A) ≤ j(s), where s was taken to be any state
assigning −1 to all circles in sD, so j(s−A) = jmin. A second consequence is that
j(s) = jmin if and only if |sk| = |sk−1| + 1 for each k ∈ {1, . . . , b}, that is, if and
only if s ∈ Smin.

There are analogous s+B, jmax and Smax, with j(s+B) = jmax and s ∈ Smax if
and only if j(s) = jmax.



Chapter 4. A geometric realization of the extreme Khovanov cohomology
75

Figure 4.6: The vertex y1 corresponds to a splitting from sAD = s0D to s1D.

Corollary 4.2. Fix an oriented link diagram D with c crossings, n negative and
p positive. Then jmin = c− 3n− |sA| and jmax = −c+ 3p+ |sB|.

Proof. Since w = p−n = c−2n and σ(s) = c−2b(s) we deduce that i(s) = b(s)−n.
In particular i(sA) = −n. It follows that

jmin = j(s−A)
= w + i(s−A) + τ(s−A)
= (c− 2n)− n− |sA|
= c− 3n− |sA|.

A similar argument works for jmax using s+B instead of s−A.

Recall that the vertices in the Lando graph of D, GD, are associated to the
admissible A-chords in sAD (the ones having both ends in the same circle of sAD).
Given an enhanced state s, let Vs be the set of vertices of GD corresponding to
the crossings of D to which s associates a B-label. Note that Vs can have less
than b(s) vertices, or even be empty.

Proposition 4.3. The map that assigns Vs to each enhanced state s defines a
bijection between Smin and the set of independent sets of vertices of GD. Moreover,
if s ∈ Smin then the cardinal of Vs is exactly b(s).

Proof. Let s = {y1, . . . , yb} be an enhanced state in Smin with b = b(s) B-labels
(at the crossings y1, . . . , yb). Consider the sequence of enhanced states

s0 = s−A, s1, . . . , sb = s

where sk = {y1, . . . , yk} for k = 1, . . . , b, and all circles in skD have sign −1.
As s ∈ Smin, according to the proof of Proposition 4.1 |sk| = |sk−1| + 1 for each
k ∈ {1, . . . , b}, or equivalently, one passes from sk−1D to skD by splitting one
circle into two circles.

Note that the A-chord of sAD corresponding to the crossing y1 of D is admis-
sible, since otherwise |s1| = |s0| − 1 (see Figure 4.6). As the construction in the
previous sequence does not depend on the order of the crossings, it follows that
any A-chord of sAD corresponding to a crossing yi is admissible in sAD, so GD

contains its associated vertex.

Moreover there is no pair of A-chords in sAD corresponding to B-labels of s
with their ends alternating in the same circle, since otherwise two B-smoothings
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Figure 4.7: Adjacent vertices in GD correspond to |sA| = |s| when smoothing.

in these two crossings would not increase the number of circles by two, as Fig-
ure 4.7 shows schematically. This implies that the corresponding vertices in Vs
are independent.

Conversely, if C is an independent set of vertices of GD, consider the state
s that assigns B-labels exactly in the corresponding crossings. In particular
b(s) = |C|. Enhance this state assigning −1 to each circle of sD. Since C is
independent, |s| = |sA|+ b(s), hence s ∈ Smin as we wanted to show.

The extreme Khovanov cohomology is constructed, according to Proposi-
tion 4.1, in terms of the states in Smin. For these states the definition of adjacency
given in Section 4.2 is reduced to the second condition given there. Namely, if
s, t ∈ Smin then t is adjacent to s if and only if t assigns the same labels as
s except in one crossing x, where s(x) and t(x) are an A-label and a B-label,
respectively. We introduce now the main result in this chapter:

Theorem 4.4. Let L be an oriented link represented by a diagram D having n
negative crossings. Let GD be the Lando graph of D and let j = jmin(D). Then
the Lando ascendant complex {Ci(XD), δi} is a copy of the extreme Khovanov
complex {Ci,j(D), di}, shifted by n− 1. Hence

H i,j(D) ≈ H i−1+n(XD).

