Tesis Doctoral

Caracterización agronómica y Monitoreo de la Pyriculariosis de una selección de variedades de arroz. Apoyo para el aviso y control en el cultivo bajo Producción Integrada en el Sur de España

Autor: Francisco Montes Delgado
Director: Dr. Manuel Aguilar Portero

Dpto. de Microbiología y Parasitología Facultad de Farmacia Universidad de Sevilla

UNIVERSIDAD B SEVILLA

CARACTERIZACIÓN AGRONÓMICA Y MONITOREO DE LA PYRICULARIOSIS DE UNA SELECCIÓN DE VARIEDADES DE ARROZ. APOYO PARA EL AVISO Y CONTROL EN EL CULTIVO BAJO PRODUCCIÓN INTEGRADA EN EL SUR DE ESPAÑA

TESIS DOCTORAL

Autor: Francisco Montes Delgado
Director: Dr. Manuel Aguilar Portero

DICIEMBRE 2015

A Curro, Ana y Rocío

AGRADECIMIENTOS

"El secreto de la sabiduría, del poder y del conocimiento es la humildad".
 - Ernest Hemingway -

A Manuel Aguilar Portero por su labor de dirección y apoyo para la realización de este trabajo, y por darme la oportunidad de empezar en este maravilloso cultivo. A todos mis compañeros del Departamento de Arroz y Maíz del CENTRO IFAPA Las Torres - Tomejil, por la inestimable ayuda que siempre me han prestado; especialmente a mis amigos Rafael, Asun y Paco Borjas, quienes me animaron a realizar este trabajo tan desinteresadamente. A Manoli Gordillo, por la colaboración incondicional en el desarrollo del Software Epidemias que durante más de ocho años ha venido utilizando el sector arrocero sevillano. A mis amigos agricultores los Hermanos Beltrán, especialmente a Luis y su familia. A Paco y José, de la S.C.A del Bajo Guadalquivir. A los agricultores arroceros de la Margen Izquierda y Derecha del río Guadalquivir de Sevilla, muy especialmente a Ángel Cebolla, Rafael Grau, Héctor Collín y Álvaro Pallarés, porque siempre me brindaron su ayuda cuando nadie lo hizo. A la Federación de Arroceros de Sevilla representados por Vicente Cebolla y Julián Borja, a quienes tuve como Presidente en los 5 años que estuve trabajando al servicio del Sector del Arroz de Sevilla. A los profesionales de la Producción Integrada del arroz: Fernando, Nieves y muy especialmente a Santiago con el que aprendí a valorar las necesidades del cultivo del arroz. A sus hermanos Manolo, Pedro y Pastora. Al Laboratorio de Sanidad Vegetal de la Delegación Provincial de Agricultura de Sevilla: Fernando, Baltasar, Juana, Pepe, Paco Montes, Ma Carmen, Ana, Beatriz, Rafa, Nazaret e Ismael. A los compañeros del Grupo de Trabajo de los Problemas Fitosanitarios del Arroz en CATALUÑA: Gemma, Santi, Ma del Mar y Oscar; EXTREMADURA: José Antonio; VALENCIA: José María. A los compañeros de la Facultad de Farmacia y del grupo BIO169: Manolo, Carolina y Ma del Mar; y de la Facultad de Biología, Alfonso y Esperanza. A Mauri, y a mis "compañeros de fatiga": Paco Delgado y Ma Luz Suero, por su colaboración, apoyo y amistad. A mi buen amigo Jaume, quien me enseñó lo importante que son los tiempos, y a pactar..., y darme la oportunidad de conocer a la persona más brillante de mi vida profesional: Juan Pedro. Y a su mujer Amparo. Gracias por vuestro apoyo y respaldo y sobre todo por vuestra amistad. A mis amigos que tanto me acompañaron en mis distintas etapas profesionales: Jaime de Vicente, Enrique Valencia y Paco Requena.

A mis padres y mi hermana, por esta ahí incondicionalmente.
A mis niños y a mi excepcional compañera, mi mujer, quienes me ayudaron a hacer posible lo que parecía imposible...

Francisco Montes Delgado
Sevilla, diciembre de 2015

INDICE DE CONTENIDOS

AGRADECIMIENTOS iv
INDICE DE CONTENIDOS vi
INDICE DE FIGURAS. viii
INDICE DE TABLAS xii

1. INTRODUCCIÓN 14
1.1. Definición del interés. 14
1.2. Justificación de la Tesis 16
1.3. Objetivos 21
1.4. Conceptos y definiciones 21
2. ANTECEDENTES 22
2.1. Origen y extensión del cultivo del arroz 23
2.2. Origen del cultivo en las Marismas del Guadalquivir. 25
2.3. El sistema de Producción Integrada en las Marismas del Guadalquivir 26
2.4. Estados fenológicos y variedades 30
2.5. El Riego en el cultivo de Arroz 32
2.5.1. Disponibilidad de agua. 35
2.6. Clima 35
2.6.1. La Temperatura 35
2.6.2. La Luz 36
2.6.3. La Pluviometría 37
2.6.4. Humedad y Evaporación 37
2.6.5. Los Vientos 37
2.7. El suelo 38
2.8. Manejo agronómico 39
2.8.1. Labores 39
2.8.2. La Fertilización 41
2.9. Enfermedades 43
2.9.1. Principales enfermedades en el cultivo de arroz bajo Producción Integrada en el Sur de España - Estado Sanitario del Cultivo 44
2.10. La Pyriculariosis del arroz (Oryza sativa L.) 49
2.10.1. Umbral de Riesgo y Muestreos 52
2.10.2. Estrategias de control 55
2.10.3. Epidemiología de la Pyriculariosis 58
3. MATERIAL Y MÉTODOS 66
3.1. Introducción al KDD y minería de datos 66
3.1.1. Knowledge Discovery from Databases (KDD) 66
3.1.2. Minería de Datos 68
3.2. KDD como apoyo al monitoreo de Pyriculariosis 68
3.2.1. Antecedentes 68
3.2.2. Selección de datos: ensayos de campo 71
3.2.3. Selección, preprocesado y transformación de datos microclimáticos: Programa Epidemias. 74
3.2.4. Minería de datos 78
4. RESULTADOS Y DISCUSIÓN 80
4.1. Comportamiento agronómico de los Ensayos A y B 80
4.1.1. Susceptibilidad a la Pyriculariosis 82
4.2. Monitoreo de Pyriculariosis 85
4.2.1. Comparativa entre los datos climáticos de las distintas fuentes: 86
4.2.2. Análisis y revisión de las condiciones de riesgo de infección de Pyriculariosis. 89
4.2.3. Revisión de las condiciones de riesgo y adaptación al cultivo del arroz en el sur de España bajo el sistema de producción integrada. 93
4.2.4. Árbol de decisión como aportación a la revisión de las condiciones de riesgo yadaptación al cultivo del arroz bajo el sistema de producción integrada en el sur deEspaña. 100
5. CONCLUSIONES y DESARROLLOS FUTUROS 113
5.1. Conclusiones generales. 113
5.2. Aportaciones. 116
5.3. Desarrollos futuros 117
6. BIBLIOGRAFÍA 118
ANEXOS 134

INDICE DE FIGURAS

Abstract

Figura 1. Evolución de la superficie del cultivo de arroz bajo Producción Integrada en Andalucía vs. Nacional. Fuente: Ministerio de Agricultura, Alimentación y Medioambiente del Gobierno de España - Consejería de Agricultura, Pesca y Desarrollo Rural de la Junta de Andalucía. Elaboración Propia.17

Figura 2. Evolución de los Rendimientos medios (t / ha) del cultivo de arroz bajo Producción Integrada en Andalucía vs. Nacional. Fuente: Ministerio de Agricultura, Alimentación y Medioambiente del Gobierno de España. Elaboración Propia. 18
Figura 3. Perfil Varietal objeto de estudio y superficie (ha) sembrada de arroz bajo Producción Integrada y durante la Campaña 2010. Fuente: Informe Producción 2010 de la Federación de Arroceros de Sevilla. Elaboración propia. 19
Figura 4. Rendimientos medios (t / ha) de las variedades objeto de estudio bajo Producción Integrada y durante la Campaña 2010. Fuente: Informe Producción 2010 de la Federación de Arroceros de Sevilla. Elaboración propia. 19
Figura 5. Evolución de la superficie arrocera bajo Producción Integrada en Andalucía 2003-2012. Fuente: web de la Consejería de Agricultura, Pesca y Desarrollo Rural de la Junta de Andalucía. Producción Integrada de Andalucía. www.cap.junta- andalucia.es/agriculturaypesca/pintegrada/index.html. 29
Figura 6. Estados fenológicos y fenología media en el cultivo de arroz bajo Producción Integrada en las Marismas del Guadalquivir Fuente: Aguilar (2001). 31
Figura 7. Morfología de la panícula de la planta de arroz. Fuente: Aguilar (2001) 32
Figura 8. Transformación del nitrógeno en el suelo del arrozal. Aguilar (2001) 43Figura 9. Imágenes tomadas al microscopio óptico. Lesión en el limbo foliar de planta de arroz de la variedad Puntal. Izquierdasuperior: Lesión foliar producida por P. grisea (10X). Derecha superior: Conidias distribuidas por la lesión foliar. (40X). Izquierda -Derecha inferior: Conidias y conidióforos de P. grisea. (100X). Fuente: Montes (2001)51
Figura 10. Imagen tomada con estereoscopio binocular. Conidias y conidióforos de P. grisea en la superficie de una semilla de arroz de la variedad Puntal. Fuente: Montes (2001) 52
Figura 11. Rodal de plantas de arroz con síntomas de Pyriculariosis). Fuente: Foto suministrada por Jaume Boada (2001). DARP Generalitat de Catalunya 53
Figura 12. Escala de Evaluación de la Severidad Foliar en la Pyriculariosis del arroz. Fuente: Juan P. Marín - UdL - Lleida (2001) . 55
Figura 13. Tipos de lesiones para la evaluación del porcentaje visual de lesiones en el limbo de la hoja con síntomas de Piriculariosis. Fuente: Control de las enfermedades del arroz. Grupo de Trabajo del Arroz, (2003. Amposta). 57
Figura 14. Diferencia en la sanidad de las microparcelas tratadas con fungicidas. Fuente: Calixto Cordero. Técnico de Producción Integrada del cultivo del arroz en Sevilla. (Campaña 2005) 58
Figura 15. Ciclo infectivo de Pyricularia grisea Sacc. Fuente: García, et al. (2001). Convenio Junta de Andalucía. 60
Figura 16. Fases de la metodología de Extracción de Conocimiento (KDD) para la elaboración y diseño del monitoreo de la Pyriculariosis. Fuente: http://mineriadatosyalmacenamientoweb.net/webmining.html 67
Figura 17. Modelo de Boletín de avisos generados por la aplicación EPIDEMIAS 70
Figura 18. Estación climática de la Puebla del Río II.
(http://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController?action=Static\&url=coordenadas.jsp\&c_prov incia $=41 \&$ c_estacion $=8$) 74
Figura 19. Definición de la Interface de usuario de EPIDEMIAS, mediante diagrama de caso y en la que se determinan lainformación de entrada y salida.75
Figura 20. Definición del diagrama de procesos del programa EPIDEMIAS 76
Figura 21. Interface gráfica principal para la importación y consulta de datos epidemiológicos del programa EPIDEMIAS. 76
Figura 22. Interface gráfica principal para la importación y consulta de datos epidemiológicos: selección de condiciones de Humedad Relativa y Temperatura en el Programa EPIDEMIAS. 77
Figura 23. Interface gráfica principal para la importación y consulta de datos epidemiológicos para el tratamiento de los datos sanitarios del cultivo en el programa EPIDEMIAS 77
Figura 24. Clasificación de técnicas de Minería de Datos (Fuente: Jesús García Herrero, José Manuel Molina López. TÉCNICAS DE ANÁLISIS DE DATOS. Universidad Carlos III de Madrid. (2012) 78
Figura 25. Representación de condiciones de riesgo (número de horas >93\% Humedad Relativa y Temperaturas Medias) frente a laevolución de la enfermedad (\% de severidad en hoja) en el Ensayo A y durante el período de máximo riesgo de Pyriculariosis en lacampaña 2010 en las Marismas del Guadalquivir83
Figura 26. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a laevolución de la enfermedad (\% de severidad en hoja) en la Ensayo A y durante el período de máximo riesgo de Pyriculariosis en lacampaña 2012 en las Marismas del Guadalquivir83
Figura 27. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a laevolución de la enfermedad (\% de severidad en hoja) en el Ensayo B y durante el período de máximo riesgo de Pyriculariosis en lacampaña 2010 en las Marismas del Guadalquivir84
Figura 28. Representación de condiciones de riesgo (número de horas >93\% Humedad Relativa y Temperaturas Medias) frente a laevolución de la enfermedad (\% de severidad en hoja) en el Ensayo B y durante el período de máximo riesgo de Pyriculariosis en lacampaña 2012 en las Marismas del Guadalquivir84
Figura 29. Comparativa de datos meteorológicos de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ obtenidos de la estación climática Puebla del Río II 86frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2010 en las Marismas del Guadalquivir
Figura 30. Comparativa de datos meteorológicos de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2011 en las Marismas del Guadalquivir. 87
Figura 31. Comparativa de datos meteorológicos de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2012 en las Marismas del Guadalquivir 87
Figura 32. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2010 en las Marismas del Guadalquivir 88
Figura 33. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2011 en las Marismas del Guadalquivir 88
Figura 34. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2012 en las Marismas del Guadalquivir 89
Figura 35. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media (${ }^{\circ} \mathrm{C}$) de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo A durante el período de cultivo 2010 en las Marismas del Guadalquivir 91Figura 36. Representación del número de horas consecutivas (con $\mathrm{HR}>93 \%$) frente a los datos microclimaticos de TemperaturaMedia $\left({ }^{\circ} \mathrm{C}\right.$) de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo A durante el período decultivo 2012 en las Marismas del Guadalquivir.91
Figura 37. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media $\left({ }^{\circ} \mathrm{C}\right.$) de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo B durante el período de cultivo 2010 en las Marismas del Guadalquivir 92
Figura 38. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media (${ }^{\circ} \mathrm{C}$) de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo B durante el período de cultivo 2012 en las Marismas del Guadalquivir 92

Figura 39. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, $2=A l t o$) y determinadas por Kikusawa et al. (1999) para el Ensayo A durante el período de máxima sensibilidad a la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 40. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo

 ($0=$ Nula, $1=$ Medio, 2=Alto) y determinadas por Kikusawa et al. (1999) para el Ensayo A durante el período de máxima sensibilidad a la enfermedad en el período de cultivo 2012 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir. 94Figura 41. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, $2=A l t o$) y determinadas por Kikusawa et al. (1999) para el Ensayo B durante el período de máxima sensibilidad de la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 42. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo

 ($0=$ Nula, $1=$ Medio, 2=Alto) y determinadas por Kikusawa et al. (1999) para el Ensayo B durante el período de máxima sensibilidada la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.Figura 43. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo A y durante la campaña 2010 96
Figura 44. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo A y durante la campaña 2012 96
Figura 45. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo A y durante la campaña 2010 97
Figura 46. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo A y durante la campaña 2012 97
Figura 47. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo B y durante la campaña 2010 98
Figura 48. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ}\right.$ C) para el Ensayo B y durante la campaña 2012 98
Figura 49. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right.$) para el Ensayo B y durante la campaña 2010 99
Figura 50. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right.$) para el Ensayo B y durante la campaña 2012 99
Figura 51. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad FONSA. (Ver ANEXOS) 102
Figura 52. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad FONSA 103
Figura 53. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad MARISMA. (Ver ANEXOS) 104
Figura 54. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad MARISMA. 105
Figura 55. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad PUNTAL. (Ver ANEXOS) 107
Figura 56. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad PUNTAL. 107
Figura 57. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad SYCR128. (Ver ANEXOS) 109
Figura 58. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad SYCR128. 110
Figura 59. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad SYCR86. (Ver ANEXOS) 111
Figura 60. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad SYCR86 112
Figura 61. Árbol de decisión para la Variedad FONSA
Figura 62. Árbol de decisión para la Variedad MARISMA 141
Figura 63. Árbol de decisión para la Variedad PUNTAL 142
Figura 64. Árbol de decisión para la Variedad SYCR128 142Figura 65. Árbol de decisión para la Variedad SYCR 86Error! Marcador no definido.

INDICE DE TABLAS

Tabla 1. Costos de las enfermedades. Fuente: Control de las enfermedades del arroz . Grupo de Trabajo del Arroz, (2003. Amposta). Comunicación personal Marín-Sánchez. 54
Tabla 2. Comportamiento agronómico de las variedades comerciales de Arroz estudiadas. Media de los dos ensayos A y B para lastres campañas en las Marismas del Guadalquivir81
Tabla 3. Datos microclimaticos dentro de los umbrales de riesgo determinados por Kikusawa et al. (1999) y valores medios de AUDPC para el Ensayo A y Ensayo B en los años 2010 y 2012 en las Marismas del Guadalquivir 82
Tabla 4. Características del árbol de decisión 101
Tabla 5. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad FONSA 101
Tabla 6. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% 101
Tabla 7. Matriz de correlaciones del modelo de árbol de decisión para la Variedad FONSA 101
Tabla 8. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad MARISMA 103
Tabla 9. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% 104
Tabla 10. Matriz de correlaciones del modelo de árbol de decisión para la Variedad MARISMA. 104
Tabla 11. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad PUNTAL. 106
Tabla 12. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% 106
Tabla 13. Matriz de correlaciones del modelo de árbol de decisión para la Variedad PUNTAL 106
Tabla 14. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad SYCR128 108
Tabla 15. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% 108
Tabla 16. Matriz de correlaciones del modelo de árbol de decisión para la Variedad SYCR128. 108
Tabla 17. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad SYCR86 110
Tabla 18. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% 111
Tabla 19. Matriz de correlaciones del modelo de árbol de decisión para la Variedad SYCR86 111
Tabla 20. Reglas del modelo del árbol de decisión para la Variedad FONSA. 135
Tabla 21. Reglas del modelo del árbol de decisión para la Variedad MARISMA. 136
Tabla 22. Reglas del modelo del árbol de decisión para la Variedad PUNTAL. 137
Tabla 23. Reglas del modelo del árbol de decisión para la Variedad SYCR128 138
Tabla 24. Reglas del modelo del árbol de decisión para la Variedad SYCR86 139

1. INTRODUCCIÓN

"El arte es "yo"; la ciencia es nosotros". - Claude Bernard -

1.1. Definición Del interés.

El arroz es el cultivo más importante del mundo teniendo en cuenta la superficie que ocupa y la cantidad de personas que dependen de su cosecha (Aguilar, 2010).

Según datos del Ministerio de Agricultura, alimentación y Medio Ambiente, actualmente en la Unión Europea se dedican al arroz unas 475.000 hectáreas con una producción de uno 3,2 millones de toneladas de arroz cáscara (1,8 millones de arroz blanco). Italia es el primer productor, con un 52% de la superficie total, seguido de España con un 20% de la misma. En cuanto a la producción de arroz cáscara los porcentajes son del 50 y un 30%, respectivamente, debido al mayor rendimiento agronómico del arroz en España. La Unión en su conjunto es deficitaria si bien Italia y España son excedentarias. El sector del arroz, con un valor de su producción en 2009 de $275 \mathrm{M} €$, representó en 2009, el 0,73\% de la PRA (Producción de la Rama Agraria) y el $1,19 \%$ de la PRV (Producción de la Rama Vegetal) en España. Como apoyo directo de
la PAC, y hasta el año 2012, el sector recibe 49,993 $\mathrm{M} €$, correspondientes a la ayuda específica al cultivo del arroz, que asciende a 476,26 €/ha. En el año 2012, se desacopló esta ayuda, integrándose en el régimen de pago único, al igual que ocurrió en 2006, cuando se integró parte de la ayuda acoplada que recibía el sector. Tras el desacoplamiento total de las ayudas del primer pilar, en 2012, el sector solo pudo recibir un apoyo directo, a través de las medidas del segundo pilar incluidas en los Programas de Desarrollo Rural (PDR's) de las Comunidades Autónomas, que son cofinanciadas por la UE, el Ministerio y las propias Comunidades Autónomas. Dentro de estas medidas, cabe destacar, las medidas agroambientales para la Producción Integrada de arroz, implantadas en Comunidades Autónomas como Andalucía (4,96 $\mathrm{M} €$), Aragón ($1,7 \mathrm{M} €$) o Extremadura ($17,7 \mathrm{M} €$). Además Andalucía ($24.000 €$) y Aragón (143.850 €) destinan fondos, dentro de sus respectivos PDR's, para la Producción Ecológica de arroz en el marco de las ayudas agroambientales.

El cultivo del arroz en España, se concentra en las Comunidades Autónomas de Andalucía, Cataluña, Extremadura, C. Valenciana y Aragón, cultivándose también, de manera testimonial, en Navarra, Murcia, Castilla La Mancha, La Rioja y Baleares.

Desde hace años, la superficie cultivada de arroz en España, se ha mantenido en niveles estables, que oscilan en torno a la superficie de base nacional, que está establecida en 104.973 hectáreas. La producción media de arroz en España está en torno a las 830.000 toneladas de arroz cáscara "paddy", de las cuales, más del 60%, se producen en Andalucía y Extremadura.

Aguilar (2010) indicaba que los rendimientos en grano alcanzan medias superiores a las $8 \mathrm{t} / \mathrm{ha}$, situándose entre las mayores del mundo, y con un $10-15 \%$ por encima de los rendimientos comunitarios. La producción media anual se estima en unas 250.000 t de arroz cáscara. La superficie arrocera andaluza ronda las 38.000 hectáreas, salvo en los años de restricciones de agua en los que el área sembrada puede disminuir drásticamente. La casi totalidad se encuentra en la provincia de Sevilla, en la comarca de las Marismas, configurándose como un coto redondo que se extiende a ambos márgenes del río Guadalquivir. Se trata de suelos llanos, arcillosos y salinos, de origen sedimentario. En Vejer de la Frontera, Benalup de Sidonia y otros municipios gaditanos limítrofes se cultivan unas 2.700 ha, regadas con aguas del pantano de Celemín. Nuestra área de cultivo representa el 35% de la superficie española de este cereal y el 8% de la comunitaria, las cuales son estables o tendentes a un ligero incremento.

En cuanto a variedades, el 65% de la producción se obtiene de variedades de arroz del tipo índica, producido prácticamente en su totalidad en Andalucía y Extremadura y el 35% restante, de variedades de arroz del tipo japónica, siendo este último tipo de arroz el más utilizado en España.

Circunscribiéndonos al arrozal del Sur de España, a las Marismas del Guadalquivir en la provincia de Sevilla, el perfil varietal está poco diversificado lo que hace que más del 80% de la superficie arrocera se encuentre sembrada por variedades
del tipo Indica de las cuales casi la totalidad corresponde a la variedad Puntal; por el contrario, las del tipo Japónica aunque algo más diversificada suponen un porcentaje total menor del 20\% del total de la superficie andaluza (Aguilar y Navarro 2000-2008).

Por otro lado, el perfil varietal se encuentra concentrado en una superficie arrocera tan extensa como la de Sevilla, la cual corresponde a la zona arrocera más importante no solo en superficie sino que además en rendimientos de producción, y toda la superficie se encuentra acogida al sistema de producción respetuoso con el medio ambiente denominado Producción Integrada. (Montes et al. 2007; Aguilar, 2010). En los últimos años, el arrozal del Sur de España no ha sufrido mermas asociadas a patologías como la Pyriculariosis también conocida como Quemazón o Añublo del arroz o en su terminología anglosajona, Blast. Esta enfermedad supone la principal enfermedad mundial del cultivo del arroz y puede ocasionar grandes pérdidas en cosecha cuando se hace presente (Leungh y Taga, 1998; Fabre et al., 2000). Observaciones preliminares por Marín-Sánchez y Jiménez-Díaz, (1979) fueron encaminadas sobre el estudio de los hongos fitopatógenos de identidad desconocida y de esta forma buscaron identificar y contrastar la patogenicidad de especies fúngicas asociadas con afecciones diversas en el arroz de las Marismas del Guadalquivir. En el año 1997, información adicional obtenida de agricultores de la zona arrocera, pusieron de manifiesto pérdidas severas asociadas a Pyriculariosis. De tal forma que desde la Administración Pública y el Sector Arrocero se levantaron todas las alarmas con la intención de establecer sistemas de avisos para la toma de decisiones.

Para el establecimiento de una estrategia integral en el control de esta enfermedad se deben establecer criterios de muestreo que aporten una información lo más acercada a la realidad y con previsiones a corto plazo. Así, es necesario el diseño y validación de un Sistema de Monitoreo sobre variedades con viabilidad agronómica y con futuro comercial (Aguilar et al., 1985 - 2009) en el arrozal del Sur de España. En los último 15 años, el uso de datos masivos o Big Data es un concepto que ya se viene empleando para identificar patrones recurrentes en el análisis de datos. Del mismo modo, el uso de EPIDEMAS (Montes y González, 2004) se está empleando, como apoyo para la toma de decisiones para el control de la Pyriculariosis en el cultivo de arroz en el Sur de España.

1.2. Justificación de la Tesis.

Se han ensayado diversas colecciones de variedades de arroces de la subespecie Indica desde el año 1984, procedentes del IRRI (International Rice Research Institute) con sede en Filipinas, y no se han encontrado ninguna variedad interesante para las condiciones de cultivo del Sur de España (Aguilar, 2010). No obstante si se han empleado como material parental para la realización de determinados cruzamientos. Sin embargo, las de tipo Indica de origen californiano, el L-202 (Thaibonnet), o australiano, como Doongara (Puntal), e incluso numerosas Japónicas californianas (Thainato, Hispagran, etc.), se adaptan muy bien a las características del arrozal
andaluz, dada la similitud en las condiciones edafo-climáticas (de clima mediterráneo o templado) así como en las prácticas y técnicas agronómicas del sur de España.

Aguilar (2010) indicaba que en Andalucía sólo se sembraban arroces Japónica (de grano medio y semilargo) hasta que en la década de los ochenta se introdujeron las variedades tipo Indica, fundamentalmente Thaibonnet, que mostró una excelente adaptación. Este último tipo de arroz, exportable a Europa, redujo el excedente español de arroces Japónica. Actualmente, la variedad tipo Indica, Puntal, ocupa alrededor del 90% de la superficie sembrada, dedicándose el resto a Thaibonnet y a diversas Japónica (Fonsa, Marisma, J. Sendra, Hispagran, etc.) además de unas 500 has de variedades de arroz híbridos.

Durante los años de estudio (2010-2012) como se puede apreciar en la Figura 1 y 2 , el cultivo del arroz en el Sur de España ha supuesto la mayor superficie sembrada y con unos rendimientos muy elevados bajo Producción Integrada.

Figura 1. Evolución de la superficie del cultivo de arroz bajo Producción Integrada en Andalucía vs. Nacional. Fuente: Ministerio de Agricultura, Alimentación y Medioambiente del Gobierno de España - Consejería de Agricultura, Pesca y Desarrollo Rural de la Junta de Andalucía. Elaboración Propia.

Los rendimientos medios alcanzados han sido muy elevados y fueron excepcionalmente buenos en el primer año de estudio en la Marisma del Sur de España.

Figura 2. Evolución de los Rendimientos medios (t/ha) del cultivo de arroz bajo Producción Integrada en Andalucía vs. Nacional. Fuente: Ministerio de Agricultura, Alimentación y Medioambiente del Gobierno de España. Elaboración Propia.

Sobre el perfil varietal objeto de estudio, el Híbrido SYCR 128 alcanzó los mayores rendimientos con más de $10.200 \mathrm{Kg} / \mathrm{ha}$ aunque con una superficie de 93 ha del total. Por el contrario y como venía siendo habitual desde los inicios de la tendencia alcista de las variedades de grano largo o tipo Indica tras la incorporación de España a la UE, la variedad Puntal fue durante las tres campañas la de mayor superficie sembrada (ver Figura 3) y con unos datos de producción ligeramente inferior al híbrido SYCR 128, pero con una superficie de más del 78% del total sevillano para el primer año del estudio, del 83% para el segundo y del 75% para la última campaña. Respecto a las variedades de tipo Japónica o de grano redondo, las variedades Marisma y Fonsa también ocuparon un lugar importante como variedades de uso entre los productores del Sur de España, y con rendimientos medio por encima de los $9.000 \mathrm{Kg} / \mathrm{ha}$ para la primera y de $10.000 \mathrm{Kg} / \mathrm{ha}$ para la segunda. No obstante Aguilar et al. (1985-2009) ya indicaba la tendencia alcista de la variedad Marisma por su valor culinario y por ende, comercial. Así Puntal, posee un elevado rendimiento en grano y se viene comportando en el área de cultivo de Sevilla como una variedad que aunque no tiene un elevado peso de los mil granos, queda compensado por un buen ahijamiento (número de panículas por metro cuadrado) y sobre todo por su elevado número de granos por panículas que se traduce en una muy alta productividad. La variedad Marisma ha destacado por las características de su grano, de gran tamaño y de buena calidad culinaria. Finalmente, la variedad Fonsa destacó por tener el ciclo más corto de las variedades ensayadas y por un buen rendimiento en grano.

Respecto a los híbridos SYCR 128 y SYCR 86, Aguilar (2007) indica que estas variedades demostraron en los últimos años un ciclo a maduración más largo que el del resto de las variedades convencionales lo que las han convertido en buenas candidatas para ser objeto del estudio que se ha llevado a cabo (ver Figuras 3 y 4)

Figura 3. Perfil Varietal objeto de estudio y superficie (ha) sembrada de arroz bajo Producción Integrada y durante la Campaña 2010. Fuente: Informe Producción 2010 de la Federación de Arroceros de Sevilla. Elaboración propia.

El conocimiento de los valores medidos para cada una de las variedades hibridas en comparación con las tradicionales, las hacen susceptibles de ser incorporadas a la zona arrocera de Sevilla pudiendo establecer un rango comparativo relevante para su implantación .

Figura 4. Rendimientos medios (t/ha) de las variedades objeto de estudio bajo Producción Integrada y durante la Campaña 2010. Fuente: Informe Producción 2010 de la Federación de Arroceros de Sevilla. Elaboración propia.

En cuanto al factor medioambiental, la climatología estival observada durante el periodo de estudio han marcado periodos secos y con una insolación adecuada. De tal forma que el arroz como planta termófila pudo llegar a estos techos de producción dado que el cultivo experimentó períodos de crecimiento libre de heladas relativamente largos y con una suma de temperaturas elevadas durante la estación de crecimiento y sin problemas de escasez de agua. La presencia de bajas temperaturas
durante la noche y la oscilación entre las temperaturas diurnas y nocturnas favoreció la maduración del arroz (Porta et al., 2003)

Respecto a la Pyriculariosis, desde la Administración Andaluza a través del departamento de arroz del Centro de Investigación IFAPA de la Consejería de Agricultura, Pesca y Desarrollo Rural, se ha venido trabajando en la caracterización agronómica de variedades con distintos perfiles agronómicos a través de los programas de Mejora Varietal (Ono, 1988; Niizeki y Oono, 1971; Yin et al., 1976), programas de Sanidad Vegetal, mediante estudios para el Control Químico (Aguilar y Escobar, 2004); así como líneas de investigación para la Caracterización de los distintos linajes del agente causante de la Pyriculariosis del arroz en el Sur de España (Aguilar et al., 2006, 2007). Además, según datos del informe técnico del laboratorio de la Federación de Arroceros de Sevilla (FAS) en la campaña 2010, fue la principal enfermedad objeto de seguimiento. De tal forma que el número de muestras presentadas fueron 286 y de las que algo más del 24% fueron diagnósticos visuales para la detección precoz de la Pyriculariosis del arroz, así como un incremento en la demanda de consultas procedentes de zonas en las que no solía ser habitual la presencia (incidencia) de la enfermedad.

Como ya se indicó anteriormente, la Marisma arrocera del Sur de España se encuentra acogida al sistema de Producción Integrada (Aguilar y Navarro, 2000 2008). Dicho sistema productivo está controlado no solo por personal técnico cualificado sino que además deben reportar la información a los servicios públicos para que sea transferida a la totalidad de los sectores implicados en el cultivo del arroz, y por lo tanto asegurando la trazabilidad del producto.

