Strategic group identification using evolutionary computation

M.R. Martinez-Torres !, S.L. Toral-Marin >+

2 Escuela Universitaria de Estudios Empresariales, Avda, San Francisco Javier, s/n, 41018 Sevilla, Spain
b Escuela Superior de Ingenieros, Avda, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain

ARTICLE INFO ABSTRACT

Keywords:

Franchising

Strategic groups

Genetic Algorithms
Evolutionary computation
Performance

This paper proposes to identify strategic groups among franchisors from a big set of franchisor variables.
Genetic evolutionary computation was used to reduce a set of variables efficiently, and factor analysis
was used to make up the strategic groups. Franchise 500 was used as database. The results suggest both
that the general map of franchisor has changed since Carney and Gedajlovic’s study, and that genetic evo-
lutionary computation is a valid way to extract knowledge from a huge set of data. This paper proposes

useful information for those retail firms considering internationalization via franchising. The originality
of this paper is in the use of Genetic Algorithm to discriminate the final set of variables to be used for the
identification of strategic groups instead of evaluating one by one the adequacy of each variable theoret-
ically. The ability of evolutionary computation to create new knowledge is good to produce new insights

into this topic.

1. Introduction

Franchise strategy refers to the outcome of the decision to
operate and expand a business by franchising versus company-
ownership (Chen & Ou, 2009; Falbe & Welsh, 1998).

Two major theoretical perspectives have been proposed to
explain patterns of company-ownership versus franchisee-owner-
ship: Resource Scarcity and Agency Theory (Alon, 2001; Carney &
Gedajlovic, 1991; Combs & Castrogiovanni, 1994; Combs, Ketchen,
& Hoover, 2004; Michael, 2003; Newkirk & Lederer, 2006; Paik &
Choi, 2007). Both theories should be analyzed, as they determine
the firm characteristics that are going to drive franchisors into
strategic groups.

Advocates of the strategic group concept argue that industry
members can be classified into groups along key characteristics,
such as strategy and structure (e.g., Hatten & Schendel, 1977). In
general, firms within an industry that follow a similar approach
or strategy have been termed strategic groups (Porter, 1980), and
strategic groups have been found to differ in performance
(Ketchen, Thomas, & Snow, 1993). Opportunities are not evenly
distributed across an industry; some strategies offer better profit
potential than others. Firms may be tempted to change strategies
to exploit opportunities as they arise, but shifting to a new strate-
gic group can be risky because the necessary investment can be
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substantial and the perceived opportunities may be short lived
(Patterson & Smith, 2003).

All firms do not adopt franchising for similar reasons, but rather
groups of firms share similar approaches (Carney & Gedajlovic,
1991). If strategic groups exist among firms that franchise and
these groups differ in performance, examining all franchising firms
as a set cannot capture the true picture of the franchising-perfor-
mance relationship (Combs et al., 2004).

The typical approach to strategic group identification consists
of collecting detailed industry data, and then identifying groups
through clustering or other grouping algorithms (Shanley &
Peteraf, 2005; Sohn & Kim, 2008). The variables used to group
will have much influence on the identified groups. A new per-
spective is proposed in this paper. Instead of theoretically evalu-
ating one by one the adequacy of each variable, a big set of them
is used. Using an appropriate fitness function, an evolutionary
algorithm will discriminate the final set of variables to be used
for the identification, as well as the resulting strategic groups.
We have used Genetic Algorithms (GA) for this purpose. One of
the key advantages of evolutionary computation is its ability to
discover new knowledge. The evolving nature of the computation
can establish new relationships considered never before (Nanni &
Lumini, 2009).

The next section is devoted to the theoretical perspectives to
franchising. Then, strategic groups and performance are intro-
duced. After that, the evolutionary technique used in this paper
(Genetic Algorithm) is shown: first, the basis of the methodology
is described, and then the particular application to the strategic
group identification problem is detailed. The obtained results are
illustrated later. Finally, some conclusions have been drawn.
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2. Theoretical perspectives to franchising

Oxenfeldt and Kelly (1968) offered perhaps the first explanation
of why the proportion of franchised outlets differs among franchi-
sors. Under the Resource Scarcity view, franchisors use franchising
as a way to overcome constraints to growth, including a lack of
trained managers and a lack of financial capital (Doherty, 2007).
Success requires financial, informational, and managerial re-
sources, but these resources are hard to obtain in the short run
(Dant, Kaufmann, & Paswan, 1992). The franchisee provides an
infusion of capital through fees and royalties and offers the franchi-
sor (relatively) inexpensive growth. However, subsequent research
tended to focus on the fact that firms used franchising because
they also needed human capital (Norton, 1968), managerial talent
(Dant et al., 1992; Doherty, 2007; Falbe & Welsh, 1998), and local
knowledge (Combs & Castrogiovanni, 1994).