Proof. According to Proposition 4.1, the extreme Khovanov cohomology is con-
structed with the states in Smin. Suppose that s ∈ Smin and let Vs be the
corresponding independent set of vertices of GD. Since i(s) = b(s) − n and
dim(Vs) = |Vs| − 1 = b(s)− 1, the bijection between Smin and the set of indepen-
dent sets of vertices of GD established in Proposition 4.3 provides an isomorphism

Ci,j(D) ≈ Ci−1+n(XD).

One just needs to show that this isomorphism respects the differential of
both complexes (in other words, that the assignment s to Vs defines a chain
isomorphism). Recall that for two enhanced states s, t ∈ Smin, t is adjacent to
s if and only if t assigns the same labels as s except in one crossing x, where
s(x) and t(x) are an A-label and a B-label, respectively. Moreover, in this case
only a splitting is possible at the change crossing x when passing from sD to tD,
since the degree jmin must be preserved and the degree i must be increased by
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Figure 4.8: A link diagram D, two versions of sAD and its associated Lando graph
GD.

one (note that τ(s) = −|s| and τ(t) = −|t|). It follows that Vt = Vs ∪{vx} where
vx is the vertex in GD corresponding to x.

In addition, if we order the vertices of GD according to the order of the
crossings in D we get that the number of B-labeled crossings of D coming after
the crossing x, is exactly the number of vertices of Vs coming after the vertex
vx.

Example 4.5. Consider the link L represented by the diagram D shown in the
leftmost part of Figure 4.8. The Lando graph GD is the hexagon shown at the
right hand side of Figure 4.8. Number its vertices consecutively, from 1 to 6. Then
C−1(XD), C0(XD), C1(XD) and C2(XD) have ranks 1, 6, 9 and 2 respectively,
with respective basis

{∅}, {1, 2, 3, 4, 5, 6}, {13, 14, 15, 24, 25, 26, 35, 36, 46}, {135, 246},

the other modules being trivial (note that we write, for example, 135 instead of
{1, 3, 5}). The Lando ascendant complex is

0 −→ C−1(XD)
δ−1−→ C0(XD)

δ0−→ C1(XD)
δ1−→ C2(XD) −→ 0,

with differentials δ−1, δ0 and δ1 given respectively by the matrices


1
1
1
1
1
1

 ,



1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 −1 0
0 0 1 0 0 −1
0 0 0 1 0 −1


,

(
1 0 −1 0 0 0 1 0 0
0 0 0 1 0 −1 0 0 1

)
.

Let R be the field of rational numbers. The ranks of these matrices are 1, 5
and 2 respectively. In particular H1(XD) has dimension two as a rational vector
space, the other Lando cohomology vector spaces being trivial.
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If we orient now the three components of D in a counterclockwise sense, by
Corollary 4.2 jmin = c − 3n − |sA| = 6 − 3 · 6 − 1 = −13, and by Theorem
4.4 the complexes are shifted by n − 1 = 5, hence H−4,−13(L) ≈ H1(XD) is two-
dimensional, being trivial the rest of extreme Khovanov cohomology vector spaces.

This example shows that, in general, for different orientations of the compo-
nents of a link, we obtain the same extreme Khovanov cohomology modules (jmin

may change), with some shifting in the index i.

Definition 4.6. A graph G is bipartite if its vertices can be divided into two
disjoint sets V and W in such a way that every edge of G connects a vertex in
V to one in W . A bipartite graph is complete if every pair of vertices v ∈ V and
w ∈ W are connected by an edge.

Note that if one colors the regions of sAD in a chess fashion, the vertices
corresponding to admissible A-chords in white regions are not adjacent to those
associated to admissible A-chords in black regions. Hence, the following Propo-
sition holds:

Proposition 4.7. For any link diagram D its associated Lando graph GD is
bipartite.

Corollary 4.8. Let L be an oriented link represented by a diagram D having
n negative crossings. Let GD be the Lando graph of D and let j = jmin(D).
Then H1−n,j(L) ≈ R if GD is the complete bipartite graph Kr,s and it is trivial
otherwise.

Proof. According to Theorem 4.4 we just have to prove that H0(XD) ≈ R if
GD is Kr,s, and it is trivial otherwise. Let Gc

D be the complementary graph of
GD. Any Lando graph is a bipartite graph, and it is complete if and only if
Gc
D has exactly two connected components; otherwise Gc

D is connected. The key
observation is now that the connected components of Gc

D coincide exactly with
the elements of a basis of ker(δ0). The fact that δ−1(∅) = 1+2+ · · ·+c ∈ C0(XD)
completes the proof.

