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Fluid Adsorption near an Apex: Covariance between Complete and Critical Wetting
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Critical wetting is an elusive phenomenon for solid-fluid interfaces. Using interfacial models we show
that the diverging length scales, which characterize complete wetting at an apex, precisely mimic
critical wetting with the apex angle behaving as the contact angle. Transfer matrix, renormalization
group, and mean-field analysis show that this covariance is obeyed in 2D and 3D and for long- and
short-ranged forces. This connection should be experimentally accessible and provides a means of
checking theoretical predictions for critical wetting.
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contact angle �. Here V�l� is the binding potential for a
critical wetting transition which, of necessity, contains

mean-interfacial height lA��� and interfacial roughness
(rms interfacial width) �A��� at bulk coexistence and the
Advances in the controlled fabrication of micropat-
terned substrates have stimulated the experimental and
theoretical study of fluid adsorption at tailored surfaces
[1–5]. For example, Mistura and co-workers [5] have
recently investigated complete wetting of Ar on several
parallel arrays of wedges and apexes. They show con-
vincingly that the adsorption within the (independent)
wedge regions is geometry dominated and distinct from
the planar complete wetting case. As well as having
implications for microfluidics such studies have also re-
vealed a number of unexpected results relating interfacial
fluctuation effects and substrate geometry which have
wide application to other phase transitions (see later). In
this Letter, we use effective Hamiltonian theory to show
that complete wetting on apex shaped substrates reveals a
hidden connection (covariance) with critical (continuous)
wetting transition occurring on planar surfaces [6,7]. The
covariance emerges when one considers how, at bulk
coexistence, the mean height lA��� of the unbinding
interface above the apex tip depends on the apex angle
�. For shallow apexes we show that lA��� is identical to
the mean-interfacial thickness occurring at a particular
class of critical wetting transition with the apex angle
playing the role of an effective contact angle. The cova-
riance is valid for 2D and 3D apexes, for arbitrary inter-
molecular forces, and is, we believe, a general feature
which should also be present in more microscopic models.

The central result of our Letter is the following cova-
riance relation for the interfacial height probability dis-
tribution function (PDF) which precisely quantifies the
influence of the apex geometry on the complete wetting
film. We emphasize that the PDF contains a great deal of
information determining the (local) interfacial height,
the roughness, and the scaling properties of the density
profile. Let PUA �l; �� denote the PDF for the interface
height above the apex where the superscript refers to the
repulsive binding potential U�l� � Bl�p for a complete
wetting film (see below). Let PV
�l; �� denote the PDF for a
planar critical wetting transition written in terms of the
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attractive and repulsive terms. The covariance relation,
valid for small � and at bulk coexistence, reads

PUA �l; �� � PV
�l;��; (1)

where the covariant binding potential

V�l� � �Al��=2 �U�l�; (2)

with � � min�p; �� and A determining the effective con-
tact angle (related to �). Here � � 2�1� ��=� and � are
the entropic repulsion and interfacial wandering expo-
nents, respectively [8]. Thus the apex locally binds the
complete wetting film and induces an effective attractive
term in the binding potential, twice the range of the
dominant intermolecular or entropic repulsive term. A
similar rule applies in 3D for exponentially decaying
potentials. Recall that in contrast to abundant experimen-
tal studies of complete wetting (including recent work on
systems with short-ranged forces [9]) critical wetting
transitions are rather rare [6,7] for which no examples
are known currently for solid-fluid interfaces. The cova-
riance discussed here provides a means of effectively
inducing critical wetting behavior using complete wet-
ting films.

Consider the interface between an infinite apex and a
bulk vapor at temperature T and chemical potential � �
�sat�T� (see Fig. 1). We suppose that the flat wall (� � 0)
is completely wet by the liquid phase at coexistence �� �
�sat ���T� � 0� corresponding to zero contact angle.
The wall shape is described by a height function zA �
� tan�jxj in the �x; z� plane although we shall be inter-
ested only in the case of shallow apexes for which we may
approximate tan� 
 �. Macroscopically far from the
apex tip the height of the interface above the wall is the
same as that occurring for a flat wall. Since the liquid-
vapor interface is required to round the apex, surface
tension restrictions imply that the local height lA above
the apex tip is smaller and remains finite even in the
limit of bulk coexistence. We wish to evaluate the
2003 The American Physical Society 046101-1
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FIG. 1. Schematic illustration of 3D apex complete wetting,
showing a section of a typical interfacial configuration above
the tip. Diverging length scales are highlighted.
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critical exponents

lA��� � ���A ; �A��� � ���A : (3)

For the 3D apex we also wish to determine the transverse
correlation length �y��� � ���y pertinent to correlations
along the apex. Correlations in the x direction are not
described by a finite correlation length and fluctuations
are not localized to a region near the apex.

