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Abstract. To select an adequate coding is one of the main problems
in applications based on Evolutionary Algorithms. Many codings have
been proposed to represent the search space for obtaining decision rules.
A suitable representation of the individuals of the genetic population
can reduce the search space, so that the learning process is accelerated
by decreasing the number of necessary generations to complete the task.
In this sense, natural coding achieves such reduction and improves the
results obtained by other codings. This paper justifies the use of natural
coding by comparing it with hybrid coding that joins well-known
binary and real representations. We have tested both codings on a
heterogeneous subset of databases from the UCI Machine Learning
Repository. The experiments’ results show that natural coding improves
the quality of the obtained knowledge-model using only one third of
the generations that hybrid coding needs as well as a smaller population.
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1 Introduction

Machine Learning is used when we want to build a knowledge model from a
training dataset and predict the outcome of a new unseen instance. Normally,
the instances of the dataset are named examples and each example is formed by
attributes. These attributes can be classified by different criteria according to the
kind of values that they take. The most common classification is in continuous
and discrete attributes. If an attribute takes values in a real and infinite domain,
we say that it is continuous. On the contrary, if the domain is a finite set of values,
we name it as a discrete attribute. Usually, one of these attributes is selected as
a decision attribute or class. Thus, the knowledge model is built to predict the
value that the class takes in new examples depending on the other attributes
values. When the class of the training data is known (labeled dataset), we work
in the Supervised Learning field.
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The knowledge model can be represented by different structures: decision
rules, association rules, decision trees, etc. In Supervised Learning, the struc-
tures generated are usually decision rules or trees. The databases have a set of
attributes or characteristics that define each example. A decision rule establishes
conditions which the examples must fulfil in order to be classified by this rule.
These conditions affect the values that the attributes can take in that if the
attributes of an example meet all the conditions that a rule establishes then we
say that the rule covers the example, independent of whether it classifies such
example correctly or not. The usual representation of rules generated by learning
systems is shown in Figure 1.

If Cond1 and Cond2 and. . . and CondM then Class = C

Fig. 1. Decision Rule.

where Condi is the condition that the ith attribute of an example has to satisfy
in order to be classified with class C, and M is the number of attributes in the
database. Logically, the case can arise where an attribute does not appear in the
rule, from which we assume that the condition concerning the attribute is always
evaluated as true. When an attribute (ai) is continuous, the condition (Condi)
takes the form ai ∈ [li, ui], restricting the range of values of the attribute to the
interval defined by the lower (li) and the upper (ui) bound. On the other hand,
when the attribute is discrete, the condition takes the form ai ∈ {v1, v2, . . . , vk},
where the values {v1, v2, . . . , vk} are not necessarily all those the attribute can
take.

In literature, there are many methods that acquire the inherent knowledge
from a labeled dataset and generate a structure that represents it: CN2 [6,7],
AQ-based systems [13],OC1 [15], C4.5 [16], SEE5.0 [17], SIA [20], among oth-
ers. This work is focused on those methods that apply Evolutionary Algorithms
(henceforth EA) in the training phase, and specifically in the tool Hider (Hi-
erarchical Decision Rules) [2]. This tool generates a set of hierarchical decision
rules by applying an EA whose population is a set of encoded rules. Thus, each
individual is a decision rule where each attribute is coded by one or several
genes. Different versions of Hider have used different codings for the individu-
als of population: binary, real and hybrid. This work is focused on a new version
of this tool, called Hider*, which applies the natural coding [1] to represent the
individuals. Thus, we compare the two last versions, Hider and Hider*, that
use the hybrid and natural coding respectively. Both codings can treat contin-
uous and discrete attributes. Hybrid coding applies binary coding for discrete
attributes and real coding for continuous. Natural is an original coding that rep-
resents both kinds of attributes by means of a simple natural number. As it is
explained later, the main advantage of natural coding is the reduction of the
search space.

Our goal in this paper is to present the advantages of natural coding against
hybrid coding. Hider and Hider* were run and their performances measured.
The results show that Hider* finds solutions before Hider, since natural coding
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reduces the number of candidate solutions. Thus, Hider* can be run with fewer
generations and with a smaller population size than Hider.