Viewing franchising primarily as a means to access resources,
a firm’s propensity to franchise varies over time. An implied tenet
of Resource Scarcity Theory is the belief that the firm is more
likely to increase company-ownership of sites as franchise
systems mature and accumulate resources. This is precisely one
of the criticisms that the Resource Scarcity thesis has received.
Combs and Castrogiovanni (1994) observed that in contrast to
the predictions of Resource Scarcity Theory, larger firms actually
used more franchising in their development. They also found a
weak negative relationship between the age of the franchisor
and the use of franchising, and no relationship at all between
the growth of the franchisor and the use of franchising. Some
corporate giants as McDonald’s and Budget Rent-A-Car endorse
this asseveration.

The theory is also criticized by economists on the basis that
capital can be raised more efficiently in the market. Although fran-
chising may lower risk for the franchisor, it increases risk for the
franchisee (Rubin, 1978).

Agency Theory explains the organization of relationships
when one agent determines the work and another undertakes
it (Mole, 2002; Shane, 1998). In franchising, the Agency Theory
perspective discusses it as the relationship between one party
(the franchisor) depending on another party (the franchisee) to
undertake some action on the franchisor’s behalf (Paik & Choi,
2007). Franchising encourages franchisees to maximize effort
because, as owners, they must devote their own capital to build
and operate outlets (Brickley & Dark, 1987). As a consequence,
franchising lowers the cost of monitoring (Dant & Kaufmann,
2003; Pizanti & Lerner, 2003). Managerial talent and local knowl-
edge are also eased by franchising because of the franchisees’ risk
to lose their upfront monetary investments if their outlets fail as
a result of their own managerial inadequacies (Shane, 1998).
Quite the opposite of the Resource Scarcity Theory, Lafontaine
and Kaufman suggests that agency factors favour an increased
use of franchising as a chain expands with maturity (Lafontaine
& Kaufmann, 1994).

However, some agency problems are not solved by franchis-
ing. There are some situations in which the franchisee may be
inclined to shirk by under investing and free riding at the
expense of the chain’s reputation (Michael, 2000). Although mon-
itoring cost can be decreased, transferring specific knowledge to
potential franchisees can also be costly (Jensen & Meckling,
1995).

Some authors have proposed a reconciliation of both theories.
Martin and Justis (1993) found that short- and long-run incentives
to franchise differ. Whereas resource scarcity reasons to franchise
are most relevant for young franchisors seeking to expand, agency
reasons become increasingly relevant with maturity (Castrogiov-
anni, Combs, & Justis, 2004).

3. Strategic groups and performance

Researchers have long suspected the presence within industries
of subgroups of firms whose behaviours and results differ from
those of the broader industry (Lee, Lee, & Rho, 2002; Porter,
1976, 1979). Currently, there are three theoretical perspectives
regarding strategic group formation: the industrial organization,
strategy, and cognitive/behavioural perspectives (Hoyt & Sherman,
2004).

The industrial organization perspective defines strategic groups
as persistent features of the industry structure that result from en-
try and mobility barriers. Structural barriers impede new firms
from entering new industries (Audretsch, Houweling, & Thurik,
2004). Firms may be tempted to change strategies to exploit oppor-
tunities as they arise, but shifting to a new strategic group can be
risky because the necessary investment can be substantial, and the
perceived opportunities may be short lived (Wheeler, Ibeh, & Dim-
itratos, 2008). Thus, firms generally choose not to change groups
because it is unclear whether the performance enhancements
gained will exceed the costs incurred (Mascarenhas & Aaker,
1989). This is a consequence of the empirically determined recog-
nition that single groups are separated by barriers which restrict
the strategic mobility of firms (Caves & Porter, 1977).

The strategy perspective is more internally focused and thus as-
sumes that the firm’s management makes decisions to configure
internal resources, so as to establish a sustainable competitive
advantage (Hirschsohn, 2008).

