
Forward and Backward Chaining with P Systems

Sergiu Ivanov1,2, Artiom Alhazov1,3, Vladimir Rogojin1,4,
Miguel A. Gutiérrez-Naranjo5

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: {sivanov,artiom}@math.md

2 Technical University of Moldova, Faculty of Computers,
Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

3 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy

4 Research Programs Unit, Genome-Scale Biology,
Faculty of Medicine, Helsinki University,
Biomedicum, Haartmaninkatu 8, Helsinki 00014, Finland
E-mail: vladimir.rogojin@helsinki.fi

5 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: magutier@us.es

Summary. On the one hand, one of the concepts which lies at the basis of membrane
computing is the multiset rewriting rule. On the other hand, the paradigm of rules is
profusely used in computer science for representing and dealing with knowledge. There-
fore, it makes much scene to establish a ”bridge” between these domains, for instance,
by designing P systems reproducing forward and backward chaining which can be used
as tools for reasoning in propositional logic. Our work shows again, how powerful and
intuitive the formalism of membrane computing is and how it can be used to represent
concepts and notions from totally unrelated areas.

1 Introduction

The use of rules is one of the most common paradigms in computer science for
dealing with knowledge. Given two pieces of knowledge V and W , expressed in
some language, the rule V → W is usually considered as a causal relation between
V and W . This representation is universal in science. For example, in chemistry,
V and W can be metabolites and V → W a chemical reaction. In this case,

222 S. Ivanov et al.

V represents the reactants which are consumed in the reaction and W is the
obtained product. In ecology, W may represent the population obtained from the
set of individuals V after a time unit. In computer science, V and W are pieces of
information (usually split into unit pieces v1, v2, . . . , vn and w1, w2, . . . , wm) and
the rule V → W is the representation of the precedence relation between V and
W . In propositional logic, V → W is a representation of the clause ¬v1¬v2 ∨ · · · ∨
¬vn ∨ w1 ∨ w2 ∨ · · · ∨ wm.

Besides representing knowledge using this paradigm, scientists are interested
in the derivation of new knowledge from a known piece of information: given a
knowledge base KB = (A,R), where A is a set of known atoms and a set R of
rules of type V → W , the problem is to know if a new atom g can be obtained
from the known atoms and rules. We will call this problem a reasoning problem
and it will be denoted by 〈A,R, g〉.

In computer science, there are two basic method for seeking a solution of a
reasoning problem, both of them based on the inference rule know as Generalized
Modus Ponens: the former is data-driven and it is known as forward chaining, the
latter is query-driven and it is called backward chaining.

In this paper we will consider knowledge bases on propositional logic and prove
that both types of chaining can be simulated by P systems. In this way, given a
reasoning problem we present several methods for building P systems Πb and Πf

which produce the objects YES or NO if and only if the corresponding chaining
method gives a positive or negative answer.

As one should observe, even though logic inference rules and multiset rewriting
rules originate from totaly different areas of mathematics and computer science and
represent unrelated notions, their concepts have some similarities. In particular, no
information about the ordering of elements in both left and right sides of the rules
of both types is used. On the other hand, the inference rules could be thought of
as set rewriting rules, while multiset rewriting rules operate at multisets. However,
multiset rewriting rules could be interpreted as set rewriting rules if one ignores
the multiplicity of elements of the multiset. Therefore we could represent sets of
facts in P systems as multisets of objects and inference rules as multiset rewriting
rules. When one considers the set of facts represented in a region of a P systems,
one only considers the underlying set of the region’s multiset.

The paper is organized as follows. First we recall some basic definitions re-
lated to the reasoning problem. Then we present our constructions and prove that
the obtained P systems produce the same answer as the corresponding chainings.
Finally, some conclusions and open research directions are proposed.

2 Definitions

2.1 Transitional P Systems

A transitional membrane system is defined by a tuple

Forward and Backward Chaining with P Systems 223

Π = (O, µ, w1, w2, · · · , wm, R1, R2, . . . , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively labeled

by 1, . . . , m; the interior of each membrane defines a region;
the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; in this paper i0 is the skin and could be omitted.

The rules of a membrane systems have the form u → v, where u ∈ O+, v ∈
(O × Tar)∗. The target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m}
are written as a subscript, and target here is typically omitted. In case of non-
cooperative rules, u ∈ O. In this paper we will not consider target indications.

The rules are applied in a maximally parallel way: no further rule should be
applicable to the idle objects. In case of non-cooperative systems, the concept of
maximal parallelism is the same as evolution in L systems: all objects evolve by
the associated rules in the corresponding regions (except objects a in regions i
such that Ri does not contain any rule a → u, but these objects do not contribute
to the result). The choice of rules is non-deterministic.

