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Abstract. Visualization techniques provide an outstanding role in KDD
process for data analysis and mining. However, one image does not always
convey successfully the inherent information from high dimensionality,
very large databases. In this paper we introduce VSIS (Visual Set of In-
formation Segments), an interactive tool to visually explore multidimen-
sional, very large, numerical data. Within the supervised learning, our
proposal approaches the problem of classification by searching of mean-
ingful intervals belonging to the most relevant attributes. These intervals
are displayed as multi–colored bars in which the degree of impurity with
respect to the class membership can be easily perceived. Such bars can be
re–explored interactively with new values of user–defined parameters. A
case study of applying VSIS to some UCI repository data sets shows the
usefulness of our tool in supporting the exploration of multidimensional
and very large data.

1 Introduction

Visualization techniques provide an important support to extract knowledge
from huge amounts of data incorporating ingenuity, analytic capability, and ex-
perience of the user in order to steer the KDD process [15]. From graphic rep-
resentations of a query or data set, the user carries out an interactive visual
exploration from which interesting subsets and data relationships can be identi-
fied, and new hypotheses and conclusions can be drawn. Such hypotheses can be
later verified by data mining techniques. Through a visual exploration, the user
can intuitively have a good idea of the result interpretation. Different graphic
views of the same data set can give the user a better understanding about it,
and an easy way to detect patterns, outliers, and noise. In addition, visualization
tools can be also used to reduce the search space and therefore, to obtain simpler
models for complex sub–domains.

An important concern for multidimensional data visualization techniques is
to avoid different entities overlapping on the screen. These individual entities can
be data–items or examples, data–values or attribute–values, or data aggregations
based on the former ones. If the values are directly displayed, they usually are
a significantly small portion of the entire available data. Otherwise, it is likely
that the resulting image cannot convey the data properties appropriately and the
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Fig. 1. Wave–Form database (40 attributes, 5000 examples, 3 class labels) in Parallel
Coordinates.

exploration becomes a difficult task. As an example, Figure 1 shows the Wave–
form data set displayed using the well–known Parallel Coordinates technique
[11]. Because of the high width and depth of this data set, individual examples
cannot be clearly seen from this display, also preventing the detection of relevant
patterns and attributes. We think it is more interesting to display as few graphic
entities as possible in order to represent as large amount of data as possible. The
smaller number of graphical entities containing higher number of examples, the
easier and more meaningful interpretation of results.

In addition, many visualization techniques have restrictions regarding the
data size, with respect either to the number of examples or the number of at-
tributes. In this paper we introduce VSIS (Visual Set of Information Segments),
an interactive tool to explore multidimensional and very large databases. Han-
dling enormous amount of data might seem risky to graphically represent every
different value in only one image, not only because of the screen limitations, but
also the human ability to understand a complex image. Therefore, our goal is
also to incorporate user’s constraints, so the display can become more significant
for the expert.

2 VSIS: Visual Set of Information Segments

Within the supervised learning, the problem of classification is generally defined
as follows. An input finite data set of training examples is given. Every training
example is a pair e = (x, y) where x is a vector of m attribute values (each
of which may be numeric or symbolic) and y is a class discrete value named
label. The goal is to obtain a model y = f(x) to classify or decide the label
for new non–labelled test examples named queries. VSIS supports the problem
of classification with numerical attributes by displaying only the most relevant
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attributes with only the most meaningful intervals. The set of intervals is as
small as possible depending on the user demand. For each interval is displayed
the distribution of labels within it and the relationship with other intervals. We
name these graphic entities information segments.

Henceforth, the next notation is used to describe VSIS. Let m be the number
of continuous attributes (A1, . . . ,Am). Let Y = {y1, . . . , yz} be the set of class
labels from one nominal attribute previously selected by the user. Let T be the
training set so that: T = {e1, . . . , en}; ei = (xi, yi); xi ∈ Rm; yi ∈ Y ; i ∈
{1, . . . , n}; m, n ∈ N .

Definition 1 (Empty Segment) An empty segment Sj,k represents an inter-
val I of the jth attribute Aj for which no training example has a value within I:
∀ ei ∈ T · xij /∈ I.

Definition 2 (Pure Segment) A pure segment Sj,k represents an interval I
of the jth attribute Aj for which all the training examples are associated with
the same class label: � ei, ei′ ∈ T · xij ∈ I ∧ xi′j ∈ I ∧ yi �= yi′ .

Definition 3 (Impure Segment) An impure segment Sj,k represents an in-
terval I of the jth attribute Aj for which there are training examples associated
with different class labels: ∃ ei, ei′ ∈ T · xij ∈ I ∧ xi′j ∈ I ∧ yi �= yi′ .