Finally, the cognitive perspective contends that strategic groups
are formed by managers who partition their environment to re-
duce uncertainty and who possess bounded rationality (Peteraf &
Shanley, 1997).

Based on strategic groups’ theory as well as the evidence linking
strategic groups and performance, we expect that some strategic
groups among franchisors will have strategic profiles that are bet-
ter suited to their environment than others. Nevertheless, identify-
ing strategic groups involves more than just choosing initial groups
and data sources. The variables used to group will have much influ-
ence on the identified groups. A detailed enumeration of nearly one
hundred of such variables from prior studies has been detailed in
Ketchen et al. (1993). Even if we were only concentrated in franchi-
sor studies, the number of possible variables or indicators is huge.
Insufficient consideration has been given to determine which vari-
ables are appropriate for the purpose of distinguishing strategic
groups.

To avoid this, instead of theoretically evaluating one by one the
adequacy of each variable, a big set of them will be used in this pa-
per. Using an appropriate fitness function, an evolutionary algo-
rithm will discriminate the final set of variables to be used for
the identification, as well as the resulting strategic groups.

4. Methodology: Genetic Algorithms

To identify strategic groups, we must first identify the firm
characteristics that are likely to drive franchisors into distinctive
strategic groups. We have used Genetic Algorithms (GA) for this
purpose. Genetic Algorithms (GA) have been used to solve a variety
of optimization problems, such as natural gas pipeline control,
structural optimization, image registration, job scheduling, path
planning, product design, etc. (Fisco, 2003; Goldberg, 1989; Lee
et al., 2002; Li, Deng, & Luo, 2009).

A Genetic Algorithm is a computational abstraction of biological
evolution which can be used to solve some optimization problems.
The technique was first introduced by Holland (1975) for use in
adaptative systems. It is an iterative process applying a series of
genetic operators such us selection, crossover and mutation to a
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Fig. 1. Iterative process of Genetic Algorithm.
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population of elements (Fig. 1). These elements, called chromo-
somes or individuals, represent possible solutions to the problem.
The initial population is randomly selected from the solution space.

Genetic operators combine the genetic information of the ele-
ments to form new generations of populations. Each chromosome
has an associated fitness value which quantifies its value as a solu-
tion to the problem. The chromosomes compete to reproduce
based on their fitness values, thus the chromosomes representing
better solutions have a higher chance of survival. The crossover in-
volves two chromosomes whose portions are swapped. Selection
according to fitness combined with crossover gives the GA its evo-
lutionary power. The GA uses an elitist strategy meaning that the
best individual is carried over to the next generation so that we
can only improve the solution over the course of the genetic opti-
mization. GA follows the iterative scheme shown in Fig. 1. The
algorithm stops when some stopping criterions are satisfied.

To successfully apply GA to solve a problem, it must be consid-
ered the following items:

e Chromosomal encoding, how to represent possible solutions.

o Fitness function selection. It must accurately represent the value
of the solution.

e Parameter values selection (population size, number of itera-
tions, probabilities, etc.)

4.1. Genetic Algorithm application to strategic group identification

Prior studies about strategic group identification among fran-
chisor have only considered a few numbers of variables. For
instance, Carney and Gedajlovic (1991) considered thirteen

Table 1
Candidate variables for factor analysis.

Var. Description

Var01 No. of outlets 2005

Var02 Increment of outlets from 2004 to 2005

Var03 % of outlets located in US, 2005

Var04 % of outlets located in US, 2004

Var05 Average number of outlets opening per year
Var06 Average number of outlets opening per year since first franchise
Var07 Average investment

Var08 Standard deviation of investment

Var09 Average franchise fee

Var10 Standard deviation of franchise fee

Varl1 Ongoing royalty fee

Var12 Term of agreement

Var13 Net worth requirement

Var14 Cash liquidity requirement

Var15 Number of employees per unit

Var16 Franchises more than 1

Var17 % of outlets franchised 2005

Var18 % of foreign outlets franchised 2005

Var19 Years since inception

Var20 Years between inception and first franchise
Var21 Ranking Franchise 500, 2005

Var22 Ranking Franchise 500, 2004

Var23 Average investment/Term of agreement

Var24 Average investment/Net worth requirement
Var25 Average investment/Cash liquidity requirement
Var26 % of outlets franchised in Canada, 2005

Var27 Average investment/Average franchise fee
Var28 Franchise department

Var29 No of outlets franchised/Franchise department
Var30 Foreign franchises/Franchise department
Var31 (Franchise fee + ongoing royalty fee) * term of agreement

variables for Canadian franchisor strategic group identification,
while (Castrogiovanni, Bennett, & Combs, 1995) just used twelve
variables for a similar study among US franchisors. Some other
studies have replicated the former study in different countries
(Lépez & Ventura, 2001).