The rest of this paper is organized into the following: Section 2 describes the
EA used by Hider and Hider*. The characteristics of hybrid coding and natural
coding are presented in Sections 3 and 4 respectively. The experimental results
of our research are presented in Section 5. Finally, in Section 6, the conclusions
of this work are summarized.

2 Algorithm

Hider is a tool that produces a hierarchical set of rules. When a new example
needs to be classified, the set of rules is sequentially evaluated according to its
hierarchy, so if the example does not fulfil a rule, the next one in the hierarchy
order is evaluated. This process is repeated until the example matches every
condition of a rule and is classified with the class that such rule establishes.

Hider uses an EA to search for the best solutions. Since the aim is to obtain
a set of decision rules, the population of the EA is formed by some possible
solutions. Each genetic individual is a rule that evolves by applying the muta-
tion and crossover operators. In each generation, some individuals are selected
according to their goodness of fit and they are included in the next population
along with their offspring. Thus, the performance of the tool is influenced by
two factors: the fitness function and the coding. The fitness function used in this
research is

f(r) = N − CE(r) +G(r) + coverage(r) (1)

where r is an individual; N is the number of examples being processed; CE(r)
is the class error, i.e. the number of examples belonging to the region defined by
the rule r but they do not have the same class; G(r) is the number of examples
correctly classified by r; and coverage(r) gives the proportion of the search space
covered by the rule. This fitness function is described in detail in [2]. The goal of
our work is focused on the coding, so the another factor is not analyzed in detail.
In fact, Hider and Hider* use the same EA and the same fitness function. The
difference between both is in the coding. Hider applies hybrid coding, whereas
Hider* uses natural coding.

The pseudocode of Hider is shown in Figure 2. The main algorithm is a
typical sequential covering method [14], where the algorithmic function that
produces the rules is an EA. Each call for this function (line 8) generates only
one rule that is inserted into the final set of rules (line 9) and is used to eliminate
examples from the training data (line 10). The evolutionary function is started
again with the reduced training data. This loop is repeated until the set of
training data is empty.

The function EvoAlg has a set of examples as an input parameter. It returns
a rule which is the best individual of the last generation. The initial population
is built randomly by the function InitializePopulation. Some examples are ran-
domly selected and individuals that cover such examples are generated. After
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1 Procedure Hider
2 Input: T: File of examples (Training file)

3 Output: R: Set of rules (Sorted set)

4 begin
5 R := ∅
6 initialSize := |T |
7 while |T | > initialSize
8 r:=EvoAlg(T)
9 R:=R ⊕ r
10 DeleteCoveredExamples(T,r)
11 end while
12 end Hider

13 Function EvoAlg (T: File of encoded-examples) ret(r: Rule)
14 begin
15 InitializePopulation(P)
16 For i:=1 to num generations
17 Evaluate(P)
18 next P:=SelectTheBestOf(P)
19 next P:=next P+Replicate(P)
20 next P:=next P+Recombine(P)
21 P:=next P
22 end for
23 Evaluate(P)
24 return SelectTheBestOf(P)
25 end EvoAlg

Fig. 2. Pseudocode of Hider.

initializing the population, the for-loop repeats the evolutionary process a num-
ber of times which is determined by the parameter num generations. In each
iteration, the individuals of the population are evaluated according to a defined
fitness function, thus each individual acquires a “goodness” (function Evaluate).
The best individual of every generation is replicated to the next one (elitism).
Later, a set of individuals are selected through the roulette wheel method and
replicated to the next generation. Finally, another set of individuals are recom-
bined and the offspring is included in the next generation. The selection of these
individuals is also carried out by means of the roulette wheel. Once the loop
finishes, the best individual of the last generation is returned.