Dado el interés de este cultivo en el Sur de España y su representación en el Marco Comunitario, y su representación alcista y de gran valor culinario y por ende, comercial, el gran número de métodos de Control (Exclusión, Erradicación, Resistencia, Protección) de esta enfermedad tales como el sistema de cultivo (fechas de siembra, aportes de fertilizantes, densidades de siembra, etc.), variedades o tratamientos fungicidas han generado una elevada cantidad de información que permiten el asesoramiento directo y personalizado para el productor. Así, Marín Sánchez et al. (2003) en sus trabajos sobre la Epidemiología de la Pyriculariosis del Arroz en cultivo por inundación, refería la importancia para llevar a cabo un manejo adecuado de los datos de campo y el posterior tratamiento de los mismos mediante un Sistema de Apoyo a la Toma de Decisiones o SATD, y por lo tanto pueden y deben aportar una línea e investigación para optimizar el control de la Pyriculariosis del arroz en las dos Zonas más importantes de este cultivo: Andalucía y Cataluña.

De tal forma que los trabajos de investigación objeto de este estudio pretenden mostrar una metodología como apoyo a la toma decisión en el asesoramiento técnico para que los profesionales del sector puedan acometer un plan de actuación en el que se incluyen objetivos a corto, medio y largo plazo, considerando la necesidad de agricultores y técnicos de disponer de datos para la toma de decisiones respecto al control y la conveniencia de obtener una base de datos que permita generar una
estrategia de lucha. Estos trabajos conducentes al conocimiento y futuro control de la enfermedad más importante del arroz en las Marismas del Guadalquivir.

1.3. Objetivos.

1. Analizar el comportamiento ante la Pyriculariosis de una colección de variedades de interés comercial y bajo Producción Integrada en el cultivo de arroz en el Sur de España.
2. Definición de un método de evaluación eficaz en campo como apoyo a la toma de decisiones a partir de la observancia y del monitoreo de la Pyriculariosis bajo Producción Integrada en el cultivo de arroz en el Sur de España.
3. Caracterización epidémica para mantener la vigilancia y previsión del riesgo en las zonas de ensayo, a partir de la medición de los factores microclimáticos (Humedad Relativa y Temperatura) obtenidos desde la cobertura vegetal hacia la lámina de agua, y que permita minimizar la posibilidad de desastres causados por el desarrollo del patógeno en el limbo foliar y medidos a través de la Severidad Foliar en el cultivo de arroz bajo Producción Integrada en el Sur de España.

1.4. Conceptos y definiciones

- Monitoreo: un proceso mediante el cual se reúne, observa, estudia y emplea información para luego poder realizar un seguimiento de un hecho particular.
- Patometría: Cuantificación de una enfermedad o medida del grado de desarrollo de patógeno sobre el hospedero.
- Incidencia: Proporción de individuos u órganos enfermos del hospedero con relación a los sanos (\% de plantas afectadas)
- Severidad: Proporción de la superficie - área afectada del hospedero. Respecto a la Severidad Foliar medida en el trabajo de investigación se hace referencia al Limbo de la Hoja (\% de limbo afectado)
- Big Data: o datos masivos en español, es el proceso de recolección de grandes cantidades de datos y su inmediato análisis para encontrar información oculta, patrones recurrentes, nuevas correlaciones, etc.; el conjunto de datos es tan grande y complejo que los medios tradicionales de procesamiento son ineficaces.

2. ANTECEDENTES

"El estudio profundo de la naturaleza es la fuente más fértil de descubrimientos

 matemáticos"Jean-Baptiste Joseph Fourier

Maximizar el beneficio económico con un impacto ambiental mínimo es un objetivo que impulsa la mejora de las Técnicas en Producción Vegetal he introducido por Marín et al. (1995). Así, la observación de la Intensidad de la Enfermedad (Incidencia y Severidad) y su cuantificación, ayuda al establecimiento de estrategias de control de las enfermedades con el fin de reducir o evitar las pérdidas de cosecha inducidas por los patógenos. Sin embargo la capacidad de éstos por adaptarse a los cambios introducidos con el Control, rompe tales expectativas, por lo que el problema esencial del Control se podría plantear en el marco de los estudios de Biología de Poblaciones con el fin de controlar el tamaño y composición genética de la población del patógeno, a fin de mantenerla a niveles tales que las pérdidas económicas sean aceptables por el agricultor. De tal forma que para alcanzar estos objetivos económicos se requiere de la sistematización en la adquisión, interpretación, evaluación, y aplicación de los datos obtenidos para el control: Sistema de Manejo de Enfermedades (Marín J.P., 2000)

Dados Los principales elementos del esquema introducido por Marín et al. (1996) diferencia tres niveles de conocimiento: Para un correcto uso del Control de una enfermedad, es necesario conocer con un razonable grado de exactitud las pérdidas del cultivo. (Zadocks et al., 1979; But et al., 1985). De esta forma, en las Marismas del Sur de España, no se han producido en los últimos 15 años unas mermas considerable atribuible a la Pyriculariosis y sobre las variedades analizadas, y sí unos rendimientos máximos en comparación con el resto de países europeos productores. Por lo tanto, el Sistema de Producción Integrada apoyado en el uso del Control Integrado y que se realiza en toda la superficie cultivada en la zona arrocera del Sur de España, necesita del diseño y el establecimiento de una metodología de monitoreo para desarrollar los siguientes puntos de interés:

1. Análisis de la importancia de las enfermedades, ya iniciados por MarínSánchez y Jiménez-Díaz, $(1978,1979)$ para el muestreo de enfermedades, las interacciones e importancia relativa de las mismas y con características de Mercado. Los resultados esperados en este trabajo de investigación podrán emplearse como base de la información para llevar a cabo los estudios epidemiológicos.
2. Estudios Epidemiológicos (desarrollos epidémicos, predicción de la enfermedad y predicción de pérdidas por las mismas, y estrategia de lucha contra las enfermedades).
3. Manejo de las Enfermedades (modelos y sistemas de avisos, análisis económicos y toma de decisiones, contraste y mejoras en el control, y desarrollo de Software).

2.1. Origen y extensión del cultivo del arroz.

El arroz es una planta fanerógama monocotiledóneas con la siguiente clasificación sistemática:

- ORDEN: Glumiflorales.
- FAMILIA: Gramineae.
- SUBFAMILIA: Poaceae.
- TRIBU: Oryzea.
- GENERO: Oryza.
- ESPECIE: O. sativa y O. glaberrima.

Las diversas especies de Oryza han sido objeto de numerosas clasificaciones. Inicialmente los criterios que se siguieron fueron morfológicos, más recientemente algunos autores han considerado como elementos diferenciales auxiliares también otros criterios: anatómicos, citogenéticos y filogenéticos.

La primera clasificación realizada por el botánico H. Baillon ${ }^{1}$ (1894) contemplaba 4 secciones con pocas especies del género Oryza. Posteriormente, se amplió a 19 especies y estudios más recientes reconocen 15 especies, a las que se suman especies adscritas a otros géneros, sinónimos y taxones no comprobados como especies, en número total de 23 (Tinarelli A., 1989)

Todas las formas cultivadas de arroz pertenecen a las especies: O. sativa y 0 . Glaberrima. El centro de diferenciación originario, para la primera de las dos especies, se considera el sudeste asiático: la India o la península de Indochina; por lo que respecta a la Oryza glaberrima, cultivada casi exclusivamente en África Occidental parece ser originaria del delta central nigeriano. Con motivo de la semejanza entre las especies cultivadas ya citadas, los taxonomistas se inclinan hacia la hipótesis de un origen común en una única forma ancestral. Se trata de O. perennis, presente también en América del Sur, además de Asia y África. Todos los autores reconocen que 0. sativa ha sufrido una evolución posterior diferenciando tipos que se han adscrito a la subespecie "Japónica" o a la "Índica".

Estudios taxonómicos más recientes subdividen la especie Oryza sativa en cuatro subespecies:

- Sativa (= Indica).
- Japónica.
- Brevindica.
- Brevis.

Las especies del género Oryza tienen un número de cromosomas diploide $2 n=24$ ó tetraploide $2 n=48$. Las especies cultivadas, sativa y glaberrima, pertenecen al primer grupo siendo ambas diploides, $2 n=24$.

Aunque se conocen ceremonias en China desde hace 5.000 años ligadas a la siembra del arroz, existen restos arqueológicos que demuestran la existencia del cultivo hace más de 7.000 años en el sur de Asia, creyéndose que la antigüedad del cultivo data de alrededor del 8.000 a . C. Los estudios realizados hacen pensar que el inicio del cultivo del arroz se dio en el sur de la India y Birmania, aunque puede que su origen fuese Indochina. De la India se propagó a China en el 3.000 a.C., de aquí se introdujo en Corea y posteriormente en Japón. En Filipinas entró en el 2.000 a.C. desde China. Desde el sur de la India el cultivo del arroz se propagó hacia Indonesia y Ceilán. El Imperio Persa expandió el cultivo del arroz hacia Asia Occidental y la cuenca mediterránea. El cultivo del arroz fue expandido por los musulmanes desde el siglo IV, comenzando por Egipto. Después lo introdujeron en la costa oriental de África del siglo VIII al X. Así con la invasión musulmana de la Península Ibérica el cultivo llegó a Marruecos y España, implantando el cultivo totalmente en la cuenca mediterránea. La ruta marítima de las Indias hizo en el siglo XVI que el cultivo llegase a Portugal, y de este país y España llega este mismo siglo a Italia. En el siglo XV - XVIII los portugueses,

[^0]holandeses y españoles introducen el cultivo de Oryza sativa en África, y en el siglo XVII los dos primeros lo introducen en América del Norte (Carolina), América del Sur (Brasil), las islas de Pacífico y Australia.

Fundamentalmente los mayores productores de arroz a nivel mundial son los países asiáticos ($91,3 \%$ con 501.980 .000 Tm .) por lo que, dentro del contexto mundial, las producciones que se dan en la Unión Europea son poco importantes (Aguilar, 2010), siendo España e Italia los únicos países comunitarios dedicados a este cultivo, abasteciendo fundamentalmente a dicho mercado interior. De las aproximadamente 100.000 hectáreas nacionales el arroz se sitúa sobre todo en Sevilla, Valencia, Tarragona y Badajoz; teniendo Andalucía cerca del 40% de la superficie total de cultivo en la península, con una producción en su mayoría de la variedad tipo Indica, de las que aproximadamente 35.000 hectáreas se encuentran en la comarca de "Las Marismas del Guadalquivir" de la provincia de Sevilla.

2.2. Origen del cultivo en las Marismas del GuADALQUIVIR.

Hace unos 18.000 años un extenso mar cubría toda la extensión de las Marismas cuyos términos municipales actuales eran Sevilla, los Palacios, Lebrija, Sanlúcar de la Barrameda, Pilas, Hinojos y Almonte, siendo localizada la desembocadura del Guadalquivir cerca de Coria del Río. La doble corriente tanto del río como del Océano Atlántico, dieron lugar a depósitos fluviales de contenido arcillolimoso y oceánicos que crearon una duna costera formada por las arenas onubenses. Todo ello favoreció el estrechamiento del río y que los arrastres fluviales se extendieran por el estuario colmatándolo. Las posteriores circunstancias climáticas hicieron que este estuario se acabase de rellenar y paulatinamente de allanar, como consecuencia de las periódicas inundaciones causadas por el río.

Debido a la horizontalidad del terreno, el río fue bifurcándose en brazos dando lugar a numerosos meandros. Gracias a la influencia de los caudales del río Guadalquivir y su afluente del Guadiamar se produjo un alejamiento de las aguas marinas. Las tierras comenzaron a emerger y a consolidarse con cada vez mayor solidez, dando lugar a suelos arcillosos, salinos, pobres en materia orgánica y de un color gris-azulado, que albergaba una escasa vegetación de plantas halófitas, donde sólo vivían aves acuáticas. Estas tierras, de escasos pobladores, eran de dominio público con aprovechamiento basados en la pesca, la caza y más tarde en la ganadería extensiva.

González Arteaga describía en su libro² que las primeras explotaciones agrícolas (pequeñas parcelas) se dieron en las zonas más productivas con cultivos forrajeros de

[^1]trigo, cebada, habas, etc. destinado al consumo personal y ganadero en las Marismas. A comienzos del siglo XIX (1813) comenzaron las primeras solicitudes de arrendamiento para el cultivo de tierras en la Isla Mayor (Sevilla), que se fueron haciendo extensivas a lo largo de las dos primeras décadas del mismo siglo. También a principios del siglo XIX se realizaron una serie de intervenciones orientadas a la mejora de la navegabilidad del río Guadalquivir y a la defensa contra las inundaciones, fueron las cortas del río. Así, a partir de 1816 la Compañía de Guadalquivir emprendió una serie de cortas o reducciones del cauce que modificaron profundamente el paisaje de las Marismas. La ley Cambó de 1918, pretendía estimular la inversión de empresarios capitalistas en la desecación y cultivo de tierras de las Marismas. Así surgió el proyecto de desecación y aprovechamiento agrícola de 63.000 ha de tierras de Marismas de la margen derecha del Guadalquivir, a cargo de la sociedad española la Agraria del Guadalquivir S.A. En 1926 la Compañía Islas del Guadalquivir S.A., a través de provechosas opciones de compra, comenzó la colonización de las Marismas del Guadalquivir. Este proceso se inició con la desecación y saneamiento de las Marismas y la explotación y la valoración de los terrenos saneados con el riego. En 1934 se creó la Federación Sindical de Agricultores Arroceros de España, como consecuencia de una serie de circunstancias entre las que se encontraban un exceso de producción que dio lugar a una crisis nacional, la perdida de mercado hispano-americano que comenzaba a producir su propio arroz y del mercado inglés que grabó las importaciones de arroz español. La presión realizada ante Federación Sindical de Agricultores Arroceros por la región levantina, desapareció prácticamente el cultivo de arroz en las Marismas y por lo tanto en Andalucía. Debido a esta circunstancia la compañía de Valoración de Marismas S.A. abandonó la explotación agrícola de las Marismas, paralizando sus proyectos y sus trabajos poniendo así en alquiler las tierras y dedicarlas a pastoreo. Posteriormente como consecuencia de las necesidades militares y económicas surgidas durante la Guerra Civil Española y mantenidas durante la II guerra Mundial y el bloqueo económico español, fomentaron de nuevo el comienzo del monocultivo del arrocero en las Marismas del Guadalquivir.

La entrada de España en la CEE dio para el arroz andaluz unas expectativas muy alentadoras, dados los rendimientos de la zona que estaban muy por encima de los países comunitarios productores y la situación deficitaria de la CEE. Además se introdujeron variedades de tipo Índica, de grano largo, procedentes de E.E.U.U. y de Filipinas, que eran subvencionadas por la CEE, y que fueron sustituyendo a las de tipo Japónica, de grano corto, hasta entonces mayoritarias.

2.3. El sistema de Producción Integrada en las Marismas del Guadalquivir.

El arroz sigue manteniendo, en términos generales, su condición de cultivo subsistencia, y permite alimentar a buena parte de la población mundial. Por otro lado, es un cultivo con exigencias edafológicas mínimas circunscribiéndolo a suelos poco fértiles (Lucas et al., 2009), de tierras anegables y marismas, por ello no aptos para
otros tipos de cultivos. La producción arrocera en la CEE se centra en los países del mediterráneo, destacando Italia y España, con un 56% y un 26% respectivamente del total comunitario (Morant y Navarro, 1997). Sevilla concentra más de 36.000 ha de cultivo en el estuario del río Guadalquivir, en Sevilla, con zonas ubicadas dentro de los límites del Parque Nacional de Doñana. La particularidad más notoria en este sentido obedece a la necesidad de aplicar prácticas de cultivo, de control fitosanitario y desarrollo de infraestructuras respetuosas con el medio ambiente. Debido al minifundismo de la explotaciones ($2-2,2$ ha de promedio) y al alto grado de trabajo asalariado, los costes de producción que se tiene en esta Comunidad superan con creces la media Nacional. Por otro lado, la proximidad entre las parcelas que constituyen la explotación, su sistema de riego independiente, alto grado de mecanización junto con las privilegiadas condiciones climáticas traen consigo que los rendimientos medios se encuentren un 10-15\% por encima de las comunitarias y entre los más elevados del mundo. El arroz, al ser un cultivo que es la base más importante de la alimentación en el mundo y debe protegerse del ataque de Patógenos como la Pyriculariosis del arroz.

Marín - Sánchez ${ }^{3}$ (2006) concluyó que es la enfermedad más destructiva en los arrozales de Andalucía y Cataluña y estimaciones de pérdidas de cosecha realizadas desde la década de los 70 en Andalucía y en la década de los 80 en Cataluña, supusieron una pérdida media de 68,5 euros / ha y año.

El método de control de dicha enfermedad más frecuente en el mundo es el uso de funguicidas, basado en un Sistema de Apoyo a la Toma de Decisiones (SATD). El uso de la resistencia está limitado por su escasa durabilidad debido a la variabilidad del patosistema y, en nuestras áreas de cultivo, por la falta de conocimientos sobre la estructura genética de la resistencia y de la virulencia que, hasta fechas recientes pero aún incompleto, tenemos del tema. La eficacia del control químico esta determinada por la materia activa fungicida, por la influencia climática en los desarrollos epidémicos anuales y por la climatología propia de nuestras zonas de cultivo. En relación a esta última, es difícil determinar el Umbral de Riesgo (UR) en un patosistema altamente influido por pequeñas variaciones de la temperatura y humedad relativa ambientales. Experimentos llevados a cabo por Marín et al. (2006) en Andalucía y Cataluña han demostrado la utilidad de un UR_foliar $=1 \% / \mathrm{m}^{2}$ con carácter general y de criterios fenológicos (EF) entre el inicio del espigado y final del mismo como momentos críticos de tratamiento de la enfermedad en panícula, pero no han podido explicar desarrollos epidémicos tardíos (más allá del EF: grano acuoso) ni la posible existencia de Resistencia parcial (tasa-reductora) entre las variedades cultivadas; esto, debido al desconocimiento de la distribución espacial y temporal de las virulencias y a la falta de conocimientos sobre los componentes de la resistencia (períodos latente e infeccioso, eficiencia del inóculo y tasa de esporulación) en los patosistemas actuales. Así, el

[^2]objetivo global de este proyecto era la optimización patológica y económica del Control de la Pyriculariosis del arroz, objetivo que fue concretado en los siguientes: a) Estudios epidemiológicos predictivos y comparativos para un SATD, b) Análisis de la eficiencia patológica y económica del control químico c) Caracterización de la reacción varietal mediante escala de tipos de infección, por sus componentes y por su efecto epidémico sintético y sobre la densidad de producción de inóculo, y d) Análisis poblacional de la virulencia: d.1) mediante la estimación de las frecuencias de patotipos en las zonas y d.2) mediante métodos biomoleculares.

Actualmente, están siendo desarrolladas estrategias de manejo de las enfermedades que mejoren los mecanismos de control inherentes y aseguren bajos niveles de infección en lugar del control químico, el cual contamina el medio ambiente, causa desequilibrios ecológicos y desarrollan la aparición de razas resistentes. Las características de monocultivo/siembras consecutivas en el mismo suelo propicia que el hongo inverne en los restos de paja y semilla.

Segarra (1994) en su Tesis Doctoral sobre Estructura de virulencia de la población Erysiphe graminis f.sp. hordei, indicaba que la cantidad de enfermedad observada es la expresión fenotípica de la interacción población planta x población patógeno x ambiente. Este hecho queda compendiado en el concepto 'pirámide de enfermedad formulado por Browning et al. (1977), el cual ilustra cómo la enfermedad está constituida por 4 elementos: huésped, patógeno, ambiente y tiempo.

El ambiente en el que la P. grisea viene desarrollándose en el Sur de España es en el del entorno de la Producción Integrada y que se define por Aparicio et al. (2003) como un sistema de producción agrícola de alta calidad que utiliza mecanismos de regulación naturales, que sean respetuosos con el medio ambiente, mantengan la rentabilidad de las explotaciones agrícolas, y las exigencias sociales de acuerdo con los requisitos que se establezcan para cada producto en el correspondiente Reglamento de Producción. El primer Reglamento Específico de Producción Integrada del Arroz se publica el 28 de agosto de 1.997 en Andalucía, aprobado mediante Orden de 12 de agosto de 1997, poniéndose en marcha la Producción Integrada en arroz en 1998, con 10.000 ha.

Durante el año 2.000 se modifica el Reglamento Específico en la Orden de 18 de abril, publicándose en el BOJA no 57 de 16 de mayo, ya que así lo aconsejaban diferentes aspectos técnicos. Posteriormente, en el año 2.001 se realizó una actualización del Reglamento Específico de Producción Integrada de Arroz, modificándose el Cuadro no 3, relativo a las Estrategias de Control Integrado, aprobada en la Orden de 8 de junio de 2.001, Boja no 74 de 30 de junio con vigencia hasta 2.002. Nuevamente se publicó un nuevo Reglamento Específico en el BOJA no 102 de 31 de agosto, en el que se incluye la renovación de los compromisos adquiridos por los agricultores de Producción Integrada para otros cinco años, y además se introducen ciertas modificaciones en la Normativa de Producción Integrada.

Durante el año 2.003, se publica en el Boja no 90 la orden del 5 de mayo, por la que se establecen normas de aplicación del régimen de ayudas a la utilización de métodos de producción agraria compatibles con el medio ambiente, donde la medida no 9 contempla la Producción Integrada del arroz (Anexo no 1).

Este reglamento abre la posibilidad de incorporarse al sistema de Producción Integrada a toda aquella superficie de arroz que no esté incluida en zona desfavorecida.

Figura 5. Evolución de la superficie arrocera bajo Producción Integrada en Andalucía 2003 2012. Fuente: web de la Consejería de Agricultura, Pesca y Desarrollo Rural de la Junta de Andalucía. Producción Integrada de Andalucía. www.cap.juntaandalucia.es/agriculturaypesca/pintegrada/index.html Elaboración Propia

En la actualidad en el Reglamento Específico de Producción Integrada ${ }^{4}$ en el cultivo de arroz en Andalucía, se incluye una estimación de riesgos y unos criterios de intervención así como evaluaciones de daños para poder establecer un umbral de tratamiento contra las plagas y enfermedades. Los distintos organismos provocan daños a lo largo de los diferentes estadios del cultivo provocando mermas en las producciones. Para evitar estos daños es necesario comprender las interacciones que se establecen entre las enfermedades y el cultivo. Su conocimiento permitirá unas técnicas de cultivo más eficientes evitando el uso excesivo de tratamientos.

[^3]
2.4. Estados fenológicos Y variedades.

Para una correcta aplicación de la mayoría de las prácticas de cultivo (fitosanitarios, manejo del agua, recolección, etc.) es fundamental conocer el estado fenológico o momento en que se encuentra la planta de arroz. Dentro de cada fase consideraremos varias etapas o períodos fisiológicamente distintos. Finalmente cada etapa se subdivide en diversos estados fenológicos con el propósito de definir, de forma precisa, cada momento determinado, o período muy corto, de la vida de la planta. La escala más utilizada para la identificación de los estados fenológicos del arroz se denomina BBCH^{5}, la cual divide la vida de la planta en 100 estados fenológicos (también denominados códigos BBCH), desde el 00 al 99.

Para la descripción de los distintos estados fenológicos, la escala se basa en características externas de la planta claramente reconocibles, tomando en consideración, como regla general, el desarrollo del tallo principal. Se basa, pues, en las características de una planta individual. Si usamos esta escala para describir el estado fenológico de una población de plantas, es necesario llevar a cabo un muestreo y determinar los correspondientes valores medios. También son útiles otras escalas, mas reducidas y manejables (ver Figura 6), donde solo aparecen las etapas y estados fenológicos más destacables y muy utilizadas por los Técnicos de Producción Integrada (Aguilar, 2010)

El ciclo completo de la planta de arroz en nuestra área de cultivo dura entre 140-170 días (ver Figura 6) y se puede dividir en tres fases: la fase vegetativa, desde la germinación de la semilla hasta el final de ahijamiento; la fase reproductiva, desde el inicio de la formación de la panícula hasta el final de la floración; y la fase de llenado y maduración, que abarca desde la fecundación hasta la maduración completa del grano.

En Andalucía, debido a la frecuente aplicación de elevadas dosis de siembra, con la consiguiente alta densidad de plántulas, suelen brotar sólo entre dos y seis hijos primarios por plántula. En general las variedades tipo Índica ahíjan más que las Japónicas.

[^4]

Figura 6. Estados fenológicos y fenología media en el cultivo de arroz bajo Producción Integrada en las Marismas del Guadalquivir. Fuente: Aguilar (2001).

La respuesta varietal (Cultivares) de arroz reaccionan de forma diferente a P. grisea como consecuencia del extremado potencial de variabilidad del organismo causal; diferentes razas patogénicas (Sazaki, 1922; Tanaka et al., 1979), según localidad y tiempo; diferencias en el nivel y tipo de resistencia en los cultivares; y factores ambientales que afectan la expresión de la resistencia (Ou, 1980). Por otro lado, además de reaccionar de forma diferente de un país a otro y de una región o localidad a otra (Xia et al., 1993). También lo hacen de una estación a otra dentro de la misma localidad debido a que la cantidad, composición y la frecuencia de las razas de Pyricularia pueden cambiar de un mes a otro (IRRI, 1967). Así, Quamaruzzaman y Ou (1970) revelaron que algunas razas estuvieron presentes durante la mayoría del tiempo, otras lo fueron periódicamente y otras ocurren sólo una vez.

Ciertos cultivares fueron testados en campo, donde la naturaleza del inoculo (composición de razas) era desconocida, para su resistencia a la seca del arroz, si bien ellos manifestaron resistencia en estados de hoja, se observó que fueron susceptibles en el nudo coincidiendo con estados más avanzados de desarrollo del cultivo y viceversa (Ito, 1965; Chang et al., 1965, Willis et al., 1968) Estas observaciones han conducido a pensar que existen varios genes envuelto en la manifestación de la enfermedad. Durante mucho tiempo la pregunta de la reacción de la quemazón de las diferentes partes de la planta no fue clara (Takahashi, 1965; Ou, 1965). Ou y Nuque (1963) pusieron de manifiesto en ensayos de campo que plantas mostrando resistencia en hojas, más tarde llegaban a ser susceptibles a nivel de cuello; esto es principalmente debido a la presencia de razas del hongo en estados tardío. Okamoto y Matasumuto (1964) encontraron que cultivares moderadamente resistentes pueden cambiar a susceptibles conforme progresaba el ensayo en el campo, mientras que
variedades altamente susceptibles y resistentes conservan esta cualidad durante el tiempo que duraba el ensayo.

Estudios llevados a cabo por Aguilar (1998) pusieron de manifiesto que todos los cultivares utilizados en la Marismas del Guadalquivir era susceptibles a la población existente de Pyricularia en la zona, ellos deberían ser sustituidos por cultivares resistentes que garanticen la producción del cultivo.

En general se distinguen dos períodos críticos en los cuales las plantas de arroz son más susceptibles a los $35-40$ días de edad del cultivo (INFECCIÓN FOLIAR) y en floración (INFECCIÓN PANICULAR)

Figura 7. Morfología de la panícula de la planta de arroz. Fuente: Aguilar (2001)

2.5. El Riego en el cultivo de Arroz

En el cultivo del arroz, la importancia del uso del agua, puede ser mayor que la del mismo terreno. Las necesidades de agua varían durante el desarrollo vegetativo; las
fases más críticas son principalmente la germinación y el periodo que transcurre entre el comienzo de la formación de las flores hasta la de las cariópsides. La demanda total de agua depende de los valores de la evapotranspiración y de la percolación, o sea, pérdidas en superficie y por percolación. La evapotranspiración y evaporación varían según la zona y el momento del día y dependen de la temperatura, humedad relativa del aire y el viento. El estudio del agua, desde el punto de vista de la disponibilidad se relaciona con tres aspectos: la valoración de los aspectos meteorológicos, la medida de los caudales de los cursos de agua y la evaluación de los contenidos hídricos del acuífero, más o menos profundo, mediante las estaciones piezométricas.

Por las condiciones y formas de cultivo en la zona del Mediterráneo, se excluye la posibilidad de cultivar el arroz sin inundación como ocurre en los países arroceros de la zona ecuatorial (Monrroe et al., 1992) En estos países suministran el agua mediante los riegos periódicos. El manto de agua ejerce ciertas funciones frente a las condiciones ambientales: actúa como regulador térmico cuando la germinación y desarrollo del arroz sean nulos, o menores de lo normal a consecuencia de las bajas temperaturas. Y detiene o impide la difusión de malas hierbas es vehículo de los nutrientes primarios o secundarios, que disueltos o en suspensión, se depositan en el terreno y se reabsorben por los órganos vegetativos de la planta, transportador del oxígeno que las plantas no encuentran en el terreno. La primera acción que consigue el agua tras la inundación, es hacer que el terreno, normalmente alcalino, tenga una reacción neutra, por la falta de oxígeno. El pH del anegado está próximo a 7 . Durante el periodo de formación de planta embrionaria y crecimiento posterior de la plántula, el agua de riego es la única fuente de oxígeno para las raíces como consecuencia del ambiente reductor que se crea con la inundación. Solo cuando la planta sea adulta, la respiración foliar y su amplio sistema aéreo permitirán que llegue a las raíces el oxígeno necesario para su metabolismo.

El agua tiene también una función moderadora o reguladora (tampón) de la temperatura del aire que rodea a la planta. Los daños que causan las temperaturas extremadamente bajas o altas pueden disminuirse o evitarse mediante la modificación de la altura de la lámina de agua. Podemos, por ejemplo, disminuir el riesgo de esterilidad de las espiguillas en formación protegiéndolas de condiciones relativas de frío mediante una adecuada elevación del nivel del agua (con ello se logra incrementar la temperatura hasta en un par de grados). Desde otro punto de vista, durante el verano la mera presencia y circulación del agua permite refrescar el ambiente del arrozal, mejorando su actividad fisiológica.

Respecto al Manejo hidráulico, el agua de riego realiza misiones concretas a través de la intervención del regador que distribuye, limita e interrumpe la circulación de agua, o bien retira el agua de las parcelas de cultivo cuando es necesario. Después de la entrada de agua en el arrozal, la semilla tiene que embeberse de agua antes de comenzar la germinación, transcurrirán al menos 6 u 8 días. No hay que retrasar la siembra ya que el agua y las temperaturas altas favorecen la vegetación de las criptógamas parásitas, de las algas, la reproducción de los insectos, y un retraso en la siembra pondría en desventaja a la plántula frente a estos enemigos. Si las
temperaturas del aire son bajas, menores de 12 ó $15^{\circ} \mathrm{C}$, es conveniente mantener una capa de agua menor de 10 cm de profundidad. Su circulación será tanto menor, e incluso estanca, cuantos más fríos se encuentren el aire y el agua utilizada. La disminución de la corriente de agua favorece el aumento de la temperatura del agua, a consecuencia de la acción del sol y de las fermentaciones de las materias orgánicas presentes en el terreno. Cuando la temperatura del aire es alta y la radiación solar fuerte, el agua tiende a calentarse excesivamente produciendo una alcalinización elevada de ella. El volumen de oxígeno disuelto en el agua es inversamente proporcional a la temperatura. El flujo de agua con más velocidad aporta nuevas cantidades de oxígeno. Si las aguas están contaminadas y sucias, la proporción de oxigeno será menor, por tanto la altura del agua deberá mantenerse baja y con circulación lenta. La retirada del agua no tiene por qué ser siempre completa. En terrenos sueltos, o en el caso de baja disponibilidad de agua se puede disminuir el caudal de entrada hasta que se mantenga la superficie del agua a nivel del terreno y se favorezca el intercambio de oxígeno entre el aire y el suelo. Si se produce una disminución en la densidad de plantas, bien por ataques de patógenos, fermentaciones o causa desconocida, lo mejor es reducir al mínimo la capa de agua y distribuir en las bocas de entrada o "piqueras" un insecticida; después se restablecerá el riego. Un método similar es empleado ante la presencia de algas pardas o azules, hasta que las plantas embrionarias recuperan el desarrollo autónomo. En zonas clásicas del cultivo del arroz y en condiciones normales, el manejo del agua puede seguir la siguiente metodología:

- Entrada del agua hasta un nivel mínimo de inundación de 5 ó 6 cm .
- Desmonte de tierras donde sea necesario y compactación en terrenos excesivamente permeables.
- Suministrar agua hasta que la capa tenga 10-15 cm momento en que se distribuye la simiente.
- Hacer fluir lentamente el agua para que durante 10-20 días se mantenga un nivel mínimo de la misma.
- Hacer desecación de arraigo cuando sea posible y necesario. Caso de infestaciones, se vierte el producto en las piqueras en el momento de la nueva entrada de agua.
- Restablecer el nivel de agua de 3 a 8 días después del comienzo de la desecación, hasta los 10 ó 12 cm . de profundidad de la capa.
- Según el tipo de herbicida, se mantendrá la circulación del agua o se detendrá, durante un tiempo inversamente proporcional a la temperatura del agua. La toxicidad de algunos productos en el arroz, es tanto más probable, cuanto mayor es el tiempo de falta de corriente del agua.
- Sucesivamente el nivel se mantendrá entre los 5 ó 10 cm .