All of them have utilized factor analysis as the multivariate sta-
tistic tool for strategic group identification (Hsia, Hsu, & Jen, 2009;
Sohn & Kim, 2008). Conventional techniques such as multiple
regressions suffer the inconvenience of some restrictions like the
independence of predictor variables or assumptions like linear
relationships between variables.

Factor Analysis is a way to fit a model to multivariate data to
estimate just their interdependence. In the factor analysis model,
the measured variables depend on a smaller number of unobserved
(latent) factors. Because each factor may affect several variables in
common, they are known as “common factors”. Each variable is as-
sumed to be dependent on a linear combination of the common
factors, and the coefficients are known as loadings. Factor analysis
is useful in identifying inter-relationships between variables which
are not directly observable, segmenting a sample into relatively
homogeneous segments.

The estimated loadings from an unrotated factor analysis fit can
usually have a complicated structure. The goal of orthogonal factor
rotation is to find a parameterization in which each variable has
only a small number of large loadings, i.e., is affected by a small
number of factors. The rotated factor analysis fit ensures factors
represent unidimensional constructs (Hsu, 2009).

Instead of using the same variables than Carney and Gedajlovic
(1991) and Castrogiovanni et al., 1995 to replicate both studies, we
propose to use a big set of variables as possible candidates for fac-
tor analysis. A total of 31 candidate variables have been consid-
ered, and they will be applied for strategic group identification of
US franchisors included in the Entrepreneur’s Franchise 500 sur-
vey, January 2005. Table 1 details the variables used in this study.
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The objective of this work is to find the optimum subset of vari-
ables from Table 1 leading to optimum strategic group identifica-
tion. The obtained results will show if the thirteen variables
considered in previous studies are enough, or if it would be neces-
sary to extend the number of considered variables to achieve a bet-
ter representation of US franchisor groups. But the number of
possibilities when working with such huge number of variables
suggests this problem is unapproachable if trying to explore all
of them. The space of possible solutions is formed by
231=2.1475e + 009 possibilities. That means that we would have
to perform 23! different factor analyses to completely explore the
space of possible solutions. In this kind of problems, evolutionary
computation can perform a guided search of the optimum solution
with lower computation cost than exploring one by one all the
possibilities.

In this task, Genetic Algorithm will be applied to perform the
evolutionary search of the optimum solution. The first condition
to apply GA properly is a good selection of the chromosomal
encoding, which should be valid and complete. Our chromosomal
encoding is constituted by a 31 binary sequence in which ones
are the variables that are going to be used in factor analysis and
zeros represents variables that are going to be excluded from this
analysis. Clearly, the encoding representation is complete, as the
231 possibilities are able to be represented, and valid, as all of them
can be computed.

The next step is the fitness function selection. The fitness func-
tion quantifies the suitability of each chromosome as a solution.
Chromosomes with high fitness have more chance of being se-
lected, passing their genetic material (via reproduction or cross-
over) to the next generation. The fitness function provides the
pressure for evolution towards a new generation with chromo-
somes of higher fitness than the previous ones. The chromosome
representing the optimal solution should have the maximum fit-
ness value for the solution space, and near optimal solutions
should have high fitness values. In the context of strategic group
identification by means of factor analysis, it is not possible to build
a simple fitness function. Fitness function should be multi-objec-
tive fitness function considering several parameters.

1 .
F=c,Var + . er + c3Dist
i=1

This proposed fitness function consists of three parts.

e Explained variance (Var). Factor analysis results show the
explained variance by the considered factors (usually, the
number of factors is given by the number of eigenvalues of
the correlation data matrix bigger than 1). The explained vari-
ance by the selected number of variables should be maximized.
But it is not the unique parameter to be taken into account. A fit-
ness function equal to the explained variance will tend to the
trivial solution of just considering one variable. This is due to
the fact that it is easier to explain the variance of a data set when
it is formed by a small number of data.

e Correlations between variables (1 /nsz,lr?). The average of the

sum of the squared correlation coefficients between variables is
used as the second part of the fitness function. This part of the
fitness function will tend by itself to the trivial solution of con-
sidering the whole data set. It is the reverse strength to the pre-
vious part of the fitness function.

e Number of factors. The third part of the fitness function
measures the distance (Dist) to the typical number of factor of
previous studies about strategic group identification. A distant
number from 5 groups is penalized, as this is a typical value
obtained en prior studies (Carney & Gedajlovic, 1991; Castro-
giovanni et al., 1995).