4.5 Lando cohomology as homology of a simpli-

cial complex

In this section we show how to construct a simplicial complex whose homology is
equal to the cohomology of the independence complex of a Lando graph GD up
to some shifting. This fact together with Theorem 4.4 implies that the homology
of the simplicial complex determines the extreme Khovanov cohomology of the
link represented by D. A key point is the following result by Jonsson [24]:
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Theorem 4.9. [24, Theorem 3.1] Let G be a bipartite graph with nonempty parts
V and W . Then there exists a simplicial complex XG,V with ground set V , whose
suspension is homotopy equivalent to the independence complex of G.

In [24] Jonsson also gave the procedure for constructing the complex XG,V .
Starting with the bipartite graph G, a set σ ⊆ V belongs to XG,V if and only if
there is a vertex w ∈ W such that σ

⋃
{w} is an independent set in G. In other

words, σ ⊆ V is a face of XG,V if and only if σ is not adjacent to every w ∈ W .

Recall that the Alexander dual of a simplicial complex X with ground set V
is a simplicial complex X∗ whose faces are the complements of the nonfaces of X.
The combinatorial Alexander duality (see for example [13]) relates the homology
and cohomology of a given simplicial complex and its Alexander dual:

Theorem 4.10. Let X be a simplicial complex with a ground set of size n. Then
the reduced homology of X in degree i is equal to the reduced cohomology of the
dual complex X∗ in degree n− i− 3.

As Lando graphs are bipartite, these two results together with the fact that a
simplicial complex X and its suspension S(X) have the same reduced homology
and cohomology with the indices shifted by one, provide an algorithm for com-
puting the cohomology of the independence complex associated to a Lando graph
GD (or equivalently, the extreme Khovanov cohomology of the link represented
by D) from the homology of a specific simplicial complex.

Theorem 4.11. Let D be a diagram of an oriented link L with n negative cross-
ings. Let j = jmin(D). Let YD = (XG,V )∗, where G = GD is the Lando graph of
D, with parts V and W . Then

H i,j(L) ≈ H̃|V |−i−1−n(YD).

Proof. Let Z = XG,V hence YD = Z∗. Then

H i+1−n,j(L) ≈ H̃ i(XD) ≈ H̃ i(S(Z)) ≈ H̃ i−1(Z) ≈ H̃|V |−i−2(YD),

where we have applied Theorem 4.4 (recall that XD = XG is the independence
complex of the Lando graph G = GD), the homotopy equivalence XG ≈ S(XG,V )
given by Theorem 4.9, the relation between the reduced cohomology of a simpli-
cial complex and its suspension, and finally the combinatorial Alexander duality
theorem.

The complex YD can also be described in terms of sAD, avoiding any reference
to the Lando graph GD. This description will be useful in Section 4.6, more
precisely in Theorem 4.16. Start by coloring the regions of sAD in a chess fashion.
Call an A-chord white (black) if it is in a white (black) region. The ground set of
YD is the set of admissible white arcs of sAD, and a set of admissible white arcs
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σ is a simplex of YD if and only if for any admissible black arc there is at least
an admissible white arc which is not in σ whose ends alternate with the ends of
the black arc in the same circle of sAD. Note that there are two different choices
when coloring the regions; in order to get the simplest ground set of YD, choose
colors in such a way that white regions contain a lower number of admissible
A-chords than black regions.

We are now interested in reversing the process above, namely, starting with
any simplicial complex, we will construct a bipartite graph with an associated
independence simplicial complex whose cohomology is equal to the homology of
the original simplicial complex shifted by some degree. Again, the key point is
the Alexander duality theorem together with the following result by Jonsson:

Theorem 4.12. [24, Theorem 3.2] Let X be a simplicial complex. Then there
is a bipartite graph G whose independence complex is homotopy equivalent to the
suspension of X.

The bipartite graph G can be constructed taking as set of vertices the disjoint
union of the ground set V of the complex X, and the set M of maximal faces of
X. The edges of G are all pairs {v, µ} such that v ∈ V , µ ∈M and v 6∈ µ.