En la siembra habrá un nivel de agua de 0 a 5 cm ., en la germinación 10 a 15 cm . y en emergencia, 4 a 5 cm . Posteriormente, el nivel de agua acompaña al desarrollo de la planta. Las variedades susceptibles al encamado mejoran esta característica si en el mes de Junio o Julio se realiza una desecación del arrozal durante 10 ó 15 días. La
desecación del arrozal al final del ahijamiento aumenta la absorción de los siguientes nutrientes: $\mathrm{N}, \mathrm{K}_{2} \mathrm{O}, \mathrm{CaO} \mathrm{y} \mathrm{SO}_{2}$. Por consiguiente se produce un aumento de peso de la panícula madura de aproximadamente el 3-8\%. Esta práctica es aconsejable en la generalidad de los casos, una excepción puede ser la zona de las Marismas del Guadalquivir, donde debido a la naturaleza de sus suelos, la práctica de la "seca" aumenta la salinidad más allá de los limites tolerables para el cultivo. Las velocidades óptimas de la circulación del agua dependen de la temperatura, la fase vegetativa, el tipo de agua disponible y la cantidad de materia orgánica sin descomponer enterrada con las labores.

2.5.1. DISPONIBILIDAD DE AGUA.

La escasez del agua y la dificultad de manejar grandes cantidades sobre superficies extensas, provoca que cualquier razonamiento sobre el manejo del agua y su momento sea problemático en la práctica. La eliminación del trasplante ha desplazado en el tiempo los momentos de la demanda del suministro hídrico, concentrándola en el momento de la siembra. Utilizando semillas de alta germinabilidad el riesgo por las temperaturas bajas del agua es menor. En el caso de suministros de agua tardíos, puede ser indispensable realizar la siembra con el terreno seco, e inundando 15 ó 20 días después. En Sevilla, donde la sistematización más reciente, con una red de riego y desagüe adecuada, permite la total independencia del riego de acuerdo con las necesidades particulares de cada finca, siempre y cuando la Confederación Hidrográfica del Guadalquivir lo permita en función de las reservas de agua existentes. El arroz tolerará la salinidad del agua hasta un límite de 1 g CINa / litro de agua y para mantener saturado el suelo hacen falta $2,2 \mathrm{I} / \mathrm{seg}$. de agua. (Aguilar y Borjas, 2005)

2.6. ClimA

La capacidad de adaptación del arroz es extremadamente amplia y no es conocida completamente. Su cultivo se realiza en los diversos países del mundo en condiciones de ambiente muy dispares y diferentes: del Ecuador al paralelo 47° de latitud norte; en seco o con 5-6 metros de altura del nivel de agua; en condiciones de inundación o con el agua de lluvia y la humedad del aire como única aportación hídrica; a nivel del mar o a 2.000 metros de altitud; en terrenos arcillosos, en los turbosos o con arena (Elias L. y Castellvi F., 1996)

2.6.1. LA TEMPERATURA.

La cantidad de calor óptima, mínima y máxima que la planta de arroz necesita para su desarrollo es proporcional a la duración del ciclo vegetativo y varía en el transcurso de las fases vegetativas.

La germinación depende de la temperatura que se registra durante la siembra: la optima $28-30^{\circ} \mathrm{C}$. Durante las diversas fases vegetativas, temperatura y luz están estrechamente relacionados. En los primeros estados de desarrollo tiene una mayor influencia la temperatura para la diferenciación de los órganos vegetativos; después junto con la luz, determina la altura de la planta, su desarrollo, duración de la fase vegetativa, intensidad y rapidez del ahijamiento. El crecimiento del tallo, hojas y raíces tienen su óptimo en los $25^{\circ} \mathrm{C}$. Con temperaturas superiores a esta, las plantas crecen más rápidamente, pero los tejidos se hacen demasiado blandos, siendo más susceptibles a las enfermedades. Cuando la temperatura desciende por debajo de cierto nivel, la intensidad de los distintos procesos fisiológicos, fotosíntesis, respiración, etc., se reduce notablemente. La disminución que experimenta la respiración por reducción de los niveles térmicos es superior a la de la fotosíntesis. La fase reproductiva acusa más las condiciones térmicas que la vegetativa por el elevado porcentaje de esterilidad que producen las temperaturas bajas. La temperatura crítica para la inducción de la esterilidad se sitúa entre los $15^{\circ} \mathrm{C}$. El mínimo de temperatura para florecer se considera de $20^{\circ} \mathrm{C}$. El óptimo, de $26^{\circ} \mathrm{C}$. Las fases más sensibles al frío son floración y antesis, y en ese orden. En un día frío las flores raramente se abren, pudiendo permanecer así muchos días en espera de condiciones mejores. La temperatura crítica para maduración se encuentra entre los 20 y $28^{\circ} \mathrm{C}$. Si en este periodo se dan temperaturas bajas, hacen disminuir el peso de 1.000 granos, y el porcentaje de granos completamente maduros es cero. Respecto a la Integral Térmica podemos decir que cuanto mayor es el valor anual, mayor es la producción.

2.6.2. LA LuZ.

Como en cualquier otro vegetal, la intensidad, calidad, duración de la exposición y oscilación diaria luz-oscuridad, condicionan la formación y crecimiento de la planta. Por término medio, por cada metro cuadrado de superficie incide una cantidad de energía luminosa, útil para la planta, de 5.000 Kcal al día, suficiente para producir 70 Kg de sustancia seca, aunque el coeficiente de utilización suele ser el $20-22 \%$. La acción realizada por las radiaciones luminosas es diferente no solamente por las características de esta, sino también por la respuesta de la variedad, y distinta también dependiendo de la fase en que se encuentre la planta. El intervalo térmico óptimo para realizar la fotosíntesis en las variedades de tipo Índica oscila entre los 25 y $35^{\circ} \mathrm{C}$; para las del tipo Japónica está entre los 18 y $35^{\circ} \mathrm{C}$. Las necesidades de luz no son constantes durante todo el desarrollo de la planta; en la fase embrionaria y de plántula el arroz tiene escasas exigencias, que aumentan gradualmente durante su desarrollo.

El periodo más crítico por la exigencia de radiación solar se sitúa entre el inicio de la formación embrional de la panícula y los 10 días anteriores a la maduración completa ya que influye sobre el número de flores por unidad de superficie cultivada, así como 50 días antes de la recolección. La relación energía radiante / horas de sol en los dos meses anteriores a la recolección tiene gran influencia sobre la producción
final. La intensidad luminosa influye en la duración de las fases vegetativas y en algunas funciones fisiológicas. Una reducción de la intensidad tiene efecto negativo en la producción. En cuanto a la naturaleza de las radiaciones, estas son más activas para la síntesis clorofílica cuanto menores son sus longitud de onda.

2.6.3. La Pluviometría.

La planta de arroz, como otra cualquiera, necesita de agua para su desarrollo, en cantidad suficiente. Las precipitaciones atmosféricas durante todo el ciclo de cultivo del arroz, en cualquier zona española, no son suficientes para compensar las pérdidas que se producen por evapotranspiración y percolación, por lo que hay que recurrir al riego. Las pérdidas por transpiración se han llevado a cabo en Japón en experimentos en unos 200 g de agua por gramo de materia seca, lo que equivale a unos $4.000 \mathrm{~m}^{3} / \mathrm{ha}$, aunque esto varía según el ciclo vegetativo de la variedad o la naturaleza del terreno. Las precipitaciones estivales, caso de que las hubiera, son importantes para la oxigenación en la rizosfera y por la pequeña cantidad de nitrógeno atmosférico y anhídrido carbónico que suministran. Activan por tanto los procesos de nutrición y respiración aunque también tienen efectos negativos, como la caída de temperatura, una menor intensidad luminosa, etc.

2.6.4. Humedad y Evaporación.

Estos dos parámetros están estrechamente correlacionados ya que la evapotranspiración es función inversa de la humedad relativa del aire. Grandes oscilaciones de estos factores, junto con las de la temperatura, influyen sobre la floración y la polinización; también son determinantes para la presencia y desarrollo de enfermedades criptogámicas. Durante el otoño las horas disponibles para la recolección del arroz están en relación inversa con el contenido de humedad del aire y, por consiguiente, con el exceso de rocío; el grado de vellosidad de la espícula tiene una gran importancia, ya que es responsable de la retención del rocío nocturno sobre el grano.

2.6.5. Los Vientos.

El efecto del viento en la producción solo será decisivo en algunos casos o en ciertos lugares de cultivo. Después de la germinación, en terrenos arenosos o excesivamente finos, los vientos, aunque no sean excesivamente fuertes, arrancan las pequeñas plantas y las arrastran a los márgenes de la parcela. El fenómeno se agrava si se mantiene un nivel alto de la capa de agua. Los vientos secos y cálidos pueden ejercer acción de desecar y provocar quemaduras, heridas en las hojas; además impiden la fecundación de la flor o determinan el aborto de la cariópside. El encamado
está frecuentemente causado por fenómenos tormentosos acompañados de vientos, con más gravedad en los cultivos excesivamente nitrogenados y en plantas con el sistema radicular poco desarrollado.

2.7. El suelo

De forma general, podemos clasificarlo como un suelo propio de zona templada, con aportación escasa de agua que la califica de semiárida (Porta et al., 2003) Su origen subacuático le proporciona un carácter diferenciador: la salinidad. Son suelos que pueden ser incluidos dentro del grupo de los que presentan fuertes concentraciones de sales solubles como aspecto más destacado de su composición química. Su textura física está caracterizada por elementos finos, arcillosos o limosos, de diámetro inferior a las 50 micras, que les proporcionan su alto grado de impermeabilidad. Pertenecen al grupo de los solochanks o suelos salinos propiamente dichos, cuyo rasgo más sobresaliente es su carácter calizo. En condiciones naturales presentan, generalmente, un horizonte A de 15 a 20 cm , de color pardo gris claro, enraizado y con humus procedente de las halófitas y gramíneas. Este horizonte tiene en verano una estructura grumo-poliédrica con eflorescencias salinas en las grietas, que se hace más migajosa al ser humedecida. Más profundo, entre 20 y 30 cm , aparece un segundo horizonte A, de rasgos similares al anterior, pero desprovisto de raíces y más compacto. Finalmente, un horizonte G u horizonte gley, entre 30 y 100 cm , más amarillento, con manchas rojizas de hidróxido de hierro y de la misma estructura y compacidad que los anteriores. En conjunto, se incrementa en profundidad el contenido en sales. Desde el punto de vista químico, hay abundancia de cloro y sodio principalmente, aunque también hay sulfatos y bicarbonatos. El pH es superior a 8 y el contenido de los distintos elementos asimilables es variable, más alto siempre en potasio que en fósforo. Sus proporciones en materia orgánica son siempre bajas, pero mayores en terrenos de pasto que en los cultivados. Estos suelos se caracterizan por un drenaje defectuoso y por la presencia de sales solubles. De estas características, especialmente del efecto tóxico de las sales solubles ha dependido estrechamente su uso. El costo elevado de las obras de drenaje y lavado ha impedido que se generalice una modificación total de estas características, esto también supone un aprovechamiento ganadero extensivo. Concluyendo y circunscribiéndonos al suelo de la Marisma del Guadalquivir dedicado al arroz, tienen las siguientes características:

- Carecen de elementos gruesos.
- La suma de limo y arcilla llega al 80%.
- La proporción de carbonatos es del 25%.
- El pH tiene valores máximos de 8,5\%.
- La materia orgánica gira alrededor del $1,5 \%$.
- La cantidad de sales solubles oscila sobre el 15% o, siendo cloruros la mitad.
- La reacción entre cationes alcalinos y alcalinotérreos varía del 25% al 50%.

Todas estas características muestran la amplia horquilla de adaptación que tiene el arroz en cuanto a tipo de suelos. El arroz permite aprovechar terrenos salinos, pues
el sistema de riego mediante inundación y los colectores de desagüe, constituyen en sí un tratamiento para mejorar estos suelos. No obstante, no se va a alcanzar un endulzamiento del suelo, ya que las reservas salinas almacenadas son enormes y no serán eliminadas durante los días que se riega al año. Además el suelo arcilloso y el clima árido son un impedimento más para el endulzamiento a corto plazo.

2.8. Manejo agronómico

El único sistema de cultivo del arroz que se lleva a cabo en España es aquel en el que se realiza la inundación del terreno. Sin embargo, en zonas tropicales y ecuatoriales el cultivo sin inundación puede alternarse frecuentemente con el practicado en agua. En Italia se están efectuando investigaciones tendentes a la obtención de genotipos adaptados al cultivo mediante riegos por turnos, sin inundación. El tipo de suelo que caracteriza al arrozal sevillano imposibilita el cultivo de otra planta distinta al arroz con unas mínimas garantías de éxito. En Italia, se puede cultivar el arrozal de manera permanente o estable, de forma semipermanente y en rotación. En la zona donde sea posible, al cultivo del arroz le sigue un cultivo de trigo, pero más frecuentemente se prefiere la cebada. Respecto a Los criterios de sistematización del arrozal han experimentado un cambio radical como consecuencia del nacimiento y difusión de la mecanización. Es necesario hacer diseños cada vez más racionales del arrozal y trabajar con las dimensiones adecuadas de superficies para emplear convenientemente las máquinas en las distintas operaciones de cultivo. Cuando la totalidad de las operaciones de cultivo se realizaban a mano, podíamos cultivar arroz incluso si el terreno no se había acondicionado para tal fin mediante radicales obras de sistematización. Estas eran muy costosas teniendo en cuenta que los limitados medios entonces disponibles eran carros cargados manualmente y arrastrados por tracción animal. En estas circunstancias, las parcelas se trazaban siguiendo las curvas de nivel naturales. La aplicación de este criterio producía la subdivisión de la finca en numerosas y pequeñas parcelas. El proceso de modernización de la maquinaria hace que al aumentar las capacidades de trabajo sea necesario trabajar en unidades de mayor superficie. Los medios mecánicos que se emplean para la sistematización de los arrozales son los mismos que en otros sectores agrícolas, y generalmente no pertenecen a la explotación debido a que su elevado coste impone una utilización que aquella no puede dar.

2.8.1. LABORES

El terreno en el que se cultiva arroz en régimen de inundación durante todo el ciclo de cultivo se encuentra en condiciones reductoras, no del todo favorables para el desarrollo de las raíces. Es conveniente provocar la oxigenación periódicamente del terreno y que se modifique la estructura mediante el volteo del terreno. La aireación del terreno es tanto más importante y conveniente cuanto más arcilloso es el suelo y
mayor número de años se prolonga el cultivo del arroz y así de esta forma obtendremos una estructura granular, más eficaz y de mejor conservación del suelo. La preparación del terreno se puede realizar durante el otoño o la primavera; de forma profunda o superficial; con arados, etc. Cuando se realiza en otoño se consigue una mineralización más intensa del nitrógeno orgánico y de la materia orgánica incorporada; además se drenan mejor las aguas de lluvia. El laboreo otoñal puede producir caídas de fertilidad en aquellos suelos ligeros y sueltos, con poca materia orgánica, porque acelera la nitrificación del nitrógeno y la consiguiente percolación y desnitrificación. En condiciones normales, la profundidad de labor se debe mantener entre los 15 y 20 centímetros.

LA NIVELACIÓN: La existencia de zonas altas y bajas en el arrozal no permite una adecuada y uniforme circulación del agua, por tanto va a disminuir o anular la eficacia de los tratamientos herbicidas e impide que la planta tome de forma uniforme los elementos fertilizantes incorporados, y aumenta o disminuye, según los casos, el ahijamiento regular. Por tanto, para un buen resultado técnico-económico en el cultivo del arroz, es principal condicionante que la superficie del terreno sea lo más plana posible. El primer paso es dar un pase de grada para la rotura y desmenuzamiento de terrones grandes dejados en la labor de alzar, formando pequeños terrones de $2-5 \mathrm{~cm}$ de diámetro. Conseguimos así una nivelación ligera del terreno y la incorporación de los fertilizantes distribuidos antes y después del laboreo. Sería conveniente formar con la grada de púas, discos o cualquier otro medio, pequeños surcos longitudinales de pocos centímetros de profundidad, en los que la semilla se detuviera al ser arrastrada por los movimientos del agua. Después de la labor de grada se procede a soltar el agua en las parcelas hasta que la capa de agua sea de $3-5 \mathrm{~cm}$ de altura. Si la textura del suelo no permite el correcto manejo del tractor con el terreno inundado habrá que nivelar antes de la entrada del agua. Aunque existen equipos experimentados, hay zonas donde actualmente se prefiere el uso del tractor con "ruedas de jaula" simple o doble, si se mecanizan las labores con el terreno inundado -fangueo-. La pendiente del terreno no debe sobrepasar el uno por mil, incluso nivelar a cero, lo que permite hacer tablas de hasta 15 ha.

La MAQUINARIA agrícola igual que el resto de los cultivos, el arroz ha sufrido un proceso de transformación y modernización en cuanto a la mano de obra y maquinaria utilizada en el último medio siglo. De tal forma que se ha pasado de necesitar unas 800 horas de mano de obra por hectárea cultivada a las 50 en la actualidad o incluso 30 en algunas fincas altamente mecanizadas. En parte es por la utilización en la actualidad de la escarda química y de la recolección con cosechadora integral, que con un solo pase realiza las operaciones de siega, formación, atado, transporte y trilla, las cuales antes acumulaban muchas horas de trabajo manual. El considerable volumen de trabajo para preparar, sembrar y recoger el arroz que realizaban antaño los jornaleros se lleva acabo en nuestro tiempo mediante el empleo de un gran número de máquinas.

La SIEMBRA, actualmente, la siembra directa predomina de tal forma que, en la práctica, es el único método de cultivo con máquina o por avión, es la práctica más generalizada y casi exclusiva. La cantidad de semilla a emplear va a depender de
muchos factores, como las características de la variedad, el medio ambiente, patógenos, etc., pero en condiciones normales de cultivo pueden ser suficientes 140 150 Kg de semilla por hectárea, para variedades de grano redondo y pequeño, y 170190 Kg para los otros tipos. Las dosis en Sevilla son mayores, hasta 200 Kg , quizás porque el agua y el suelo son salinos y la germinación no es tan buena. La densidad óptima en las variedades de panícula compacta y tallo grueso es de 250-300 tallos por metro cuadrado en las de mayor ahijamiento, panícula ligera y tallo menos desarrollado la densidad seria 300-400 tallos por metro cuadrado. Es preferible una siembra relativamente densa aunque sea de temer un encamado más fácil, produce una maduración más uniforme y se compensan las pérdidas ocasionales por fenómenos negativos adversos. La siembra debe hacerse con unos 5 cm . de altura de agua, sin tapar el arroz. Cuando la siembra se hace con avión, éste no debe volar alto, pues en dicho caso la semilla penetra demasiado y no nace. El avión debe sembrar cuando no haya viento. En la Marisma del Guadalquivir la siembra suele hacerse en la primera quincena de Mayo.

2.8.2. LA Fertilización.

El problema de la fertilización del arrozal es una cuestión muy amplia y compleja por la dificultad de establecer modelos fijos en las condiciones tan diferentes en las que se cultiva el arroz.

Un terreno hipotético ideal para el arroz tendría:

- Una buena capacidad de retención hídrica en relación con una moderada permeabilidad (terreno franco)
- Una gran capacidad de intercambio catiónico.
- Un buen porcentaje de saturación de bases de $\mathrm{Ca}^{++}, \mathrm{K}^{+}$y NH_{4}^{+}.
- Un alto, pero no excesivo, contenido de materia orgánica.
- Un valor inicial del pH próximo a 6, que asegure un buen abastecimiento de N, K, Ca, Mg y Si, Zn, Cu, Mo y otros oligoelementos.
- Condiciones que no favorezcan fenómenos de toxicidad derivados de estados químicos del $\mathrm{Fe}, \mathrm{Al}, \mathrm{CO}_{2}$ y productos tóxicos de la descomposición de la materia orgánica.

Las indicaciones sobre la cantidad y forma de utilización de los abonos se tienen que basar en los resultados de las experiencias de campo.

El Abonado Nitrogenado: El nitrógeno es el elemento nutritivo fundamental de todas las plantas. Confiere a la planta vigor vegetativo y le permite movilizar y utilizar los otros elementos. Un óptimo contenido nitrogenado de la planta desde el ahijamiento máximo hasta la formación de la panícula, asegura la adecuada densidad de panículas fértiles. En terrenos con cultivo anual arrozal, como es nuestro caso, los abonados nitrogenados pueden alcanzar a veces cantidades elevadas, del orden de

160 a 180 o incluso $200 \mathrm{Kg} / \mathrm{ha}$; para esto hay que tener la precaución y la posibilidad de cultivar variedades de arroz altamente resistentes al encamado y a parásitos fúngicos. En los arrozales de las Marismas del Guadalquivir, en concreto, se emplean $750 \mathrm{Kg} / \mathrm{ha}$ de sulfato amónico.

Las dosis de nitrógeno aplicadas en las Marismas suelen estar comprendidas entre 130 y $180 \mathrm{Kg} / \mathrm{ha}$ (en el caso del nitrógeno una unidad es equivalente a un kilogramo). De acuerdo con el Reglamento específico de Producción Integrada de arroz en Andalucía, las dosis máximas permitidas de abonado nitrogenado son 145 Kg de nitrógeno por hectárea para las variedades tipo Índica y de 125 Kg por ha en el caso de las Japónica. En nuestra opinión, estas cantidades están en el umbral (quizás demasiado ajustadas) de las necesidades reales del cultivo.

Puede ser conveniente incrementar estas dosis en suelos poco fértiles o de alto contenido salino. Dosis excesivas de nitrógeno, en cambio, provocan un excesivo desarrollo vegetativo, aumentándose el número de hijos sin panícula, el riesgo de encamado, el porcentaje de granos vacíos, la susceptibilidad a enfermedades (Pyriculariosis) y estimulándose la proliferación de malas hierbas y algas. Además se retrasa la madurez y se reduce el rendimiento y calidad del grano, aunque se incrementa su contenido en proteínas. Todos estos daños se acentúan en caso de coberteras tardías.

Como media, y de forma general, se obtienen los máximos rendimientos productivos, económicamente idóneos y con menores riesgos, incorporando al terreno 70 u $80 \mathrm{Kg} /$ ha de nitrógeno mineral. Los diversos tipos de suelos reaccionan de forma distinta ante la fertilización nitrogenada. Así, los terrenos arcillo-limosos toleran fertilizaciones más elevadas que los arenosos o sueltos. En los terrenos fríos, sobresaturados y aquellos donde la actividad microbiana es escasa y lenta, los abonados nitrogenados pocas veces pueden ser superiores a 80 ó $100 \mathrm{Kg} / \mathrm{ha}$.

En los terrenos turbosos, cualquier fertilización nitrogenada y en cualquier cantidad, disminuye la producción en lugar de aumentarla. Por término medio, al arrozal produce $2.500-3.000 \mathrm{Kg} / \mathrm{ha}$ de materia orgánica, expresada como materia seca; por lo tanto unas necesidades medias de 15 Kg de N y 8 Kg de P2O5.

El monocultivo actual del arroz provoca que el suelo esté carente de humus; la incorporación de paja y abonos verdes constituye la más inmediata y elemental aportación ecológica y agronómica para el estabilidad del ecosistema del terreno

Figura 8. Transformación del nitrógeno en el suelo del arrozal. Aguilar (2001)

2.9. Enfermedades.

El cultivo del arroz en Sevilla comenzó bajo Producción Integrada (PI) en el año 1998, con una Superficie media de 10.000 ha. Uno de los aspectos más destacados de las anteriores campañas fue la masiva incorporación de nuevos agricultores al sistema de PI, pasando de $14.608,45$ ha en el año 2002 a 25.566 en el 2006. Actualmente la totalidad de la superficie de la Marisma arrocera de la provincia de Sevilla se ha acogido a este sistema de producción agrícola. Así, durante la campaña 2006, la reducción de agroquímicos para el control de la Pyriculariosis del arroz fueron muy notables pues sólo se trató el 40% de la superficie; de la cual, sólo fue necesario realizar una segunda aplicación en el 0,9\% (Aparicio et al, 2007).

De hecho en el manejo de las malas hierbas plagas y enfermedades, las líneas principales de trabajo en los últimos años han perseguido alcanzar un producto de alta calidad y una mayor concienciación medioambiental del sector arrocero sevillano. Algunos de los aspectos destacables de dicho sistema productivo se basa en prácticas agrícolas respetuosas con el medio ambiente, asesoramiento técnico altamente cualificado y tecnificado, estrecha interrelación agricultor-técnico para la elección del/los momentos adecuados para combatir las enfermedades produciendo un aumento de eficacia y por consiguiente, un ahorro de los costes medioambientales y económicos. Finalmente, con la elaboración y ejecución de proyectos de I+D han
permitido realizar estudios para innovar y optimizar las producciones del cultivo bajo este sistema de producción agrícola (Montes, 2006).

2.9.1. Principales enfermedades en el cultivo de arroz bajo Producción Integrada en el Sur de España - Estado Sanitario del Cultivo ${ }^{6}$

La Patología Vegetal, como ciencia integradora y aplicada cuya razón de ser es reducir, y en lo posible evitar, las pérdidas económicas o de rendimiento que ocasionan las enfermedades en los cultivos de plantas (Jiménez-Díaz, 2006), la identificación y diagnosis y por consiguiente, la detección de las posibles enfermedades que pudieran aparecer en el cultivo se incluyen como práctica fundamental para establecer correctas estrategias de control.

Las principales líneas de trabajo orientadas al conocimiento y control de las enfermedades del cultivo del arroz en Sevilla, persiguen como objetivo fundamental estudiar las enfermedades más importantes de la zona y, evaluar la intensidad de la enfermedad (incidencia y severidad), siendo prioritario el estudio y seguimiento de la Pyriculariosis en el arrozal sevillano que, igual a como ocurre en el resto de las zonas arroceras del Mundo, se trata de la enfermedad limitante en las áreas de cultivo (Webster et al., 1992; Correa-Victoria, 1997).

La mayoría de los hongos son difíciles de ver a simple vista, pero sus efectos se aprecian fácilmente: decoloraciones del grano, necrosis foliares y paniculares, reducción de la germinación de semillas, etc.

Conforme a los estudios realizados durante las campañas 2001 al 2006, los diagnósticos de laboratorio, prospecciones en el área de cultivo, y estudios acerca de enfermedades de la zona consultados, se han identificado las siguientes enfermedades más significativas en las Marismas del Guadalquivir, las cuales han sido separadas en dos grupos: enfermedades debidas a agentes bióticos y enfermedades debidas a agentes no bióticos.

2.9.1.1. Enfermedades debidas a agentes no bióticos.

En las enfermedades fisiológicas se incluyen todos las anormalidades producidas por causas no bióticas, tales como altas o bajas temperaturas fuera de los

[^5]limites normales de crecimiento del arroz, deficiencias o excesos de nutrientes en el suelo o el agua, el pH y otras condiciones del suelo que puedan afectar a la disponibilidad de nutrientes y/o su absorción, sustancias tóxicas tales como el sulfuro de hidrogeno producido en suelo, estrés hídrico o falta de luminosidad, etc. Takahashi y Yoshida en 1960 indicaban que, con pocas excepciones, todas las enfermedades fisiológicas están más o menos relacionadas con el desarrollo de condiciones altamente reductoras en el suelo, y que más que estas condiciones reductoras per se, eran algunos cambios químicos que tienen lugar bajo dichas condiciones los que pueden generar las deficiencias o excesos, o inhibir la absorción. Por ello, en el cultivo del arroz, los desordenes fisiológicos (también denominadas fisiopatías), se agrupan aquellos síntomas que no son detectables por pruebas clásicas de identificación de enfermedades o donde no se aíslan agentes bióticos. Algunos desordenes fisiológicos producidos por carencias de macro o micronutrientes son comunes también en el cultivo del arroz: carencia de nitrógeno: toda la planta amarillea o solo permanecen verdes las hojas más jóvenes. Las hojas se muestran más erectas, y se reduce el ahijado.

Carencia de fósforo: las hojas permanecen con un color verde oscuro, erecto y estrecho y se reduce el número de hijos. Carencia de potasio: las hojas tienen un verde más oscuro con comienzo de clorosis en las puntas de las hojas más viejas, a menudo las hojas tienen manchas marrones. El ahijado también se reduce ligeramente. Carencia de azufre: la sintomatología es muy similar y difícil de distinguir de la de nitrógeno. Carencia de calcio: las puntas de las hojas se blanquean y en casos extremos mueren. Las hojas permanecen verdes, se retarda la elongación radicular y las puntas se vuelven marrones. Carencia de magnesio: clorosis internerviales en hojas inferiores, más viejas. Carencia de hierro: todas las hojas se vuelven cloróticas o blanquecinas, generalizado. Carencia de manganeso: clorosis internevial en las hojas más jóvenes. Las más viejas permanecen con un verde amarillento. La clorosis se inicia desde las puntas de las hojas, y luego aparecen punteados marrones en esas hojas. Las hojas nuevas emergen mas estrechas, cortas y con clorosis acusada. Carencia de zinc: la base de las hojas más nuevas se vuelve clorótica, y se detiene el crecimiento. Carencia de boro: plantas achaparradas, y las hojas nuevas tienen las puntas blancas y en casos acusados mueren. Carencia de cobre: las hojas verdes se vuelven cloróticas por las puntas, y esta clorosis se desarrolla por los márgenes, siguiendo por una coloración marrón de las puntas. Las hojas nuevas se enrollan y no se desarrollan normalmente. Toxicidad por hierro: aparecen punteados marrones en las hojas más viejas, comenzando por la punta. Las hojas permanecen verdes y en casos acusados de toxicidad, se tornan púrpuras. Toxicidad por exceso de sales: el crecimiento se retarda y se reduce el ahijado. Las puntas de las hojas blanquean y algunas partes se vuelven cloróticas. Bajo contenido en sílice: las hojas se vuelven blandas, tiernas y acuosas.

Akiochi.

Se trata del desorden fisiológico diagnosticado en la mayoría de los casos en los últimos años en el Laboratorio de la FAS, se deba a una intoxicación por Sulfuro de Hidrógeno. Esta enfermedad ha ocurrido ampliamente en Japón, dañando
aproximadamente un 20% de la superficie arrocera de este país. Es la enfermedad mas frecuente y seria debida a la producción espontánea de sustancias tóxicas en las parcelas de arroz, y muy frecuente también en California(Ou, 1980) Suele ocurrir en suelos de textura arenosa, y en suelos arcillosos ligeros sedimentarios. Estos suelos tienen normalmente menor capacidad de intercambio catiónico y menos cantidad de hierro activo que los suelos arcillosos pesados. Esta toxicidad ocurre en suelos con alta cantidad de materia orgánica y con sulfatos solubles que en las condiciones de inundación resultan muy reducidos. Estos sulfatos al reducirse se convierten en SH_{2} que se acumula en estos suelos inundados, especialmente donde haya poca actividad de hierro lo cual propicia la formación de precipitados del ión SH -, en vez de los sulfuros ferroso y férrico. Las plantas afectadas generalmente muestran un crecimiento normal en los primeros estadios de crecimiento, pero comienzan a decaer gradualmente justo antes del espigado. Los síntomas típicos son: presencia de punteados marrones en las hojas producidas por Bipolaris spp. (Helminthosporiosis). Seca temprana de las hojas más viejas. Daños radiculares. Necrosis en la corona basal. Esta sintomatología se presenta a menudo en zonas irregulares de la parcela, reflejando diferencias en tipo de suelo, profundidad del agua, contenido en materia orgánica y otras variables ambientales.