A sequence of transitions is called a computation. The computation halts when
such a configuration is reached that no rules are applicable. Since in this paper we
will focus on deciding P systems, we are only interested in the presence of one of
the special symbols {YES, NO} in the halting configuration of a computation.

In transitional P systems with promoters/inhibitors we consider rules of the
following forms:

• u → v|a, a ∈ O – this rule is only allowed to be applied when the membrane
it is associated with contains at least an instance of a; a is called the promoter
of this rule;

• u → v|¬a, a ∈ O – this rule is only allowed to be applied when the membrane
it is associated with contains no instances of a; a is called the inhibitor of this
rule.

Rules do not consume the corresponding promoters/inhibitors. A rule may have
both a promoter and an inhibitor at the same time, in which case it can only be
applied when there is at least one instance of the promoter and no instances of the
inhibitor in the region. Note also, that a single instance of an object may act as a
promoter for more than one instance of rewriting rules during the same transition.

2.2 P Systems with Active Membranes

A P system with active membranes is defined by a tuple

224 S. Ivanov et al.

Π = (O,H, µ,w1, w2, . . . , wm, R, i0), where
O is a finite set of objects,
H is the alphabet of names of membranes,
µ is the initial hierarchical structure of m membranes, bijectively labeled

by 1, . . . ,m;
wi is the initial multiset in region i, 1 ≤ i ≤ m,

R is the set of rules,
i0 is the output region; in this paper i0 is the skin and could be omitted.

The rules in P systems with active membranes can be of the following five basic
types:

(a) [a → v]eh, h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗; in this paper we consider the
extension a ∈ O∗;

(b) a[]e1
h → [b]e2

h , h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O;
(c) [a]e1

h → []e2
h b, h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O;

(d) [a]eh → b, h ∈ H\{s}, e ∈ {+,−, 0}, a, b ∈ O;
(e) [a]e1

h → [b]e2
h [c]e3

h , h ∈ H\{s}, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O.

The rules apply to elementary membranes, i.e. membranes which do not contain
other membranes inside.

The rules are applied in the usual non-deterministic maximally parallel manner,
with the following details: any object can be subject of only one rule of any type
and any membrane can be subject of only one rule of types (b)–(e). Rules of type
(a) are not counted as applied to membranes, but only to objects. This means that
when a rule of type (a) is applied, the membrane can also evolve by means of a
rule of another type. If a rule of type (e) is applied to a membrane, and its inner
objects evolve at the same step, it is assumed that first the inner objects evolve
and then the division takes place, so that the result of applying rules inside the
original membrane is replicated in the two new membranes.

2.3 Formal Logic Preliminaries

Definition 1. An atomic formula (also called an atom) is a formula with no deeper
structure.

An atomic formula is used to express some fact in the context of a given problem.
The universal set of atoms is denoted with U . For a set A, |A| is the number of
elements in this set (cardinality).

Definition 2. A knowledge base is a construct KB = (A,R) where A =
{a1, a2, . . . , an} ⊆ U is the set of known atoms and R is the set of rules of the
form V → W , with V, W ⊆ U .

Forward and Backward Chaining with P Systems 225

In propositional logic, the derivation of a proposition is done via the inference
rule known as Generalized Modus Ponens:

P1, P2, . . . , Pn , P1 ∧ P2 ∧ · · · ∧ Pn → Q

Q

The meaning of this rule is as follows: if P1 ∧ P2 ∧ · · · ∧ Pn → Q is a known
rule and P1, P2, . . . , Pn ⊆ A then, Q can be derived from this knowledge. Given
a knowledge base KB = (A,R) and an atomic formula g ∈ U , we say that g
can be derived from KB, denoted by KB ` g, if there exists a finite sequence of
atomic formulas F1, . . . Fk such that Fk = g and for each i ∈ {1, . . . , k} one of the
following claims holds:

• Fi ∈ A.
• Fi can be derived via Generalized Modus Ponens from R and the set of atoms

{F1, F2, . . . , Fi−1}
It is important to remark that for rules V → W we can require |W | = 1 without

losing generality. Indeed, V → W = ¬V ∨W . If W = w1 ∧ w2 ∧ ... ∧ wn,

V → W = ¬V ∨
n∧

i=1

wi =
n∧

i=1

¬V ∨ wi =
n∧

i=1

V → wi

This conclusion also makes it clear how to transform set of rules R to R′ with
the property that all right-hand sides contain no more than one symbol.