3 Hybrid Coding

After studying other EA-based approaches proposed in the bibliography, we
deduced that a combination of binary coding and real coding would be suitable
for our problem. First, we analyzed two well-known systems: GABIL [8] and
GIL [11]. These concept learners use binary coding, assigning a bit to each value
of an attribute. A value of one, in a bit, implicates that the value is present,
so that several bits could be active for the same attribute. This implies that
binary coding is a good election for encoding symbolic attributes. Nevertheless,
it is not suitable for continuous attributes, because the size of their alphabet
is very large (theoretically infinite) and this aspect does not allow a complete
search. Non-binary codings have been widely researched in literature [3,4,12,
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li ui

Continuous
Attribute

Discrete
Attribute

Class

. . .b1 b2 bk cj

Binary ValuesReal Values

Fig. 3. An hybrid individual with a continuous attribute and a discrete one.

21,22]. These jobs show that real coding is more appropriate than binary in
continuous domains.

Hybrid coding tries to profit from the advantages of binary and real coding.
Thus, it mixes both codings by using the real to represent the boundaries of the
intervals in continuous domains, and the binary to encode the discrete attributes.
Figure 3 explains the representation for continuous and discrete attributes in
hybrid coding. The continuous attribute is encoded by two real values being the
lower (li) and the upper bound (ui) of the interval that the rule establishes for
such attribute. The discrete attribute is represented by a number k of bits, where
each of them denotes the presence or absence of a discrete value in the condition
of the rule. The last value is the class, which is not usually encoded. Each class
is represented as a integer, so that for a number n of classes, the value cj will
belong to the set {0, 1, 2, ..., n-1}.

With regard to the genetic operators, crossover and mutation for hybrid
coding are described in detail in [2]. The crossover for continuous attributes is
an extension of Radcliffe’s [18] to parents coded as intervals. If two parents, a
and b, establish the intervals [lai , u

a
i ] and [lbi , u

b
i ] respectively for the attribute ai,

then the interval of the offspring ([loi , u
o
i ]) fulfils expressions in Equation 2. In

case of discrete attributes, the uniform crossover is carried out [19].

loi ∈ [min(lai , l
b
i ),max(lai , l

b
i )]

uoi ∈ [min(uai , u
b
i ),max(uai , u

b
i )]

(2)

In order to apply the mutation to a continuous attribute, a gene (gi) is
randomly selected. Such gene can be the lower bound (li) or the upper (ui)
bound of the interval. The mutation consist in replacing the gene gi with gi± δ,
where δ is the smaller HOEM (Heterogeneous Overlap-Euclidean Metric [23])
between two examples of the training dataset. Thus, an interval is expanded
(li − δ or ui + δ) or contracted (li + δ or ui − δ). When the attribute is discrete,
the mutation changes the gene (a bit) depending on the discrete-value mutation
probability, so that some values are included or excluded from the condition.

4 Natural Coding

The ideal coding must fulfil the following properties: completeness, coherence,
uniformity (uniqueness), simplicity, locality, consistency and minimality. To find
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Table 1. Coding for a continuous attribute.

Cutpoints 2.5 3.9 4.7 5.0 6.2
1.4 1 ≡ [1.4, 2.5] 2 ≡ [1.4, 3.9] 3 ≡ [1.4, 4.7] 4 ≡ [1.4, 5.0] 5 ≡ [1.4, 6.2]
2.5 − 7 ≡ [2.5, 3.9] 8 ≡ [2.5, 4.7] 9 ≡ [2.5, 5.0] 10 ≡ [2.5, 6.2]
3.9 − − 13 ≡ [3.9, 4.7] 14 ≡ [3.9, 5.0] 15 ≡ [3.9, 6.2]
4.7 − − − 19 ≡ [4.7, 5.0] 20 ≡ [4.7, 6.2]
5.0 − − − − 25 ≡ [5.0, 6.2]

a suitable representation is very difficult but to find one that fulfils every afore-
mentioned property is practically impossible. Thus, we try to design a coding
that keeps at least two well-known principles proposed by Goldberg in [10]: the
principle of meaningful building blocks and the principle of minimal alphabets.

After analyzing the problem, we developed a coding, named “natural” [1],
which only uses natural numbers to represent the set of values that can take
part of the decision rules, independently of the kind of attributes (continuous or
discrete). In particular, natural coding encode each condition of a rule with only
one gene that is a natural number. Thus, this coding fulfils two aforementioned
properties: uniqueness (every individual has an unique representation) and min-
imality (the length of coding must be as short as possible). Although continuous
and discrete values are encoded as natural numbers, the meaning of this number
is different in both cases.