% of population

Fitness function

Generations

Fig. 2. Fitness distribution over 30 generations of the genetic algorithm.

C1, C2, and C3 are coefficients used to adjust the relative impor-
tance of the three parts of the fitness function. The range of them
is [0, 1], with the restriction of C1 +C2+C3 =1.

The final decision for GA application refers to parameter values
selection. GA performance may be sensitive to certain parameter
values, particularly the population size, the frequency of operator
selection and the termination criterion. All of them vary consider-
ably, and there is little or no documented justification for the selec-
tion of them. Nevertheless, a high value for the population size
may reduce this sensibility to GA parameters. In this paper, popu-
lation size has been chosen equal to 10,000, with a 20% of repro-
duction rate. The value of 10,000 is considered a good value to
obtain richness genetic content. These values are typical in the lit-
erature about GA (Cole, 1998; Goldberg, 1989).

5. Results

Beginning with an initial randomly generated population, GA
has converged after 30 generations, with an explained variance
of 82.8%, 20 variables and six factor (that means six eigenvalues
higher than 1).

Time required by genetic algorithm execution is 750s
(12.5 min). This value is much smaller than the alternative option
of exploring the whole solution space. Taking into account that
each factor analysis requires 2.5 ms, the 23! = 2.1475e+009 possi-
bilities of the solution space would require more than 62 days,
24 h a day.

The evolution of the genetic clustering algorithm is detailed in
Fig. 2. The initial population (generation 0) has a low fitness value,
which indicates that the individuals of the population are far from
the optimum. As the number of generations increase, the fitness of
individuals within the population also increases, as the genetic
algorithm is biased towards the survival of genetic material con-
tained within the individuals with high fitness function values.

The results from factor analysis using the set of variables
selected by the genetic algorithm are detailed in Table 2.

Although the number of eigenvalues higher than 1 is six, due to
the gap between the fifth and the sixth eigenvalue is preferable to
choose just five components or factors. Factor loadings with
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Table 2
Explained variance of resulting factor analysis.

Component Eigenvalues

Value Proportion of total variance Cumulative proportion
Var01 No. of outlets 2005 5127 25.636 25.636
Var02 Increment of outlets from 2004 to 2005 4438 22.191 47.826
Var03 % of outlets located in US. 2005 2391 11.953 59.780
Var04 Average number of outlets opening per year 1861 9305 69.084
Var05 Average number of outlets opening per year since first franchise 1561 7804 76.888
Var06 Average investment 1189 5943 82.831
Var07 Standard deviation of investment 984 4921 87.752
Var08 Net worth requirement .608 3041 90.793
Var09 Cash liquidity requirement 493 2464 93.257
Var10 % of outlets franchised 2005 367 1834 95.091
Varl1 % of foreign outlets franchised 2005 271 1354 96.445
Var12 Years since inception .198 992 97.437
Var13 Years between inception and first franchise 174 .870 98.307
Var14 Ranking franchise 500, 2005 .107 .537 98.844
Var15 Average investment/term of agreement .090 451 99.295
Var16 Average investment/net worth requirement .061 307 99.602
Var17 Average investment/cash liquidity requirement .035 .176 99.778
Var18 % of outlets franchised in Canada, 2005 .027 136 99.914
Var19 No of outlets franchised/franchise department .013 .065 99.978
Var20 Foreign franchises/franchise department .004 .022 100.000

Table 3
Factor loadings obtained by the principal component method with Varimax rotation.

