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ABSTRACT 
Segmentation algorithms differ from clustering algorithms with 
regard to how to deal with the physical location of genes throughout 
the sequence. Therefore, segments have to keep the original 
positions of consecutive genes, which is not a constraint for 
clustering algorithms. It has been proven that exist functional 
relations among neighbour-genes, so the localization of the 
boundaries between these functionally similar groups of genes has 
turned out an important challenge. In this paper, we present an 
evolutionary algorithm to segment the yeast genome.  

1. INTRODUCTION 
Chromosomes are organized in gene sequences. Each chromosome 
has a variable number of genes that physically are located in 
consecutive positions. Genome study tries to find the functionality of 
every gene. Recent researches in Genetics try to discover the 
existence of functional relations among one gene and its 
“neighbours” within a chromosome. This process is known as DNA 
segmentation, and it exists little scientific literature about it. 

The commonly used techniques work with DNA sequences instead 
of numerical values associated to each gene. Nowadays , the 
microarray techniques are generating great amounts of data, which 
might be very useful to analyze the functional properties of genes, 
as they collect a numerical value for every gene. This fact clears 
the way for new algorithms that can handle this sort of data.  

In this work, we present an Evolutionary Algorithm (EA)  to find 
valid segments from the yeast genome. For the yeast genome study, 
we have a file with the sixteen chromosomes (NREG). Each gene is 
a row of the file. 

The file has three columns, and each column represents a genomic 
characteristic under specific conditions. The object is either 
clustering consecutive genes with similar properties with regard to 
the three variables, or clustering consecutive genes properly 
differentiated from adjacent clusters. Each cluster will be a segment 

of genes, as it will maintain the physical location within the genome. 

2. EVOLUTIONARY ALGORITHM 
Each individual of population is a static array of natural numbers 
with size NCOR, and it represents a cutoffs collection into yeast 
genome. Fifteen of these cutoffs correspond to the sixteen 
chromosomes of yeast genome, and they are permanents. The 
sixteen cutoffs corresponding to centromeres also are permanents. 

These cutoffs (NCORFIJ=31) although they can’t be moved, they 
have been included in all individuals, making easier the computing 
process. For example, if a cutoffs array includes among others, the 
values 34, 57, 7, 25 and 80, it means that there’s a cutoff between 
the 34th and the 35th entry of file, between the 57th and the 58th 
entry, between the 7th and the 8th entry, etc. Therefore, the 
segments comprise from first to 7th gene, from 8th to 25th gene, from 
26th to 34th gene, from 35th to 56th gene, etc. 

In order to verify the quality of the fitness functions, we execute the 
algorithm with the original data, and with randomized versions.  We 
can understand that a fitness function is correct if the results 
obtained with the random data are inferior to the obtained with the 
original data. In another case, we can say that we have an 
“artifact” (An apparent experimental result that is not actually real 
but is due to the experimental methods). 

The fitness function of the first experiments, calculated the median 
of each variable for each segment, and it maximized the correlations 
between these medians (Eq. 1).  
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Eq. 1. Fitness function (inter-median correlations) 

This fitness function turned out to be an artifact, because the results 
with random data were similar to the results with the original data. 

Another possibility for the fitness function is to maximize the 
difference between the values of the variables of two consecutive 
segments, for each variable separately and for all. We can use as 
statistical the median (robust against outliers) or the classic 
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arithmetic average for representing the value of a variable. We 
represent these functions in the equations 2 and 3 respectively.  

for each variable:
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Eq. 2. Fitness function (inter-median differences) 

The fitness function which maximizes the inter-average differences 
(Eq. 3) has the advantage of the computational cost of average, 
which it is smaller than the one of median.  
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Eq. 3. Fitness function (inter-average differences) 

We have used uniform crossover owing to the easy implementation 
and to the adaptation to the problem. That is, we build a new 
individual choosing randomly cutoffs from one of both parents. As 
well, we applied other well-know methods (fixed length one point 
and fixed length two points) but they made worse results. 

The mutation operator alters each cutoff according to two 
probabilities: p1 and p2. The probability p1 controls if a cutoff must 
be modified; and the probability p2 controls if the mutation has 
resulted in a replacement by a random cutoff in the range allowed, 
or in a light change of the existent cutoff. 

3. EXPERIMENTS 
We show the EA parameters and their values for each experiment. 
As well, we used the uniform crossover as crossover operator, and 
0.4 and 0.2 as p1 and p2 probabilities respectively. 

Fitness Population Generations #Cutoffs 

Correlation 300 50 50 

Median 400 200 50 

Average 400 200 50 

Table 1. EA parameters 

In the tests, we executed 20 times the EA with the original and 
random data on Pentium IV to 2.4 GH, with 512 MB of RAM. 

Fitness Original data Random data 

F1 2.541378498 2.463235855 

Table . 2. Example of artifact for fitness function based 
on correlations 

The fitness function based on correlation isn't valid for to measure 
the fitness of segmentation, because we can find very high inter-
variable correlations with any distribution of genes in chromosomes. 
The time computation for an execution is approximately of 2 
minutes and half.  

Variable Original data Random data 

gc3s 2.982499838 1.934499979 

expH 19.699998856 22.200000763 

rec_ 13.464997292 6.829999447 

All  (F2) 42.144832511 40.086082458 

Table 3. Fitness function for inter-median differences 

It exists significant differences between the original and random 
data for two of the three studied variables (gc3s and rec _). 

 These results demonstrate that for the two mentioned variables in 
the first place, it is possible to find a segmentation where the results 
depend of the order of the genes, that is to say, a segmentation of 
the chromosome with own sense.  

The time of computation is approximately of 4 minutes by execution. 

Variable Original data Random data 

gc3s 1.828593254 0.804380655 

expH 88.142761230 86.721817017 

Rec_ 13.985332489 3.723937988 

Table  4. Fitness function based on averages 

The main virtue that we can emphasize of the fitness function based 
on averages, is that its time of computation is approximately the 
fourth part (a minute) of the previous case. We can see the best 
results in the table 4. 
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