As in regards to continuous attributes, a method that calculates the cutpoints
in range of values for each continuous attribute is applied. The cutpoints are the
possible bounds of intervals that a condition can set. In principle, these cutpoints
can all be of values the attribute takes in the training dataset. However, this
choice generates too many cutpoints. In order to reduce the number of cutpoints,
we apply the method named USD [9]. This method produces a set of bounds that
maximize the goodness of the possible intervals. Such an aspect has a favorable
influence on the rules that Hider* is going to obtain later. Once the cutpoints
are calculated, a natural number is assigned to each possible combination of
bounds, so every possible interval is represented by a natural number. Table 1
shows an example of coding for a continuous attribute where the set of cutpoints
generated by USD is {1.4, 2.5, 3.9, 4.7, 5.0, 6.2}.

In general, if k is the number of cutpoints, the rows are labeled from the first
one to (k−1)th and the column are labeled from the second one to kth cutpoint.
Thus, each element of the table is a natural number that encodes the interval
defined by its row and column.

In case the attributes are discrete, the natural coding is obtained from a
binary coding similar to that used in GABIL and GIL. In decision rules, a
condition can establish a set of discrete values that the attribute must take
to classify an example. Each gene that represents a condition for a discrete
attribute is also a natural number. The binary representation of this gene is a
number where there is a bit for each different discrete value that an attribute
can take. Thus, if Ω is the set of possible values for a discrete attribute, then
the natural number that encodes the corresponding condition of the rule is in
interval [0, 2|Ω|− 1]. If a value is included in the condition, its corresponding bit
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Table 2. Coding for a discrete attribute.

Discrete values Natural
white red green blue black Coding

0 0 0 0 0 −
0 0 0 0 1 1
0 0 0 1 0 2
0 0 0 1 1 3
...

...
...

...
...

...
0 1 0 1 1 11
...

...
...

...
...

...
1 1 1 1 0 30
1 1 1 1 1 31

is equal to 1, otherwise it is 0. The natural coding for this gene is the conversion
of the binary number into a natural one. Table 2 shows an example for a discrete
attribute with five different values: white, red, green, blue and black.

The mutation and crossover operators are described in detail in [1]. For con-
tinuous attributes, mutation is a shift (up, down, left or right) in the coding table
(see Table 1). Such shift mutates the gene changing the bounds of the interval.
The crossover consists in calculating the intersection of the rows and columns of
both parents, so that the obtained set of natural numbers is the offspring. For
discrete attributes, the mutation is a transformation of the value that encodes
the gene, by changing some bits of the binary code associated with the natural
number. The crossover is based on the mutation. Each gene that take part in
the crossover provides a set of candidates obtained from its possible mutations
joined to itself. The offspring of two genes is a random selection of numbers from
the intersection of both sets of candidates. Although the natural operators seem
to be very complex processes, in fact, they are very simple algebraic operations.
They do not imply any conversion between binary and natural numbers and do
not need any operation with arrays. As shown in [1], the natural operators are
algebraic operations with a low computational cost.

Figure 4 illustrates the differences between natural and hybrid coding. It
shows two individuals that encode the same rule. The attribute AT1 is continuous
whereas AT2 is discrete. Both attributes are encoded according to Tables 1 and
2.

We can see that natural coding is simpler, since the hybrid needs eight genes
to code the rule whereas the natural encodes it with only three genes. Natural
coding minimizes the size of individuals, assigning only one gene for each at-
tribute. Hybrid uses two genes for continuous attributes and —Ω— for discrete,
where —Ω— is the number of different values that an attribute can take.

5 Results

In order to show the quality of natural coding, we applied Hider and Hider* to
a set of databases from UCI Repository [5]. As we mentioned in Section 2, both
tools use the same EA, although Hider uses hybrid coding, to the contrary of
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Rule:  If  AT1   [3.9, 5.0]    and   AT 2    {red, blue, black}  Then Class 0

3.9 5.0 10 1 10 0

AT1 AT2

Class

14 11 0

AT1 AT2 Class

AT1(Continuous): [1.4, 6.2]
AT2(Discrete): {white, red, green, blue, black}

Domains

Hybrid Coding Natural Coding

Fig. 4. Hybrid individual vs. Natural individual.