The segments are displayed as colored bars. The color represents the class label
and it is previously selected by the user. Empty segments are not displayed,
pure segments are displayed with one color and impure segments are displayed
with a number of colors. Every color takes up an area inside a rectangle which
is proportional to the number of examples with the label associated to such a
color in the respective information segment.

The process is divided into two steps: first, an initial set of segments is calcu-
lated; second, the minimal set of segments meaningful for the user is obtained.
Both sets are displayed and can be interactively re–explored.

2.1 ISIS: Initial Sets of Information Segments

This first phase builds m initial sets ISISj (j ∈ {1, . . . , m}), one per attribute.
Each set ISISj is formed by α information segments and provide the user with
insight about the label distribution of input data. α is a user parameter (integer)
which splits the continuous attributes of T into α equal–width intervals. The
higher value for α, the higher accuracy is obtained.

Each information segment Sj,k (k ∈ {1, . . . , α}) is composed by three ele-
ments:

– Ij,k = [lj,k, uj,k) is a left–closed, right–open interval in R, such that uj,k =
lj,k+1 (∀k < α).

– Hj,k = {Hj,k1 , . . . , Hj,kz} is a histogram with the number of examples for
each label that are covered by Sj,k. An example ei is covered by a segment
Sj,k if the jth attribute value of the example (xij) belongs to the interval
Ij,k.
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Fig. 2. Diagram of the data structure used to build the initial sets of information
segments (α = 25).

– IHj,k is a set of m−1 elements SIHj,k,j′ , one per each attribute Aj′ different
to Aj . Each element SIHj,k,j′ is composed by a set of pairs (k′, H∩

k′), related
to segments for other attributes containing examples covered by Sjk. The
element k′ is the index of a segment Sj′,k′ , and H∩

k′ is the histogram of class
labels for examples in the intersection Hj,k∩Hj′,k′ . The purpose of this data
structure is to compute the minimal set of segments in the next phase.

The initial sets of segments are built by one only scan, previously generating
α empty segments Sj,k for each attribute with Hj,kp = 0 (p ∈ {1, . . . , z}) and
IHjk = ∅. Then every example ei = (xi, yi) updates the class–labels histogram
Hjk of the segment Sjk that covers xi (increasing by one Hjkyi ), and the rela-
tionships IHjk among such updated segments. The computational cost of the
process is not expensive since the index k of the segment Sjk associated to a
value xij can be calculated directly:

k = �norm(xij) ·α	; norm(xij) = xij−MINj

MAXj−MINj
; MINj = lj1; MAXj = ujα

Figure 2 shows a diagram of the data structure used to build the initial
set of information segments, using α = 25 initial intervals and 4 class labels
(Y = {A, B, C, D}). For each attribute Aj , each ISISj has 25 equal–width
segments. The last segment of the last attribute (Sm,25) is associated to the real
interval [0, 0.24]. This interval covers 17 examples, 9 of them with label A, 3 with
label C, and 5 with label D. These 17 examples are covered by three segments in
the attribute 1 (S1,1,S1,8 and S1,25). The first segment, S1,1, covers 7 examples
(4 with class A, 0 with class B, 1 with class C and 2 with class D), 2 the second
and 8 the third one.

When all the examples have been processed, all the empty segments are re-
moved. Next, every pair of consecutive segments with equal label distribution is
joined ( |Hj,k−1p |∑

z
p=1 |Hj,k−1p | = |Hj,kp |∑

z
p=1 |Hj,k| , ∀p ∈ {1, . . . , z}). Given Sj,k−1 and Sj,k as

consecutive segments, Hj,k−1 and IHj,k−1 are updated with Hj,k and IHj,k, re-
spectively, and the right segment Sj,k is removed. Finally, when all the attributes
have been examined, a ranking of them is obtained as a function of the number
of pure segments, the number of impure ones, and the impurity level of them,
by means of the next heuristic:

Weight(Aj) = n−nsj

nsj∑

k=1

(
z

max
p=1

|Hj,kp |)
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Fig. 3. Wave–Form database. Initial seg-
ments for the three most significant at-
tributes (x7, x15, and x16), using α = 25.
There are not empty segments in any at-
tribute.

Fig. 4. Wave–Form database. Initial seg-
ments using α = 200. There are empty
segments in every attribute: x7 (32 seg-
ments), x15 (25), and x16 (29).

where n is the number of training examples, z is the number of different class
labels and nsj is the number of non–empty initial segments in Aj .