En estados avanzados de esta toxicidad, el suelo con gran acumulación de sulfuro de hidrogeno emite un olor fétido. Las soluciones que se ofrecen ante este problema son: aplicación de abonado rico en sílice, calcio, magnesio y manganeso. Recirculación constante del agua y/o "secas" de las parcelas, con la finalidad de mejorar la oxigenación del suelo y del agua y de evitar condiciones reductoras tan acusadas y prolongadas. Aportes fraccionados de la fertilización nitrogenada y potásica. No emplear abonados que contengan sulfatos.

2.9.1.2. Enfermedades debidas a agentes bióticos.

Helminthosporiosis.

Agente: Cochliobolus miyabeanus (Ito \& Kuribayashi) Drechs. Ex Dastur (Bipolaris oryzae (Breda de Haan) Shoemaker)

Esta es una enfermedad citada como muy importante en otras zonas arroceras. En las Marismas del Guadalquivir su incidencia comienza a ser cada vez más presente. Posiblemente se deba a la introducción de variedades del tipo Japónica el que cada vez sea más importante en el arrozal sevillano. Los síntomas más visibles se observan en hojas y glumas de plantas maduras. También aparecen en plántulas y en el raquis de las panículas de plantas al final del ciclo. Las manchas son parecidas a las pequeñas de Pyricularia, circulares y púrpuras o marrón oscuro, pero todas de tamaño homogéneo, unos $0,5 \mathrm{~cm}$, y distribuidas uniformemente por la hoja, tallo y panículas, aunque en variedades muy sensibles pueden alcanzar hasta $1,5 \mathrm{~cm}$. y mostrar centro claro. Estos síntomas son más acusados cuando el arroz es cultivado en condiciones de carencias
nutricionales, o condiciones de suelos desfavorables. En condiciones adecuadas, $25^{\circ} \mathrm{C}$ y HR=89\%, se desarrollan conidias y conidióforos marrón-oscuros que dan un aspecto aterciopelado a la lesión. Las conidias son alargadas, generalmente curvas, de coloración marrón claro, y con 6-14 septas. Como medidas de control se recomiendan los tratamientos de semilla y el mantener un buen estado nutricional del suelo. De las especies del hongo descritas en Andalucía, B. oryzae, B. sororkiana, B. cynodontis, B. hawaiiensis, y B. biseptata.

Durante el período comprendido entre principios de junio y finales de agosto de las campañas 2003-2006, de los análisis realizados en el laboratorio de la FAS, se aislaron estos patógenos, de tal forma que, esta enfermedad en las Marismas arroceras, ocurren a lo largo del ciclo del cultivo y cuyo presencia es progresivamente ascendente con respecto al avance fenológico, lo cual nos indica que su presencia en las Marismas del Guadalquivir no es anecdótica, sino que aparece de forma continuada, pudiendo por lo tanto, repercutir de forma directa en la calidad del producto (Montes, 2005). Durante la campaña 2006 se observó este mismo hecho y se detectó un aumento de su presencia en las muestras presentadas.

Ataques severos del hongo pueden ser muy dañinos e indicativos de condiciones de estrés en el cultivo. De la literatura consultada es importante destacar los estudios realizados por Moletti (1992) donde se analiza la posible relación de la aparición de fenómenos de Akiochi y la asociación con daños producidos por el agente Bipolaris oryzae.

Fusariosis.

Agente: Gibberella fujikuroi (Saw) Wr. (anamorfo Fusarium moniliforme Sheld).

La sintomatología observada en las muestras presentadas en el Laboratorio de la FAS, corresponde a podredumbres de raíces y tallos. En la mayoría de los casos la presencia de este hongo acompañaba al mal de Esclerocios. Hay 4 especies de Fusarium detectadas en Andalucía, F. culmorum, F. semitectum, F.equiseti y F. moniliforme. En los casos estudiados, fueron identificados F. culmorum y F. moniliforme pero no han sido observadas las otras dos especies. La etiología de esta enfermedad produce la aparición de síntomas en plántulas que presentaban un crecimiento más acelerado que el resto del cultivo lo cual genera alarma en el sector. Se conoce como "Gigantismo". Estas plantas presentaban decoloración respecto de las plantas sanas, las cuales se desarrollaban excesivamente adquiriendo un porte que destacaban por encima de las demás. La mayoría de los daños se producen al germinar las semillas de arroz. En aquellas plantas cuyo desarrollo continúa, se empiezan a observar lesiones negro-parduscas a la altura del nudo para posteriormente secarse las hojas y finalmente marchitarse. En nuestra zona arrocera esta enfermedad es poco frecuente, aunque en veranos calurosos se han observado algunos focos en el Delta del Ebro y Andalucía según Albertí-Maurici (1999). Esta sintomatología predominó
notablemente en variedades de grano redondo siendo las variedades Marisma, Maso y Fonsa las de mayor incidencia. Finalmente estas plantas que presentaban síntomas de gigantismo desarrollaron panículas estériles, granos con fallos de llenado ó ambas cosas e incluso marchites. El uso de semillas certificadas así como la utilización de desinfectantes de semillas son algunas de las estrategias de control para evitar la aparición de dicha sintomatología.

Mal de esclerocios o podredumbre del tallo.

Agente: Sclerotium oryzae (estado esclerotial). Anamorfo: Nakatea sigmoidea = Helminthosporium sigmoidea. Teleomorfo: Magnaporthe salvinii = Leptosphaeria salvinii.

Se trata de una enfermedad que es típica de plantas de ambientes húmedos y acuosos y es considerada un patógeno débil del arroz. Dos especies del género Sclerotium muy frecuentes en el arroz de las Marismas del Guadalquivir: Sclerotium hydrophylum y Sclerotium oryzae. Es frecuente encontrarlas en coexistencia no competitiva en el arroz. S. hydrophilum. El causante de la podredumbre del tallo es S. oryzae. Ambas especies se diferencian en el tamaño de los esclerocios, mayores en S. hydrophilum que en S. oryzae; en su forma, más globosos y regulares en el caso de S. oryzae; y en su color, marronáceo en esclerocios en maduración en S. hydrophilum respecto al color más oscuro casi negro de los esclerocios de S. oryzae. Todos estos caracteres son útiles a la hora de hacer un diagnóstico. Sólo a S. oryzae se le conocen estados sexual y asexual. Sus síntomas son más notables al final del ciclo del arroz. El hongo ataca a la planta a la altura del agua al final del ahijado o al inicio del estado reproductivo. Al principio de la infección produce manchas rectangulares con bordes angulares en la base del tallo de coloración oscura o negruzca. Las lesiones más viejas se alargan, son más difusas e irregulares en su forma y penetran más hacia el interior en el tejido del tallo. Conforme la planta se desarrolla el daño generado en el tallo repercute en el llenado de los granos. En infecciones graves el tallo se amarillea y se pudre, y las plantas acaban doblándose y cayendo al lodo dificultándose mucho la recolección.

El diagnóstico se confirma cogiendo un tallo de una planta afectada, seccionándolo y observando la presencia de pequeños esclerocios negros dentro del tejido. Cuando la planta presenta alguna herida o debilidad por otros agentes que la infectan, el hongo penetra y se establece muy fácilmente. Excesos de nitrógeno y fósforo favorecen la enfermedad y el potasio la reduce (Aguilar y Grau, 1994, 1995).

Como medidas de control se recomiendan el uso apropiado de los fertilizantes, la quema de restos de cosecha, y la rotación de cultivos, cuando las condiciones lo permitan. La enfermedad ha mostrado mayor incidencia y severidad al final del ciclo del cultivo.

2.9.1.3. Otras enfermedades fúngicas.

En general existen un gran número de hongos y bacterias asociados que originan coloración de las glumas del grano de arroz. Algunos de ellos son hongos más o menos parásitos del arroz que infectan el grano antes de recolección, y otros, son organismos saprofitos que normalmente se desarrollan en el almacenaje. Los síntomas más frecuentemente encontrados durante estos años están incluidos en el primer grupo, y en Andalucía se han descrito como causantes de esta sintomatología los hongos Alternaria spp. y Nigrospora spp. En la mayoría de los casos las infecciones causadas por estos patógenos no llegan al interior del grano, quedándose sólo en las glumas por lo que su importancia es escasa. Los siguientes organismos que a continuación se describen, son denominados "patógenos débiles" pues, generalmente, aparecen colonizando los tejidos que ya han enfermado y se comportan como flora saprofita en el cultivo del arroz.

Agente: Nigrospora oryzae.

Es un hongo muy frecuente en estructuras muertas o viejas de la planta, y solo cuando esta muestra debilidad por deficiencias nutricionales, condiciones climáticas o sufre algún otro tipo de enfermedad, puede llegar a dañar hojas y glumas. Durante las campañas 2001-2006, se observó la presencia de este agente en la mayoría de las muestras analizadas. En Andalucía se han descrito dos especies de este hongo, N. oryzae, y N. sphaerica, siendo el primero el más frecuente en el cultivo de arroz.

Agente: Alternaria spp.

Es uno de los hongos más comunes de los que generan coloraciones en las glumas, pudiendo causar un moteado grisáceo. Puede ocasionar infección en el grano antes de la recolección. Aunque presente en las Marismas del Guadalquivir.

2.10. La Pyriculariosis del arroz (Oryza sativa L.).

Agente: Pyricularia grisea [Cooke] et Sacc., denominada con anterioridad P. oryzae Briosi et Cavara (teleomorfo: Magnaporthe grisea [Herber] Barr)

Es la enfermedad más destructiva de este cultivo en el mundo y puede generar grandes pérdidas en variedades susceptibles durante periodos climáticos favorables para el desarrollo del hongo. La presencia de la enfermedad en España ha sido citada en 1968 (Anónimo 1968; Benlloch, 1975), pero hasta 1978 no se tienen noticias de su aparición en el arroz del Valle del Guadalquivir (Marín-Sánchez y Jiménez-Díaz, 1981).

Estudios llevados a cabo por Marín-Sánchez en 1979, para conocer la etiología e importancia de Pyricularia grisea ponen de manifiesto que las infecciones se
distribuyen por toda las Marismas, afectando a todos los órganos de la planta y ocasionando pérdidas de rendimiento severas (100\%), cuando la incidencia igualó o superó el 90% de las plantas afectadas, hecho que tiene lugar cuando las condiciones climáticas son favorables para las infecciones.

Más recientemente, en 1997, la Pyriculariosis afectó de forma devastadora a todos los cultivares utilizados en nuestras latitudes llegando a ocasionar el 15% de pérdidas de la producción que se tradujeron en 10.217.205 € (comunicación personal de agricultores de la FAS). Las estrategias de control para esta enfermedad actualmente se basan en el uso de variedades resistentes y el uso de fungicidas químicos. A diferencia de otras zonas arroceras de España, el perfil varietal en las Marismas del Guadalquivir está muy poco diversificado.

Cerca del 90% de la superficie sembrada corresponde a la variedad Puntal (Tipo Índica) siendo las variedades Marisma, Maso y Fonsa (Tipo Japónica) entre otras, las sembradas minoritariamente durante las pasadas campañas de cultivo. Para el establecimiento de un modelo predictivo es necesario conocer la reacción de las variedades a la presencia del hongo.

Cuando las condiciones climatológicas le son favorables (Humedad Relativa superior a 90% y temperaturas del orden de $20-25^{\circ} \mathrm{C}$ (Montes, datos no publicados) se extiende rápida e incontrolablemente por las parcelas de arroz. Por ello, los arroceros realizan sistemáticamente tratamientos con distintos productos fungicidas que en la mayoría de los casos tienen acción preventiva.

El hongo produce manchas puntuales o lesiones en hojas, nudos, panículas y collar de las hojas (Ou, 1972; Disthaporn et al., 1993). Las lesiones foliares pueden ser desde manchas con forma de diamante (romboidales), a alargadas o puntuales. El centro de la mancha es normalmente grisáceo y el margen marrón o marrón-rojizo (Figura 10).

Las lesiones se pueden clasificar en dos tipos, el tipo S (sensible), atribuido a las típicas lesiones romboidales y alargadas, llamadas lesiones agudas; y del tipo R (resistente), que son manchas puntuales pequeñas y sin halo clorótico, también llamadas lesiones crónicas, y que son atribuidas a una reacción de hipersensibilidad de la planta huésped.

Tanto las lesiones agudas como las crónicas se pueden dar en una misma variedad indistintamente, dependiendo de las condiciones ambientales, de la respuesta del huésped y de la raza del hongo.

Algunas manchas pequeñas suelen confundirse con las causadas por Bipolaris spp., pero la Pyriculariosis genera en estadios más avanzados de la enfermedad, manchas que originan lesiones más largas y que se desarrollan más rápidamente.

Figura 9. Imágenes tomadas al microscopio óptico. Lesión en el limbo foliar de planta de arroz de la variedad Puntal. Izquierda superior: Lesión foliar producida por P. grisea (10X). Derecha superior: Conidias distribuidas por la lesión foliar. (40X). Izquierda - Derecha inferior: Conidias y conidióforos de P. grisea. (100X). Fuente: Montes (2001)

El patógeno ataca frecuentemente al nudo de la base de la panícula y al raquis de ésta. Si la panícula es atacada en un estado temprano de su desarrollo, los granos de la parte basal pueden no llenar, dándole un aspecto característico de color pajizo; si ataca en el nudo de la base de la panícula ésta se rompe y queda colgando. Cuando se infecta un nudo, se rompe el tejido y la parte de tallo por encima del nudo atacado normalmente muere. Su desarrollo se ve favorecido con siembras tardías, excesos de abonado nitrogenado, agua libre (rocío) sobre la hoja, etc.

Las esporas de Pyricularia grisea (Castejón et al., 2002)se desarrollan en abundancia en las lesiones (Figura 9) y son liberadas al aire, que las arrastra a distancias considerables. Las conidias, al microscopio, se pueden observar con 1 o 2 septas (normalmente dos), muestran forma obpiriforme con ápice agudo o redondeado, y base con hilo saliente (Hilum), estrecho y cilíndrico. El hilo conidial es la forma de inserción al conidióforo (Figura 10).

Para el control de la Pyriculariosis, en zonas con ambientes desfavorables para el hongo bastaría con el empleo de variedades resistentes. En las Marismas del Guadalquivir, hay años en los cuales las condiciones son muy favorables para su desarrollo, y habría que acompañar esta medida con otras, como por ejemplo: adelantar la fecha de siembra para disminuir la exposición del cultivo a condiciones favorables para el patógeno, llevar un buen control de la fertilización nitrogenada y fosfórica aportada y el empleo de fungicidas.

Figura 10. Imagen tomada con estereoscopio binocular. Conidias y conidióforos de P. grisea en la superficie de una semilla de arroz de la variedad Puntal. Fuente: Montes (2001)

Con la finalidad de evaluar la efectividad de estos tratamientos tanto en lo que a los productos empleados concierne, como en la forma en la que estos son aplicados, y siguiendo las líneas de trabajo que se empezaron a desarrollar por Marín-Sánchez en los años 80 se han realizado numerosos experimentos como: pruebas in vitro de la eficacia de materias activas fungicidas contra el hongo P. grisea. Ensayos de eficacias y momentos de aplicación de diferentes fungicidas (químicos y biológicos). Desarrollo de aplicaciones informáticas EPIDEMIAS (Montes y González, 2004), como apoyo para los estudios epidemiológicos para el establecimiento de estaciones de avisos.

2.10.1. Umbral de Riesgo y Muestreos.

Para tomar las decisiones oportunas para el manejo de enfermedades es esencial estimar las posibles perdidas a las que se puede ver afectado el rendimiento y la calidad del cultivo afectado. Para poder ser lo más precisa posible han de plantearse varias cuestiones: ¿Qué causa/s está produciendo lo/s síntomas?. ¿En que medida se están produciendo esos síntomas?. ¿De qué forma puedo controlarlos, o en que nivel pueden ser paliados?. Para poder lograr dicha precisión de forma eficiente se deben de realizar métodos de detección y estimación de enfermedades, métodos de evaluación de pérdidas del cultivo y efectos del ambiente en el patógeno, estudio sobre los hospedantes alternos y vectores de propagación de la enfermedad, estudios de seguimiento ambiental y biológico, relaciones de la enfermedad consideradas con otras enfermedades u otras plagas. Hasta ahora se han descrito las principales causas de las enfermedades más presentes en el arrozal sevillano.

Figura 11. Rodal de plantas de arroz con síntomas de Pyriculariosis). Fuente: Foto suministrada por Jaume Boada (2001). DARP. Generalitat de Catalunya.

Para los umbrales de decisión, es necesario obtener datos relativos al grado de intensidad o gravedad de la enfermedad. Esta intensidad permite establecer umbrales de decisión para el fitopatólogo, es decir, estados de las enfermedades que es necesario tomar para controlarla. El umbral de alerta o umbral de detección será aquel nivel de incidencia o severidad, o ambos, de una enfermedad, que conduce a un estado de alerta como preparación para la acción. El umbral de acción es también conocido como umbral de decisión de aplicar un control, y es el estado de la enfermedad en el cual se deben tomar medidas de control para reducir el progreso de la enfermedad. Haciendo esto, se evita que la enfermedad llegue al umbral de daño antes de la cosecha. El umbral de daño económico es denominado también como umbral de pérdida económica (Tabla 1). por efecto de las enfermedades, y se define como el nivel de incidencia o de severidad de una enfermedad en el cual ésta comienza a afectar adversamente el rendimiento del cultivo o la calidad del grano, o ambos parámetros. Este umbral está condicionado por varios factores bióticos y, principalmente, por un factor económico que será la relación entre el coste del control de la enfermedad y el precio del arroz producido (Correa-Victoria, 1996); así por ejemplo, mientras que las Helminthosporiosis en el cultivo del arroz en el Delta del Ebro es la principal enfermedad en esta área de cultivo y está ampliamente descrita como agentes fúngicos patogénicos responsables del manchado del grano de arroz (Galimany et al., 2006) la realización de muestreos generalizados servirán para formar parte de una base de datos para la caracterización de las epidemias de las principales enfermedades del cultivo del arroz en Sevilla (Pyriculariosis y Helminthosporiosis) y poder establecer zonas de riesgos como apoyo a los sistemas avisos para la toma de decisiones para el control. De tal forma que, si un factor muy importante en estas decisiones es el destino que se dará al grano y si se desea obtener un grano de calidad, el umbral considerado para el control será muy diferente del que se adoptaría cuando el mercado no penalizara la baja calidad.

Tabla 1. Costos de las enfermedades. Fuente: Control de las enfermedades del arroz. Grupo de Trabajo del Arroz, (2003. Amposta). Comunicación personal Marín-Sánchez.

	Epidemia grave			Epidemia leve		Área afectada	Coste
	Pérdidas	Probabilidad	Pérdidas	Probabilidad	Proporción	€/ha año	
Pyriculariosis	50%	0,2	10%	0,8	0,2	72,72	
Helminthosporiosis	6%	0,4	0%	0,6	0,5	60,70	
					$(*)$ Total $=133,42$		

(*) Cálculos realizados para una producción de $7.000 \mathrm{Kg} / \mathrm{ha}$, a un precio de venta de $0,29 € / \mathrm{Kg}$

Para el muestreo en campo existen varios aspectos del muestreo de enfermedades, y que son comunes al muestreo de insectos y plagas. En términos generales, la medida de una enfermedad es la cuantificación del daño que ésta cause al cultivo. Esta cuantificación puede ser visual o con ayuda de instrumentos. (Greer and Webster, 2001; Correa-Victoria, 1996).

La estimación visual acompañada por un diagrama del área foliar afectada o del tipo de lesión causada, son los métodos empleados para medir los parámetros de intensidad de enfermedad (incidencia y severidad). Para la caracterización epidemiológica de la Pyriculariosis y las Helminthosporiosis en las Marismas del Guadalquivir se realiza sobre una superficie de 10 ha en donde se escogen al azar 20 tallos donde se valoran la incidencia y severidad en hoja e incidencia y severidad en panícula, de las necrosis atribuidas a Bipolaris spp. o necrosis totales (Nt) y a Pyriculariosis (Marín-Sánchez et al., 2002).

Se realiza un recorrido en Zig-Zag con el fin de evaluar enfermedades de las plantas y se usan escalas de intensidad de enfermedad (Figura 13) descritas por MarínSánchez et al. (datos no publicados). Para la evaluación de la Severidad se estima el porcentaje de follaje afectado del conjunto de plantas evaluadas asignando 0\% a plantas completamente sanas y 100% a plantas completamente afectadas. Las evaluaciones se realizan aproximadamente en intervalos de 7 días.

Los valores porcentuales de severidad se transforman a valores de proporción de tejido enfermo para el cálculo del área bajo la curva del progreso de la enfermedad o AUDPC‥

En la mayoría de las enfermedades de plantas, podemos ver algún tipo de síntomas que nos permitan contar los números de plantas infectadas o estimar la cantidad de tejido infectado. Y , aunque se produce un retraso entre la infección y la manifestación de síntomas (aparición de síntomas visibles) los cuales se pueden ver afectados por las condiciones ambientales, por lo general, el progreso de síntomas,

[^6]corre parejo con el progreso de la producción de inóculo y por lo tanto el parámetro AUDPC nos proporcionará la mejor información sobre la evolución de la enfermedad a lo largo del tiempo.

Figura 12. Escala de Evaluación de la Severidad Foliar en la Pyriculariosis del arroz. Fuente: Juan P. Marín - UdL - Lleida (2001)

2.10.2.Estrategias de control.

El arroz, al igual que el resto de los cultivos, debe protegerse del ataque de las patologías más importantes. En las Marismas del Guadalquivir, la Pyriculariosis es la principal enfermedad a controlar por parte el sector arrocero sevillano (Montes et al., 2006)

Las características de monocultivo/siembras consecutivas en el mismo suelo que se producen en las Marismas del Guadalquivir, propician que el hongo pueda invernar en los restos de paja y semilla. P. grisea es conocido por la capacidad de producir gran número de formas virulentas (patotípos = razas patogénicas). El patosistema P. grisea - O. sativa se cree que posee una relación gen-a-gen (Silue, 1992; Valent, 1994) y por tanto la estructura de la población del patógeno está

[^7]influenciada por la del huésped. Esta relación tiene importancia tanto para el entendimiento de la variabilidad del patógeno y su diversidad como para progresar sobre los métodos de control. Por otro lado, las razas prevalecientes en una zona dependen, además, de los cultivares sembrados en la misma (Chen et al., 1995) de otros factores geográficos. Así, se ha puesto de manifiesto que existe una gran influencia del área geográfica donde se cultiva el arroz sobre el cambio o permanencia de patrones de virulencia/razas patológicas (Chung, 1974; Yamada y Iwano, 1975; Marchetty et al., 1976). El conocimiento de la variabilidad genética en las poblaciones de patógenos de plantas es muy importante para entender la coevolución del huésped en patosistemas (Valent ,1990; Valent et al., 1991). Métodos (Murray y Thompson, 1980; Crawford et al., 1986) basados en análisis del polimorfismo del ADN (Polimorfismos en la Longitud de los Fragmentos de Restricción RLFPs ; y Polimorfismo de ADN Amplificados al Azar RAPDs) han permitido identificar marcadores moleculares de aplicación primordial en estudios sobre la relación y variabilidad genética entre y dentro de los patotípos de Pyricularia (Levy et al., 1991; Levy et al., 1993; Roumen et al., 1997; Zeigler et al., 1995). En este sentido, estas técnicas dan importante conocimiento sobre la diversidad y estructura de sus poblaciones a nivel de campo y del país (George et al., 1998) además de suministrar información necesaria para el correcto desarrollo de genes de resistencias (Zeigler et al., 1994). Estudios preliminares llevados a cabo en Sevilla por Aguilar et al. (2006) ponen de manifiesto que la población P. grisea encontrada en España es más diversa que la observada en Europa. Por otro lado, Aguilar et al. $(2006,2007)$ desarrolló trabajos científicos donde se describía la existencia de diferentes patotípos en el cultivo de arroz de las Marismas del Guadalquivir. De esta forma, el conocimiento de la estructura de la virulencia de las poblaciones de Pyricularia en el sur de España es importante (Roumen et al., 1997) en la estrategia de lucha contra el patógeno.

Las estrategias de control para esta enfermedad se basan actualmente en el uso de variedades resistentes de arroz (control genético de variedades) y el uso de fungicidas químicos, que básicamente son preventivos, inhibiendo la germinación de la conidia, penetración o esporulación del hongo. Actualmente en las Marismas del Guadalquivir se están desarrollando estrategias de manejo de las enfermedades que mejoren los mecanismos de control inherentes y aseguren bajos niveles de infección. También se están realizando pruebas con productos de naturaleza biológica y química, con el fin de disminuir el uso de agroquímicos los cuales contaminan el medio ambiente, causan desequilibrios ecológicos y pueden desarrollar la aparición de razas resistentes. En ningún caso se están desarrollando programas de mejora varietal.

A continuación se detallan algunos de los resultados de la lucha Química que se han llevado a cabo para poder conocer en nuestra área de cultivo las eficacias de los fungicidas más utilizados e incluidos en el Reglamento Específico de Producción Integrada para el control de las principales enfermedades del cultivo. Para la realización de este objetivo se llevaron a cabo ensayos de campo destinados a la evaluación de fitosanitarios (materia activa, momento/s de aplicación, número de tratamientos, forma de aplicación). La correcta evaluación de las lesiones para un buen uso de las estrategias de control de las enfermedades del arroz, hace vital definir una
escala de valoración así como un sistema de muestreo eficaz, pues los estadios iniciales de las Helminthosporiosis en hoja en la planta de arroz, pueden llegar a ser confundidos, a menudo, con las lesiones producidas por P. grisea. Incluso, pequeñas lesiones foliares o paniculares pueden ser consecuencia de otros agentes fúngicos que pueden aparecer de manera oportunista con las especies de Bipolaris. Por tanto se emplea el término de Necrosis Totales (Nt) para evitar caer en errores de evaluación, y se define como aquel conjunto de lesiones primarias de difícil diagnóstico visual y que pueden derivar en lesiones producidas por Bipolaris spp. o P. grisea (Figura. 13)

Los ensayos se realizaron en la Parcela Experimental que la FAS dispone en el término municipal de Utrera (230.658 4.109.328 UTM). Los productos comerciales escogidos (Ito y Yamaguchi, 1977; Miura et al., 1976) fueron: BIM ${ }^{\circledR}$, FOLICUR ${ }^{\circledR}$, PUNCH ${ }^{\circledR}$, OCTAGON ${ }^{\circledR}$, así como una parcela TESTIGO sin tratar. El diseño del ensayo fue en bloques completos al azar con 5 repeticiones para el análisis de los datos obtenidos. El tamaño de las parcelas fue de $20 \mathrm{~m}^{2}$ incluidos los bordes de separación.

Figura 13. Tipos de lesiones para la evaluación del porcentaje visual de lesiones en el limbo de la hoja con síntomas de Piriculariosis. Fuente: Control de las enfermedades del arroz. Grupo de Trabajo del Arroz, (2003. Amposta).

Se escogieron al azar 10 tallos por parcela y se evaluaron los síntomas de las Nt y lesiones con Pyriculariosis (Pyr) de incidencia y severidad en Hoja Bandera (HB), HB1, HB-2, HB-3; incidencia y severidad en cuello de panícula; incidencia en nudo. También se midieron parámetros de producción y calidad. Para los tratamientos se emplearon una mochila de gas de aplicaciones experimentales con una barra de 1 metro de ancho con 5 boquillas cónicas de cerámicas rojas "Albuz", separadas entre sí a 25 cm logrando un ancho de tratamiento de 1,25 metros. La dosis de caldo aplicada fue de $500 \mathrm{I} / \mathrm{ha}$. Para el análisis de los datos se calcularon las curvas de progreso epidémico de cada estructura vegetal valorada y se calcularon las AUDPC empleando el programa EPIDEMIAS v. 2.0 (Montes y González, 2004) como gestor de base de
datos epidémicos. Finalmente, se realizaron análisis estadísticos con el programa Statgraphics v. 4.0.

Los resultados obtenidos mostraron que todos los fungicidas testados mejoraron a los testigos. Las severidades alcanzadas fueron del 5% de severidad de Nt en hoja y de algo más del 45% de Nt en Panícula. De los productos ensayados se concluyó que los fungicidas de amplio espectro (Punch ${ }^{\circledR}$, Octagon ${ }^{\circledR}$, Folicur ${ }^{\circledR}$) fueron mejores para el control de las Nt frente a los específicos (Bim^{\circledR}) el cual está indicado específicamente contra Pyriculariosis. Este efecto se observó notablemente en el ensayo realizado, llegando incluso a existir diferencias en la tonalidad de las microparcelas producidas por los ataques severos de las especies patogénicas de Bipolaris (Figura 15). Finalmente, conseguir analizar el efecto de las valoraciones para cada estructura vegetal y para cada ensayo permite realizar estrategias de control específicas. Por lo tanto es necesario que, para este tipo de trabajos, se han de continuar sistemáticamente con las experiencias repitiendo estas pruebas con los fungicidas químicos presentes en el panorama Nacional e Internacional para el control de las enfermedades del arroz.

Figura 14. Diferencia en la sanidad de las microparcelas tratadas con fungicidas. Fuente: Calixto Cordero. Técnico de Producción Integrada del cultivo del arroz en Sevilla.
(Campaña 2005)

2.10.3. Epidemiología de la Pyriculariosis.

Para el manejo de la Pyriculariosis depende en gran medida de la capacidad de anticipación ante los inicios de epidemias (Calvero JR., 1994) y así poder establecer un apropiado plan de actuación. La dependencia entre las condiciones agro-climáticas específicas y la incidencia de la enfermedad han sido ya descritas ampliamente
durante el desarrollo del Convenio ${ }^{9}$ de la Junta de Andalucía durante los años 2001 2003.

Los primeros sistemas de predicción de la enfermedad consistieron en determinar cuando se producían condiciones climáticas favorables para el desarrollo de la enfermedad. Siguiendo otros modelos predictivos, a lo largo de la campañas del citado Convenio, se ha pretendido conocer el número de esporas en el aire. Estos métodos, en cualquier caso, no son asequibles para un uso periódico, regular y localizado. Sin embargo la intensidad de una epidemia esta determinada por la cantidad de inóculo inicial (conidias), la influencia de condiciones climáticas en el proceso de infección y la resistencia del huésped.

La reproducción y propagación de la Pyriculariariosis son mayores con humedades altas, y temperaturas relativamente bajas ($20-24^{\circ} \mathrm{C}$). Predecir años o áreas con riesgo de epidemias severas es difícil ya que las características geográficas y meteorológicas pueden variar mucho según zonas, la climatología durante las campañas agrícolas pueden variar incluso cada hora, y además las prácticas de cultivos podrían ser diferentes en cada zona o tabla. Para MacKenzie (1979), para la estandarización de epidemias que ocurren bajo condiciones climáticas cambiantes se ha de emplear valores de severidad. Es por ello que, durante los años del citado convenio, se pretendió establecer un seguimiento de las tablas de arroz de las Marismas del Guadalquivir así como el de establecer muestreos de infección a fin de conocer los niveles de incidencia que podían originarse en zonas donde la presencia del patógeno ha estado presente. De esta forma, se realizaron 4 estaciones de muestreo de 25 plantas cada una. Dada la posible confusión en la identificación de las lesiones, inicialmente se tomaron valores de presencia y ausencia de síntomas siendo estos datos acompañados de la escala de tipo de lesión en Hoja según S.H. OU (1985) y como dato orientativo se midieron las severidades presentes en hoja (Ashizawa et al., 2007).

Para diversos autores (Kaundal et al., 2006; Kang et al., 2010; Ishiguro and Hashimoto, 1991) de otras zonas arroceras del mundo el patrón de distribución de las lesiones se inician desde focos. El desarrollo de epidemias generales y no el inicio de epidemias focales debían considerarse como el inicio de una epidemia en un distrito. Cuantificar el daño presente en una tabla puede orientar al técnico, o en su defecto, al agricultor para la toma de decisiones. Para ello trató de validar muestreos de campo basados en escalas: según síntomas, (IRRI 1975; Correa y Zeigler, 1995); según el tipo de reacción R/S, (S.H.OU, 1985); según área de la lesión, (S.H.OU, 1985). ?llasistir en que las epidemias de esta enfermedad se inician desde focos. Inicialmente estos focos son escasos y su identificación es complicada, y el inicio de las epidemias es posterior y normalmente se da unas pocas semanas después de su identificación.