We want to remark that, although Theorem 4.12 holds for any simplicial
complex, the graph obtained by the above procedure is not necessarily the Lando
graph associated to a link diagram. A graph G is said to be realizable if there is
a link diagram D such that G = GD (in [34] these graphs were originally called
convertible).

In the next theorem we show a realizable graph whose associated indepen-
dence complex has two non-trivial cohomology groups, by starting with a simpli-
cial complex whose homology has the same property. As the graph is realizable,
Theorem 4.4 implies that there exists a link L whose extreme Khovanov coho-
mology H i,jmin is non-trivial for two different values of i. In the following section
this example will be a basic piece to obtain interesting families of H-thick knots.

Theorem 4.13. There exist oriented link diagrams whose extreme Khovanov
cohomology modules are non-trivial for two different values of i, that is, H i,jmin(D)
is non-trivial for two different values of i.

Proof. Although our argument is equally valid for any commutative ring R with
unit, just for convenience set R = Z, the ring of integers.

Let X = {∅, 1, 2, 3, 4, 5, 12, 23, 34, 41} be a simplicial complex with ground
set V = {1, 2, 3, 4, 5}. Its topological realization is the disjoint union of a
point and a square, as shown in Figure 4.9, hence its reduced homology is
H̃0(X) ≈ H̃1(X) ≈ Z (the other homology groups being trivial).
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Figure 4.9: The topological realization of the simplicial complex X and the graph G.
The independence complex of G is homotopy equivalent to the suspension of X∗.

Figure 4.10: The graph G is realizable, the correspondence between its vertices and
the A-chords in sAD is shown.

Consider now the Alexander dual ofX, X∗ = {∅, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24,
25, 34, 35, 45, 123, 124, 134, 135, 234, 245}. Note that |X|+ |X∗| = 32 = 2|V |. Ap-
plying the combinatorial Alexander duality leads to

H̃i(X) ≈ H̃ |V |−i−3(X∗) = H̃2−i(X∗),

which implies that H̃2(X∗) ≈ H̃1(X∗) ≈ Z, the other groups being trivial.

Applying Theorem 4.12 (and the construction described right after) to the
simplicial complex X∗ leads to a graph G consisting in two hexagons sharing
a common vertex as shown in Figure 4.9, whose independence complex XG is
homotopy equivalent to the suspension of X∗. In particular,

H̃ i−1(X∗) ≈ H̃ i(S(X∗)) ≈ H̃ i(XG).

Hence, H̃3(XG) ≈ H̃2(XG) ≈ Z are the only non-trivial groups in the reduced
cohomology of XG. In fact, as the indices are different from zero, this is still true
for the (non-reduced) cohomology, so H2(XG) ≈ H3(XG) ≈ Z.

An important point now is the fact that the graph G is realizable. In fact,
G = GD with D being the link diagram in Figure 4.11. Indeed, Figure 4.10 shows
the correspondence between the vertices of G and the A-chords in sAD.

Consider now the link L represented by the diagram D oriented as shown in
Figure 4.11. Then applying Corollary 4.2 we get that jmin = c − 3n − |sA| =
11−3 ·3−1 = 1, and by Theorem 4.4 one gets H i,1(L) ≈ Z for i = 0, 1, the other
cohomology groups being trivial. This concludes the proof.
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Figure 4.11: The oriented diagram D representing the link L. Each of its three
components has been drawn in a different way.

For the example in the previous proof we have checked with computer as-
sistance that the ranks of the chain groups Ci = Ci(XD) and differentials δi
are

1(1)11(10)43(33)73(39)52(12)13(1)1,

where the rank of the differentials are parenthesized. This means that the Lando
ascendant complex is

0 −→ C−1
δ−1−→ C0 δ0−→ C1 δ1−→ C2 δ2−→ C3 δ3−→ C4 δ4−→ C5 δ5−→ 0,

with rk(C−1) = 1, rk(δ−1) = 1, rk(C0) = 11, rk(δ0) = 10 and so on. Hence

rk(H2(XD)) = 73− 39− 33 = 1 and rk(H3(XD)) = 52− 12− 39 = 1.