Figures 3 and 4 show the initial segments obtained from Wave-form data
set, for the three most significant attributes according to the above heuristic:
x7, x15 and x16. Attributes are graphically shown in order of relevance, from
top to bottom. The display shows similarities among attributes -when two or
more of them have similar shapes- and their relevance -when the distribution is
homogeneous, that is, intervals are impure-. The higher value for α, the greater
number of empty intervals are displayed. That is the reason why in Figure 4
the number of initial segments are not equal to the number of initial intervals.
Having a look to the images, we can know the label distribution and the overlap
level inside the attributes. It is interesting the correlation between attributes x15
and x16 (two at the bottom of figure on the left). That correlation is stronger
when the class orange is present, and we can observe that shapes for class green
are different for these two attributes from the middle of the attribute until the
right bound. In addition, the initial segments provide the user with an insight
about the potential complexity of the Minimal Set of Information Segments.

2.2 MSIS: Minimal Set of Information Segments

In the second phase, consecutive segments belonging to the attributes selected
in the first phase are joined, trying to take advantage of attributes with least
number of segments and smaller intersection among them. The goal now is to
find the least number of segments from which to describe the label distribution,
transforming thousands of examples with dozens of attributes into several colored
segments clearly separated in the image.

Definition 4 (Support) The support of a segment Sj,k is the number of ex-
amples covered by Sj,k.
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Definition 5 (Purity) The purity of a segment Sj,k is the percentage of exam-
ples covered by Sj,k with a majority label with respect to its support.

Definition 6 (Minimal Support γ) The minimal support γ is the lowest sup-
port that a segment must surpass to belong to the MSIS.

Definition 7 (Minimal Purity δ) The minimal purity δ is the lowest percent-
age of examples with a majority label with respect to the number of covered ex-
amples that an impure segment must surpass for to it be a part of the MSIS.

Therefore, a pure segment Sj,k takes δj,k = 100 whereas an impure segment
Sj′,k′ takes δj′,k′ = 100maxz

p=1(|Hj′,k′p |)
∑

z
p=1 |Hj′,k′p | . γ and δ are two user parameters.

The MSIS is built from the ISISj sets by two iterative procedures. For each
attribute Aj , the algorithm looks for the two consecutive impure segments in
ISISj whose union is possible and whose resulting support is the highest. Two
consecutive impure segments can be joined if the resulting purity is greater than
or equal to the minimal purity δ.

Next, another iterative procedure adds joined segments from the ISISj sets
to MSIS. In each iteration, a new segment is included in the MSIS: the one with
the largest number of examples that are not yet covered by another segments
already included in the MSIS. Thus, the first segment to be included will be the
one with the highest support. The procedure ends when either all the examples
have been covered or there is no segment that covers examples uncovered by the
MSIS. The number ∆ of examples that a segment Sj,k in ISISj can provide for
the MSIS is computed by the intersection among IHj,k and the histograms H∩

k′

associated with the segments Sj′,k′ already included in the MSIS, according to
the equation 1:

∆ = (
z∑

p=1

|Hj,kp |)− |
⋂

∀ Sj′k′∈ MSIS

(SIHj,k,j′ , Hj′,k′) | (1)

In each new iteration, the number of examples uncovered by non–included seg-
ments may change with respect to the earlier iteration, and every segment is
re–visited again. If a segment Sj,k ∈ ISISj does not contain examples uncov-
ered by MSIS, then it is removed from ISISj so that the next iteration will have
lower computational cost.

When the above procedure ends, the MSIS is displayed. For each attribute
with at least one information segment, a horizontal attribute–bar shows its seg-
ments in increasing order of values, from left to right. Every attribute–bar is
equal in size, both in width and height. To the left of each bar, the name of
the associated attribute is displayed, along with the total number of examples
covered by the segments belonging to such an attribute, and the total number of
exclusive examples that all the segments provide. We allow interactive capability
to VSIS tool so that the user can keep on exploring the examples belonging to
impure segments (both in ISIS and MSIS) until finding a meaningful visual de-
scription, through both Parallel Coordinates technique and new segments over
different dimensions with higher purity.
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10

x16 [0.0, 0.36]
Majority label: ORANGE
Goodness: 70.48%
505 own examples about 1406 covered:
308 examples for labelBLUE
991 examples for label ORANGE
107 examples for label GREEN
1 conect. in x5               1 conect. in x6
1 conect. in x7               1 conect. in x9
1 conect. in x13             1 conect. in x15

10
75

Fig. 5. Wave–Form data set. To the left, first exploration level using α=25, γ=1000
and δ=70. To the right, second exploration level after selecting one segment from the
image to the left, using α=25, γ=10 and δ=75.

An example of this capability of VSIS is shown in Figure 5. To the left, we try
to get more insight from Figure 3. To select the most significant segments we set
γ=1000, so only segments containing at least 1000 examples will be displayed.
In addition, as the label distribution provides many impure segments, we will
relax the criterion by setting δ=70, so only segments containing at least 70%
of examples with the same label must be displayed. Only four attributes were
selected by the algorithm (x6, x13, x15 and x16), and one segment for each one.
Attribute x7 appeared in Figures 3 and 4, but not in Figure 5, because the new
intervals offer fewer intervals with better label distribution.