[^8]De acuerdo a los trabajos realizados por Suzuki. H (1975) sobre los factores meteorológico en la epidemiología de la Pyriculariosis, ésta se convierte en epidemia cuando aparece una nueva raza del patógeno, cuando las condiciones meteorológicas activan al patógeno y/o aumentan la propensión de la planta a la enfermedad.
[
Los factores meteorológicos afectan directamente al patógeno en el estado de prepenetración, la formación del apresorio y la colonización inicial de los tejidos de la planta.

Figura 15. Ciclo infectivo de Pyricularia grisea Sacc. Fuente: García, et al. (2001). Convenio ${ }^{10}$ Junta de Andalucía.

Como se puede observar ene la Figura 15, la reproducción y propagación de Pyricularia son mayores con humedades altas, y temperaturas relativamente bajas (21$24^{\circ} \mathrm{C}$).

Predecir años o áreas con riesgo de epidemias severas es difícil ya que las características geográficas y meteorológicas pueden variar mucho según zonas, la climatología en campaña puede variar incluso cada hora, y además las practicas de cultivo son diferentes en cada zona o tabla.

Kikusawa, et al. (1991) definió las CONDICIONES DE INFECCIÓN POR Pyricularia grisea, en donde las conidias del hongo germinan en gotitas de agua, emiten el tubo germinativo, forman el apresorio, melanizan la superficie de este y emiten el gancho

[^9]de penetración entrando así en las células de la superficie de la hoja. El periodo de incubación es mayor a bajas temperaturas, y más corto si las temperaturas son elevadas, siendo normalmente de entre 5-8 días. Es por ello de gran interés conocer las condiciones de infección que se estén dando para poder conocer los periodos de riesgo, y predecir el desarrollo de la enfermedad. Se ha visto que con vientos superiores a $15 \mathrm{~km} /$ hora, en densidades de siembra normales, se rompen las condiciones de infección al secarse el agua de las hojas. También se ha comprobado que tormentas puntuales de más de $4 \mathrm{~mm} /$ hora, o lluvias continuadas durante más de 2 horas de más de $3 \mathrm{~mm} /$ hora, rompen ese periodo de infección al lavar las conidias de las hojas.

Marín - Sánchez et al. (2003), indicaban que la finalidad era la de optimizar el control de la Pyriculariosis del arroz en dos de las zonas más importantes de este cultivo en España: Andalucía y Cataluña, pues se conoce el efecto de las operaciones de cultivo sobre el desarrollo epidémico, el efecto del control químico en lo referente a materias activas, pero el conocimiento de los umbrales de riesgo y el efecto de la alternancia de períodos secos y húmedos en los desarrollos epidémicos es incompleto ${ }^{11}$; así mismo, era necesario estudiar la reacción varietal y las virulencias en las áreas mencionadas a través de colecciones de diferenciales internacionales; por tanto, se planteaba en continuar los experimentos actuales ampliando las condiciones ambientales experimentales y el estudio de la estructura de virulencia del patógeno y de resistencia varietal, así como, la búsqueda de resistencia parcial por su durabilidad. Generalmente sus infecciones inducen síntomas en el último nudo del tallo (podredumbre del nudo), en la base de la panícula (podredumbre del cuello) en la panícula y en la hoja: generalmente lámina foliar y lígula, pero raramente en la vaina.

Pérdidas medias anuales debidas al conjunto de las enfermedades (en parcelas no tratadas) han sido estimadas, en Europa, alrededor del 21% de la cosecha (Oerke et al. 1994, pg. 161) y se citan pérdidas frecuentes entre el 3 y 5% de la cosecha, no siendo infrecuentes pérdidas del 30% de la misma en algunos países europeos (Smith et al. 1992, pg. 382) En España, las zonas arroceras concernientes con este Proyecto (Sevilla-Andalucía- y Amposta-Cataluña-) cultivan un total de, aproximadamente, 50.000 hectáreas, con producciones medias (variables según variedad y climatología) entre 7.000 y $8.000 \mathrm{Kg} / \mathrm{ha}$. Estas zonas se caracterizan, en lo que concierne al desarrollo de la Pyriculariosis, por temperaturas (T) diarias entre $18^{\circ} \mathrm{C}$ y $30^{\circ} \mathrm{C}$ y humedades relativas (HR) entre 50% y 100%, con duración de los períodos húmedos ($\mathrm{DHR}=$ horas con $H R \geq 90 \%$) diarios entre 5 y 20 horas, si bien, el número de días donde DHR ≥ 14 horas no suele ser superior a 5 y suele estar seguido de períodos secos (DPS), donde $\mathrm{DHR}<89 \%$, con duraciones entre 1 y 15 días.

Estudios realizados en Andalucía, desde 1971 hasta 1986, y en Cataluña, desde 1987 hasta el año 2002, han mostrado un panorama fitopatológico similar, donde las

[^10]micosis son las principales enfermedades y la Pyriculariosis la enfermedad más importante por su extensión (prevalencia) y gravedad (en términos de incidencia y severidad) en ambas áreas de cultivo (Marín, 1980; Marín y Almacellas, 1999; Marín y Jiménez 1981; Marín et al. 1990). Otras especies fitopatógenas como Sclerotium oryzae y Fusarium spp (Marín 1991; Marín y Almacellas 1999; Marín y Jiménez 1981a; 1981b; Marín y Jiménez 1982a; 1982b) tuvieron una importancia limitada por su extensión geográfica y por sus valores medios o bajos de incidencia y severidad.

Las pérdidas económicas, debidas a la Pyricularisosis, en Andalucía y Cataluña, estuvieron determinadas por la gravedad epidémica y por la frecuencia con que se produjeron. En este sentido, la probabilidad de que se produzcan epidemias graves ha sido estimada entre el 0,2 y 0,3 (2 o 3 años de cada 10 de cultivo) respectivamente (Marín, 1991; Marín y Almacellas 1999; Marín y Jiménez, 1981), con pérdidas económicas entre 20 (en años no favorables) y 115 (años favorables) euros/ha y año, con una esperanza matemática de 68 euros/ha y año en ambas zonas de cultivo (Marín, 1991; Marín y Almacellas, 1999). Esta situación, de baja probabilidad epidémica y costes, indica algunas características básicas para una Estrategia de Lucha: a) El coste máximo que, en términos medios del área de cultivo, debemos dedicar al Control de la enfermedad es de 68 euros / ha y año, b) en el caso del control químico, este debe basarse en un Sistema de Avisos (SATD), pero, a los precios actuales, no deberá ser superior (en términos medios) el coste equivalente a 2 tratamientos durante la campaña de cultivo y c) la susceptibilidad varietal no tiene porque constituir un factor económicamente limitante, pues dependerá del balance (media de 10 años) entre pérdidas ocasionadas y valor de la cosecha.

Estudios epidemiológicos en ambas áreas de cultivo (Marín, 1987; Marín y Almacellas, 1999) son coincidentes con los correspondientes a otras áreas de cultivo en el mundo (Zeigler et al. 1994); si bien, cada zona tiene sus peculiaridades derivadas de las técnicas de cultivo, la estructura de la resistencia en la población varietal, la estructura de virulencia en la población del patógeno y por la climatología. Estas peculiaridades obligan a estudiar las características propias de cada zona a fin de optimizar una Estrategia de Lucha. Dicho estudio se concretaría en los efectos que sobre los desarrollos epidémicos tengan las operaciones de cultivo, la susceptibilidad varietal, la capacidad de dispersión del inóculo y factores climáticos tales como los citados anteriormente (T, HR DHR y DPS)

Así, en nuestras áreas, las siembras tardías (junio) favorecen el desarrollo epidémico frente a tempranas (finales de Abril a primeros de Mayo) que suelen inducir Escape a la enfermedad; el uso de semilla certificada o procedente de campos con plantas sanas reduce la gravedad del inicio epidémico, si bien es poco eficiente dicha transmisión; la retirada y quemado del rastrojo así como la inundación del campo en períodos de no cultivo reduce el inóculo primario; el control de las malas hierbas (hospedantes alternativos) reduce el inóculo primario y el inóculo secundario para las epidemias de tipo homogéneo como son las que nos ocupan, y el abonado nitrogenado de cobertera con 100 o menos UF/ha evita, en gran medida, la disposición de la planta a la enfermedad (OU 1987; Zeigler et al. 1994) Aún cuando se ha
comprobado la utilidad de las anteriores prácticas en nuestras áreas de cultivo (Marín 1987; Marín y Almacellas 1999; Marín et al. 2002) existe la restricción derivada de la posibilidad de llevarlas a la práctica por el agricultor.

En la mayoría de las zonas arroceras se citan a los factores climáticos: T y HR, como los favorecedores de los desarrollos epidémicos (OU 1987; Zeigler et al., 1994) En zonas con climas donde no son continuas las lluvias, algo más parecidas a nuestras áreas (Scardaci et al., 2002), se hace referencia a la duración de la HR, citándose las siguientes condiciones: desarrollo de la enfermedad entre 17 y $28^{\circ} \mathrm{C}$ (óptimos entre $22^{\circ} \mathrm{C}$ y $25^{\circ} \mathrm{C}$) y producción y liberación de esporas con HR $\geq 93 \%$, no produciéndose estas cuando $\mathrm{HR} \leq 89 \%$. Así mismo se cita la necesidad de períodos continuados de HR $\geq 93 \%$ para la liberación de esporas y desarrollo epidémico, pero no se cuantifica su duración ni el posible efecto de los períodos secos, y su duración, alternantes con los correspondientes húmedos sobre la variación de la gravedad epidémica (SV= "severity") ni sobre la producción de inóculo (densidad de inóculo = DI; conidias de P.grisea por unidad de volumen, o de superficie, de trampa para la captura de las mismas) durante el tiempo epidémico. Estas últimas representan una indicación de que la epidemia se desarrolla (esta activa) como una estimación de la SV epidémica.

Tanto los factores climáticos citados como la DI se han utilizado para determinar el UR bajo el supuesto tácito de que se produciría inóculo en cualquier período con T y DHR favorables (Ishiguro y Nankesi, 2000; Kim 2001; Marín, 1991; Marín y Almacellas, 1999; OU, 1987; Zeigler et al., 1994) Nuestros experimentos establecieron, inicialmente, valores de UR $\leq 3 \%$ de SV_foliar y DI ≥ 5 conidias/cm² de trampa_porta acumuladas en 1 semana, como momentos críticos de tratamiento de la enfermedad foliar y, en el caso de la DI, como una indicación de la conveniencia de aplicar tratamientos fungicidas en la panícula (Marín, 1987; Marín 1991; Marín y Almacellas, 1999).

Tales criterios tienen una validez general y han sido de utilidad en el control mediante funguicidas de la enfermedad; no obstante, estudios recientes de nuestro grupo (Marín y colaboradores) en Amposta -años: 2000, 2001 y 2002- referentes a la epidemiología predictiva para un SATD (datos no publicados) y, relacionado con estos, para la optimización del control mediante fungicidas (Marín et al., 2002) han cuestionado el carácter general de los UR y DI citados anteriormente.

En primer lugar, valores de SV_foliar=0,1\% y DL<1 conidias/cm ${ }^{2}$ de trampa_porta situadas a 1 m de altura, durante el tiempo disponible para la epidemia foliar ($\mathrm{EF}=4$ hojas verdaderas hasta $\mathrm{EF}=9$ comienzo de la formación del zurrón) no implican la no aparición de epidemias de carácter grave en el tallo y en la panícula. Dicho en términos cuantitativos, incidencias de hasta el 40% de plantas con necrosis en el "cuello" (EF11, grano acuoso) se produjeron a pesar de los bajos valores de UR y DI anteriores, pero coincidiendo con DHR>14 horas durante 5 , o más, días.

En segundo lugar, la aportación de inóculo desde plantas de arroz en una parcela, infectadas a su vez por el inóculo procedente de malas hierbas (probablemente Echinochloa cruz-galli), no aseguró el desarrollo epidémico en el resto
de las plantas de la parcela, situación asociada a la alternancia de períodos húmedos (DHR) y de períodos secos (DPS).

Tercero, aún con los bajos niveles de DI iniciales, la incidencia de plantas con síntomas en sus órganos superiores (hoja,"cuello" y nudo) se produjo con una tasa superior a 2% de los tallos/día (40% en 15 días), período en el que la DI se incrementó entre valores $\mathrm{Dl}=3$ y $\mathrm{Dl}=5$ conidias/ cm^{2} incremento que se produjo por aumento del diámetro de rodales o bandas con plantas enfermas.

Cuarto, tanto el inóculo capturado, DI, como la SV_foliar, y aun con los bajos niveles señalados, solo se produjeron asociados a DHR de igual o más de 5 días de duración, no produciéndose durante los períodos secos, DPS.

Quinto, el "desarrollo explosivo" epidémico se produjo de forma discriminada entre parcelas próximas de la misma variedad, separadas por un camino de 6 metros aproximadamente, lo cual induce a pensar en la escasa capacidad de dispersión del inóculo en las mencionadas condiciones climáticas.

Los anteriores resultados permiten establecer algunas hipótesis que son el fundamento de la parte epidemiológica:

1a) Las epidemias en nuestros climas se desarrollan, básicamente, en función de la DI del endoinóculo en cada parcela.

2as) El crecimiento epidémico se incrementa tras la producción de inóculo en lesiones activadas por DHR de 5 o más días de duración, pero que pueden estar latentes (no producción ni liberación de inóculo) durante los DPS, 3á) La relación SV=f(DI) demostrada en otros patosistemas (Jeger, 1984; Marín et al., 1994) debe entenderse como una relación actual y no relacionado con un tiempo de retardo (t latencia; Marín et al. 1994) de cara a la utilización de los DI en sistemas predictivos actuales (SATD) como es PYRICONT (Marín y Almacellas, 1999)

El control químico se basa en la aplicación de productos eficaces, lo cual no es el problema actual (Pans, 1976; Marín et al., 2002), y en el momento adecuado (UR<= 3\% SV_foliar y EF en panículación = "espigado") Este último, como hemos señalado, es el problema. Dicho problema: momento de aplicación, se concreta en determinar un umbral de severidad foliar en un estado fenológico, principalmente a partir del "inicio del espigado", para el que el fungicida sea más eficaz (Marín et al., 2002) Así, el problema es el establecimiento de criterios epidemiológicos, como los anteriormente comentados, que sean de utilidad para una mayor eficacia del control; eficacia que se ha de basar en un análisis económico del mismo. Este, a su vez, tiene dos premisas: una es el establecimiento de un Umbral Económico de los Tratamientos (UET) el cual es variable con las condiciones de producción y precios anuales; y otra, que se ha de determinar el efecto epidémico de las variedades según su reacción Resistente/Susceptible (R/S) a P. grisea. El cálculo anual del UET lo podemos realizar por simulación, tras una estimación de los parámetros epidémicos, de los precios y de la cosecha al inicio de la campaña de cultivo, mediante el programa CONPAT (Marín et
al., 1993; Welzh et al., 1991) pero sería conveniente incrementar el intervalo de resultados-ambientes. Según lo anterior, la hipótesis de trabajo, para este apartado sería: la eficacia del control químico esta en función del momento de aplicación (UR)

El efecto epidémico de las variedades según su reacción R/S ha sido objeto de estudio desde hace años en nuestras áreas (Marín y Jiménez, 1981; Marín, 1987); si bien, solo en lo referente a las características epidémicas de las variedades cultivadas en condiciones de campos de cultivo (no experimentales) lo cual permite recomendaciones de uso, si bien, limitadas por las bajas probabilidades de epidemias graves ($p=0,2$ a $p=0,3$). Desde hace varios años Dña. María del Mar Català (IRTACataluña) lleva a cabo experimentos (Català MaM et al., 2010) con el objetivo de conocer la reacción de las variedades de mayor interés en el área y de colecciones de diferenciales (la colección internacional y la japonesa por su gran homogeneidad genética) basándose en la escala SES - sistema estándar de evaluación internacional de tipos de infección - (IRRI 1988). Los resultados correspondientes aún no se han publicado pero si presentados en reuniones nacionales (Català 2002; Marín et al., 2002). Dichos experimentos permitieron conocer la R/S evaluada en hoja, tallo y panícula de 30 variedades "comerciales" así como la presencia de los genes de virulencia: pi-ks y pi-ta sobre las variedades de la colección internacional: Sha-tiaotsao(s) y Caloro; y de la colección japonesa: Shin2 y K1, así como las resistencias oligonénicas: Pi-z y Pi-a, en las variedades de la colección internacional: Raminad Str. 3 y Zenith (ambas incluyen ambos genes R) Estos resultados se obtuvieron en ensayos de las colecciones citadas dispuestas en "estaciones fijas"; no obstante, existen restricciones para el uso de la R en nuestras áreas. Estas se pueden resumir en las siguientes: la escala SES no se adapta a nuestras observaciones de tipos de infección, no sabemos la estructura de virulencia en el área de cultivo, tal como estudiamos en otros patosistemas (Marín J.P., 1985; Marín y Mansilla, 1989; Xu et al., 2002; Segarra et al., 1999a; 1999b) y es objeto de estudio en todo el mundo (Marchetti, 2002; MacKill et al., 2002; Mekwatanakarn et al., 2000; Roumen et al., 2002) y no conocemos la posible existencia de R_tasa reductora (RP = resistencia parcial; Correa y Zeigler, 1994) en nuestro patosistema, cuestión interesante ante la hipótesis propuesta, en la parte epidemiológica, según la cual el desarrollo epidémico esta influido, principalmente, por el endoinóculo en cada parcela de cultivo. Así, las hipótesis en este apartado de resistencia sería: a) La resistencia tasa_reductora podría ser de utilidad en el control de la Pyriculariosis debido a la escasa influencia del exoinóculo en los desarrollos epidémicos, en las áreas de cultivo, y b) el despliegue espacial de la R regulada por genes mayores puede ser de utilidad en áreas, como las nuestras, con escasa influencia del exoinóculo en los desarrollos epidémicos.

3. MATERIAL Y MÉTODOS

"El verdadero progreso es el que pone la
tecnología al alcance de todos".
Henry Ford

3.1. Introducción al KDD y minería de datos

3.1.1. Knowledge Discovery from Databases (KDD)

Por sus siglas en inglés KDD (Knowledge Discovery in Database) significa: Descubrimiento del conocimiento en Base de Datos (Fayyad, Piatetsky-Shapiro, \& Smyth, 1996) y consiste en un proceso completo de extracción de información, que se encarga además de la preparación de los datos y de la interpretación de los resultados obtenidos. Se trata de interpretar grandes cantidades de datos y encontrar relaciones o patrones, para lo que harán falta técnicas de aprendizaje automático.

Según Los datos recogen un conjunto de hechos (una base de datos) y los patrones son expresiones que describen un subconjunto de los datos (un modelo aplicable a ese subconjunto). KDD involucra un proceso iterativo e interactivo de búsqueda de modelos, patrones o parámetros. Los patrones descubiertos han de ser válidos, novedosos para el sistema (para el usuario siempre que sea posible) y potencialmente útiles.

El KDD es un procedimiento que consta de cinco fases, tal y como se explica en la figura siguiente: Selección, Preprocesado, Transformación, Data Mining, Interpretación y evaluación. A continuación se detalla cada una de ellas:

1. Selección del conjunto de datos. Se refiere a las variables que se quieren predecir, calcular o inferir, a las variables independientes que sirven para hacer el cálculo o proceso y posiblemente al muestreo de los registros disponibles.
2. Preprocesado de los datos. Se centra en los histogramas, diagramas de dispersión, presencia de valores atípicos y valores nulos.
3. Transformación del conjunto de datos de entrada. Se realiza en función del análisis previo, con el objetivo de prepararlo para aplicar la técnica de minería de datos que mejor se adapte a los datos y al problema, a este paso también se le conoce como preprocesamiento de los datos.
4. Data Mining. Consiste en seleccionar y aplicar las técnicas de minería de datos adecuadas para construir el modelo predictivo, de clasificación o segmentación.
5. Interpretación y Evaluación. Con una técnica de minería de datos se obtiene un modelo de conocimiento, que representa patrones de comportamiento observados en los valores de las variables del problema o relaciones de asociación entre dichas variables. También pueden usarse varias técnicas a la vez para generar distintos modelos, aunque generalmente cada técnica obliga a un preprocesado diferente de los datos.

Pasos que Componen el Proceso de KDD

Figura 16. Fases de la metodología de Extracción de Conocimiento (KDD) para la elaboración y diseño del monitoreo de la Pyriculariosis. Fuente:
http://mineriadatosyalmacenamientoweb.net/webmining.html

3.1.2. Minería de Datos

Minería de Datos es un término genérico que engloba resultados de investigación, técnicas y herramientas usadas para extraer información útil de grandes bases de datos. El análisis de la información recopilada (por ejemplo, en un experimento científico) es habitual que sea un proceso completamente manual (basado por lo general en técnicas estadísticas). Sin embargo, cuando la cantidad de datos de los que disponemos aumenta la resolución manual del problema se hace intratable. Aquí es donde entra en juego el conjunto de técnicas de análisis automático al que nos referimos al hablar de Minería de Datos. Para el estudio de la Minería de Datos se ha tomado la perspectiva orientada a datos, por dos razones. Primero porque la mayoría de los trabajos en Minería de Datos están enfocados hacia el data warehouse que proporciona el apoyo a la Minería de Datos organizando y estructurando los datos. Además, otras tecnologías de apoyo a la minería datos han sido utilizadas desde hace tiempo y la integración de estas tecnologías con la administración de datos ha contribuido mucho a mejorar la Minería de Datos.

El aprendizaje automático consiste en la obtención de reglas de aprendizaje y modelos de los datos, para lo cual a menudo se necesita la ayuda de la estadística. Por esta razón, los métodos estadísticos y el aprendizaje automático son los dos componentes más importantes de la Minería de Datos.

Los campos de aplicación de las técnicas de Minería de Datos son muy diversos, desde el Marketing para la identificación de patrones de compra de los clientes, hasta para identificar comportamiento fraudulento en compañías de seguros o compañías energéticas y de telecomunicaciones. En el campo de la medicina se emplea para realizar estudios epidemiológicos e identificación de terapias médicas satisfactorias para diferentes enfermedades.

En la Minería de Datos los datos son críticos por consiguiente, se necesitan sistemas de bases de datos que permitan manejar los datos a los que aplicar data mining eficazmente. Estos sistemas podrían ser sistemas de data Warehouse.

3.2. KDD соmo apoyo al monitoreo de Pyriculariosis

3.2.1. Antecedentes

Para el monitoreo de las enfermedades y su ambiente según el Farmer Education Program (PEPA) Resource Guide, (2012), el monitoreo va de la mano con la estimación de la pérdida del rendimiento y es un componente crítico de un programa efectivo del manejo de enfermedades. El monitoreo puede ser directo (la búsqueda visual del patógeno de la enfermedad) o indirecto (la anotación de las condiciones ambientales que afectan el desarrollo de la enfermedad).

De esta forma, en el mismo manual diferencia el monitoreo directo de las enfermedades, que puede basarse en los síntomas o signos del patógeno de la enfermedad. Los síntomas son respuestas visibles en la planta causados por un agente causante de la enfermedad. Los síntomas pueden ser causados por agentes causantes de enfermedades vivos (bióticos) o agentes causantes de enfermedades no vivos (abióticos).

A menudo los síntomas generales en las plantas de tanto los agentes de las enfermedades vivos como los no vivos son cambios en el color de la planta, la muerte de los tejidos infectados y el marchitamiento. Los signos son las estructuras producidas por los agentes causantes de las enfermedades. Los signos son más útiles para el diagnóstico correcto de una enfermedad. Por el contrario, el monitoreo indirecto de las enfermedades consiste en la anotación de las condiciones ambientales que afectan el desarrollo de las enfermedades. Para optimizar el monitoreo y la detección de las enfermedades, se debe dar un paseo al azar por el campo y concentrarse en aquellas áreas en las que es más probable que las enfermedades suceden.

El monitoreo de la distribución de las enfermedades en el campo es importante para aprender la fuente del patógeno de la enfermedad.

Específicamente para la Pyriculariosis, Fabre et al., (2007) indicaba que el monitoreo y la observancia de la Pyriculariosis permite conocer el estado del potencial de inóculo de Pyricularia grisea Sacc. en el agroecosistema arrocero de la provincia de Pinar del Río (Cuba), al mismo tiempo que les proporcionaba información acerca del comportamiento de las variedades comerciales y promisorias ante esta enfermedad. Circunstancialmente permite hacer deducciones acerca de posibles causas que motiven un comportamiento atípico, lo que ayuda a mantener la vigilancia para minimizar la posibilidad de desastres causados por la severidad de este patógeno.

Para el Monitoreo de la Pyriculariosis del arroz en la zona arrocera del Sur de España bajo Producción Integrada, la metodología utilizada se realiza de acuerdo a la normativa desarrollada por la Junta de Andalucía según el Reglamento Específico de Producción Integrada del Arroz, y que consiste en la elección de parcelas de referencia de aproximadamente 10 ha para la realización de los muestreos. En éstas, se llevan a cabo recorridos aleatorios buscando signos visibles de presencia de la infección.

Estudios realizados por Montes en 2001 y presentados en los grupos de Trabajo de los Problemas Fitosanitarios del Arroz (2001 - 2008), se acuerdan realizar muestreos semanales desde los estadios fenológicos (Figura 6) de máxima sensibilidad: Máximo Ahijado, Zurrón Avanzado, Espigado - Floración). Normalmente los técnicos de campo realizan los muestreos una vez por semana en recorridos en Zig - Zag y valorando entre 10 y 20 tallos. Durante el muestreo valoran Susceptibilidad Varietal a la Pyriculariosis (Incidencia y Severidad). Para la severidad, la estimación del porcentaje de tejido foliar enfermo se usaba la escala de Evaluación de la Severidad Foliar (Figura 12). Respecto a las valores climáticos se tomaban datos de Humedad Relativa y Temperaturas (Máxima, Mínima y Medias) a partir de la instalación de sensores climáticos HOBBO Data Logger en los ensayos.

La recogida de datos se hacía semanalmente mediante la descarga de datos con tarjetas de campo de Shuttle HOBBO. De esta forma hasta el año 2008 se volcaban los datos en la aplicación informática EPIDEMIAS ${ }^{12}$, para la emisión de Boletines de Avisos (Figura 16)

BOLETÍN INFORMATIVO

CONDICIONES MICROCLIMATICAS
 Temperatura entre $15^{\circ} \mathrm{C}$ y $25^{\circ} \mathrm{C}$

Humedad relativa por encima del 93%

PERIODOS DE LECTURA DONDE SE CUMPLEN CONDICIONES

CONDICONES DE RIESGO

1.- Condiciones de infección: (riesgo alto)

Se dan si el periodo de humedad en la hoja (HR>93\%) es mayor a 10 horas siendo la temperatura
media de ese periodo de $15-25^{\circ} \mathrm{C}$.
o por intervalos, se requeririan:
17 horas de condiciones de humedad a $15^{\circ} \mathrm{C}$
15 horas de condiciones de humedad a $16^{\circ} \mathrm{C}$
14 horas de condiciones de humedad a $17^{\circ} \mathrm{C}$
13 horas de condiciones de humedad a $18^{\circ} \mathrm{C}$
12 horas de condiciones de humedad a $19^{\circ} \mathrm{C}$
11 horas de condiciones de humedad a $20-21^{\circ} \mathrm{C}$
10 horas de condiciones de humedad a $22-25^{\circ} \mathrm{C}$
2.- Condiciones de semi-infección: (riesgo medio)

Se dan si las condiciones de humedad perduran durante más de 10 horas, aunque las temperaturas registradas estén fuera del rango anterior.
3.- Condiciones de no infección: (riesgo nulo)

Se dan si el periodo de humedad en la hoja es inferior a 10 horas continuadas.

Figura 17. Modelo de Boletín de avisos generados por la aplicación EPIDEMIAS.
Para la emisión de Boletines de aviso sobre el nivel de riesgo se han estado empleando los datos de Kikusawa et al. (1991) en la que se establecen 3 rangos de riesgo:

- Condiciones de infección: (riesgo alto): Se dan si el periodo de humedad en la hoja (HR>93\%) es mayor a 10 horas siendo la temperatura media de ese periodo de $15-25^{\circ} \mathrm{C}$,
- o por intervalos y se requerirían:
- 17 horas de condiciones $15^{\circ} \mathrm{C}$
- 15 horas de condiciones $16^{\circ} \mathrm{C}$
- 14 horas de condiciones $17^{\circ} \mathrm{C}$
- 13 horas de condiciones $18^{\circ} \mathrm{C}$
- 12 horas de condiciones $19^{\circ} \mathrm{C}$
- 11 horas de condiciones $20-21^{\circ} \mathrm{C}$
- 10 horas de condiciones $22-25^{\circ} \mathrm{C}$
- o porque la Temperatura media entre $20-25{ }^{\circ} \mathrm{C}$ durante 5 días previos al mojado de la hoja
- Condiciones de semi-infección: (riesgo medio). ${ }^{\text {QSe }}$ dan si las condiciones de humedad perduran durante más de 10 horas, aunque las temperaturas registradas estén fuera del rango anterior.
- Condiciones de no infección: (riesgo nulo) Se dan si el periodo de humedad en la hoja es inferior a 10 horas continuadas.

3.2.2. Selección de datos: ensayos de campo

3.2.2.1. Diseño experimental

Periodo estudiado:

La experiencia se realizó durante tres campañas consecutivas: 2010, 2011 y 2012.

Material Biológico:

Las variedades seleccionadas para el estudio fueron cinco. Tres fueron variedades convencionales: Puntal, Fonsa y Marisma; y dos híbridas: SYCR86 y SCYR128

Cultivo-Ensayos:

Los ensayos de campo (2) se llevaron a cabo el término municipal de la Puebla del Río (Sevilla): Paraje de la Abundancia, ENSAYO A; Paraje de Sartenejales, ENSAYO B.

Con objeto de observar y medir el desarrollo de las infecciones de Pyriculariosis en la colección de variedades seleccionadas, se han llevado a cabo el uso de variedades muy sensibles a los ataques del hongo, y que han servido como fuente de inóculo para asegurar la existencia de daños observables. El diseño estadístico empleado fue de Bloques al Azar con tres repeticiones, con una parcela elemental de 2 líneas de 6 metros de longitud con 30 plantas x líneo x repeteción y una separación entre líneos de $0,25 \mathrm{~m}$. Las variedades sensibles y propagadoras de la infección o spreader fueron Maratelli y Baixet.
Respecto a los datos agronómicos, a continuación se detallan por campaña y ensayo (A y B):

- ENSAYO A:

- Tipo de suelo: Franco-Arcilloso-Limoso
- Labores: 3 pases de cultivador - 1 pase de láser - 2 pases de cultivador Aplicación abonado de fondo - Rastrilla - Rulo
- Densidad de plantas $200 \mathrm{Kg} / \mathrm{ha}$ (variedades convencionales) - $120 \mathrm{Kg} / \mathrm{ha}$ (variedades híbridas).
- Trasplante: 27/06/2010-28/05/11-25/06/2015
- Fertilizante: UREA 46 \% 170Kg de N/ha

ENSAYO B:

- Tipo de suelo: Arcilloso
- Labores: 4 pases de cultivador - 1 pase de láser - 1 pase de rastrilla - 1 pase de rulo.
- Densidad de plantas $200 \mathrm{Kg} / \mathrm{ha}$ (variedades convencionales) - $120 \mathrm{Kg} / \mathrm{ha}$ (variedades híbridas).
- Trasplante: 28/06/2010-24/06/2011-27/06/2015
- Fertilizante: UREA 46 \% 170Kg de N/ha

3.2.2.2. Parámetros evaluados:

Productivos y Calidad:

Ciclo al espigado:
Número de días transcurridos entre la fecha de siembra y la correspondiente al 50% de las panículas completamente desplegadas.

Altura de la planta:
Longitud en centímetros entre la superficie del suelo y el extremo superior de la panícula.

Encamado:
Porcentaje de la superficie de la parcela con plantas encamadas, estimado visualmente y previamente a la recolección. Se considera encamada la planta cuando el ángulo que forma con la superficie del suelo es menor de 30°. Muestra simplemente su tendencia a la caída.

Rendimiento en grano:
Producción ($\mathrm{Kg} / \mathrm{ha}$) al 14\% de humedad, para cada parcela elemental.
Componentes del rendimiento:
(Panículas / m2; \% de granos vacíos; № granos / panículas (Se contaron los granos de una muestra de 40 panículas por parcela elemental, considerando solamente los granos llenos); Peso (g) de 1000 granos (obtenidos de dos muestras por parcela elemental)

Rendimientos industriales:
Para cada parcela elemental se determinaron los rendimientos en enteros y total, a partir de una muestra de arroz cáscara seco.