We begin with the 2D apex. The starting point for our
calculations is the interfacial Hamiltonian model

�HA�l� �
Z
dx

�
�

2

�
dl
dx

�
2
�U�l� �jxj�

�
; (4)

where l�x� is the local height of the interface above the
z � 0 reference line, � is the (reduced) stiffness coeffi-
cient (surface tension) of the liquid-vapor interface, and
U�l� denotes the binding potential modeling the complete
wetting behavior pertinent to the planar system � � 0.
For shallow apexes, it is permissible to assume that the
interface interaction with the wall occurs via the relative
vertical height ~ll � l� �jxj. The binding potential U�l�
has an infinite hard wall repulsion and decays as

U�l� � ��l � �g����l� Bl�p; (5)

where, for the moment we have allowed for a finite bulk-
order field �� > 0. Here B is a positive Hamaker constant
while p accounts for the range of the intermolecular
forces. Exponentially decaying binding potentials will
also be considered in our discussion of the 3D apex. For
dimensions in which the free liquid-vapor interface is
rough, critical effects at planar complete wetting transi-
tions fall into two classes [8,10]: a mean-field (MF)
regime for p < � and a fluctuation-dominated regime
for p > �. Heuristically this arises from the interplay
between the direct intemolecular repulsion �l�p and
the effective entropic replusionUfl�l� � l��. In the present
paper we restrict our attention to pure systems for which
the interface is rough for d � 3 and � � �3� d�=2. For
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fixed p the upper critical dimension for complete wetting
is dco � 3� 4=�p� 2� [10].

The model can be studied using transfer matrix meth-
ods previously developed for the wedge geometry [11].
Care must be taken in defining an infinite apex geometry
and it is convenient to first consider a finite apex extend-
ing over the range ��L=2; L=2� and impose periodic
boundary conditions at the edges. After taking the ther-
modynamic limit L! 1 at finite �� > 0 it is straight-
forward to derive an expression for the interfacial height
probability distribution function at arbitrary position x
along the wall. At the apex midpoint symmetry consid-
erations simplify this expression considerably

PUA �l;�� / j 0�l�j
2e�2��l; (6)

where  0�l� denotes the ground-state wave function solv-
ing the Schrödinger equation

�
1

2�
 0�l�

00 �U�l� 0�l� � E0 0�l� (7)

with boundary conditions  �0� �  �1� � 0. We now fo-
cus on the complete wetting limit �� ! 0. Macro-
scopically far from the apex the interface unbinds from
the wall. Close to the apex, however, the interface remains
bound due to the pinning exponential term in (6). As
�! 0, three different critical behaviors are found: (i) A
MF regime for p < 2, characterized by Gaussian fluctua-
tions with lA��� � �A���; (ii) a marginal case for p � 2;
and (iii) a fluctuation-dominated regime for p > 2 with
universal critical behavior and large scale fluctuations
lA��� � �A��� � ��1. The explicit expressions for the
large distance/scaling behavior of PUA �l;��, determining
the critical singularities, are given by

PUA �l;�� �

8>><
>>:
lp=2 exp��2��l� 4
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exp��2��l�; p � 2;
l2 exp��2��l�; p > 2:

(8)

In the MF regime, a saddle point evaluation reveals that

lA��� �
�
2B

��2

�
1=p

; (9)

�A � 1=p� 1=2. The critical exponents are continuous
at p � 2. These results completely classify the asymp-
totic critical behavior for complete wetting at a 2D apex
in pure systems. At this point we make two remarks:

(A) The values of the critical exponents follow from a
simple mean-field/entropic repulsion argument. Ignoring
fluctuations the equilibrium interfacial profile is obtained
from minimization of the effective Hamiltonian. A first
integral of the Euler-Lagrange equation determines the
midpoint height at bulk coexistence according to
046101-2
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��2

2
� U�lA� (10)

and leads directly to the result (9) valid in the MF regime
(p < �). For p > � interfacial wandering leads to an
entropic repulsion Ufl � l��. Thus we should expect two
regimes with �A � max�2=p; �=�1� ��� in agreement
with the explicit calculation for � � 1=2. For later pur-
poses observe that the MF Eq. (10) is also appropriate for
higher dimensional apexes.