This definition of derivation provides two algorithms to answer the question of
knowing if an atom g can be derived from a knowledge base KB. The first one
is known as forward chaining and it is an example of data-driven reasoning, i.e.,
the starting point is the known data. The dual situation is the backward chaining,
where the reasoning is query-driven.

Definition 3. Forward chaining decides KB ` g by constructing the closure K
of the set of known facts A under the operation of adding new facts to the set by
applying Generalized Modus Ponens and checking g ∈ K.

Definition 4. Backward chaining decides KB ` g by attempting to find some
resolution of the goal fact g to the set of known facts A by substituting the right-
hand sides of the rules with their corresponding left-hand sides.

We will call reduction the substitution of the right-hand side of a rule with the
corresponding left-hand side in the process of backward chaining.

A deep study of both algorithms is out of the scope of this paper. We briefly
recall their basic forms.

Forward chaining
Input: A reasoning problem 〈A,R, g〉
Initialize: Deduced = A,Deduced′ = ∅

while Deduced 6= Deduced′ do

226 S. Ivanov et al.

Deduced′ ← Deduced
for all (P1P2 . . . Pn → Q) ∈ R such that {P1, P2, . . . , Pn} ⊆ Deduced′ do

if Q = g then
return true

else
Deduced ← Deduced ∪ {Q}

end if
end for

end while
if g 6∈ Deduced then

return false
end if

Backward chaining
Input: A reasoning problem 〈A,R, Targets〉

if Targets = ∅ then
return true

else
Found ← false
Actual ← SelectOne(Targets)
for all (P1P2 . . . Pn → Actual) ∈ R do

NewTargets ← ({P1, P2, . . . , Pn}\A) ∪ (Targets\{Actual})
Found ← Found ∨ (Backward Chaining〈A ∪ {Actual}, R,NewTargets〉)

end for
return Found

end if

Instead of only having one goal in the input of the backward chaining algorithm,
we consider a set of goal facts Targets. In the case of only one goal fact, this set is
initially {g}. Note that this algorithm does not always produce a correct result in
the cases when the inference rules form cycles like, for example, {a → b, b → a}.

In this paper we present several different transformations of a tuple 〈A,R, g〉
into P systems and prove than forward chaining and backward chaining can be
represented and performed in the usual semantics of membrane computing. We will
write multisets in string notation. We will use the symbol (·) to denote multiset
union.

The problem of deriving a new piece of knowledge from given ones and how such
derivation can be made automatically has been studied for centuries. In this paper
we explore a small part of this problem. In other logic systems, as relational logic,
clausal logic, first or higher order logic, many other problems as the unification of
terms must be considered. We refer the interested reader to [1].

In the paper, v1v2 . . . vn may mean either a conjunction of atoms in an inference
rule or a multiset of objects representing such a conjunction. Which of these is
actually meant should be clear from the context.

Forward and Backward Chaining with P Systems 227

3 Forward Chaining

Let us consider the reasoning problem 〈A,R, g〉. Forward chaining basically con-
sists in finding all facts that can be derived from A according to R and checking
whether g is among these facts.

We will now try to design a transitional P system which will implement forward
chaining. We will focus on constructing a non-uniform solution, because in this
way we will be able to map inference rules directly to multiset rewriting rules in
P systems.

Intuitively, the forward chaining algorithm consists of successive application of
rules. All rules can be applied in any order and produce the same result. This leads
us to the conclusion that the standard maximally parallel strategy of applying rules
in P systems is suitable for carrying out forward chaining.

In this first approach we will look at the propositional rule V → W from our
knowledge base as an evolution rule of a P system where all the objects in both
sides of the rule have multiplicity one. Before we start, we need to introduce some
considerations.

• First of all, in P systems the objects in the LHS of the rule are consumed
when the rule is applied. This is a serious drawback for a direct translation
of propositional logic into P systems. This limitation can be avoided if we
introduce a copy of the LHS into the RHS of the rule, thus considering a
multiset rewriting rule V → V W for each propositional rule V → W .

• Copying the LHS into the RHS introduces new undesirable effects. One of them
is that a rule can be applied indefinitely many times, since the objects which
trigger the rule will be in the membrane forever. This can be also avoided by
introducing a new object γi for each propositional rule ri ≡ V → W and adding
it to the LHS of the membrane computing rule γiV → V W . This object γi is
consumed and allows the rule to be applied at most once.