Sanidad vegetal:

Intensidad de la enfermedad:
Estimación visual acompañada por un diagrama del área foliar afectada o del tipo de lesión causada medido en valores de Susceptibilidad varietal a través de las variables patométricas de INCIDENCIA Y SEVERIDAD. Para ello, de las plantas muestreadas se eligió la reacción máxima atribuible a lesiones producidas y se anotaron datos de severidad máxima en cada una de las variedades muestreadas.

Aunque las medidas de la cantidad de inóculo proveen una evaluación buena del progreso de la epidemia, la observación directa del inóculo no es siempre factible o aún posible. Sin embargo, con la mayoría de las enfermedades de plantas podemos ver algún tipo de síntomas que nos permitan contar los números de plantas infectadas o estimar la cantidad de tejido infectado. Por supuesto hay una demora entre la infección y la aparición de síntomas visibles y la manifestación de síntomas puede ser afectada por las condiciones ambientales, pero por lo general el progreso de síntomas corre parejo con el progreso de producción de inóculo. El valor de cambio de la enfermedad es proporcional a la cantidad de enfermedad en cualquier punto en el tiempo. Con estos valores se calculó el área bajo la curva del progreso de la enfermedad o AUDPC.

La severidad de una enfermedad en una planta se puede medir de diversas formas. En el caso de enfermedades foliares, lo más frecuente es que se considere como severidad el porcentaje de superficie foliar ocupada por el patógeno. En otros casos, como en enfermedades radiculares, la severidad se suele evaluar utilizando escalas (por ejemplo, 0 para planta sin síntomas, 9 para plantas totalmente muertas como consecuencia de la enfermedad, y 1-8 para plantas con grados de afectación intermedios). Ambos tipos de medidas (porcentaje de tejido afectado o escala subjetiva) tienen el inconveniente de que proporcionan información puntual. Es decir permiten conocer el estado sanitario de la planta en un día concreto, pero no proporcionan información de cómo evolucionó la enfermedad a lo largo del tiempo. Este hecho supone un problema, sobre todo cuando se realizan mediciones de severidad en ensayos (de campo o de laboratorio), ya que las comparaciones entre los distintos tratamientos del ensayo son más difíciles de realizar y menos precisas. De igual modo resulta complicado comparar mediciones efectuadas en momentos diferentes. El parámetro AUDPC soluciona, al menos en parte, este problema ya que proporciona información sobre la evolución de la enfermedad a lo largo del tiempo. La correcta evaluación de las lesiones para un buen uso de las estrategias de control de las enfermedades del arroz, hace vital definir una escala de valoración así como un sistema de muestreo eficaz, para el empleo de fungicidas de amplio espectro o generalistas frente a fungicidas específicos.

Como ya se indicó en el Capítulo de Introducción, los estadios iniciales de las Helminthosporiosis en hoja en la planta de arroz, pueden ser confundidos, a menudo, con las lesiones de Pyriculariosis. Incluso, pequeñas lesiones foliares o paniculares pueden ser consecuencia de otros agentes fúngicos también descritos en el mismo capítulo, y que pueden aparecer de manera oportunista con las especies de Bipolaris. De esta forma, se emplea el término de Necrosis Totales (Nt) para evitar caer en errores de evaluación, y se define como aquel conjunto de lesiones primarias de difícil diagnóstico visual y que pueden derivar en lesiones producidas por Bipolaris spp. o Pyricularia grisea.

Para la evaluación de la intensidad de enfermedad de Pyriculariosis y de Necrosis totales se escogieron al azar 20 tallos, y se midieron valores de incidencia y severidad en hoja e incidencia y severidad en panícula (Marín-Sánchez et al, 2002. Comunicación personal). La escala de evaluación utilizada fue descrita por MarínSánchez et al. (Figura 12)

Para la evaluación de la Severidad se estimó el porcentaje de follaje del limbo afectado del conjunto de plantas evaluadas asignando, 0% a plantas completamente sanas y 100% a plantas completamente afectadas. Las evaluaciones se realizaron aproximadamente en intervalos de 7 días. Los valores porcentuales de severidad se transformaron a valores de proporción de tejido enfermo para el cálculo de AUDPC. (Campbell and Madden, 1990).

En la mayoría de las enfermedades de plantas, podemos ver algún tipo de síntomas que nos permitan contar los números de plantas infectadas o estimar la cantidad de tejido infectado. Y , aunque se produce un retraso entre la infección y la manifestación de síntomas (aparición de síntomas visibles) los cuales se pueden ver afectados por las condiciones ambientales, por lo general, el progreso de síntomas, corre parejo con el progreso de la producción de inóculo y por lo tanto el parámetro AUDPC nos proporcionará la mejor información sobre la evolución de la enfermedad a lo largo del tiempo.

3.2.3. SELECCIÓN, PREPROCESADO Y TRANSFORMACIÓN DE DATOS MICROCLIMÁTICOS: PROGRAMA EpIDEMIAS

Para el monitoreo de los ensayos de campo, además de los datos sobre el estado sanitario del cultivo (ver apartado 2.9.1) también se midieron valores Climátológicos a nivel del Cultivo (MICROCLIMÁTICOS) con Sensores del mismo tipo que los empleados en PI (DATA LOGGER HOBO) y la recogida de datos se realizaba mediante descarga directa del data logger al ordenador personal. Dichos datos eran administrados y tratados con el software EPIDEMIAS generando los datos microclimaticos para su posterior análisis e interpretación; y datos de las Estación Climática de Referencia de la zona (MACROCLIMÁTICOS) de la Red Climática de la Junta de Andalucía.

Figura 18. Estación climática de la Puebla del Río II.

El programa para la recogida, el preprocesado y la transformación de los datos microclimáticos sirve para construir un Data Warehouse. Se define un Data Warehouse como "un almacén de datos orientado a un tema, integrado, no volátil y variante en el tiempo, que soporta decisiones de administración". De esta forma se proporcionar una fuente única de datos limpia y consistente para propósitos de apoyo para la toma de decisiones, que sería en este caso la puesta a punto de estaciones de aviso frente a riesgo de Pyriculariosis.

El programa EPIDEMIAS almacena los datos de las bases de datos heterogéneas para que los usuarios consulten sólo un único aspecto. Las respuestas que un usuario consigue a una consulta dependen de los volúmenes del Data Warehouse. El data warehouse en general no intenta extraer la información de los datos almacenados. Data warehouse estructura y organiza los datos para suportar funciones de administración, data mining intenta extraer la información útil, así como predecir las tendencias de los datos.

Para el desarrollo del programa EPIDEMIAS, a continuación se muestra en las figuras 19 a la 23 el ciclo de vida llevado a cabo para su diseño:

- Interface de usuario:

Figura 19. Definición de la Interface de usuario de EPIDEMIAS, mediante diagrama de caso y en la que se determinan la información de entrada y salida.

- Diagrama de procesos:

Figura 20. Definición del diagrama de procesos del programa EPIDEMIAS.

- Interface gráfica:

Figura 21. Interface gráfica principal para la importación y consulta de datos epidemiológicos del programa EPIDEMIAS.

Figura 22. Interface gráfica principal para la importación y consulta de datos epidemiológicos: selección de condiciones de Humedad Relativa y Temperatura en el Programa EPIDEMIAS.

Figura 23. Interface gráfica principal para la importación y consulta de datos epidemiológicos para el tratamiento de los datos sanitarios del cultivo en el programa EPIDEMIAS.

3.2.4. Minería de datos

Como se ha comentado en apartados anteriores la Minería de Datos trata de obtener patrones o modelos a partir de los datos seleccionados y tratados. La utilidad de los modelos suele requerir una valoración subjetiva por parte del usuario. Las técnicas de Minería de Datos se clasifican en dos grandes categorías: predictivas y descriptivas (S.M Weiss y Indurkhya, 1998).

En la figura 24 se muestra una clasificación de las técnicas de minería de datos donde hallamos los árboles de decisión. De acuerdo Lior Rokach and Oded Maimon (2008), un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Dada una base de datos se fabrican diagramas de construcciones lógicas, muy similares a los sistemas de predicción basados en reglas, que sirven para representar y categorizar una serie de condiciones que ocurren de forma sucesiva, para la resolución de un problema.

Un árbol de decisión es una forma gráfica y analítica de representar todos los eventos (sucesos) que pueden surgir a partir de una decisión asumida en cierto momento. Nos ayudan a tomar la decisión más "acertada", desde un punto de vista probabilístico, ante un abanico de posibles decisiones. Estos árboles permiten examinar los resultados y determinar visualmente cómo fluye el modelo. Los resultados visuales ayudan a buscar subgrupos específicos y relaciones que tal vez no encontraríamos con estadísticos más tradicionales.

Figura 24. Clasificación de técnicas de Minería de Datos (Fuente: Jesús García Herrero, José Manuel Molina López. TÉCNICAS DE ANÁLISIS DE DATOS. Universidad Carlos III de Madrid.

Los árboles de decisión son una técnica estadística para la segmentación, la estratificación, la predicción, la reducción de datos y el filtrado de variables, la identificación de interacciones, la fusión de categorías y la discretización de variables continuas. La función árboles de decisión (Tree) en SPSS crea árboles de clasificación y de decisión para identificar grupos, descubrir las relaciones entre grupos y predecir eventos futuros.

Respecto a la aportación realizada al trabajo de investigación, se ha propuesta una revisión de los criterios para evaluar el riesgo de enfermedad basada en la técnica de modelado de ÁRBOLES DE DECISIÓN. Para ello se ha usado el paquete estadístico para minería de datos CLEMENTINE 12.0 de SPSS. El paquete estadístico de SPSS permite las siguientes posibilidades en relación con la técnica de los árboles de decisión:

- Identificar grupos, segmentos y patrones de forma altamente visual.
- Seleccionar entre diferentes tipos de árbol: CHAID, CHAID exhaustivo, CRT y QUEST, según el que mejor se ajuste a nuestros datos.
- Presentar resultados de forma intuitiva, lo que facilita la interpretación para públicos sin demasiados conocimientos de estadística.
- Guardar información de los árboles como nuevas variables en los datos. Información como el número de nodo de terminal, el valor pronosticado y las probabilidades pronosticadas.

4. RESULTADOS YDISCUSIÓN

"Si uno no puede comunicar lo que ha estado
haciendo, su trabajo carecerá de valor".
Erwin Schrödinger -

4.1. Comportamiento agronómico de los Ensayos A y B

- Las variables analizadas:
- Año: 2010, 2011, 2012
- Variedad: FONSA, MARISMA, PUNTAL, SYCR128, SYCR86
- Ciclo de vida: número de días para el espigado, altura de la planta, encamado.
- Componentes del rendimiento: número de panículas por metro cuadrado, número de granos por panícula y peso de mil granos.
- Rendimiento Industrial y en grano: granos vacío, granos totales, granos enteros y producción al 14 \% de humedad.
- Susceptibilidad a la Pyriculariosis: Incidencia y Severidad Pyriculariosis y Necrosis Totales.

Tabla 2. Comportamiento agronómico de las variedades comerciales de Arroz estudiadas. Media de los dos ensayos A y B para las tres campañas en las Marismas del Guadalquivir

Días de siembra a espigado		SYCR86	SYCR128	PUNTAL	MARISMA	FONSA	MEDIA	CV (\%)	MDS (95\%)
		93	97	96	84	80	90		
Altura planta (cm)		84	96	83	82	70	83		
Encamado (\%)		0	0	0	0	0	0		
Panículas/m ${ }^{2}$		550	505	490	420	459	484,8	11,9	48,4
Componentes del Rendimiento	Granos/Panícula	83	85	92	58	75	78,6	15,2	7
	Peso de 1.000 granos llenos (g)	26,3	27,6	23,7	39,1	28,5	29,04	4,1	1,7
Humedad del grano en recolección (\%)		17,8	20,9	16,7	14,9	16,5	17,36		
Humedad en recolección con relación a la media (\%)		103,2	117,9	89,1	84,3	85,3			
Rendimiento Industrial	Total (\%)	64,2	67,4	68,5	65,2	63,4	65,74	2,9	4,6
Rendimiento en grano	Enteros (\%)	63,2	64,5	67,2	61,5	60	63,28	4,5	5
	$\mathrm{Kg} / \mathrm{ha}$ al 14% humedad	12.006,0	11.847,3	10.684,0	9.524,8	9.811,1	10.774,6	7,5	862,0

En la Tabla 2 se muestran los resultados medios de los dos ensayos de variedades comerciales durante las tres campañas. En el análisis estadístico, la mínima diferencia significativa (MDS) al 95\% de confianza establece la mínima diferencia que ha de existir entre los valores de un determinado carácter de dos variedades para que podamos considerarlas diferentes (para el carácter o parámetro analizado) con una probabilidad de solo el 5% de que dicha diferencia sea debida al azar. El coeficiente de variación (CV) es una medida (\%) de la variabilidad general del ensayo y, por tanto, de la estabilidad de los resultados obtenidos. Valores bajos de este coeficiente, como los alcanzados en nuestros experimentos, indican alta estabilidad.

El comportamiento agronómico de las variedades híbridas han mostrado rendimientos superiores al resto de las variedades. Otros parámetros interesantes sobre la susceptibilidad varietal a enfermedades se pueden ver en la tabla 3 en la que se muestran lo valores de AUDPC a la Pyriculariosis y de Necrosis totales.

4.1.1. Susceptibilidad a la Pyriculariosis

Tabla 3. Datos microclimaticos dentro de los umbrales de riesgo determinados por Kikusawa et al. (1999) y valores medios de AUDPC para el Ensayo A y Ensayo B en los años 2010 y 2012 en las Marismas del Guadalquivir.

	Ensayo A	Ensayo A	Ensayo B	Ensayo B
	2010	2012	2010	2012
Riesgo nulo	29	42	31	39
Riesgo medio	1	0	1	0
Riesgo alto	40	38	46	37
\% en riesgo alto	57%	48%	59%	49%
AUDPC	420,85	301,01	408,99	297,33

Para determinar los niveles de tolerancia a la Pyriculariosis en los ensayos realizados, se calculó el Área Bajo la Curva de Progreso de la Enfermedad (AUDPC), el cual se obtiene a partir del porcentaje del área foliar; concretamente del limbo de la hoja.

El AUDPC integra la cantidad de enfermedad a la que el cultivo ha estado expuesto durante un período dado de tiempo; mientras más bajo sean los valores de AUDPC de un determinada ensayo más altos son los niveles de resistencia al patógeno. Así se observa que para el ensayo A y B durante el año 2010, se obtuvieron niveles de enfermedad superiores que para el 2012.

Figura 25. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a la evolución de la enfermedad (\% de severidad en hoja) en el Ensayo A y durante el período de máximo riesgo de Pyriculariosis en la campaña 2010 en las Marismas del Guadalquivir.

Figura 26. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a la evolución de la enfermedad (\% de severidad en hoja) en la Ensayo A y durante el período de máximo riesgo de Pyriculariosis en la campaña 2012 en las Marismas del Guadalquivir.

Figura 27. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a la evolución de la enfermedad (\% de severidad en hoja) en el Ensayo B y durante el período de máximo riesgo de Pyriculariosis en la campaña 2010 en las Marismas del Guadalquivir.

Figura 28. Representación de condiciones de riesgo (número de horas $>93 \%$ Humedad Relativa y Temperaturas Medias) frente a la evolución de la enfermedad (\% de severidad en hoja) en el Ensayo B y durante el período de máximo riesgo de Pyriculariosis en la campaña 2012 en las Marismas del Guadalquivir.

Si analizamos los datos riesgo (Figura 25 a la 28) tratados con el Programa EPIDEMIAS con Humedad Relativa $>93 \%$ y Temperatura media, en las condiciones de ensayo para las variedades seleccionadas y mediante el seguimiento de la enfermedad a partir de los valores de Severidad Foliar medidos, se observa que al sacar los parámetros de evaluación del control de la Pyriculariosis de los valores de Severidad Foliar medidas, se observa que en los trabajos de Kikusawa et al., solo son válidos los obtenidos en los Ensayos A y B para los años 2010 y 2012. En el caso de los datos obtenidos durante el periodo de ensayos 2011 los sensores midieron datos discontinuos y con sucesivos periodos de saturación y por lo tanto no dando una información fidedigna. Para estos datos se han empleado 6 momentos de muestreos para poder contrastar todos los registros de condiciones de riesgo frente a la severidad, procediendo a la interpolación entre los puntos muestreos disponibles de modo que podamos tener una evolución continua de los parámetros de estudio. También indicar que se han observado diferencias significativas en los datos asociados al desarrollo de la enfermedad. Para el periodo 2010 se observa un desarrollo visible y significativo en ambos ensayos. Por el contrario, para el periodo 2012, el desarrollo es leve o prácticamente inexistente con un ligero repunte en algunas plantas al final del periodo de los ensayos. Por el contrario y respecto a las condiciones de riesgo para el periodo 2012 son más intensas que las observadas en el periodo 2010. Este ambigüedad manifiesta en los gráficos obtenidos, nos indica la necesidad de estudiar con más detenimiento lo ocurrido, y para ello se realizamos una evaluación del riesgo para ambas campañas (2010 y 2012) en base a los criterios de riesgo de Kikusawa et al. (1999).

4.2. Monitoreo de Pyriculariosis

A partir de los ensayos A y B realizados, hemos obtenido valores para la caracterización agronómica y de sensibilidad varietal de una selección de variedades utilizadas, con el fin de poder establecer un sistema de monitoreo real y adaptado a las condiciones de cultivo del Sur de España bajo Producción Integrada. Dicho monitoreo se ha venido desarrollando en base a la estimación de riesgo de acuerdo a los trabajos realizados por Kikusawa et al. (1999).

En nuestro estudio, para el caso de los datos microclimáticos se tomaron datos de parámetros de Humedad Relativa y Temperatura a nivel de cultivo por debajo de la cobertura vegetal y cada hora. Además, se analizaron los datos Macroclimáticos de Humedad Relativa y Temperatura, de la estación climática de referencia del cultivo situada en el Termino Municipal de la Puebla del Río (Puebla del Río II) y diariamente.

De tal forma que se llevaron a cabo los siguientes estudios:

- Comparativa entre los datos climáticos de las distintas fuentes:
- Análisis y revisión de las condiciones de riesgo de infección de Pyriculariosis.
- Revisión de las condiciones de riesgo y adaptación al cultivo del arroz en el sur de España bajo el sistema de producción integrada.
- Árbol de decisión como aportación a la revisión de las condiciones de riesgo y adaptación al cultivo del arroz bajo el sistema de producción integrada en el sur de España.

4.2.1. COMPARATIVA ENTRE LOS DATOS CLIMÁTICOS DE LAS DISTINTAS FUENTES:

A partir de dichos gráficos se deduce que al comparar la Temperatura entre ambos sistemas de medición, gráficamente no se observan diferencias significativas (Figuras 29 a la 31) entre los tres años de estudio. Este hecho está referido al efecto tampón térmico que se produce en el cultivo del arroz al estar en inundación constante y por efecto del agua.

Por el contrario, si analizamos los datos de la Humedad Relativa medida, gráficamente (Figuras 32 a la 34), sí se observan diferencias claramente significativas. Este efecto se puede ver incluso incrementado dadas las condiciones de siembra y de la densidad de la misma. A mayor densidad, mayor follaje vegetal y mayor capacidad de retención de humedad en las zonas bajas del cultivo.

De tal forma que la colocación del sensor o Data Logger para la toma de datos, es necesario que se haga en el interior del cultivo dado que para el desarrollo de las infecciones, el agente fúngico se desarrolla inicialmente en estas zonas. Así Zusuki, H. (1975) indicaba que la climatología afecta en la habilidad reproductiva del parásito.

Figura 29. Comparativa de datos meteorológicos de Temperaturas Medias (${ }^{\circ} \mathrm{C}$) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2010 en las Marismas del Guadalquivir

Figura 30. Comparativa de datos meteorológicos de Temperaturas Medias (${ }^{\circ} \mathrm{C}$) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2011 en las Marismas del Guadalquivir.

Figura 31. Comparativa de datos meteorológicos de Temperaturas Medias (${ }^{\circ} \mathrm{C}$) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2012 en las Marismas del Guadalquivir.

Figura 32. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2010 en las Marismas del Guadalquivir.

Figura 33. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2011 en las Marismas del Guadalquivir.

Figura 34. Comparativa de datos meteorológicos de Humedad Relativa (\%) obtenidos de la estación climática Puebla del Río II frente a los datos microclimáticos del Ensayo A y Ensayo B durante la campaña 2012 en las Marismas del Guadalquivir.

4.2.2. ANÁLISIS Y REVISIÓN DE LAS CONDICIONES DE RIESGO DE infección de Pyriculariosis.

Las condiciones de riesgo empleadas en el cultivo del arroz en el Sur de España han sido las referidas a los trabajos de Kikusawa et al. (1999) en donde se distinguían tres niveles de riesgo:

- Condiciones de infección: (riesgo alto): Se dan si el periodo de humedad en la hoja (HR>93\%) es mayor a 10 horas siendo la temperatura media de ese periodo de $15-25^{\circ} \mathrm{C}$,
- o por intervalos y se requerirían:
- 17 horas de condiciones $15^{\circ} \mathrm{C}$
- 15 horas de condiciones $16^{\circ} \mathrm{C}$
- 14 horas de condiciones $17^{\circ} \mathrm{C}$
- 13 horas de condiciones $18^{\circ} \mathrm{C}$
- 12 horas de condiciones $19^{\circ} \mathrm{C}$
- 11 horas de condiciones $20-21^{\circ} \mathrm{C}$
- 10 horas de condiciones $22-25^{\circ} \mathrm{C}$
- o porque la Temperatura media entre $20-25{ }^{\circ} \mathrm{C}$ durante 5 días previos al mojado de la hoja.
- Condiciones de semi-infección: (riesgo medio). 巴Se dan si las condiciones de humedad perduran durante más de 10 horas, aunque las temperaturas registradas estén fuera del rango anterior.
- Condiciones de no infección: (riesgo nulo) Se dan si el periodo de humedad en la hoja es inferior a 10 horas continuadas.

Además, para Teng (1994) en su revisión publicada en el manual Rice Blast Disease, una de las herramientas para el control de la Pyriculariosis se basan en el conocimiento de los sistemas de análisis, diagnósticos, predicción, etc., así como la elaboración de boletines informativos. De tal forma que para el estudio del Proceso de Infección y que comprende la germinación, la formación del apresorio, y la penetración.?Todos estos procesos requieren agua libre en la hoja. @Si la humedad en la hoja cesa antes de que se complete la infección, el proceso se paraliza y no se completa. La germinación de la conidia suele darse 3 horas tras la deposición de esta sobre la superficie foliar, si esta está mojada. Si hay condiciones secas, se retrasa.?La formación del apresorio se da 11 horas tras la germinación, a temperaturas de $24^{\circ} \mathrm{C}$ y raramente lo hace con temperaturas por encima de $28^{\circ} \mathrm{C}$. Las optimas están entre 15 y $25^{\circ} \mathrm{C}$. Para iniciarse una infección a $25^{\circ} \mathrm{C}$ se requiere un mínimo de $6-8$ horas de rocío, humedad en la hoja. En cuanto a la Latencia, para el establecimiento del hongo en la planta tras la infección depende de la edad y variedad de la planta, de la nutrición de esta, y de la temperatura. [] $9-11^{\circ} \mathrm{C}$ es de $13-18$ días, y a $26-28^{\circ} \mathrm{C}$ es de $4-6$ días.

Para el crecimiento de la lesión dependerá de la variedades, la edad de la planta pues normalmente las hojas más jóvenes son más susceptibles. La Esporulación, en condiciones óptimas, se da en 4-6 hormas, generándose una conidia cada 40 minutos. Es máxima 6 días tras la aparición de la lesión.?Sólo se da si la humedad relativa es mayor a 89% con el óptimo en 93%. Ta temperatura mínima de esporulación es de $9-12$, por debajo no lo hace. La óptima es de $25-28^{\circ} \mathrm{C}$, y la máxima de $34-35^{\circ} \mathrm{C}$, por encima no lo hace. Tla máxima esporulación se da en lesiones con centro grisáceo y márgenes morado - marrones.

Mediante los gráficos de dispersión (Figuras 35 a la 38) se han representado los gráficos de riesgos, diferenciando las áreas de riesgo alto, medio y bajo. Sobre ellos se han representado mediante nubes de puntos el número de horas consecutivas con HR>93\% frente a las temperaturas medias alcanzadas en el periodo de horas consecutivas. Los datos representados muestran que para ambas fincas y para los años 2010 y 2012, solo se han producido condiciones altas o nulas.

También, como se puede analizar en la Tabla 24, y de manera cuantitativa, se representan los porcentajes del número de casos en los que estamos en cada uno de los niveles de riesgo y con diferentes niveles de AUDPC o "cantidad de enfermedad". Además, se han representados los datos microclimáticos dentro de los umbrales de riesgo descritos por Kikusawa et al. (Figuras 39 a la 42) y representados por líneas completas (riesgo alto) y su ausencia (riesgo nulo).

No se han representado las de riesgo medio al ser prácticamente inexistentes. De tal forma que para las campañas 2010 y 2012 durante el periodo de cultivo en los meses de máxima sensibilidad por estados fenológicos del cultivo (julio - septiembre), se arroja la siguiente hipótesis: se pueden estar proponiendo condiciones de riesgo alto cuando realmente no existen, y estas condiciones podrían estar sobrevalorando el riesgo de Pyriculariosis sobre el cultivo. Con lo cual no estaríamos obviando la condición última de Riesgo Alto también propuesta por Kikusawa.

Figura 35. Representación del número de horas consecutivas (con HR>93\%) frente a los datos
microclimaticos de Temperatura Media $\left({ }^{\circ} \mathrm{C}\right)$ de acuerdo de los umbrales de riesgo
determinados por Kikusawa et al. (1999) para el Ensayo A durante el período de cultivo 2010 en las Marismas del Guadalquivir.

Figura 36. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media $\left({ }^{\circ} \mathrm{C}\right)$ de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo A durante el período de cultivo 2012 en las Marismas del Guadalquivir.

Figura 37. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media $\left({ }^{\circ} \mathrm{C}\right)$ de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo B durante el período de cultivo 2010 en las Marismas del Guadalquivir.

Figura 38. Representación del número de horas consecutivas (con HR>93\%) frente a los datos microclimaticos de Temperatura Media $\left({ }^{\circ} \mathrm{C}\right)$ de acuerdo de los umbrales de riesgo determinados por Kikusawa et al. (1999) para el Ensayo B durante el período de cultivo 2012 en las Marismas del Guadalquivir.

No obstante se considera que tras estos resultados, se deben revisar las condiciones de riesgos publicados, y adaptarlos a las condiciones del arrozal del Sur de España.

4.2.3. REVISIÓN DE LAS CONDICIONES DE RIESGO Y ADAPTACIÓN al cultivo del arroz en el sur de España bajo el sistema de PRODUCCIÓN INTEGRADA.

Los resultados aportados está ligados a los registros medidos en ambiente controlado, ensayos, y que deberán ser revisados año - año. De esta forma se podrán valorar y "afinar". Por lo tanto, esto podría suponer un punto de partida y una propuesta metodológica para futuras mejoras en el monitoreo de la Pyriculariosis bajo el sistema de Producción Integrada en el cultivo del arroz del Sur de España.

Dado que al evaluación del riesgo en función de los estados fenológicos del cultivo no está contemplada en las investigaciones del autor Kikusawa, y de acuerdo a los trabajos del Profesor Marín et al. (2003) sobre el desarrollo de la enfermedad y el Retardo (ver la información aportada el Proyecto de Investigación "Control de la Piriculariosis del arroz en zonas semiáridas y riego por inundación" AGL2003-08262-C02-01), indicaba que la finalidad era la de optimizar el control de la Pyriculariosis del arroz en dos de las zonas más importantes de este cultivo en España: Andalucía y Cataluña, pues se conoce el efecto de las operaciones de cultivo sobre el desarrollo epidémico, el efecto del control químico en lo referente a materias activas, pero el conocimiento de los umbrales de riesgo y el efecto de la alternancia de períodos secos y húmedos en los desarrollos epidémicos es incompleto.

Como aportación a los estudios realizados se han desarrollado Análisis de Frecuencia (Figuras 43 a la 50) y lo que se PROPONE es establecer unos umbrales de riesgo no absolutos expresados bajo una distribución de frecuencias, que sintetizan la forma en las que se han producido las condiciones de riesgo dentro del cultivo. De hecho, comparando la distribución de la frecuencia del número de horas consecutivas de humedad relativa y temperaturas medias entre las dos campañas de estudio podremos se obtienen los gráficos correspondientes a las mismas figuras; en donde los BIN son los rangos del número de horas, y la curva acumulada o frecuencia absoluta. Hay una diferencia entre 2010 - 2012 entre la distribución de números de horas consecutivas, es decir los datos de frecuencia se acumulan a la derecha o a la izquierda.

Esta tendencia en los datos indican que en el 2010 se ha estado con más condiciones de riesgo y por lo tanto habría revisar el umbral por encima de las 10 horas. Pero como está ligada a la Temperatura, el rango de temperatura no varían entre campañas y por lo tanto es necesario realizar un estudio donde se analicen el efecto conjunto de las variables número de horas consecutivas de Humedad relativa superior al 93% y las temperaturas medias.

Figura 39. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, $2=A l t o$) y determinadas por Kikusawa et al. (1999) para el Ensayo A durante el período de máxima sensibilidad a la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 40. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, $2=A l t o$) y determinadas por Kikusawa et al. (1999) para el Ensayo A durante el perío do de máxima sensibilidad a la enfermedad en el período de cultivo 2012 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 41. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, $2=A l t o$) y determinadas por Kikusawa et al. (1999) para el Ensayo B durante el período de máxima sensibilidad de la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 42. Representación de la evolución de la Pyriculariosis en \% de Severidad Foliar de acuerdo a las condiciones de riesgo ($0=$ Nula, $1=$ Medio, 2=Alto) y determinadas por Kikusawa et al. (1999) para el Ensayo B durante el período de máxima sensibilidad a la enfermedad en el período de cultivo 2010 y para cada una de las variedades seleccionadas en las Marismas del Guadalquivir.

Figura 43. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo A y durante la campaña 2010.

Figura 44. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo A y durante la campaña 2012.

Figura 45. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo A y durante la campaña 2010.

Figura 46. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo A y durante la campaña 2012.

Figura 47. Diagrama de frecuencias del número de horas consecutivas con Humedad Relativa>93\% para el Ensayo B y durante la campaña 2010.

Figura 48. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo B y durante la campaña 2012.

Figura 49. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo B y durante la campaña 2010.

Figura 50. Diagrama de frecuencias de Temperaturas Medias $\left({ }^{\circ} \mathrm{C}\right)$ para el Ensayo B y durante la campaña 2012.

4.2.4. ÁRBOL DE DECISIÓN COMO APORTACIÓN A LA REVISIÓN DE LAS CONDICIONES DE RIESGO Y ADAPTACIÓN AL CULTIVO DEL ARROZ BAJO EL SISTEMA DE PRODUCCIÓN INTEGRADA EN EL SUR DE ESPAÑA.

4.2.4.1. Estructura del Árbol de Decisión

La terminología asociada a la técnica de los árboles de decisión recurre a una terminología específica, por lo que consideramos interesante, antes de seguir adelante, clarificarla. El árbol de decisión se estructura en las siguientes partes:

- Nodo de decisión: Nodo que indica que una decisión necesita tomarse en ese punto del proceso. Está representado por un cuadrado.
- Nodo de probabilidad: Nodo que indica que en ese punto del proceso ocurre un evento aleatorio. Probabilidades de que ocurran los eventos posibles como resultado de las decisiones. Está representado por un círculo.
- Nodo terminal: Nodo en el que todos los casos tienen el mismo valor para la variable dependiente. Es un nodo homogéneo que no requiere ninguna división adicional, ya que es "puro".
- Rama: Nos muestra los distintos caminos que se pueden emprender cuando tomamos una decisión o bien ocurre algún evento aleatorio. Resultados de las posibles interacciones entre las alternativas de decisión y los eventos.