Remark 4.14. The proof of Theorem 4.13 does not work if, for example, we start
with the simplicial complex whose topological realization is a point plus a triangle.
Although one gets again a graph G such that XG has two non-trivial cohomology
groups, G consists of two hexagons with four common consecutive edges (a total
of eight vertices), which is no longer a realizable graph.

4.6 Families of H-thick knots

Citing Khovanov [29], there are 249 prime unoriented knots with at most 10
crossings (not counting mirror images). It is known that for all but 12 of these
knots the non-trivial Khovanov cohomology groups lie on two adjacent diagonals,
in a matrix where rows are indexed by j and columns by i. Such knots are
called H-thin. An H-thick knot is a knot which is not H-thin. For example, any
non-split alternating link is H-thin, and in the opposite direction, any adequate
non-alternating knot is H-thick (see [29], Theorem 2.1 and Proposition 5.1).

Up to eleven crossings, there are no knots with more that one non-trivial
cohomology group in the rows corresponding to the hypothetical extreme jmax

or jmin obtained from the associated diagrams in [9]. There are examples which
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seem to contradict this statement. For example knot 10132, whose Khovanov
cohomology groups are trivial for j > −1 and has two non-trivial groups for
j = −1, but for the diagram of 10132 taken from [9] jmax(D) = −c+ 3p+ |sB| =
−10 + 3 · 3 + 2 = 1. We do not know if there exists a diagram D representing the
knot 10132 with jmax(D) = −1.

In this section we show examples of H-thick knots having any arbitrary num-
ber of non-trivial cohomology groups in the non-trivial row of smallest possible
index. More precisely, we will provide a diagram D whose row indexed by jmin(D)
is non-trivial, and hence corresponds to the non-trivial row of smallest possible
index. Moreover, this row has as many non-trivial cohomology groups as desired.
The basic piece in our construction is the link given in the proof of Theorem 4.13.

We want to remark that Theorem 4.4 allows us to compute the extreme Kho-
vanov cohomology of any link diagram D by considering independently each of
the circles appearing in sAD, as the non-admissible A−chords do not take part
in the construction of the simplicial complex YD described in Section 4.5. More
precisely, let D be a link diagram and c1, . . . cn the circles of sAD. Write Ci for the
circle ci together with the admissible A−chords having both ends in the circle ci,
and let Di be the diagram reconstructed from Ci by reversing the corresponding
smoothings. Then, from the construction right after Theorem 4.11 it follows that
YD = YD1 ∗ . . . ∗ YDn , with ∗ being the join of simplicial complexes. Recall that
the join X ∗ Y of two simplicial complexes X and Y is defined as the simplicial
complex whose simplices are the disjoint unions of simplices of X and Y .

The reduced homology of the join of two simplicial complexes can be computed
directly from the reduced homology of each of the complexes, namely

H̃i(X ∗ Y ) =
∑

r+s=i−1

H̃r(X)⊗ H̃s(Y )⊕
∑

r+s=i−2

Tor(H̃r(X), H̃s(Y )).

Taking copies of the example in the proof of Theorem 4.13 one obtains a link
which, by Theorem 4.11 and the above formula, has any number of non-trivial
extreme Khovanov cohomology groups. Although one could also use the general
formula for the Khovanov cohomology of a split link ([28, Corollary 12]), we
think that our techniques are more useful in order to make computations. Even
more, our understanding of extreme Khovanov cohomology in terms of Lando
cohomology allows us to slightly modify a link in such a way that one obtains a
knot with the same extreme Khovanov cohomology. We explain this construction
in detail in Theorem 4.16 and Remark 4.17. We need first the following result:

Proposition 4.15. Let ∗nX be the join of n copies of the simplicial complex

X = {∅, 1, 2, 3, 4, 5, 12, 23, 34, 41}. Then H̃i(∗nX) ≈ Z( n
i−n+1) if n−1 ≤ i ≤ 2n−1,

and it is trivial otherwise.

Proof. By induction on n. In the proof of Theorem 4.13 we saw that H̃0(X) ≈
H̃1(X) ≈ Z, which is the case n = 1. For n > 1 we apply the formula for the
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homology of a join (torsion terms do not appear in any case):

H̃i(∗nX) ≈
⊕

r+s=i−1

[
H̃r(∗n−1X)⊗ H̃s(X)

]
≈ H̃i−1(∗n−1X)

⊕
H̃i−2(∗n−1X)

≈ Z( n−1
(i−1)−(n−1)+1)

⊕
Z( n−1

(i−2)−(n−1)+1)

≈ Z( n−1
i−n+1)

⊕
Z(n−1

i−n)

≈ Z( n
i−n+1).