• The answer YES can be easily produced by using a rule g → Y ES. As soon
as g is generated, the object Y ES is produced. The answer NO should be
obtained if new atoms can be deduced. From a membrane computing point of
view, it is not so easy to check if a membrane has a new object different from
the previous configuration, but we can consider an upper bound on the number
of steps in order to check if g has been produced or not. This upper bound is
related to the number of rules, since each rule can be only applied once.

We construct a P system implementing chaining according to the remarks given
above:

Π0 = (U0, []s, w
(0)
s , R0, s), where

U0 = U ∪ {YES} ∪ {γi | 1 ≤ i ≤ n},
w(0)

s = γ1γ2 . . . γn,

R0 = {γiV → V W | (ri : V → W) ∈ R, 1 ≤ i ≤, n} ∪ {g → YES},
n = |R|.

228 S. Ivanov et al.

Note that labeling the inference rules in R is done injectively.
We placed the initial set of facts A into the skin membrane and let some

multiset rewriting rules easily obtained from R to simulate the forward-chaining
inference process according the set of inference rules R. The rule g → YES is
waiting for the goal to appear in the region. As soon as the goal appears, the rule
produces a YES-object.

Π0 is very simple and illustrates vividly how easily very basic forward chaining
can be done in P systems. Π0 always stops, and there is a YES in ws when g can
be derived from the facts in A.

To place a NO into the skin at proper times requires a further observation that
the upper bound on the number of steps Π0 makes is n + 1. Indeed, all rules in
R0 may be applied only once and |R0| = |R|+ 1 = n + 1. Thus, we may wait until
all the rules in the system are exhausted. If after n + 1 steps the symbol YES has
not been produced, the system should produce a NO. In the following P system
Π1 we have implemented the timer:

Π1 = (U1, []
s
, w(1)

s , R1, s), where

U1 = U0 ∪ {ti | 0 ≤ i ≤ n + 1} ∪ {NO},
w(1)

s = w(0)
s · t0,

R1 = R0 ∪ {ti → ti+1 | 0 ≤ i ≤, n} ∪ {tn+1 → NO,YES NO → YES}.
Π1 will always stop in either n+1 steps if a NO has been produced, or in n+2

steps it a YES has been produced. To nondeterministically minimize the number
of steps, one may consider R′1 = R1 ∪ {tiYES → YES | 1 ≤ i ≤ n}. This, however,
does not guarantee that the system will stop in a small (constant) number of steps
after a YES has been produced and, in the worst case, it possible that the whole
chain of transformations of ti will take place.

To assure that the system always stops when no rules are being applied, we
can use rules with inhibitors. Consider the following P system:

Π2 = (U2, []s, w
(2)
s , R2, s), where

U2 = U0 ∪ {t, p, NO},
w(2)

s = w(0)
s · tp,

R2 = {γiV → V Wp|¬YES | (ri : V → W) ∈ R, 1 ≤ i ≤ n} ∪
∪{p → λ, t → NO|¬p, gt → YES}.

Any rule application produces an instance of p, which is immediately erased. While
rules are still being applied, p is always present in the system and thus t cannot
change into NO. When rules are not being applied any more, p is erased from
the system and t evolves into NO. If a rule application adds the goal symbol g to
the system, g consumes t and produces YES. Thus, when no more rules can be
applied, the system always needs two more steps to produce a NO. When the goal
fact is produced, the system always needs one more step to produce a YES.

Forward and Backward Chaining with P Systems 229

The inhibitors are required when, for the problem 〈A,R, g〉, ∃(V → W) ∈ R
such that g ∈ V . Once YES is present in the system, computations should stop.

The last problem to solve is cleaning up. This is pretty obvious:

Π
(1)
f = Π3 = (U2, []s, w

(2)
s , R3, s), where

R3 = R2 ∪ {a → λ|¬p | a ∈ U ∪ {γi | 1 ≤ i ≤ n}}.
When the system produces a YES, the application of rules derived from R stops
and p is not produced any more. This allows the rules a → λ|¬p to clean everything
in one extra step. When there are no more rules derived from R to apply, p is not
produced as well, which triggers the clean-up. Note that the clean-up procedure
does not considerably alter the number of steps Π3 needs to solve the problem.

Π3 takes advantage of the maximal parallelism and always applies as many
rules as possible at the same time. However, if there are several ways to derive g
from A, Π3 may not always follow the most efficient strategy.