Table 3. Parameter of Hider.

Parameter Hider (hybrid) Hider* (natural)
Population Size 100 70
Number of Generations 300 100
Replication 20% 20%
Recombination 80% 80%
Individual Mutation Probability 0.5 0.5
Gen Mutation Probability 1

‖attributes‖
1

‖attributes‖
Discrete-value Mutation Probability 1

‖values‖
1

‖values‖

Hider* which uses natural coding. Both were run with the same crossover and
mutation parameters, but with a different number of individuals and generations.
Table 3 shows the parameters used in each case. The lower values that Hider*
needs for the population size and number of generations are due to the reduction
of the search space by natural coding. Thus, Hider* used only 100 generations
and 70 individuals to obtain similar numbers to those obtained by Hider, which
needed 300 and 100 respectively (see Table 4).

The databases used in the experiments were 16, some of which contain only
continuous attributes, others contain only discrete attributes and the remainder
include both types of attributes. Thus, we can compare the behaviour of natural
and hybrid coding with both types of attributes. To measure the performance
of each method, a 10-fold cross-validation was achieved with each database. The
values that represent the performance are the error rate (ER) and the number
of rules (NR) obtained. The ER is the average number of misclassified examples
expressed as a percentage and the NR is the average number of rules for the
10-fold cross-validation. The algorithms were run on the same training sets and
the knowledge structures tested using the same test sets, so the results were
comparable. With these conditions and the aforementioned parameters for the
EAs, the results obtained by applying both codings are given in Table 4.

In Table 4, the first column shows the databases used in the experiments;
the next two columns give the ER and NR obtained respectively by Hider with
hybrid coding for each database. Likewise, the fourth and fifth columns give
the ER and NR for Hider* with natural coding. The last two columns show a
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Table 4. Comparing Hider and Hider*.

Hider (hybrid) Hider* (natural) Improvement
Database ER NR ER NR εer εnr
breast-c 4.3 2.6 4.06 2 1.06 1.3
bupa 35.7 11.3 37.35 4.2 0.96 2.69
cleve 20.5 7.9 25.33 5.9 0.81 1.34
german 29.1 13.3 27.4 8 1.06 1.66
glass 29.4 19 35.24 11.7 0.83 1.62
heart 22.3 9.2 21.85 4.3 1.02 2.14
hepatiti 19.4 4.5 16.67 3.7 1.16 1.22
horse-co 17.6 6 20 11.1 0.88 0.54
Iris 3.3 4.8 3.33 3.2 0.99 1.5
Lenses 25 6.5 25 4.5 1 1.44
mushroom 0.8 3.1 1.18 3.5 0.68 0.89
pima 25.9 16.6 25.66 5.1 1.01 3.25
vehicle 30.6 36.2 33.81 19.7 0.91 1.84
vote 6.4 4 4.42 2.2 1.45 1.82
wine 3.9 3.3 8.82 5.6 0.44 0.59
zoo 8 7.2 4 7.9 2 0.91
Average 17,64 9,72 18,38 6,41 1,02 1,55

measure of improvement for the error rate (εer) and the number of rules (εnr).
The εer coefficient was calculated by dividing the error rate for Hider by the
corresponding error rate for Hider*. The same operation was carried out to
obtain εnr, but by using the number of rules for both tools. Finally, the last row
shows the average results for each column. As we can observe, Hider* does not
attain a reduction in ER for 8 out of 16 datasets. Nevertheless, on average, it
improves on Hider, although this improvement is very small (2%). As regards to
number of rules, the results are more significant, since Hider* obtains a smaller
number of rules in 12 out of 16 cases, with an average improvement of 55%.

Although the results show that Hider* has a better performance, we must
not forget that those numbers were obtained using a smaller number of genera-
tions and individuals of a genetic population. In particular, Hider* needed one
third of the generations and fewer than three quarters of the population size
invested by Hider. The reduction of the search space that natural coding gets,
allows Hider* to obtain these results with such parameters.