4.2.4.2. Parámetros de estudio

En vista a la revisión de los resultados anteriores, se impone la necesidad de revisar las condiciones de riesgo para el cultivo del arroz en condiciones del Sur de España. Para ello, y como punto de partida, se propone utilizar la técnica de minería de datos de árboles de decisión para la caracterización de un modelo que recoja las observaciones de la muestra de datos disponibles para el trabajo de investigación llevado a cabo. Esta muestra de datos recogen las siguientes variables de estudio:

- Variables Explicativas:
- NH HR>93\%: Número de horas consecutivas con humedad relativa por encima del 93\%
- TMedia: Temperatura Media del intervalo correspondiente al número de horas consecutivas.
- Variables Dependientes:
- SEVF: Severidad Foliar según escala de evaluación de la Severidad Foliar en la Pyriculariosis del arroz. Juan P. Marín UdL - Lleida (2001)

Además, para cada variedad se han establecido el árbol de decisión como apoyo a la toma de decisiones.

Tabla 4. Características del árbol de decisión.
Método: CHAID
Medida: Pearson
Profundidad máxima del árbol: 3
Nivel de significación (\%): 5
Umbral de separación (\%): 5
Autorizar la redivisión: Corrección de Bonferroni / Umbral de reagrupamiento (\%): 5
Tamaño mínimo de un padre: 2 / Tamaño mínimo de un hijo: 1
Número de intervalos: 5

4.2.4.3. Descripción de los modelos obtenidos

Para cada una de las variables estudiadas se ha obtenido un árbol de decisión que a continuación se detalla.

VARIEDAD FONSA

Tabla 5. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad FONSA

Variable	Categorías	Frecuencias	$\%$
Severidad Foliar	1	41	13,576
	5	147	48,675
	20	91	30,132
	30	23	7,616

Tabla 6. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% Para la Variedad FONSA.

Variable	Observaciones	Obs. con datos perdidos	Obs. sin datos perdidos	Mínimo	Máximo	Media	Desv. típica
Temp media NH	302	0	302	14,908	37,880	19,872	3,615
HR>93\%	302	0	302	1,000	24,000	12,964	4,056

Tabla 7. Matriz de correlaciones del modelo de árbol de decisión para la Variedad FONSA

Variables	Temp media	NH HR>93\%
Temp media	$\mathbf{1 , 0 0 0}$	$-0,483$
NH HR>93\%	$-0,483$	$\mathbf{1 , 0 0 0}$

Como se puede observar lo que este árbol de decisión recoge las distribuciones de Severidad en función del rango de valores en que se encuentren las variables explicativas.

De esta forma se establece unos rangos - umbrales de riesgo asociados a aquellos nodos en los que la severidad se encuentre con valores mayores.

Además teniendo en cuenta dicho árbol de decisión se podría medir el nivel de probabilidad de acuerdo al nivel de severidad foliar observado y de acuerdo a los parámetros microclimáticos medidos.

El modelo de árbol de decisión debe ser revisado cada campaña incorporando los nuevos datos muestreados de todas las variables, tanto explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad de Marín (2001)

Figura 51. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad FONSA. (Ver ANEXOS)

- Análisis de la influencia de la variable explicativa NH HR>93\% dentro del modelo: En el árbol se observa que los nodos 4 y 5 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el 79,3\% de los casos.
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $50,6 \%$ de los casos

Figura 52. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad FONSA.

- Análisis de la influencia de la variable explicativa TMEDIA dentro del modelo: En el árbol se observa que los nodos 12 y 14 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre ($12,5-14,5$) horas, entonces la severidad foliar será del 1% en el $79,2 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 1% en el $44,1 \%$ de los casos.

VARIEDAD MARISMA.

Tabla 8. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad MARISMA.

Variable	Categorías	Frecuencias	$\%$
severidad foliar	1	208	68,874
	5	47	15,563
	20	29	9,603
	30	18	5,960

Tabla 9. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% Para la Variedad MARISMA.

Obs. con datos							Obs. sin datos								
Variable								\quad Observaciones	perdidos	perdidos	Mínimo	Máximo	Media	Desv. típica	
:---:	:---:	:---:	:---:	:---:	:---:	:---:									
Temp media NH	302	0	302	14,908	37,880	19,872									
HR>93\%	302	0	302	1,000	24,000	12,964									

Tabla 10. Matriz de correlaciones del modelo de árbol de decisión para la Variedad MARISMA.

Variables	Temp media	NH HR>93\%
Temp media	$\mathbf{1 , 0 0 0}$	$-0,483$
NH HR>93\%	$-0,483$	$\mathbf{1 , 0 0 0}$

Como se puede observar lo que este árbol de decisión recoge las distribuciones de Severidad en función del rango de valores en que se encuentren las variables explicativas.

De esta forma se establece unos rangos - umbrales de riesgo asociados a aquellos nodos en los que la severidad se encuentre con valores mayores.

Además teniendo en cuenta dicho árbol de decisión se podría medir el nivel de probabilidad de acuerdo al nivel de severidad foliar observado y de acuerdo a los parámetros microclimáticos medidos. El modelo de árbol de decisión debe ser revisado cada campaña incorporando los nuevos datos muestreados de todas las variables, tanto explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad de Marín (2001)

Figura 53. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad MARISMA. (Ver ANEXOS)

- Análisis de la influencia de la variable explicativa NH HR>93\% dentro del modelo: En el árbol se observa que los nodos 4 y 5 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el 73,6\% de los casos.
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $45,5 \%$ de los casos

NH HR 293%

Figura 54. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad MARISMA.

- Análisis de la influencia de la variable explicativa TMEDIA dentro del modelo: En el árbol se observa que los nodos 12 y 14 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre ($12,5-14,5$) horas, entonces la severidad foliar será del 1% en el $73,3 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 1% en el $38,2 \%$ de los casos.

VARIEDAD PUNTAL.

Tabla 11. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad PUNTAL.

Variable	Categorías	Frecuencias	$\%$
severidad foliar	1	192	63,576
	5	63	20,861
	20	39	12,914
	30	8	2,649

Tabla 12. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% Para la Variedad PUNTAL.

Obs. con datos							Obs. sin datos
Variable	Observaciones	perdidos	perdidos	Mínimo	Máximo	Media	Desv. típica
Temp media NH	302	0	302	14,908	37,880	19,872	3,615
HR>93\%	302	0	302	1,000	24,000	12,964	4,056

Tabla 13. Matriz de correlaciones del modelo de árbol de decisión para la Variedad PUNTAL

Variables	Temp media	NH HR>93\%
Temp media	$\mathbf{1 , 0 0 0}$	$-0,483$
NH HR>93\%	$-0,483$	$\mathbf{1 , 0 0 0}$

Como se puede observar lo que este árbol de decisión recoge las distribuciones de Severidad en función del rango de valores en que se encuentren las variables explicativas.

De esta forma se establece unos rangos - umbrales de riesgo asociados a aquellos nodos en los que la severidad se encuentre con valores mayores.

Además teniendo en cuenta dicho árbol de decisión se podría medir el nivel de probabilidad de acuerdo al nivel de severidad foliar observado y de acuerdo a los parámetros microclimáticos medidos.

El modelo de árbol de decisión debe ser revisado cada campaña incorporando los nuevos datos muestreados de todas las variables, tanto explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad de Marín (2001)

Figura 55. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad PUNTAL.
(Ver ANEXOS)

- Análisis de la influencia de la variable explicativa NH HR>93\% dentro del modelo: En el árbol se observa que los nodos 4 y 5 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el $67,8 \%$ de los casos .
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 5 en el $40,3 \%$ de los casos.

Figura 56. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad PUNTAL.

- Análisis de la influencia de la variable explicativa TMEDIA dentro del modelo: En el árbol se observa que los nodos 12 y 14 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre ($12,5-14,5$) horas, entonces la severidad foliar será del 1% en el 100% de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 5% en el $45,6 \%$ de los casos.

VARIEDAD SYCR128.

Tabla 14. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad SYCR128.

Variable	Categorías	Frecuencias	$\%$
severidad foliar	1	237	78,477
	5	18	5,960
	20	47	15,563

Tabla 15. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% Para la Variedad SYCR128.

Variable	Observaciones	Obs. con datos perdidos	$\begin{gathered} \hline \text { Obs. } \sin \\ \text { datos } \\ \text { perdidos } \end{gathered}$	Mínimo	Máximo	Media	Desv. típica
Temp media NH	302	0	302	14,908	37,880	19,872	3,615
HR>93\%	302	0	302	1,000	24,000	12,964	4,056

Tabla 16. Matriz de correlaciones del modelo de árbol de decisión para la Variedad SYCR128.

Variables	Temp media	NH HR>93\%
Temp media	$\mathbf{1 , 0 0 0}$	$-0,483$
NH HR>93\%	$-0,483$	$\mathbf{1 , 0 0 0}$

Como se puede observar lo que este árbol de decisión recoge las distribuciones de Severidad en función del rango de valores en que se encuentren las variables explicativas.

De esta forma se establece unos rangos - umbrales de riesgo asociados a aquellos nodos en los que la severidad se encuentre con valores mayores.

Además teniendo en cuenta dicho árbol de decisión se podría medir el nivel de probabilidad de acuerdo al nivel de severidad foliar observado y de acuerdo a los parámetros microclimáticos medidos.

El modelo de árbol de decisión debe ser revisado cada campaña incorporando los nuevos datos muestreados de todas las variables, tanto explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad de Marín-Sánchez (2001)

Figura 57. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad SYCR128. (Ver ANEXOS)

- Análisis de la influencia de la variable explicativa NH HR>93\% dentro del modelo: En el árbol se observa que los nodos 4 y 5 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el 79,3\% de los casos.
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $59,7 \%$ de los casos.

Figura 58. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad SYCR128.

- Análisis de la influencia de la variable explicativa TMEDIA dentro del modelo: En el árbol se observa que los nodos 12 y 14 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si la Temperatura media se encuentra dentro del intervalo de (22,5 - 24,7) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 1% en el 100% de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (22,5 - 25,7) y el Número de Horas con una HR>93\% entre (16,5-24) horas, entonces la severidad foliar será del 1% en el 100% de los casos.

VARIEDAD SYCR86.

Tabla 17. Estadísticos descriptivos para la variable dependiente - SEVF para la Variedad SYCR86

Variable	Categorías	Frecuencias	$\%$
severidad foliar	1	41	13,576
	5	147	48,675
	20	91	30,132
	30	23	7,616

Tabla 18. Tabla de estadísticos descriptivos para las variables explicativas. TMedia, NH HR>93\% Para la Variedad SYCR86.

Variable	Observaciones	Obs. con datos perdidos	Obs. sin datos perdidos	Mínimo	Máximo	Media	Desv. típica
Temp							
media	302	0	302	14,908	37,880	19,872	3,615
NH							
HR>93\%	302	0	302	1,000	24,000	12,964	4,056

Tabla 19. Matriz de correlaciones del modelo de árbol de decisión para la Variedad SYCR86

Variables	Temp media	NH HR $>93 \%$
Temp media	$\mathbf{1 , 0 0 0}$	$-0,483$
NH HR>93\%	$-0,483$	$\mathbf{1 , 0 0 0}$

Como se puede observar lo que este árbol de decisión recoge las distribuciones de Severidad en función del rango de valores en que se encuentren las variables explicativas. De esta forma se establece unos rangos - umbrales de riesgo asociados a aquellos nodos en los que la severidad se encuentre con valores mayores. Además teniendo en cuenta dicho árbol de decisión se podría medir el nivel de probabilidad de acuerdo al nivel de severidad foliar observado y de acuerdo a los parámetros microclimáticos medidos. El modelo de árbol de decisión debe ser revisado cada campaña incorporando los nuevos datos muestreados de todas las variables, tanto explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad de Marín-Sánchez (2001)

Figura 59. Árbol de decisión como apoyo al sistema para la toma de decisiones sobre le nivel de riesgo de la Pyriculariosis del cultivo del arroz en el Sur de España para la Variedad SYCR86.
(Ver ANEXOS)

- Análisis de la influencia de la variable explicativa NH HR>93\% dentro del modelo: En el árbol se observa que los nodos 4 y 5 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 5 en el $59,2 \%$ de los casos
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 20 en el $50,6 \%$ de los casos

Figura 60. Detalle ampliado del árbol de decisión en los nodos relevantes para la Variedad SYCR86.

- Análisis de la influencia de la variable explicativa TMEDIA dentro del modelo: En el árbol se observa que los nodos 12 y 14 son los que concentran un mayor porcentaje de casos en los que la variable Severidad Foliar es significativa:
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre ($12,5-14,5$) horas, entonces la severidad foliar será del 5% en el $52,5 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 20% en el $57,4 \%$ de los casos.

5. CONCLUSIONES Y DESARROLLOS FUTUROS

5.1. Conclusiones generales.

Se ha analizado el comportamiento ante la Pyriculariosis de una colección de variedades de interés comercial y bajo Producción Integrada en el cultivo de arroz en el Sur de España. Dicho comportamiento han mostrado resultados muy estables para la caracterización agronómica, siendo las variedades híbridas algo más productiva que el resto de las variedades en un 10%. Respecto a la susceptibilidad varietal medida, han mostrado que los datos de AUDPC promedio de ambos ensayos han sido un 28% superior en la campaña 2010 frente a la campaña 2012. Además, siendo medibles las lesiones producidas por Pyricularia grisea (Cooke)

Sacc., con una escala adecuada para la interpretación del nivel de infección en el limbo de la hoja. Estos resultados se han visto repetidos de manera significativa en dos de las tres campañas y para ambas zonas en las que se llevaron a cabo los ensayos de campo.

De acuerdo a los resultados obtenidos por la metodología desarrollada, se ha propuesto un método de evaluación eficaz en campo como apoyo a la toma de decisiones a partir del monitoreo y observancia de la Pyriculariosis bajo Producción Integrada en el cultivo de arroz en el Sur de España. De esta forma, los datos macroclimáticos de la estación climática fuera del cultivo, no han aportado información correlacionable con la detección del inicio de las epidemias muestreadas en los ensayos de campo.

La situación de los sensores de campo in situ en el cultivo, concretamente entre la hoja bandera y la hoja bandera menos tres, han permitido recoger información para la evaluación de la evolución de las condiciones que nos permitan valorar el desarrollo de las epidemias.

El uso de EPIDEMIAS como software para la recolección y el prepocesado de los datos, se consolida como una herramienta de trabajo para el análisis e interpretación de los mismos, de una forma ágil y fácilmente interpretable y que, además, puede integrarse como parte de la estructura y organización de otras fuentes de datos, soportando funciones de administración para llevar a cabo data mining, y así poder extraer la información útil con el fin de predecir las tendencias de los mismos.

Tras el análisis de la influencia de las variables explicativas NH HR>93\% y TMEDIA sobre la Severidad Foliar en el limbo de la hoja, se concluye lo siguiente:

- Para la variedad FONSA:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el $79,3 \%$ de los casos .
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $50,6 \%$ de los casos
- Si la Temperatura media se encuentra dentro del intervalo de $(14,9$ - 22,8) y el Número de Horas con una HR>93\% entre ($12,5-14,5$) horas, entonces la severidad foliar será del 1% en el $79,2 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre ($14,5-16,5$) horas, entonces la severidad foliar será del 1% en el $44,1 \%$ de los casos.
- Para la variedad MARISMA:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el $73,6 \%$ de los casos .
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $45,5 \%$ de los casos
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre (12,5-14,5) horas, entonces la severidad foliar será del 1% en el $73,3 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre (14,5-16,5) horas, entonces la severidad foliar será del 1% en el $38,2 \%$ de los casos.
- Para la variedad PUNTAL:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el 67,8\% de los casos .
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 5 en el $40,3 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre (12,5-14,5) horas, entonces la severidad foliar será del 1% en el 100% de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre (14,5-16,5) horas, entonces la severidad foliar será del 5% en el $45,6 \%$ de los casos.
- Para la variedad SYCR128:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 1 en el 79,3\% de los casos .
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 1 en el $59,7 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (22,5 - 24,7) y el Número de Horas con una HR>93\% entre (14,5-16,5)
horas, entonces la severidad foliar será del 1% en el 100% de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (22,5 - 25,7) y el Número de Horas con una HR>93\% entre (16,5-24) horas, entonces la severidad foliar será del 1% en el 100% de los casos.
- Para la variedad SYCR86:
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (12,5-14,5) entonces la severidad foliar será 5 en el $59,2 \%$ de los casos
- Si el Número de Horas consecutivas con un HR>93\% se encuentra dentro del intervalo (14,5-16,5) entonces la severidad foliar será 20 en el 50,6\% de los casos
- Si la Temperatura media se encuentra dentro del intervalo de (14,9 - 22,8) y el Número de Horas con una HR>93\% entre (12,5-14,5) horas, entonces la severidad foliar será del 5% en el $52,5 \%$ de los casos.
- Si la Temperatura media se encuentra dentro del intervalo de (15,5 - 22,5) y el Número de Horas con una HR>93\% entre (14,5-16,5) horas, entonces la severidad foliar será del 20% en el $57,4 \%$ de los casos.

5.2. APORTACIONES.

Dentro de este tesis se puede destacar por su innovación las siguientes aportaciones:

- Una revisión de los criterios para evaluar el riesgo de enfermedad basada en la técnica de modelado de árboles de decisión.
- Una serie de valores de severidad en el limbo de la hoja con una alta probabilidad, y de acuerdo al número de horas consecutivas con humedad relativa por encima de 93\%.
- El establecimiento de umbrales de riesgo no absolutos expresados bajo una distribución de frecuencias, que sintetizan la forma en las que se han producido las condiciones de riesgo dentro del cultivo de acuerdo a las variedades estudias y en las condiciones de los ensayos.

5.3. Desarrollos futuros

Los posibles desarrollos futuros del trabajo presentado se centrarían, a juicio del autor, en dos líneas fundamentales:

En primer lugar, con estos desarrollos integrados con las observaciones llevadas a cabo en los ensayos de campo, se propone que para los trabajos de caracterización epidémiológica de la principal enfermedad del cultivo del arroz, la Pyriculariosis, es necesario que sea revisado el número de horas consecutivas para la determinación del riesgo de epidemias, de acuerdo a los parámetros de Humedad Relativa y Temperatura medidos en el Sur de España.

La segunda línea de desarrollo posible sería la de revisar en posteriores campañas los modelos de árboles de decisión obtenidos en la tesis, incorporando nuevas variedades que el sector del arroz en las Marismas del Guadalquivir pudiera demandar. De tal forma que se pudieran incorporar dichas observaciones y monitoreo de las Variables, tanto Explicativas y que se tomarían a partir del tratamiento realizado con el programa EPIDEMIAS, como las Dependientes que se derivarían de las observaciones directas en campo y de acuerdo a la escala de severidad foliar empleada.

6. BIBLIOGRAFÍA

AGUILAR, M. 2001. Cultivo del arroz en el Sur de España. Caja de Ahorros: El Monte. Sevilla.

AGUILAR, M. Y NAVARRO, L. 2000-2008. Evaluación del Impacto de la producción integrada de arroz en la Marismas del Guadalquivir y del grado de cumplimiento del reglamento especifico de la misma. Memorias anuales de las campañas 2000-2008. Documento Interno de la Consejería de Agricultura y Pesca de la Junta de Andalucía.

AGUILAR, M. Y BORJAS, F. 2005. Water use in three ooding management systems under Mediterranean climatic conditions. Spanish Journal of Agricultural Research, 3 (3). Septiembre, 344-352 pp.

AGUILAR, M., CASTEJÓN-MUÑOZ, M., LARA-ÁLVAREZ, I. 2006. Identificación de la razas de Pyricularia oryzae en las Marismas del Guadalquivir 2005. Consejería de Agricultura. Junta de Andalucía.

AGUILAR, M. 2006. Water use and integrated rice management in Southern Spain. International Rice Commission. 3-5 Mayo. Chiclayo, Perú.

AGUILAR, M. 2007. Performance of rice hybrids under Mediterranean cultivation conditions. Cereal Research Communications. Noviembre, 1713-1722 pp.

AGUILAR, M. 2010. Producción integrada del arroz en el sur de España. Fundación Caja Rural del Sur. Ed. Junta de Andalucía, Consejería de Agricultura y Pesca, 316 pp.

AGUILAR, M. Y PASCUAL-VILLALOBOS, M. J. 2007. Plagas del arroz almacenado en Andalucía. Ed.: Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa, y Consejería de Agricultura y Pesca. Servicio de Publicaciones y Divulgación. Colección Agricultura, serie Sanidad Vegetal. 54 pp.

AGUILAR, M. Y ESCOBAR, A. J. 2004. Disminución de la aplicación de pesticidas en la producción integrada del arrozal andaluz. Phytoma España, Vol. 162. 109-112 pp.

AGUILAR, M. Y GRAU, D. 1994. Influencia del abonado nitrogenado de fondo sobre los componentes del rendimiento y el comportamiento agronómico del arroz. Investigación Agraria. Producción y Protección Vegetales. Vol. 9 (1).

AGUILAR, M. Y GRAU, D. 1995. Effect of applied before seeding nitrogen fertilisation on rice yield components. Cahiers options Méditerranéennes, 15 (1). 53-57 pp.

AGUILAR, M. Y GRAU, D. 1995. Nota sobre el efecto del abonado nitrogenado en el contenido de nitrógeno foliar en arrozal. Investigación Agraria. Producción y Protección Vegetales. Vol. 10 (3).

AGUILAR, M. Y NAVARRO, L. 2008. Estudio agroeconómico del cultivo del arroz bajo producción integrada en las Marismas del Guadalquivir. Ed.: Junta de Andalucía, Consejería de Agricultura y Pesca. Viceconsejería. Servicio de Publicaciones y Divulgación. Colección Agricultura, serie Cultivos herbáceos. 105 pp.

AGUILAR, M., CASTEJÓN, M. LARA, I. 2007. Resistance of rice cultivars to Pyricularia oryzae in Southern Spain. Spanish Journal of Agricultural Research. Vol. 5 (1).

AGUILAR, M., CASTEJÓN, M. Y LARA, I.2006. Identificación de las razas de Pyricularia oryzae en la zona arrocera de las Marismas del Guadalquivir. Ed: Junta de Andalucía. Consejería de Agricultura y Pesca. 29 pp.

ALBERTí J. 1999. El Arroz. Principales enfermedades, plagas y malas hierbas. BASF Española S.A. 140-141

ANONYMOUS. 1968. Commonwealth Mycol. Inst Distribution Map of Plant. Diseases № 51,ed.5.

APARICIO, S., JURADO, N., MONTES, F., CARRASCAL, F. 2007. Memoria general: Campaña de Producción Integrada de Arroz en la Provincia de Sevilla. Memoria Interna Federación de Arroceros de Sevilla.

ASHIZAWA, T., MASASHI, S., OHBA, A. et al. 2007. Lesion-based analysis of leaf blast suppression in mixture of rice cultivar and a resistant near-isogenic line. Journal of General Plant Pathology, Volume 73, Number 1, Page 15

BAJAJ, Y.P.S. 1988. Biotechnology in Agriculture and Foresty 2 .Crops1. Spriger-Verlag Berlin Heidelber New York Tokyo. 608 pp.

BENLLOCH M., 1975. Experiencias de la lucha contra las enfermedades de arroz originadas por Sclerotium oryzae Catt. y la Pyricularia oryzae Cav. Año 1973. An. INIA Ser. Prot. Veg., 5, 11-41.

BROWNING, J.A., SIMONS, M.D. i TORRES, E., 1977. Managing host genes: epidemiologic and genetic concepts. In: Horsfall, J.G. i Cowling, E.B. (Ed.), 1:191212. Plant Disease, An Advanced Treatise. Academic Press, New York, 465 pp.

BUTT, D.J.; JEGER, M.J. 1985. The practical implementation of models in crop disease management. In: Guilligan CA (ed) Mathematical modeling of crop disease. Vol 3. Advances in plant pathology. Academic Press, London New York, p 207
C. A. GREER AND R. K. WEBSTER. 2001. Occurrence, Distribution, Epidemiology, Cultivar Reaction, and Management of Rice Blast Disease in California. Plant Disease 85:10, 1096-1102

CALVERO JR. 1994. Developing Models to Predict Favorable Environments for Rice Blast. Master of Science in Botany and Plant Pathology, Oregon State Uiversity, USA.

CAMPBELL, M. AND MADDEN V. 1990. Introduction to plant disease epidemiology. pp. xvii-532pp.

CARRETERO, J. L. 1981. El género Echinochloa Beauv. en el suroeste de Europa. Anales Jard. Bot. Madrid. Vol. 38 (1). 91-108 pp.

CASTEJÓN-MUÑOZ, M.; LARA-ÁLVAREZ, I. Y AGUILAR, M. 2004. Climate in uence over air content of Pyricularia oryzae conidia and symptomatology of rice crop in southern Spain. In: Proc. of the Challenges and opportunities for sustainable ricebased production systems Conference, Torino, Italia, 13-15 de Septiembre. 51-61 pp.

CASTEJÓN, M.; GARCÍA FERNÁNDEZ, M. Y AGUILAR, M. 2002. Rice seedborne infection in southern Spain. Plant Protection Science, 38. 56-59 pp.

CATALÀ Ma M. 2002. La susceptibilidat varietal a la Pyriculariosi. Identificació de nivells de risc al Delta de l'Ebre. Presentación de resultados en la reunión: Actuacions en malalties de l'arròs al Delta de l'Ebre. IRTA.Amposta.

CATALÀ Mo M.; BRIA J.; ALMACELLAS J. MARÍN J. 2010. Reacción varietal a Pyricularia grisea de variedades de arroz en la zona del delta del Ebro 2010-2008. Phytoma 200.

CHANG, T.T.; WANG, LIN, K.M.; CHENG, C.P. 1965. Breeding for blast resistance in Taiwan. In The Rice Blast Disease, 371-377. Baltimore, Maryland; Johns Hopkins Press.

CHEN, D. ZEIGLER, R.S. HEI, L. AND NELSON R.J. 1995. Population structure of Pyricularia grisea at two screening sites in the Philippines. Genetic. Vol. 85, No. 9, 1011-1020.

CHUNG, H.S. 1974. New races of Pyricularia oryzae in Korea. Korean Journal of Plant Protection 13, 19-23.

CORREA-VICTORIA F.; ZEIGLER R. 1995. Stability of partial and complete resístanse in rice to Pyricularia grisea unther rainfed upland conditions in Eastern Colombia. Phytopathology 85: 977-982.

CORREA-VICTORIA F.; ZEIGLER R.; LEVY M. 1994. Virulence characteristics of genetic families of Pyricularia grisea in Colombia. In Zeigler et al. 1994. Opus cit.

CORREA-VICTORIA, F. 1996. Evaluación de las enfermedades en un cultivo de arroz. http://www.ciat.cgiar.org/riceweb.

CORREA-VICTORIA, F. 1997. Diversidad genética de Pyricularia grisea. Ventana al Campo. 2:6-8.

CRAWFORD, M.S.; CHULEY, F.G.; WEAVER, C.G. AND VALENT, B. 1986. Characterization of the heterokaryotic and vegetative diploid phases of Magnoporthe grisea. Genetic 114: 1111-1129

DISTHAPORN, S.; HAU, B.; KRANZ, J. 1993. Comparison of sampling procedures for rice diseases: leaf blast and tungro. Plant Pathology 42: 313-323.

ELÍAS, F. Y CASTELLVI,F.1996. Agrometeorología. Ed. Mundi Prensa, Madrid. 517 pp.

FABRE LEAL, LEONILA, CÁRDENAS TRAVIESO, REGLA M., GONZÁLEZ CEPERO, MARÍA CARIDAD, CRISTO VALDÉS, ELIZABETH, PÉREZ LEÓN, NORAIDA. MONITOREO DE LA PIRICULARIOSIS (Pyricularia grisea Sacc.) EN EL CULTIVO DEL ARROZ (Oryza sativa L.) Fitosanidad [en linea] 2007, 11 (Marzo-Sin mes):[Fecha de consulta: 15/12/15]. Disponible en: http://www.redalyc.org/articulo.oa?id=209116144008 ISSN 15623009.

FAYYAD, U. M.; PIATETSKY-SHAPIRO, G.; AND SMYTH, P. 1996. From Data Mining to Knowledge Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. PiatetskyShapiro, P. Smyth, and R. Uthurusamy, 1-30. Menlo Park, Calif.: AAAI Press.
G. GALIMANY, J. ALMACELLAS, J.P. MARÍN, M.M. CATALÁ, T. LLORACH, E. MATAMOROS, Á. TOMÁS, F. MONTES. (2006). Estrategias para la optimización del control de las enfermedades del arroz en el Delta del Ebro. Phytoma-España, 178, 34-48.

GEORGE, M.~LC., NELSON, EJ.,R. ZEIGLER, R.S., AND LEUNG, H. 1998. Rapid genetic análisis of Magnaporthe grisea with PCR using endogenous repetitive DNA sequences. Phytopathology 58, 223-229.

IRRI. 1975. Standard Evaluation System for rice. International Rice Research Institute. PO Box 933, Manila, 64 pp.

IRRI. International Rice Research Instutute. Anual report for 1967.

IRRI. 1988. International Rice Research Instutute. Standard Evaluation System for Rice. 3a ed., Junio 198854 pp

ISHIGURO K.; NANSEKI T. 2000. Exploring optimum application programs of fungicide using simulator for leaf blast epidemics. Advances in rice blast research, 203208.Kluwer Academic Publishers. Netherlands.

ISHIGURO, K. AND HASHIMOTO, A. 1991. Computer-based forecasting of rice blast epidemics in Japan. In: Rice Blast Modeling and Forecasting.Robert S. Zeigler,Sally A. Leong,P. S. Teng. C.A.B. International,International Rice Research Institute

ITO, R. 1965. Breeding for blast resistance in Japan. In The rice blast disease, 361-370. Baltimore, Maryland; Johns Hopkins Press.

ITO, Y.; YAMAGUCHI, T. 1977. Ocurrence of Kasugamycin resistant rice blast fungus influenced by the aplication of fungicides. Annals of Phytopathological Society of Japan 43,101-103.

JEGER J. 1984. Relating disease progress to cumulative numbers of trapped spores: apple powdery mildew and scad epidemics in sprayed and unsprayed orchard plots. Plant Pathology 33: 517-523.

JIMÉNEZ-DÍAZ, R.M. 2006. Mecanismos de Resistencia de las plantas al ataque de patógenos y plagas. Notas. http://www.utm.mx/temas/temas-docs/nota4t29.pdf

KAMESWAR ROW, K.V.S.R. AND CRILL, J.P. 1979. Cytological bases of mechanismem of vsrisbility in the rice blast fungus. International Rice Research Series. Los Baños, Philippines; IRRI.

KANG, W. S., HONG S.S., HAN, Y.K., KIM, K.R., KIM, S.G. AND PARK, E.W. 2010. A Webbased Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution. Plant Pathol. J. 26(1) : 37-48.

KAUNDAL R; KAPOOR, AS.; RAGHAVA, GP. 2006. Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinformatics. Nov 3;7:485.

KIKUSAWA K.; TAKAGI T.; HAYASHI T.; YAMADA M. 1999. Leaf Blast Rule Model by use of AMeDAS-based Mesh Data and Micrometeorological Data. http://www.s.fpu.ac.jp/u-kikusawa/project/

KIM, K. R. 2000. Weather-driven models for rice leaf blast and their implementation to forecast disease development on the near real-time basis. PhD. Thesis, Seoul National University, Suwon, Korea.

KIMBER, G. RILEY, R. (1963). Haploides angiosperms. Bot. Rev. 29:490-531.

KYU K. C. 2001. Epidemiology of rice blast disease in Korea. 119-129. Kluwer Academic Publishers. Netherlands.

LANOISELET, V., COTHER, E. J.,AS, G. J. 2002. CLIMEX and DYMEX simulations of the potential occurrence of rice blast disease in south-eastern Australia. Australasian Plant Pathology, Volume 31, Number 1, Page 1

LEUNGH H.; TAGA M. 1998. Magnaporte grisea (Pyricularia grisea), the blast fungus. Adv. Plant Pathology 6: 175-188.

LEVY, M., CORREA-VICTORIA, F. J., ZEIGLER, R. S., XU, S., AND HAMER, J. E. 1993. Genetic diversity of the rice blast fungus in disease nursery in Colombia. Phytopathologv 53, 1427-1433.

LEVY, M.; RORNAO, I.; MARCHETTI, M.A. AND HAMER, J.E. 1991. DNA fingerprinting with a dispersed repeated sequence resolve pathotype diversity in the rice blast fungus. The Plant Cell 3, 95-102.