4 A Different Approach to Forward Chaining

We will now try to go beyond the most trivial translation of a decision problem
to a P system. We will consider a P system Π

(2)
f with a single membrane, and a

set of rules of type v → w|¬i;p where i, p, v, w are objects of the alphabet.
We will translate a rule ri ≡ u1u2 . . . un → v from R into n rules: ρij ≡

rij → rij+1|¬v;uj for j ∈ {1, . . . , n − 1} and ρin ≡ rin → v|¬v;uj . Note that we
require that the right-hand side of every rule in R should contain exactly one fact.
We will also add the following rules to implement the timer:

{tk → tk+1|¬g;tk
| 1 ≤ k ≤ l − 1} ∪ {tk → YES|¬NO;g | 0 ≤ k ≤ l}

∪{tl → NO|¬g;tl
}

The following rules will clean up the regions of the system:

{a → λ|¬NO;YES | a ∈ Γ\{YES}} ∪ {b → λ|¬YES;NO | b ∈ Γ\{NO}}

Here g is the goal fact and Γ is the alphabet of the P system. l is the sum of the
lengths of the left-hand sides of all rules in R. In other words, l is the maximal
number of steps Π

(2)
f has to go through to try all rules from R.

The alphabet contains all the atoms from U , the symbols {YES, NO}, all tk,
1 ≤ k ≤ l, and all the rij where i is the index of the corresponding rule from R
and j is the index of an atom in the LHS of the rule ri.

In the initial configuration the skin membrane contains all objects from A, an
object t0, and all objects ri1, 1 ≤ i ≤ |R|.

The rules ρij are meant to check whether all left-hand-side symbols of the rule
ri are present in the system. If this condition is satisfied, the right-hand side of
the rule ri is added. In parallel with the application of rules ρij the timer symbols

230 S. Ivanov et al.

tk evolve from t1 to tl. If the goal symbol g is produced, the rule tk → YES|¬NO;g
produces YES. This will lead to the eventual erasure of all other symbols. If,
however, the goal symbol is not produced before tl appears in the system, a NO
is produced and forces the erasure of all other symbols.

Example 1. Consider the tuple 〈A,R, d〉 with A = {a, b} and R = {r1 ≡
ab → c, r2 ≡ bc → d}. From this deduction problem we can construct the P
system Π = (Γ,w, Rf) where

• the alphabet is Γ = {a, b, c, d, r11, r12, r21, r22, t1, t2, t3, t4, YES, NO};
• the initial multiset in the unique membrane is w = abr11r21t0;
• the rules ρij are:

ρ11 ≡ r11 → r12|¬c;a ρ21 ≡ r21 → r22|¬d;b

ρ12 ≡ r12 → c|¬c;b ρ22 ≡ r22 → d|¬d;c

In the initial configuration C0 = [abr11r21t0] rules ρ11 and ρ21 can be applied,
which yields the configuration C1 = [abr12r22t1]. In C1 the rule ρ12 can be applied
and we obtain C2 = [abcr22t2]. Now, by applying ρ22 we obtain C3 = [abcdt3]. Since
the goal fact has appeared in the system, t3 will evolve into a YES: C4 = [abcdYES].
In the next step all symbols but YES will be erased: C5 = [YES].

One of the main differences between the usual semantics in P systems and
the semantics in propositional logic is that the application of a rule in membrane
computing consumes the objects in the LHS of the rule. This is undesirable from
the point of view of propositional logic, since the validity of an atom does not
change if the atom is used in a derivation. This drawback is avoided by using new
auxiliary objects rij which are consumed instead of atoms.

Using these auxiliary objects has other positive effects as well. In propositional
logic, once the rule a → b has been used to derive b, the rule will not be used
any more. Or rather, further applications of this rule make no difference, since
in propositional logic rules operate on sets of facts. This property needs to be
treated specially in P systems since we use maximal parallelism and if a rule can
be applied multiple times it will be applied so. By consuming the objects rij we
avoid multiple applications of rules.

Finally, the use of inhibitors stops the production of an object (the derivation
of an atom) if this object has been previously produced by another rule.

Theorem 1. Π
(2)
f solves the reasoning problem it was designed for using forward

chaining.

Proof. Π
(2)
f works by transforming the symbols ri1 into the corresponding right-

hand sides of rules (ri ≡ Vi → ai) ∈ R, ai ∈ U if all the symbols in the left-hand
side of rule ri are present in the skin region. Thus the system never produces the
right-hand side of a rule if not all of the symbols in the left-hand side of the rule
are present in the skin region. This means that the set of facts the system derives

Forward and Backward Chaining with P Systems 231

is always a subset of the set of facts that can be derived from A by Generalized
Modus Ponens.