Theorem 4.16. For every n > 0 there exists an oriented knot diagram D with
exactly n+1 non-trivial extreme Khovanov integer cohomology groups H i,jmin(D).

Proof. Let L be the oriented link represented by the diagram D in Figure 4.11.
Considering as ground set the chords in the unbounded region of sAD, the associ-
ated simplicial complex YD is the simplicial complex X appearing in the proof of
Theorem 4.13, whose topological realization is the disjoint union of a point and
a square (Figure 4.9). Hence it has two non-trivial reduced homology groups,

H̃0(YD) ≈ H̃1(YD) ≈ Z.

Now consider the link Ln consisting of the split union of n copies of L. It can
be represented by Dn, the disjoint union of n copies of D, so sADn is the disjoint
union of n copies of sAD, shown in Figure 4.10. Hence its associated simplicial
complex is YDn = ∗nYD = ∗nX, that is, the join of n copies of X. Applying
Proposition 4.15 to ∗nX one gets

H̃i(YDn) ≈ Z( n
i−n+1)

for n− 1 ≤ i ≤ 2n− 1.

This fact together with Theorem 4.11 shows that the extreme Khovanov co-
homology of Ln has n+ 1 non-trivial groups.

Now we will construct a knot having the same extreme Khovanov cohomology
groups as Ln (the value of jmin changes in general). Starting from the diagram
D in Figure 4.11, add four crossings, as shown in Figure 4.12, in such a way that
the resulting diagram D′ has one component. Note that sAD

′ is obtained from
sAD by adding two circles with four A-chords. Consider now n copies of D′ and
join them as shown in Figure 4.13. The resulting diagram D′n is a knot diagram.
Since sAD

′
n just adds 5n−1 non-admissible A-chords to sADn, both diagrams Dn

and D′n share the same Lando graph. Hence D′n represents a knot having n + 1
non-trivial groups in its extreme Khovanov cohomology.
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Figure 4.12: The first row shows D and D′. The corresponding sAD and sAD
′ are

shown in the second row. Note that D′ has one component.

Figure 4.13: D′n and sAD
′
n are shown for the case n = 3.
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Figure 4.14: This transformation reduces the number of components of the link by
one, and the extreme Khovanov cohomology is preserved.

The proof of Theorem 4.16 provides a family of knots having as many non-
trivial extreme Khovanov cohomology groups as desired. These are examples of
H-thick knots as far of being H-thin as desired.

Remark 4.17. Every link L with µ components can be turned into a knot pre-
serving its extreme Khovanov cohomology (jmin can change). One just needs to
consider a diagram D of L and add two extra crossings melting two different
components into one, as shown in Figure 4.14. Since sAD

′ just adds two non-
admissible A-chords to sAD, both diagrams share the same Lando graph. After
repeating this procedure µ− 1 times, the link L is transformed into a knot.

The approach to extreme Khovanov cohomology given in Theorem 4.4 leads
some open questions. A first problem is studying the realization of other degrees
(not just the extreme ones) of Khovanov cohomology by using similar techniques,
replacing the Lando graph, which is related to the state where all the crossings
are labeled with an A-label, with a graph related to states having all but one
crossings marked with an A-label.

An open conjecture states that the extreme Khovanov cohomology of a link
diagram is homotopy equivalent to a wedge of spheres. Theorem 4.4 leads to a
new approach to study this conjecture. More precisely, this conjecture can be
restated in the following way

Conjecture 4.18. The independence simplicial complex of the Lando graph of
any link diagram is homotopy equivalent to a wedge of spheres.

In this sense, giving some properties of even characterizing the possible Lando
graphs which can be obtained from any link diagram seems to be an interesting
problem.
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A more specific question would be whether torsion can appear in the extreme
Khovanov cohomology of oriented links. The techniques used in the proof of
Theorem 4.13 could be useful when considering this problem. A negative answer
to this question would be a supporting argument for the above conjecture.
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