ROKACH, L. AND MAIMON, O.Z. 2008. Data mining with decision trees: theory and applications, volume 69. World Scientific Pub Co Inc, 2008.

LUCAS, J.A., RAMOS, BEATRIZ, OJEDA, J., MONTES, F., MEGÍAS GUIJO, MANUEL, et al. 2009. Integrated Management of Two Plant-Growth Promoting Rhizobactera (Pgpr) Strains As Biocontrol Agents in Rice (Oryza Sativa) Paddy Fields Against Pyricularia Grisea Infection in Southern Spain. Field crops research. Pag. 404-410

MACKENZIE, D.R. 1979. The multiline approach to the control of some cereal diseases. in Proceed of The Rice Blast Workshop, International Rice Research Institute, Los Baños, Philippones, pp. 199-216.

MARCHETTI M. 1997. Strategies and methodologies for improving blast resistance in rice in the U.S. Cahiers Options Méditerranéennes 15(3):75-78.

MARCHETTY, M. A. ; RUSH, M.C.; HUNTER, W.E. 1976. Current status of rice blast in the southern United States. Ibis. 60, 721-725.

MARÍN, J. 1996. Principios generales de Epidemiología y Control de las micosis. Capítulo 22 en: Llácer G.; López M.; Trapero A.; Bello A. Patología Vegetal. Tomo II. Phytoma-SEF. España.

MARÍN, J. ALMACELLAS J.; BOADA J.; SEGURA M.; GALIMANY G.; PORTA G.; SERDÀ J. 2002. Control químico de la Pyriculariosis del arroz en el delta del Ebro. Phytoma España 138: 88-90.

MARÍN, J., ALMACELLAS J. 2002. Métodos experimentales para el control en Patología Vegetal. Universitat de Lleida (Edición bilingüe).

MARÍN, J.; ALMACELLAS, J.; SEGARRA, J.; GARCÍA DE OTAZO, J.; MANSILLA, F.; MUÑIZ, J.Ḿ. 1993. CONTPAT_1: Programa informático para el Análisis epidemiológico del Control en Patología Vegetal. DARP-Generalitat de Cataluña. Edición bilingüe. Guía, 38 páginas, y "software".

MARÍN, J.P. 1980. Etiología, distribución e importancia de las micosis del arroz en las marismas del Guadalquivir. Tesis doctoral. Universidad de Córdoba. 540 pp.

MARÍN, J.P. 1985. Análisis de los métodos de lucha contra las enfermedades de los cereales de invierno. Ponencia en: II Jornadas Técnicas sobre cereales de invierno. Tomo II, páginas 87-105. MAPA y Gobierno de Navarra. 10 al 14 de Diciembre de 1985.

MARÍN, J.P. 1987. Influencia de les tècniques de conreu i dels canvis varietals en la patología de l'arròs. Ponencia en Sessions Tècniques. Amposta. Obra Agrícola de la Caixa de Pensions, páginas: 37-55.

MARÍN, J.P. 1991. Present status of computer-based cereal diseases protection systems in Spain. Danish J. Plant and Soil Sci. 85: 11-19.

MARÍN, J.P.; ALMACELLAS, J. 1999. Bases para el control de las enfermedades de los cereales en los programas de Producción Integrada. Ponencia en el VI Symposium

Nacional de Sanidad Vegetal. Consejería de Agricultura y Pesca. Junta de Andalucía. Páginas: 77-94.

MARÍN, J.P.; ALMACELLAS, J.; BOADA, J. 2002. El control de la Pyriculariosis en el cultivo del arroz. X Jornadas Técnicas del Arroz. Confederación de Cooperativas Agrarias de España y CTGA de Navarra.

MARÍN, J.P.; JIMÉNEZ R. 1981. Enfermedades del arroz en las Marismas del Guadalquivir. Boletín del Servicio de Plagas 7:3-56.

MARÍN, J.P.; JIMÉNEZ R. 1981. Pyricularia oryzae Cav. and Nakataea sigmoidea Hara, pathogens of rice in Southern Spain. Phytopathologia Mediterranea, 20: 89-95.

MARÍN, J.P.; JIMÉNEZ, R. 1982. Especies de Drechlera Ito, patógenas del arroz en las Marismas del Guadalquivir. Cuadernos INIA, 11. 35 pp.

MARÍN, J.P.; JIMÉNEZ R. 1982. Two new Fusarium species infecting rice in Southern Spain. Plant Disease, 66: 332-334.

MARÍN, J.P.; MANSILLA, F. 1989. Aspectos económicos del Control Integrado en Patología Vegetal: Aplicación a las enfermedades de los cereales de invierno. Ponencia en las Jornadas Técnicas del trigo. Córdoba 12 y 13 de Abril de 1989. Junta de Andalucía. 31 pp.

MARÍN, J.P.; SEGARRA, J.; ALMACELLAS, J. 1992a. Enfermedades de los cereales en Cataluña durante 1988-1990. Invest. Agr.: Prod. Prot. veg. 7: 261-275.

MARÍN, J.P.; SEGARRA, J.; ALMACELLAS, J. 1992b. Efecto del hospedante, la temperatura y la humedad relativa, sobre el número de uredosoros, el período latente y el período infeccioso de los uredosoros de Puccinia recondita f.sp. tritici en cultivares de Triticum aestivum. Invest. Agr.: Prod. Prot. veg. 7: 91-104.

MARÍN, J.P.; SEGARRA, J.; ALMACELLAS, J.; GARCÍA DE OTAZO, J.; COSIALLS, J., HERNÁNDEZ, J.Má. 1996. CENCONT: Sistema d'avisos per a la Cendrosa de l'ordi. Quaderns no 1. Universitat de Lleida. Guía 33 pp. y "software".

MARÍN, J.P.; SEGARRA, J.; ALMACELLAS, J. 1994. Modelización epidémica del Oidio de la cebada con el número acumulado de conidias como variable independiente. Invest. Agr.: Fuera de Serie n.o 2 : 315-341.

MARÍN-SÁNCHEZ, J.P. 1979. Micosis del arroz en las Marismas del Guadalquivir. Tesis doctoral, Universidad de Córdoba, Córdoba, Spain, 554 pp.

MARÍN-SÁNCHEZ, J.P. AND JIMÉNEZ-DÍAZ, R.M. 1981. Pyricularia oryzae Cav. and Nakathea sigmoidea Hara, pathogens of rice in southern Spain. Phytopath. medit, 20, 89-95.

MARÍN, J.P. 2000. Principios generales de epidemiología y control de la micosis. 771 804. Llacer, G.; Lopez, M.M.; Trapero, A. y Bello, A. Patología Vegetal Vol. 2. Ed. Mundi-Prensa

MEKWATANAKARN, P.; KOSITRATANA, W.; LEVY, M.; ZEIGLER, R. 2000. Pathotype and avirulentce gene diversity of Pyricularia grisea in Thailand as determined by rice lines near-isogenic for major resístanse genes. Plant Disease 84: 60-70.

MIURA, H.; ITO, H; YAMAGUCHI, Y. ITO, H. 1976. Mode of occurrence of Kasumycine resistant rice blast fungus. Ibid 42, 117-123.

MOLETTI, M., GIUDICI M.L., VILLA, B. 1992. Rice Akiochi-brown spotdisease in Italy: Agronomic and chemical control. Cahiers Options Méditerranéennes, vol. 15, $\mathrm{n}^{\circ} 3$.

MONTES, F. 2005. Estudio e identificación de plagas y enfermedades y establecimiento de umbrales para su control en la Producción Integrada en el cultivo del arroz. Memoria Técnica para el convenio de colaboración entre la Federación de Arroceros de Sevilla y la Junta de Andalucía.

MONTES, F. 2006. La I+D como apoyo a la mejora del cultivo del arroz. Ponencia en las I Jornadas Técnicas sobre el cultivo del arroz. Páginas 22-26.AVA - ASAJA. 1 y2 diciembre de 2006. Valencia.

MONTES, F., DOMÍNGUEZ SÁNCHEZ, M. S., DELGADO, F., OJEDA, J., et al. 2006. El Biocontrol en el cultivo del arroz: un ejemplo de la interacción plantamicroorganismos como aplicación agrícola. Comunicación oral: Congreso sobre la Fijación biológica de nitrógeno atmosférico y otras interacciones beneficiosas planta-microorganismos. El Escorial.

MONTES, F., GONZÁLEZ, R. 2004. Utilización de nuevas tecnologías en el cultivo del arroz: Programa EPIDEMIAS. Ponencia en las VI Jornadas técnicas del cultivo del arroz. Jornadas El Monte. Puebla del Río

MORROE, P. A., BAUGH K. K. WELLS, B.R. 1992. A comparasion of furrowirrigated and flood rice. Fayetteville, Usa . University of Arkansas. Publications Research SeriesAgricultural Experimental Station, Mo. 422. 130-133. Arkansas

MURRAY M.; THOMPSON W. 1980. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acis Res. 8: 4321-4325.

NIIZEKI, H. OONO, K. 1971. Rice plants obteined by anther culture. In Les Cultures de Tissus des plnates. Colloq Int CNRS (París) 193:251-257.

OERKE E-C.; DEHNE H-W; SCHÖNBECK F.; WEBER A. 1995. Crop production and crop protection. Estimeted losses in major food and cash crops. Elsevier Science B.V. Netherlands.

OKAMOTO, H.; MATSUNOTO, K. (1964). On the change of rice blast resistance in field en the course of time (I). Chugoku Agricultural Reseach 28, 1-18.

ONO, K. 1988. Rice breeding through tissue culture.. In Plant breeding and genetic engineering. 217-231 A.H. Zakri, ed., Sabrao, Malasya.

OU, S. 1987. Rice diseases. CAB International. UK.

OU, S.H., 1972. Rice diseases. Commonealth Mycol. Inst., Kew, 368 pp.

OU, S.H. 1980. A look at wordwide rice blast disease control. Plant Disease, 64, 439445.

OU, S.H. 1965. Varietal reactions of rice to blast. In The rice blast disease, 111-149. Baltimore, Maryland; Johns Hopkins Press.

OU, S.H.; NUQUE, F.L. 1963. The relation between leaf and neck resistance to rice blast disease. International Rice . Comission Newsletter. 12 (4), 30-35.

PANS. 1976. Pest control in rice . Manual no 3 . Centre for overseas Pest Reseachr. London, 295 pp.

PORTA, J., LÓPEZ-ACEBEDO, M. Y ROQUERO DE LABURU, C. 2003. Edafología para la agricultura y el medio ambiente. Ed. Mundi Prensa, Madrid. 849 pp.

QUAMARUZZAMAN. MD.; OU, S.H. 1970. Mothly changes of the pathogenic races of Pyricularia oryzae Cav. In blast nursery. Phytopathogy.

ROUMEN E. 1992. Small differential interactions for partial resistance in rice cultivars to virulence isolates of the blast pathogen. Euphytica 64: 143-148.

ROUMEN E.; LEVY M.; NOTTEGHEM. 1997. Characterization of the European population of the blast pathogen Magnaporthe grisea. Cahiers Options Méditerranéennes 15(3):119-124.

ROUMEN, E. LEVY, M., AND NOTTENGHEN. 1997. Charaterization of the European pathogenpopulation of Magnaporthe gnsea by DNA fingerprinting and pathotvpe analysis. European J.of Plant Patho1ogy1O3,363-371.

SASAKI. 1922. Existence of strains in rice blast fungus. I. Journal of plant Protection, Tokio 9, 631-644.

SCARDACI S.; WEBSTER, R.; GREER, C.A.; HILL, J.; WILLIAN, J.; MUTTERS, R.; BRANDON, D.; MCKENZIE, K.; OSTER ,J. 1977. Rice balst: A new disease in California. Agronomy

Fact Sheet Series 1997-2. Departament of Agronomy and Range Science. Univ. of California, Davis. 4 pp.

SEGARRA, J. 1994. Estructura de virulencia de la población Erysiphe graminis f.sp. hordei. Tesis doctoral de la Universitat de Lleida. 119 pp.

SEGARRA, J.; MARÍN, J.; BERNAUS, J.; SOPENA, A. 1999a. Selección de Erysiphe graminis por distintos cultivares de cebada. I-Frecuencias de virulencia. Invest. Agr.: Prod. Prot. veg. 14: 49-58.

SILUÉ, D., NOTTENGHEM, J.L. AND THARREAU, D. 1992. Evidence for a gen-for-gen relationship in the Oryza sativa-Magnapothe grisea pathosystem. Phytopathology 82, 577-580.

SMITH I.; DUNEZ J.; LELLIOTT R.; PHILLIPS D.; ARCHER S. 1992. Manual de las enfermedades de las plantas. Traducción: Fernando García Arenal. Mundi-Prensa. Madrid.

SUZUKI, H. 1965. Origin of variation in Pyricularia oryzae. In The rice blast disease, 361-370. Baltimore, Maryland; Johns Hopkins Press.

SUZUKI, H. 1975. Meteorological Factors in the Epidemiology of Rice Blast. Annual Review of Phytopathology. Vol. 13: 239-256

TAKAHASHI T, YOSHIDA D. 1960. Relationship between the accumulation of putrescine and the nutrition of tobacco plant. J Soil Sci Manure Jpn 31: 3941

TAKAHASHI, Y. 1965. Genetics of resistance to rice blast disease. In The rice blast disease, 303-329. Baltimore, Maryland; Johns Hopkins Press.

TANAKA, Y.; MUTARA, N.; KATO. H. 1979. Behavior of nuclei and chromosomes during ascus development in the mating between either rice-strain or weeping love-grass strain ragi-strain of Pyricularia. Ibid. 45, 182-191.

TINARELLI A. 1989. El arroz. Mundi Prensa. 1989 575pp

VALENT, B. (1990). Rice blast as a model system for plant pathology. Phytopathology 80 (1), 33-36.

VALENT, B. AND CHUMLEY, F.G. 1994. Avirulence genes and mechanisms of genetic instability in Rice Blast fungus. In Rice Blast Disease. 111-134 R. S. Zeigler, S.A. Leong and PS. Teng (eds.), CBA International and IRRI.

VALENT, B., FRRALL, L. AND CHUMLEY, F.G. 1991. Magnoporthe grisea genes for pathogeninicity and virulence identified through a series of backcrosses. Genetics 127,87-101.

WEBSTER, K.; ROBERT, S. Y GUNNELL, P. 1992. Compendium of Rice Diseases. University of California, Davis. APS PRESS. The American Phytopathological Society.

WEISS, S.M. Y INDURKHYA, N. 1998. Predictive Data Mining. A Practical Guide. Morgan Kaufmann Publishers, San Francisco, 1998.

WELZ H.; ELLMER J. 1991. VIRULA - a computer programme to process virulence data. Enviado personalmente por el primer autor a J.P. Marín.

WILLS, G. M.; ALLOWITZ, R.D. MENVILLE, E.S. 1968. Diferencial susceptibility of rice and panicles to Pyricularia oryzae. Phytopathology 58, 1072.[Abs]

XIA, J.C.; CORRELL, J.C.; LEE, F. N.; MARDHETTI, M.A. AND RHOAD, D.D. 1993. DNA Fingerprinting to examine microgeographic variation in the Magnoporthe grisea (Pyricularia grisea) population in two rice fields in Arkansas. Molecular plant pathology, Vol. 33, No 10, 1029-1035.

XU, X.; MADDEN, V. 2002. Incidence and density relationships of Powdery mildew of apple. Phytopathology 92: 1005-10014.

YAMADA, M; IWANO, M. 1975. Variation in the prevalence of rice blast races in Japan. In Proceeding of the first International Congress of the International Association of Microbiology Sicieties 1, 425-435. Tokio; Sciences, Council of Japan

YIN., K.C., HSU,C., CHU, C.Y., PI F.V., WANH, S.T., LIU, T.Y., CHU, C.C., WANC:C:, SUN C.S. 1976. A study of the new cultivar of rice raised by haplode breeding method. Sci. Sinia 19:67-74

ZADOKS, J. C.; SCHEIN, R. D. 1979. Epidemiology and plant disease management. pp. xiii +427 pp

ZEIGLER, R.; LEONG, S.; TENG, P. (eds.) 1994. Rice blast disease. IRRI-CAB International. UK.

ZEIGLER, R.S., THOME, J., NELSON, R., LEVY, M. AND CORREA-VICTORIA, F.J. 1994. Lineage exclusion: a proposal for linking blast population analysis to rice breeding, In The Rice Biast Disease 267-291.R. S. Zeigler, S.A. Leong and PS. Teng (eds.), CBA International and IRRI.

ZEIGLER, R.S.; COUS, L.X.; SCOTT, R.P.; BERNARDO, M.A.; CHEN. D. H.; VALEN, B. AND NELSON, R.J. 1995. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Genetic Vol.5, No. 4, 445-451

Tabla 20. Reglas del modelo del árbol de decisión para la Variedad FONSA.

Nodo	Pred. Sev. Foliar	Frecuencia	Pureza	Reglas
Nodo1	1,000	220	72,85\%	
Nodo2	1,000	17	65,38\%	Si NH HR>93\% en [1; 5[entonces severidad foliar = 1 en el 65,4\% de los casos
Nodo3	1,000	49	96,08\%	Si NH HR>93\% en [5; 12,5[entonces severidad foliar = 1 en el 96,1\% de los casos
Nodo4	1,000	96	79,34\%	Si NH HR>93\% en [12,5; 14,5[entonces severidad foliar = 1 en el 79,3\% de los casos
Nodo5	1,000	39	50,65\%	Si NH HR>93\% en [14,5; 16,5[entonces severidad foliar = 1 en el 50,6\% de los casos
Nodo6	1,000	19	70,37\%	Si NH HR>93\% en [16,5; 24[entonces severidad foliar $=1$ en el $70,4 \%$ de los casos
Nodo7	1,000	4	50,00\%	Si Temp media en [15,425; 22,665[y NH HR>93\% en [1; 5 [entonces severidad foliar = 1 en el 50% de los casos
Nodo8	1,000	3	75,00\%	Si Temp media en [22,665; 27,72[y NH HR>93\% en [1; 5[entonces severidad foliar = 1 en el 75% de los casos
Nodo9	5,000	2	66,67\%	Si Temp media en [27,72; 31,033[y NH HR>93\% en [1; 5[entonces severidad foliar = 5 en el $66,7 \%$ de los casos
Nodo10	1,000	3	100,00\%	Si Temp media en [31,033; 32,55 [y NH HR>93\% en [1; 5[entonces severidad foliar $=1$ en el 100% de los casos
Nodo11	1,000	6	75,00\%	Si Temp media en [32,55; 37, 88 [y NH HR>93\% en [1; 5[entonces severidad foliar = 1 en el 75% de los casos
Nodo12	1,000	95	79,17\%	Si Temp media en [14,908; 22,884 [y NH HR>93\% en [12,5; 14,5] entonces severidad foliar $=1$ en el $79,2 \%$ de los casos
Nodo13	1,000	1	100,00\%	Si Temp media en [22,884; 23,536[y NH HR>93\% en [12,5; 14, 5 [entonces severidad foliar $=1$ en el 100% de los casos
Nodo14	1,000	30	44,12\%	Si Temp media en [15,51; 22,552[y NH HR>93\% en [14,5; 16,5[entonces severidad foliar $=1$ en el $44,1 \%$ de los casos
Nodo15	1,000	9	100,00\%	Si Temp media en [22,552; 24,731 [y NH HR>93\% en [14,5; 16,5] entonces severidad foliar $=1$ en el 100% de los casos
Nodo16	1,000	9	56,25\%	Si Temp media en [17,406; 22,557[y NH HR>93\% en [16,5; 24[entonces severidad foliar $=1$ en el $56,3 \%$ de los casos
Nodo17	1,000	10	90,91\%	Si Temp media en [22,557; 25,722 [y NH HR $>93 \%$ en [16,5; 24[entonces severidad foliar $=1$ en el $90,9 \%$ de los casos

Tabla 21. Reglas del modelo del árbol de decisión para la Variedad MARISMA.

	Pred. Nodo	Sev. Foliar	Frecuencia	Pureza

Tabla 22. Reglas del modelo del árbol de decisión para la Variedad PUNTAL.

Nodo1	1,000	192	63,58\%	
Nodo2	1,000	16	61,54\%	Si NH HR>93\% en [1; 5[entonces severidad foliar $=1$ en el 61,5\% de los casos
Nodo3	1,000	47	92,16\%	Si NH HR>93\% en [5; 12,5] entonces severidad foliar = 1 en el $92,2 \%$ de los casos
Nodo4	1,000	82	67,77\%	Si NH HR>93\% en [12,5; 14,5[entonces severidad foliar $=1$ en el $67,8 \%$ de los casos
Nodo5	5,000	31	40,26\%	Si NH HR>93\% en [14,5; 16,5] entonces severidad foliar $=5$ en el $40,3 \%$ de los casos
Nodo6	1,000	19	70,37\%	Si NH HR>93\% en [16,5; 24[entonces severidad foliar $=1$ en el $70,4 \%$ de los casos
Nodo7	1,000	81	67,50\%	Si Temp media en [14,908; 22,884[y NH HR>93\% en [12,5; 14,5[entonces severidad foliar = 1 en el 67,5\% de los casos
Nodo8	1,000	1	100,00\%	Si Temp media en [22,884; 23,536[y NH HR>93\% en [12,5; 14,5[entonces severidad foliar = 1 en el 100\% de los casos
Nodo9	1,000	4	50,00\%	Si Temp media en [15,425; 22,665[y NH HR>93\% en [1; 5 [entonces severidad foliar = 1 en el 50% de los casos
Nodo10	1,000	2	50,00\%	Si Temp media en [22,665; 27,72[y NH HR>93\% en [1; 5[entonces severidad foliar = 1 en el 50% de los casos
Nodo11	5,000	2	66,67\%	Si Temp media en [27,72; 31,033[y NH HR>93\% en [1; 5 [entonces severidad foliar $=5$ en el 66,7\% de los casos
Nodo12	1,000	3	100,00\%	Si Temp media en [31,033; 32,55[y NH HR>93\% en [1; 5[entonces severidad foliar $=1$ en el 100% de los casos
Nodo13	1,000	6	75,00\%	Si Temp media en [32,55; 37, 88 [y NH HR>93\% en [1; 5 [entonces severidad foliar $=1$ en el 75% de los casos
Nodo14	5,000	31	45,59\%	Si Temp media en [15,51; 22,552[y NH HR>93\% en [14,5; 16,5[entonces severidad foliar $=5$ en el $45,6 \%$ de los casos
Nodo15	1,000	9	100,00\%	Si Temp media en [22,552; 24,731[y NH HR>93\% en [14,5; 16,5[entonces severidad foliar = 1 en el 100\% de los casos
Nodo16	1,000	9	56,25\%	Si Temp media en [17,406; 22,557[y NH HR>93\% en [16,5; 24[entonces severidad foliar = 1 en el $56,3 \%$ de los casos
Nodo17	1,000	10	90,91\%	Si Temp media en [22,557; 25,722[y NH HR>93\% en [16,5; 24[entonces severidad foliar = 1 en el 90,9\% de los casos

Tabla 23. Reglas del modelo del árbol de decisión para la Variedad SYCR128

Pred.				Reglas
Nodo	Sev. Foliar	Frecuencia	Pureza	
Nodo1	1,000	237	78,48\%	
Nodo2	1,000	22	84,62\%	Si NH HR>93\% en [1; 5[entonces severidad foliar $=1$ en el $84,6 \%$ de los casos
Nodo3	1,000	48	94,12\%	Si NH HR>93\% en [5; 12,5] entonces severidad foliar $=1$ en el $94,1 \%$ de los casos
Nodo4	1,000	96	79,34\%	Si NH HR>93\% en [12,5; 14,5[entonces severidad foliar = 1 en el 79,3\% de los casos
Nodo5	1,000	46	59,74\%	Si NH HR>93\% en [14,5; 16,5[entonces severidad foliar = 1 en el 59,7\% de los casos
Nodo6	1,000	25	92,59\%	Si NH HR>93\% en [16,5; 24[entonces severidad foliar = 1 en el 92,6\% de los casos
Nodo7	1,000	95	79,17\%	Si Temp media en [14,908; 22,884[y NH HR>93\% en [12,5; 14, 5 [entonces severidad foliar $=1$ en el 79,2\% de los casos
Nodo8	1,000	1	100,00\%	Si Temp media en [22,884; 23,536[y NH HR>93\% en [12,5; 14, 5 [entonces severidad foliar $=1$ en el 100% de los casos
Nodo9	1,000	4	50,00\%	Si Temp media en [15,425; 22,665[y NH HR>93\% en [1; 5[entonces severidad foliar = 1 en el 50% de los casos
Nodo10	1,000	18	100,00\%	Si Temp media en [22,665; 37,88[y NH HR>93\% en [1; 5 [entonces severidad foliar $=1$ en el 100% de los casos
Nodo11	1,000	37	54,41\%	Si Temp media en [15,51; 22,552[y NH HR>93\% en [14,5; 16,5 [entonces severidad foliar = 1 en el $54,4 \%$ de los casos
Nodo12	1,000	9	100,00\%	Si Temp media en [22,552; 24,731[y NH HR>93\% en [14,5; 16,5] entonces severidad foliar $=1$ en el 100% de los casos
Nodo13	1,000	14	87,50\%	Si Temp media en [17,406; 22,557[y NH HR>93\% en [16,5; 24 [entonces severidad foliar $=1$ en el $87,5 \%$ de los casos
Nodo14	1,000	11	100,00\%	Si Temp media en [22,557; 25,722 [y NH HR>93\% en [16,5; 24[entonces severidad foliar = 1 en el 100\% de los casos

Tabla 24. Reglas del modelo del árbol de decisión para la Variedad SYCR86.

Nodo	Pred. Sev. Foliar	Frecuencia	Pureza	
Nodo1	5,000	147	48,68\%	
Nodo2	5,000	14	53,85\%	Si NH HR>93\% en [1; 5 [entonces severidad foliar $=5$ en el 53,8\% de los casos
Nodo3	5,000	26	50,98\%	Si NH HR>93\% en [5; 12,5[entonces severidad foliar = 5 en el 51,0\% de los casos
Nodo4	5,000	64	52,89\%	Si NH HR>93\% en [12,5; 14,5[entonces severidad foliar $=5$ en el $52,9 \%$ de los casos
Nodo5	20,000	39	50,65\%	Si NH HR>93\% en [14,5; 16,5] entonces severidad foliar $=20$ en el $50,6 \%$ de los casos
Nodo6	5,000	17	62,96\%	Si NH HR>93\% en [16,5; 24[entonces severidad foliar $=5$ en el $63,0 \%$ de los casos
Nodo7	5,000	4	50,00\%	Si Temp media en [15,425; 22,665[y NH HR>93\% en [1; 5 [entonces severidad foliar $=5$ en el 50% de los casos
Nodo8	20,000	2	50,00\%	Si Temp media en [22,665; 27,72[y NH HR>93\% en [1; 5[entonces severidad foliar $=20$ en el 50% de los casos
Nodo9	20,000	2	66,67\%	Si Temp media en [27,72; 31,033[y NH HR>93\% en [1; 5[entonces severidad foliar $=20$ en el 66,7\% de los casos
Nodo10	5,000	3	100,00\%	Si Temp media en [31,033; 32,55[y NH HR>93\% en [1; 5 [entonces severidad foliar $=5$ en el 100% de los casos
Nodo11	5,000	5	62,50\%	Si Temp media en [32,55; 37,88[y NH HR>93\% en [1; 5[entonces severidad foliar $=5$ en el $62,5 \%$ de los casos
Nodo12	5,000	63	52,50\%	Si Temp media en [14,908; 22,884 [y NH HR>93\% en [12,5; 14,5[entonces severidad foliar $=5$ en el $52,5 \%$ de los casos
Nodo13	5,000	1	100,00\%	Si Temp media en [22,884; 23,536[y NH HR>93\% en [12,5; 14, 5 [entonces severidad foliar $=5$ en el 100% de los casos
Nodo14	20,000	39	57,35\%	Si Temp media en [15,51; 22,552[y NH HR>93\% en [14,5; 16,5[entonces severidad foliar $=20$ en el 57,4\% de los casos
Nodo15	5,000	9	100,00\%	Si Temp media en [22,552; 24,731 [y NH HR>93\% en [14,5; 16,5[entonces severidad foliar $=5$ en el 100% de los casos
Nodo16	5,000	7	43,75\%	Si Temp media en [17,406; 22,557[y NH HR>93\% en [16,5; 24 [entonces severidad foliar $=5$ en el $43,8 \%$ de los casos
Nodo17	5,000	10	90,91\%	Si Temp media en [22,557; 25,722[y NH HR>93\% en [16,5; 24 [entonces severidad foliar $=5$ en el $90,9 \%$ de los casos

Figura 61. Árbol de decisión para la Variedad FONSA.

Figura 62. Árbol de decisión para la Variedad MARISMA

Figura 63. Árbol de decisión para la Variedad PUNTAL

Figura 64. Árbol de decisión para la Variedad SYCR128

Figura 65. Árbol de decisión para la Variedad SYCR 86

[^0]: ${ }^{1}$ Baillon, Henri Ernest (1827-1895). Consultada el 15 de diciembre de 2015 en
 http://www.ipni.org/ipni/authorByVersion.do?id=31201-1\&version=1.1\&show_history=true\&back_page=

[^1]: ${ }^{2}$ José González Arteaga (2005). El arroz en las marismas del Guadalquivir: Evolución y problemática actual. Universidad de Sevilla. Secretariado de publicaciones.

[^2]: ${ }^{3}$ Marín - Sánchez, et al. 2006. Control de la Piriculariosis del arroz en zonas semiáridas y riego por inundación. Proyecto AGL2003-08262-C02-01. Consultada el 09 de diciembre de 2015, en http://fonseuropeus.gencat.cat/web/.content/80_fons_europeus/arxius/informe_anual_2007_del_docup_20002006.pdf

[^3]: ${ }^{4}$ Consejería de Agricultura, Pesca y Desarrollo Rural - Junta de Andalucía. (2001). Reglamento específico de Producción Integrada para Arroz, Orden 18.04.2000 (Boja no 57 de 16.05.00), modificación Reglamento específico Orden 08.06.2001 (Boja no 74 de 30/06/01). Consultada el 09 de diciembre de 2015 en, http://www.juntadeandalucia.es/agriculturaypesca/portal/areas-tematicas/industrias-agroalimentarias/produccion/produccion-integrada/reglamentos-espeificos-de-cultivo.html

[^4]: 5 Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura. 2001. Estadios de las plantas mono y dicotiledóneas - BBCH Monografías. Consulta el 09 de diciembre de 2015
 http://www.jki.bund.de/fileadmin/dam_uploads/_veroeff/bbch/BBCH-Skala_spanisch.pdf

[^5]: 6 Montes et al., 2007. Estudio e identificación de las enfermedades más importantes para el establecimiento de estrategias de control en la producción integrada del cultivo de arroz en las Marismas del Guadalquivir. Agrícola Vergel (305), 253-264.

[^6]: 7 The American Phytopathological Society. 2015. Calculating the area under the disease progress curve to quantify disease progress. Consultada el 09 de diciembre de 2015, en
 http://www.apsnet.org/EDCENTER/ADVANCED/TOPICS/ECOLOGYANDEPIDEMIOLOGYINR/DISEASEPROGRESS/Pages /AUDPC.aspx

[^7]: 8 Montes et al. (2007). Estudio e identificación de las enfermedades más importantes para el establecimiento de estrategias de control en la producción integrada del cultivo de arroz en las Marismas del Guadalquivir. Agrícola Vergel (305), 253-264.

[^8]: ${ }^{9}$ Alvarado et al. 2001. Triana Arroz. Convenio Consejería de Agricultura y Pesca y FAS. Consultada el 09 de diciembre de 2015, en http://www.juntadeandalucia.es/agriculturaypesca/agraria/arroz.html

[^9]: ${ }^{10}$ Alvarado et al. 2001. Triana Arroz. Convenio Consejería de Agricultura y Pesca y FAS. Consultada el 09 de diciembre de 2015, en http://www.juntadeandalucia.es/agriculturaypesca/agraria/arroz.html

[^10]: ${ }^{11}$ Marín - Sánchez, et al. (2006). Control de la Piriculariosis del arroz en zonas semiáridas y riego por inundación. Proyecto AGL2003-08262-C02-01. Consultada el 09 de diciembre de 2015, en http://fonseuropeus.gencat.cat/web/.content/80_fons_europeus/arxius/informe_anual_2007_del_docup_20002006.pdf