In Table 5, the length of individuals of the genetic population for the hybrid
and natural coding are shown. The first column contains the databases. The
second shows the number of continuous attributes (NC), if any, for each database.
Likewise, the next column gives the number of discrete attributes (ND) along
with the total number of different values in brackets (NV). The column labeled as
“Hybrid” gives the length of individuals (number of genes) with hybrid coding.
Finally, the last one shows the length of individuals encoded with natural coding.
These lengths were calculated easily from the second and third column. Hybrid
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Table 5. Comparing length of Hybrid and Natural Individuals.

Database NC ND (NV) Hybrid Natural
breast-c 9 - 18 9
bupa 6 - 12 6
cleve 6 7 (19) 31 13
german 7 13 (54) 68 20
glass 9 - 18 9
heart 13 - 26 13
hepatiti 6 13 (26) 38 19
horse-co 7 15 (55) 69 22
Iris 4 - 8 4
Lenses - 4 (9) 9 4
Mushroom - 22 (117) 117 22
Pma 8 - 16 8
tic-tac- 9 - 18 9
vehicle 18 - 36 18
vote - 16 (48) 48 16
wine 13 - 26 13
zoo - 16 (36) 36 16

Average 34,94 13

coding uses two genes to represent continuous attributes and a number k of genes
for discrete ones, k being the number of different values of the attribute. On the
other hand, natural coding uses only one gene for each attribute, regardless
of its type (continuous or discrete). Thus, the length for hybrid individuals is
2 × NC + NV , whereas for natural individuals is NC + NV . As we can see,
natural coding noticeably decreases the length of individuals. On average, it
obtains a reduction greater than 63% regarding the hybrid individuals.

The most important contribution of natural coding is the decrease in size
of the search space. This aspect is considered only when the dataset includes
continuous attributes. For discrete attributes, natural coding does not reduce
the space, since it is based on binary coding. Thus, if Ωd is the set of values for
a discrete attribute, then the size of the search space is 2|Ωd| for both codings.
However, hybrid coding represents continuous attributes with real coding, i.e
the genes can take values in an infinite domain. Thus, when there are continu-
ous attributes, the search space with hybrid individuals is also infinite. On the
contrary, genes that encode continuous attributes with natural coding can only
take values belonging to a finite set of natural numbers. Let N be the number
of cutpoints that USD algorithm obtains for an attribute ai. Let Ωc be the set
of natural numbers that the gene gi can take according to the cutpoints. Then,
the size of the search space for the attribute ai is the number of elements of Ωc,
that it is given by Equation 3.

|Ωc| =
(
N

2

)
=
N(N − 1)

2
(3)
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Thus, the total size of the search space for a dataset with a number M of
attributes using hybrid or natural coding is

S =
M∏
i=1

|Ωi| (4)

where |Ωi| is the number of possible values of the attribute ai. If there are any
continuous ai, such size is infinite for hybrid coding but finite for natural coding.

6 Conclusions

In this paper, natural coding for EA-based decision rules generation is described
and tested. This coding transforms the attributes domain (continuous and dis-
crete) in a finite set of natural numbers. Such conversion allows a decrease in
size of search space in such a way that the algorithm converges more quickly.
Furthermore, natural coding encodes each attribute with only one gene, reduc-
ing considerably the length of individuals. The quality of this coding has been
tested by applying the same evolutionary learning tool (Hider) with natural and
hybrid coding and by comparing the obtained sets of rules for a set of databases
from the UCI Repository. The algorithms with hybrid coding needed 300 gener-
ations and a population with 100 individuals in order to obtain a suitable model.
Nevertheless, the use of natural coding obtained models with the same accuracy,
but a lesser number of rules. Although this is a noteworthy aspect, the most
important fact is that such results were obtained with only 70 individuals per
population and a number of generations as little as 100. The faster convergence
of the algorithm is due to the decreasing in size of search space, since natural
coding converts the infinite domain of the continuous attributes to a finite set
of natural numbers.
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