On the other hand, independently of the order in which the symbols in the
left-hand side of the rule appear in the system, if all of the symbols in the left-
hand side of the rule ri are present in the skin region, the promoters of the rules
ρij , 1 ≤ j ≤ |V | guarantee that ri1 is transformed into ai. This means that the
system produces at least all facts that can be derived from A by Generalized
Modus Ponens.

The conclusion is that the system always properly constructs the set of facts
which can be derived from A by R.

If g can at all be derived from A, it is guaranteed to be produced at at most
l-th step. At this point there will be tl and g in the skin region and tl will deter-
ministically evolve into a YES. If, however, the symbol g is never produced, tl will
(correctly) evolve into a NO.

5 Backward Chaining

Backward chaining, along with forward chaining, is one of the two most commonly
used methods of reasoning with inference rules. Backward chaining is also based
on the modus ponens inference rule and is usually implemented by SLD resolution.
Given a goal clause:

¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Li ∨ · · · ∨ ¬Ln

with selected literal ¬Li and an input definite clause

L ∨ (¬K1 ∨ ¬K2 ∨ · · · ∨ ¬K3)

in which the atom L unifies with the atom Li, SLD resolution derives another goal
clause, in which the selected literal is replaced by the negative literals of the input
clause and the unifying substitution θ is applied:

SUBST(θ,¬L1 ∨ ¬L2 ∨ · · · ∨ (¬K1 ∨ ¬K2 ∨ · · · ∨Kn) ∨ · · · ∨ ¬Ln)

As in the previous section, we will only consider zero-order logic in this section.
In this case we may treat unification as equality. In this section we will take
advantage of the possibility to only allow rules with exactly one symbol in the
right-hand side.

In the case of zero-order logic, backward chaining is more complex than forward
chaining, as are P systems doing backward chaining.

The description of the backward chaining algorithm is similar to depth-first
search in a state space. In artificial intelligence backward chaining is often perceived
in this way and a lot of considerations are built on top of this representation.

As usual, when implementing backward chaining in P systems, we would like
to take as much advantage as possible of the parallelism offered by these devices.

232 S. Ivanov et al.

The obvious way to exploit parallelism is exploring the branches of the deduction
tree in parallel. More concretely, if, for a certain value of Targets, several rules
(V → w) ∈ R, w ∈ Targets are found, the system should start investigating each
of these branches in parallel. This approach is not equivalent to investigating all
possible deduction branches in parallel.

Since we would like to explore a number of branches in parallel and since
these branches are completely independent of one another, it would be natural to
investigate each branch in a separate region. Because we would like to decide at
each certain state how many new parallel explorations to start, membrane division
would suit us greatly. This brings us to the conclusion that P systems with active
membranes is what we need.

However, in P systems with active membranes one can only divide a membrane
into two children membranes. A way to avoid this limitation would be to demand
the set Rw = {V → w | (V → w) ∈ R} to have no more than two elements. Any
set of rules R can be transformed to satisfy this constraint by substituting every
set of rules Rw = {V1 → w, V2 → w, . . . , Vn → w}, n > 2 with

{V1 → z1, V2 → z1}∪{zi−1 → zi, Vi+1 → zi | 2 ≤ i ≤ n−2}∪{zn−2 → w, Vn → w}

The corresponding symbols zi, 1 ≤ i ≤ n − 2 should be added to the new set of
facts U ′.

Note that this is not the most efficient transformation.
We introduce two morphisms (′) and (′′) on a multiset W = w1w2 . . . wn,

W ∈ U+:

W ′ = w′1w
′
2 . . . w′n

W ′′ = w′′1w′′2 . . . w′′n

We also consider the corresponding specialization of these morphisms for sets.
Given that R satisfies the constraint specified above, consider the following P

system with active membranes:

Forward and Backward Chaining with P Systems 233

Πb = (Ub, {k, s}, [[]
k

]
s
, wk, ws, Rb, s), where

Ub = U ∪ U ′ ∪ U ′′ ∪ {ρi | (ri : Vi → wi) ∈ R} ∪
{f0, f1, f, c0, c1, c2, c3, c, l, p, q, $1, $2, #} ∪
∪{ti|0 ≤ i ≤ 7} ∪ {YES, NO},

Rb = {[w′′]0k → [ρi]+k [ρj]+k | ∃{Vi → w, Vj → w} ⊆ R, Vi 6= Vj} ∪
∪{[w′′]0k → [ρi]+k [#]+k | ∃(Vi → w) ∈ R, 6 ∃(α → w) ∈ R, α 6= Vi} ∪
∪{[qa → a′a′′]0k, [aa′ → a′]+k , [aa → a]+k | a ∈ U} ∪