(B) The PDF’s and associated critical exponents are
identical to those occurring at a certain class of 2D
critical wetting transition. At a critical wetting transition
the mean height of the interface l
, roughness �?, and
parallel correlation length �k for a planar substrate di-
verge as the temperature (say) is increased towards a
wetting temperature Tw (� � �sat). This is equivalent
to the contact angle � of a sessile drop vanishing as T !
T�
w . The standard interfacial model for this is

�H
�l� �
Z
dx

�
�

2

�
dl
dx

�
2
�V�l�

�
; (11)

where V�l� denotes an appropriate binding potential. The
associated PDF PV
�l; �� can be calculated using standard
methods which map the problem onto one dimensional
quantum mechanics [10]. In particular, consider 2D criti-
cal wetting transitions occurring for the class of poten-
tials (2) with � � min�p; 2�. For such potentials
calculations show that A / �. A straightforward calcula-
tion of the PDF’s PV
�l; �� for p < 2, p � 2, and p > 2
yields results that, in the critical limit (small �), are
identical to (8) provided we set � � � [12]. Apex com-
plete wetting precisely mimics the properties of a critical
wetting transition. From the covariance of the PDF’s it
follows that the mean-interfacial heights satisfy

lA��� � lV
���; (12)

where the right-hand side is understood to represent the
mean height at a planar critical wetting transition with
the covariant potential (2). It is notable that apex cova-
riance is obeyed at MF level and beyond, and therefore not
necessarily related to fluctuation induced effects such as
hyperscaling. In particular, the relation (12) follows di-
rectly from comparing the solution of the MF Eq. (10)
with the position of the minimum of the critical wetting
potential (2) (with � � p). The covariance relations for
apex complete wetting are similar, but not identical, to
those which exist for 2D wedge filling transitions. For
both pure and impure systems 2D filling transitions
mimic the properties of planar critical wetting transitions
with short-ranged forces in contrast to the present apex
problem where the equivalent critical wetting transition
has long(er)-ranged forces. Wedge covariance and filling
are closely related to the Indekeu-Robledo conjecture for
the line tension [13], and the unzipping transition for
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stranded polymer chains [14]. It is likely that similar
connections may also apply for the apex geometry.

Having discussed the 2D apex in detail it is straightfor-
ward to generalize the results to 3D systems based on the
interfacial model

�HA�l� �
Z
dx

�
�

2
�rl�2 �U�l� �jxj�

�
; (13)

where for purposes of generality we have written x �
�x;xk�, where xk denotes the d� 2 dimensional vector
along the apex axis. In 3D x � �x; y� but it is instructive
to also consider the generalized apex for 2 � d < 3 since
this gives clear indication that the covariance relations
extend to higher dimensions. First rewrite the Hamil-
tonian in terms of the relative height ~ll. The critical
behavior follows from elementary renormalization group
(RG) considerations. Under rescaling x ! x0 � x=b, l!
l0 � lb�� the renormalized tilt angle and Hamaker con-
stant are �0 � �b1�� and B0 � Bb2��p�2� , respectively.
Thus � is always a relevant scaling field while the inter-
molecular forces are only relevant for p < �. The criti-
cality falls into two scaling regimes consistent with the
explicit 2D results: (i) A MF regime for p < � with �A �
2=p, �y � 2=p� 1, and �A � ��y for which (10) is valid.
(ii) A fluctuation regime for p > � describing the univer-
sality class of systems with short-ranged forces with
�A � �=�1� ��, �y � 1=�1� ��, and �A � ��y.