Component

1 2 3 4 5
Var01 No. of outlets 2005 .014 794 521 .054 .088
Var02 Increment of outlets from 2004 to 2005 .019 —.074 723 -.119 .068
Var03 % of outlets located in US, 2005 .004 —.623 187 —.084 —-.583
Var04 Average number of outlets opening per year —.027 .639 .666 —.022 —-.156
Var05 Average number of outlets opening per year since first franchise —.008 567 739 —.098 —.043
Var06 Average investment .896 —.004 —.046 344 .035
Var07 Standard deviation of investment 936 —.012 —.031 172 —-.016
Var08 Net worth requirement 177 8690E—-05 —.088 918 .074
Var09 Cash liquidity requirement .148 .020 —.044 .907 .064
Var10 % of outlets franchised 2005 126 .025 .146 —.435 —.615
Varll % of foreign outlets franchised 2005 .098 783 —.081 —.266 229
Var12 Years since inception 176 224 .187 .062 758
Var13 Years between inception and first franchise .168 —.066 .158 -.107 .821
Var14 Ranking franchise 500, 2005 —-.036 —.300 —.686 —.146 -.233
Var15 Average investment/term of agreement 903 —-.007 -.105 .306 .049
Var16 Average investment/net worth requirement .839 —.013 .077 —.227 214
Var17 Average investment/cash liquidity requirement .867 .005 .106 -.195 .054
Var18 % of outlets franchised in Canada, 2005 .074 .201 -.281 —.362 .019
Var19 No of outlets franchised/franchise department —.070 .826 299 —.003 —.030
Var20 Foreign franchises/franchise department —.047 904 .028 .035 .012

varimax rotation are shown in Table 3. Each row represents the
factor loadings of each variable. Moving horizontally from left to
right across the five loadings in each row, the highest loading has
to be identified. All the variables associated in this way with the
same factor are hypothesized to share a common meaning that
the analyst should discover.

The interpretation of the rotation loadings leads to the resulting
strategic groups, represented by the different clusters identified
(Table 4).

To facilitate the interpretation of these, Table 5 shows the mean
value of the selected variables per each of the five factors.

Cluster 1 brings together variables related with investment. It is
characterized by a high value of all the loadings and it can be
resembled to the “expensive” group identified by Carney and Ged-
ajlovic (1991). The identified group has anyway some differences
with respect to the one they proposed, as they are not so conserva-
tive. They exhibit a moderate rate of growth, according to var04.
Expensive franchisors are primarily concerned with resource scar-

city, demonstrated by the high value of all the variables in which
investment is involved.

Cluster 2 refers to highly internationalized US franchisors.
Var03, referring to the percentage of outlets located in US, shows
a negative loading in Table 4, corresponding to a minimum value
in Table 5 when compared with the other factors. They are charac-
terized by a great confidence on franchising as a way of minimizing
the agency cost. This conclusion is suggested by the high values of
the ratios given by the number of outlets and the foreign outlets,
and the size of franchise department (Var1l9 and Var20,
respectively).

Cluster 3 is somewhat related with the previous one. They are
also very big franchisor, with a high rate of growth, but, as a differ-
ence with the previous cluster, they are focused on domestic mar-
ket. According to Table 5, var03 has the maximum value in cluster
3, just the opposite than in cluster 2. Var14 also exhibit a negative
loading in Table 4. Var14 is the ranking 2005 in Franchise 500. The
lower this value is, the more stability and reliability the franchisor
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Table 4
Clusters identified by factor loadings.

Cluster  Var. Description Loading

Clusterl Var0O6 Average investment 0.896
Var07 Standard deviation of investment 0.936
Varl5 Average investment/term of agreement 0.903
Var16 Average investment/net worth requirement 0.839
Varl7 Average investment/cash liquidity 0.867

requirement

Cluster2 Var01 No. of outlets 2005 0.794
Var03 % of outlets located in US, 2005 -0.623
Varll % of foreign outlets franchised 2005 0.783
Var19 No of outlets franchised/franchise department 0.826
Var20 Foreign franchises/franchise department 0.904

Cluster3 Var02 No. of outlets 2004 0.723
Var04 Outlets opening per year 0.666
Var05 Outlets opening per year since first franchise 0.739
Var14 Ranking Franchise 500, 2005 —0.686

Cluster4 Var08 Net worth requirement 0.918
Var09 Cash liquidity requirement 0.907

Cluster5 Varl0 % of outlets franchised 2005 -0.615
Var12 Years since inception 0.758
Var13 Years between inception and first franchise 0.821

is (the first franchisor of the ranking is the best one). So, it is nat-
ural a minimum value of var14 in Table 5 meaning that this cluster
is formed by the best franchisor according to Franchise 500 criteri-
ons. Reasons for franchising are closer to resource scarcity than to
the agency theory.