∪{[ρi → qc0f0Vi]+k | ∃(Vi → α) ∈ R, α ⊆ U} ∪
∪{[f0 → f1]+k , [l]+k → []0kl, [l]0s → []+s l, [l → λ]+s } ∪
∪{[f1a → al]+k | a ∈ U} ∪
∪{[ci−1 → ci]+k | 1 ≤ i ≤ 3} ∪ {[c3 → λ]0k, [c3]+k → []+k $0} ∪

∪{[$0 → $1YES]+s , [$0 → YES]0s, [YESNO → YES]+s , [$1]0s → []+s $1} ∪
∪{[ti−1 → ti]0s | 1 ≤ i ≤ 6} ∪
∪{[t6 → pt7]0s, [t7 → t2]+s , [t7 → λ]0s, [p → NO]0s, [p]+s → []0sp},

wk = qgA′,
ws = t0.
This system decides, using backward chaining, whether g can be derived from

A according to the rules in R. Handling cycles in inference rules ({a → b, b → a})
is a matter of further research.

Πb works as follows. It starts with a single worker membrane with the label
k, which contains the goal symbol g and A′. All primed symbols in the worker
membrane are the symbols which have already been reduced once. The system will
never reduce the same symbol twice in a worker membrane. The rule [qa → a′a′′]0k
marks g as reduced and creates a double primed copy of it. Double primed symbols
are the symbols which are meant to be reduced.

The system includes two types of operations for reducing symbols: [w′′]0k →
[ρi]+k [ρj]+k and [w′′]0k → [ρi]+k [#]+k . The first operation is done in the cases when
|Rw| = 2. It creates two new worker membranes with polarization + for each of
the two left-hand sides of the rules used for reduction. The second operation is
performed when |Rw| = 1. This operation creates two worker membranes, but one
of them contains # which will not allow the membrane to evolve further. It is
important to realize that, even if |Rw| = 1, the corresponding P system rule need
employ a membrane to avoid attempts to multiply apply rules.

In any of the newly created membranes the rule [ρi → qc0f0Vi]+k introduces
the actual left-hand side of the corresponding inference rule, as well as several
service symbols. In the next step the rule [aa′ → a′]+k removes any of the new
symbols which have already been reduced. At the same time f0 evolves into f1

and c0 into c1. In the next step f1 verifies whether not primed symbols are still
present in the membrane. If there indeed are such symbols, an l is produced,
which eventually re-polarizes the worker membrane to 0 and thus re-launching the

234 S. Ivanov et al.

process of application of inference rules. The role of the symbol q is to assure that
only one not yet reduced symbol is reduced.

In parallel with the rule [aa′ → a′]+k , the rule [aa → a]+k is applied. It removes
the duplicates which appear in situations when the worker membrane contains a
and b and reduces b by the rule V → b, a ∈ V . Note that the rule removing the
already reduced symbols and the rule cannot be applicable to the same symbol at
the same time, which removes concurrency effects.

If the worker membrane contains no more symbols which have not yet been
reduced, Πb concludes that we have discovered a resolution of g to the set of know
atoms A. Since the rule [f1a → al]+k does not produce the symbol l, the symbols ci

evolve until c3 ejects a $0 in the skin region. This symbol will eventually produce
YES.

The skin membrane contains symbols ti which check whether there still is some
activity in the system. Each application of an inference rule (or two inference rules,
when |Rw| = 2) takes 6 steps. At the very beginning, the symbol t0 evolves into
t6. If ∃(V → g) ∈ R, when t6 is produced in the skin region, the skin region will
also contain an l. t6 evolves into pt7 and, at the same time, l polarizes the skin
membrane to +. This makes t7 evolve into t2, thus restarting the ti loop, while p
resets the skin polarization to 0.

If, however, no worker membrane produces an l any more, when p is produced
in the skin, the skin polarization stays at 0. This forces p to produce a NO and
erases t7, thus breaking the ti loop.

The symbol $0 will always appear in the skin region at the same time as pt7.
Two situations are possible: if there has just been at least one l in the skin, the
skin will have polarization +. In this case t2 is produced and p is erased. At the
same time, $0 produces a $1 and YES. $1 polarizes the skin to +, thus stopping
the ti loop. In the other situation no instances of l are produced and, when pt7 is
produced in the skin, the polarization of this membrane is 0. In this case p will
produce a NO, while t7 will be erased, thus breaking the ti loop. At the same time
$0 will produce a YES, which will erase NO in the next step.

We remark that Πb always stops, because any application of an inference rule
necessarily leads to an eventual extension of the set of primed symbols within a
worker membrane. This means that the time Πb works in can be estimated as
O(|U |).