Note that for fixed p the upper critical dimension dA �
3� 4=�p� 2� and is unchanged from the planar com-
plete wetting result dco. Remarks (A) and (B) made earlier
about the 2D results also apply in higher dimensions,
where the planar covariant effective Hamiltonian is

�H
�l� �
Z
dx

�
�

2
�rl�2 � V�l�

�
: (14)

For the physically relevant case d � 3, MF theory is
valid for all long-ranged intermolecular forces (finite p).
Thus for nonretarded van der Waals forces we predict
lA��� �




















2B=��2

p
and observe that this is identical (co-

variant) with the growth of the interfacial thickness at a
critical wetting transition with binding potential V �
�A=l� B=l2. Similar remarks apply for the interfacial
roughnesses at the respective transitions [�A��� � �? �













� ln�

p
]. Our final task is to address the issue of cova-

riance for the marginal case of 3D systems with short-
ranged forces. For this we use the interfacial model (13)
with binding potential U � B exp��(l� and ( the inverse
bulk correlation length. At MF level we find (lA��� �
�2 ln� while solution of the Ornstein-Zernike equation
for the height-height correlation function along the apex
tip yields �y � ��1 [15]. Thus the MF exponents for
short-range forces are �A � 0�ln�, �y � 1 and are con-
sistent with the � ! 0 limit of the short-ranged expo-
nents detailed in (ii). Beyond MF we anticipate that �y is
unchanged but that the logarithmic divergence of lA is
046101-3
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altered. To study this we employ the same approximate
linear functional RG approach used for the 3D planar
wetting transition but with an appropriately modified
matching condition for the new geometry [16]. Under
the rescaling of l and x described earlier (with � � 0)
the binding potential maps as U�l� ! R�b��U� which ef-
fectively coarse grains the potential over the interfacial
roughness. Since the angle and correlation length rescale
as �0 � b� and �0y � �y=b one can curtail the renormal-
ization at b� ��1 at which scale both the renormalized
angle and transverse correlation length are of order unity
and fluctuation effects are negligible. Matching with MF
theory implies �=2 � R�1=���U�lA�� and a simple calcu-
lation yields

(lA��� � ��2�!� ln�; (15)

where ! � (2=�4
�� is the usual wetting parameter and
we have assumed !< 2 as pertinent to the bulk Ising
universality class. This critical behavior is again consis-
tent with covariance as can be seen by comparison with
the 3D short-ranged critical wetting transition described
by the model (14) with potential

V�l� � �Ae��(l=2� � Be�(l; l > 0; (16)

where, guided by our earlier findings, we have included an
attractive term which is twice the range of the direct
repulsion. This is the same binding potential appearing
in the standard theory of short-ranged critical wetting
except for a trivial factor of 2 in the definition of the
inverse bulk correlation length. Accordingly, rescaling (
and ! in the known RG results for critical wetting [16]

(lV
��� � ��2�!� ln�; (17)

where the (rescaled) wetting parameter !< 2. Note also
that the divergence of �y � ��1 is similar to the behavior
of the critical wetting transverse correlation length writ-
ten in terms of the contact angle �k��� � ��1. Inter-
estingly one still finds the critical behavior (15) if one
improves the apex calculation to account for a position-
dependent stiffness coefficient [17]. That is, even if planar
short-ranged wetting transitions are driven first-order by
a stiffness instability mechanism, the apex still mimics
the properties of critical wetting.

We finish with comments relevant to experimental
studies on periodic systems. Close to bulk coexistence
the interfacial height above a single, infinite apex shows
scaling behavior lA � ���AW�1�����

��A� with gap ex-
ponent �A � 2� �A. On a periodic array (with wave-
length L) finite size effects modify this to
lA � ���AW�2�������A ; L=�co

k
�, where �co

k
� ����co

k is
the transverse correlation length for planar complete
wetting. Thus the adsorption above the apex tip only
046101-4
behaves like a single apex for sufficiently large L�
�co
k

. This is equivalent to the requirement that the vertical
distance between the apex tip and the wedge trough,
�L=2, is much larger that the local height of the interface
above the wedge bottom lw ���2=2�����l � �g�.

In this Letter, we have shown that complete wetting at
an apex mimics precisely planar critical wetting. Taken
together with similar covariance relations for wedge fill-
ing, there is clear evidence of a fundamental connection
between contact and geometric angles. Further work is
required to understand such covariances at a deeper level.
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