Cluster 4 is formed by conservative franchisor. They exhibit the
lower rate of growth of all the groups (var04 and var05), with a lot
of requirements about franchises, particularly net worth and cash

Table 5
Selected variables mean values per factor.

liquidity requirements. They are conservative, and moderate
expensive compared with franchisors included in cluster 1, primar-
ily concerned with resource scarcity.

Finally, cluster 5 can be assimilated to franchise converts group
of Carney and Gedajlovic (1991) study. Converts typically begin
operations as wholly-owned chains, and after many years decide
to begin franchising.

According to the obtained results, it can be said that franchisors
are generally concerned with both administrative efficiency and
resource scarcity, though their concern over one relative to the
other may vary somewhat with their particular circumstances.

In order to compare the means of variables from Table 5, a Krus-
kal-Wallis test has been performed. The Kruskal-Wallis test is a
nonparametric version of one-way analysis of variance. The
assumption behind this test is that the measurements come from
a continuous distribution, but not necessarily a normal distribu-
tion. The test is based on an analysis of variance using the ranks
of the data values, not the data values themselves. The low p value
for each variable suggests that the mean of each one of them is sig-
nificantly different than the other sample means. The null hypoth-
esis can be rejected, so it can be concluded that the obtained
strategic groups are discrete (see Table 6).

6. Conclusions and implications

The first conclusion that can be emphasized is that the general
map of franchisor since Carney and Gedajlovic study has changed.
Franchising as a way of growth has been adapted to the current cir-
cumstances through the years. Highly internationalized franchi-
sors appears now as a clearly distinguished group. Probably, the
old group of mature franchisor has split into the groups identified

Factor 1 (10.91%) Factor 2 (19.09%)

Factor 3 (25.45%) Factor 4 (27.27%) Factor 5 (17.27%)

VARO1 1321.30 5336.60 4054.00 1393.30 2717.30

VARO02 67.25 94.86 342.89 45.35 87.05

VARO3 0.87 0.60 0.90 0.83 0.61

VAR04 4411 128.16 161.89 43.66 46.64

VARO5 62.05 139.26 194.32 40.00 75.01

VARO6 2250.80 180.84 126.92 528.51 428.64

VARO7 2152.50 108.22 73.73 293.72 192.55

VAR08 364.50 189.55 181.73 550.77 354.79

VAR09 127.51 61.44 54.07 236.88 112.82

VAR10 1.00 0.98 0.99 0.87 0.74

VAR11 0.12 0.39 0.09 0.05 0.21

VAR12 27.92 29.62 25.11 28.23 54.26

VAR13 8.42 3.52 4.25 2.20 26.16

VAR14 67.42 62.38 38.00 65.83 47.74

VAR15 136.01 15.06 14.32 39.59 33.05

VAR16 5.59 0.92 1.30 1.01 1.88

VAR17 14.65 3.63 441 241 413

VAR18 0.04 0.09 0.03 0.01 0.03

VAR19 52.58 411.80 207.80 86.43 118.13

VAR20 4.87 221.68 17.57 5.61 28.57

Table 6
Kruskal-Wallis test.

VARO1 VARO02 VARO3 VAR04 VARO5 VARO6 VARO7 VAR08 VAR09 VAR10

Chi-2 14.944 21.454 40.163 17.565 23.990 40.960 33.109 26.825 38.161 31.975

gl 4 4 4 4 4 4 4 4 4

Sig. asint6t. .005 .000 .000 .002 .000 .000 .000 .000 .000 .000
VAR11 VAR12 VAR13 VAR14 VAR15 VAR16 VAR17 VAR18 VAR19 VAR20

Chi-20 40.835 27.346 31.750 14.993 36.867 22.947 24.957 19.485 11.943 20.370

gl 4 4 4 4 4 4 4 4 4

Sig. asintot. .000 .000 .000 .005 .000 .000 .000 .001 .018 .000
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by clusters 2 and 3. The former has adopted franchising as a way of
internationalization, while the latter is still confident in franchising
as a way to growth, primarily in US market.

The group “expensive and conservative” has been also split into
two groups. Finally, convert franchisors remain the same.

The second conclusion is the application of evolutionary com-
putation, particularly Genetic Algorithm, as a valid way to extract
knowledge from a huge set of data. Replication of a previous study
is useful to confirm obtained results, but the inconvenience is that
replication does not allow new insights in a particular topic. The
ability of Genetic Algorithm to explore new relationships within
a big amount of data allows exploring new solutions or new per-
spectives in a particular theme, like the ones mentioned above.
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