Πb is a P system with active membranes with two polarizations and cooperative
rules of type (a). It is unfourtunately necessary to use cooperation, too, in this
context because we need to apply every rule only once. While it should be possible
to implement backward chaining using purely non-cooperative rules, such approach
would hurt the clarity of the solution and it is highly possible that the parallelism
of P systems would not be fully used.

Πb is notably more complicated than any of the P systems doing forward chain-
ing. The reason for this situation is that we have only focused on zero-order logic
so far, in which unification degenerates into equality and forward chaining becomes
very straightforward to implement. In conventional programming, however, back-

Forward and Backward Chaining with P Systems 235

ward chaining is sometimes preferred due to the fact that it is easier to satisfy
memory restrictions.

6 Conclusion

In this paper we continued exploring the possibilities of solving reasoning prob-
lems with P systems, a topic which was started in [2]. The computing devices of
P systems look appealing in this context due to two main reasons: the similarity
of inference rules and multiset rewriting rules and the maximal parallelism. The
similarity of the two types of rules allows a relatively natural transformation of rea-
soning problems into P systems and a rather efficient exploitation of the maximal
parallelism.

We have only focused on zero-order logic in this paper, which resulted in quite
simple P systems for forward chaining problems and more complicated devices for
backward chaining. The difference in complexity appears because of the inherently
recursive nature of backward chaining; and since one of our goals was to exploit
the maximal parallelism, in the case of backward chaining we needed to branch off
parallel explorations for each of the possibilities arousing at every reasoning step
(after every SLD resolution).

This paper does not attempt to be exhaustive. One of the most evident ques-
tions is whether the P systems suggested in this paper can be optimized in the
number of rules or control symbols. Another optimization criterion is the speed
of the system. Although it is remarked in the paper that all P systems have the
time complexity O(|R|), Πb is about five times slower on average than Π

(1)
f . In

designing the P systems in this paper we tried to translate the reasoning tuple
as intuitively as possible; maybe less intuitive transformations would operate in
better time. A concrete question in this domain is whether it possible to design a
general algorithm for constructing P systems which would solve reasoning prob-
lems in sublinear time (no matter which chaining algorithm is used).

A very important research question is how to handle the situations when R
includes rules which form cycles. The presence of such cycles does not necessarily
disrupt the functionality of the system, but may make it produce a falsely positive
result.

Another relevant direction to explore is first-order logic. In zero-order logic we
could comfortably translate facts to symbols and build relatively simple P systems.
First-order logic poses serious questions, however, among which one of the most
important ones is how to encode predicates in P systems and how to implement
unification.

A problem we have only superficially talked of is universality. Because our focus
was on intuitive transformations from a reasoning tuple to a P system, we didn’t
pay much attention to designing a P system which would solve all or a subset
of reasoning problems using either chaining algorithm. This should be a relevant
topic of theoretical research and could reveal further similarities between reasoning
problems and certain kinds of P systems.

236 S. Ivanov et al.

Acknowledgements

AA gratefully acknowledges the project RetroNet by the Lombardy Region of Italy
under the ASTIL Program (regional decree 6119, 20100618).

MAGN acknowledges the support of the projects TIN-2009-13192 of the Minis-
terio de Ciencia e Innovación of Spain and the support of the Project of Excellence
of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Jago, M.: Formal Logic, Humanities-Ebooks LLP, 2007, ISBN 978-1-84760-041-7.
2. Gutiérrez-Naranjo, M. A., Rogozhin, V., Deductive databases and P systems, Com-

puter Science Journal of Moldova, vol. 12, no. 1(34), 2004.
3. Apt, K. R.: Logic Programming, Handbook of Theoretical Computer Science. Elsevier

Science Publishers B.V., 1990.
4. Bratko, I.: PROLOG Programming for Artificial Intelligence, Third Edition. Addison-

Wesley, 2001.
5. Krishna S. N., Rama R.: A Variant of P Systems with Active Membranes: Solving

NP-Complete Problems. Romanian Journal of Information Science and Technology,
2, 4 (1999), pp. 357-367.

6. Lloyd, J. W.: Foundations of Logic Programming, (2nd ed.) Springer, Berlin, 1987.
7. Păun, Gh., Membrane Computing. An Introduction. Springer-Verlag, 2002.
8. Păun, Gh., Rosenberg, G., Salomaa, A., Eds: The Oxford Handbook of Membrane

Computing. Oxford University Press, 2009.
9. The P systems web page. http://ppage.psystems.eu/