Now we are interested in the last attribute x16 (bottom), so we can click on
it and set new values for δ and γ. This means we are going to analyze only that
segment, and therefore, the examples covered by it (exploration level = 2). The
new values for δ and γ are 75 and 10, respectively. The result is shown on the
right, where more segments are displayed due to the reduction of the value of
γ (only 10 examples). However, the purity has been increased up to 75. New
attributes appear in this image (x4, x5, x6, x9, x10, x11, x13, x15, x17, x18, x19
and x38), and also new segments (some of them were already in the exploration
level =1 ), which provide more insight about the data, as this might mean that
x6 and x13 are decisive for class green and x15 for class orange.

Re–exploring impure segments gives a powerful insight of data, as we can
achieve a higher accuracy on a specific domain. In this way VSIS cedes the
control to the user in order to find, group and validate decision rules with the
detail level needed. When a segment is explored, the new segments represent sub–
domains satisfying new user specifications. Each new exploration level gives a
new description of one attribute condition in a decision rule, since when we decide
to explore a segment, the subset defined by that attribute condition is visualized.
The process is completely interactive, reducing the support and increasing the
accuracy every time.

3 Displaying Very Large Databases

We have selected two databases from the UCI repository [5] to show the useful-
ness of our tool for visualizing great amount of data: one with large number of
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Fig. 6. Covtype database (581012 ex-
amples, 54 attributes, and 7 class la-
bels). Initial segments for the best five
attributes according to ranking: a01, a12,
a14, a36, a37 (α=50).

Fig. 7. Covtype database: MSIS using
α = 50, γ = 1000 and δ = 70. Fifteen
information segments (5 pure segments
and 10 impure segments).

examples (Covtype) and another one with large number of attributes (Isolet).
Figures 6 and 7 show two visualization examples of Covtype database. Such dis-
plays represent the manner to explore and detect significant sub–domains and
irrelevant attributes, and to validate patterns or rules extracted by learning al-
gorithms. These displays also give a good estimate with respect to accuracy and
complexity of the model to be extracted by a learning algorithm.

In Isolet database, the high degree of overlapping among different class labels
(most of segments are impure with a very low purity) shows the difficulty to
obtain both a non–complex and accurate knowledge model for (Figures 8 and
9). To tackle 617 attributes and 26 class labels is computationally expensive for
many visualization techniques, however VSIS performance is satisfactory.

4 Related Work

In [15], Information Visualization and Visual Data Mining techniques are clas-
sified according to three criteria:

– The data type to be visualized: one–dimensional data [19], two–dimensional
data [20], multidimensional data [16], text & hypertext [19], hierarchies &
graphs [6,4], and algorithms & software [8].

– The data representation: standard 2D/3D displays [20], geometrically trans-
formed displays [1,10,11], icon–based displays [7], dense pixel displays [14],
stacked displays [12], and hybrid techniques.

– The user interaction way: projection [3], filtering [20], zooming [17], spherical
& hyperbolic distortions, and linking & brushing.

According to the data type, our proposal VSIS can visualize multidimensional
data sets with numerical attributes. With respect to the second group, VSIS
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Fig. 8. Isolet database (7797 examples,
617 continuous attributes, and 26 class
labels). Initial segments for the best
seven attributes using α = 200.

Fig. 9. Isolet database: MSIS using α =
200, γ = 10 and δ = 50.

belongs to standard 2D techniques. Regarding the third category, VSIS pro-
vides data projections to the user, zooming and filtering to detect and validate
relevant and meaningful attributes and subdomains. Dimensionality reduction
has been dealt by three major approaches: Principal Component Analysis (PCA)
[13], Multidimensional Scaling (MDS) [18], and Kohonen’s Self Organizing Maps
(SOM) [9]. Recently, new dimensionality reduction techniques have been pro-
posed to process very large data sets with high dimensionality [2]. VSIS reduces
the dimensionality in an interactive manner so as to find meaningful subdomains
according to user measures.

5 Conclusions and Future Work

VSIS is a visualization tool to explore multidimensional numerical data. Through
visual interaction and feedback, the user decides how many examples and what
level of purity a segment must fulfil to be considered representative of a signifi-
cant subdomain. The information segments can be seen as decision rules with a
number of disjunctions equals the number of exploration levels, whose support
is greater than or equal to the last value of γ, and whose purity is greater than
or equal to the last value of δ. This representation helps the user with the iden-
tification of the most relevant attributes. Results are very interesting as the tool
is very flexible and allows the user to go into the level of exploration needed.

We are currently improving VSIS by using dense pixel approach to display
segments with variable color intensity degree in such a way the support of the
segments can be easily perceived. Several similarity measures are being addressed
to re–order segments on the display regarding the number of shared examples,
making the graphical information understandability easier.
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