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Abstract. The attribute selection techniques for supervised learning, used in the
preprocessing phase to emphasize the most relevant attributes, allow making
models of classification simpler and easy to understand. Depending on the
method to apply: starting point, search organization, evaluation strategy, and the
stopping criterion, there is an added cost to the classification algorithm that we
are going to use, that normally will be compensated, in greater or smaller
extent, by the attribute reduction in the classification model. The algorithm
(SOAP: Selection of Attributes by Projection) has some interesting
characteristics: lower computational cost (O(mn log n) m attributes and n
examples in the data set) with respect to other typical algorithms due to the
absence of distance and statistical calculations; with no need for transformation.
The performance of SOAP is analysed in two ways: percentage of reduction
and classification. SOAP has been compared to CFS [6] and ReliefF [11]. The
results are generated by C4.5 and 1NN before and after the application of the
algorithms.

1 Introduction

The data mining researchers, especially those dedicated to the study of algorithms that
produce knowledge in some of the usual representations (decision lists, decision trees,
association rules, etc.), usually make their tests on standard and accessible databases
(most of them of small size). The purpose is to independently verify and validate the
results of their algorithms. Nevertheless, these algorithms are modified to solve
specific problems, for example real databases that contain much more information
(number of examples) than standard databases used in training. To accomplish the
final tests on these real databases with tens of attributes and thousands of examples is
a task that takes a lot of time and memory size.

It is advisable to apply to the database preprocessing techniques to reduce the
number of attributes or the number of examples in such a way as to decrease the
computational time cost. These preprocessing techniques are fundamentally oriented
to either of the next goals: feature selection (eliminating non-relevant attributes) and
editing (reduction of the number of examples by eliminating some of them or
calculating prototypes [1]). Our algorithm belongs to the first group.

In this paper we present a new method of attribute selection, called SOAP
(Selection of Attributes by Projection), which has some important characteristics:
•  Considerable reduction of the number of attributes.
•  Lower computational time O(mn log n) than other algorithms.
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•  Absence of distance and statistical calculations: correlation, information gain, etc.
•  Conservation of the error rates of the classification systems.

The hypothesis on which the heuristic is based is:  "place the best attributes with
the smallest number of label changes". The next section discusses related work.
Section 3 describes the SOAP algorithm. Section 4 presents the results. Which deal
with several databases from the UCI repository [4]. The last section summarises the
findings.

2 Related Work

Several authors defined the feature selection  by looking at it from various angles
depending on the characteristic that we want to accentuate. In general, attribute
selection algorithms perform a search through the space of feature subsets, and must
address four basic issues affecting the nature of the search: 1) Starting point: forward
and backward, according to whether it began with no feautures or with all features. 2)
Search organization: exhaustive or heuristic search. 3) Evaluation strategy: wrapper or
filter. 4) Stopping criterion: a feature selector must decide when to stop searching
through the space of feature subsets. A predefined number of features are selected, a
predefined number of iterations reached. Whether or not the addition or deletion of
any feature produces a better subset, we also stop the search, if an optimal subset
according to some evaluation function is obtained.

Algorithms that perform feature selection as a preprocessing step prior to learning
can generally be placed into one of two broad categories: wrappers, Kohavi [9], which
employs a statistical re-sampling technique (such as cross validation) using the actual
target learning algorithm to estimate the accuracy of feature subsets. This approach
has proved to be useful but is very slow to execute because the learning algorithm is
called upon repeatedly. Another option called filter, operates independently of any
learning algorithm. Undesirable features are filtered out of the data before induction
begins. Filters use heuristics based on general the characteristics of the data to
evaluate the merit of feature subsets. As a consequence, filter methods are generally
much faster than wrapper methods, and, as such, are more practical for use on data of
high dimensionality. FOCUS [3], LVF [18] use class consistency as an evaluation
meter. One method for discretization called Chi2 [17]. Relief [8] works by randomly
sampling an instance from the data, and then locating its nearest neighbour from the
same and opposite class. Relief was originally defined for two-class problems and
was later expanded as ReliefF [11] to handle noise and multi-class data sets, and
RReliefF [16] handles regression problems. Other authors suggest Neuronal Networks
for an attribute selector [19]. In addition, learning procedures can be used to select
attributes, like ID3 [14], FRINGE [13] and C4.5 [15]. Methods based on the
correlation like CFS [6], etc.
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3 SOAP: Selection of Attributes by Projection

3.1 Description

To describe the algorithm we will use the well-known data set IRIS, because of the
easy interpretation of their two-dimensional projections.

Three projections of IRIS have been made in two-dimensional graphs. In Fig. 1 it
is possible to observe that if the projection of the examples is made on the abscissas
or ordinate axis we can not obtain intervals where any class is a majority, only can be
seen the intervals [4.3,4.8] of Sepallength for the Setosa class or [7.1,8.0] for
Virginica. In Fig. 2 for the Sepalwidth parameter in the ordinate axis clear intervals
are not appraised either. Nevertheless, for the Petalwidth attribute is possible to
appreciate some intervals where the class is unique: [0,0.6] for Setosa, [1.0,1.3] for
Versicolor and [1.8,2.5] for Virginica. Finally in Fig. 3, it is possible to appreciate the
class divisions, which are almost clear in both attributes. This is because when
projecting the examples on each attribute the number of label changes is minimum.
For example, it is possible to verify that for Petallength the first label change takes
place for value 3 (setosa to Versicolor), the second in 4.5 (Versicolor to Virginica).
there are other changes later in 4.8, 4,9, 5,0 and the last one is in 5.1.

SOAP is based on this principle: to count the label changes, produced when
crossing the projections of each example in each dimension. If the attributes are in
ascending order according to the number of label changes, we will have a list that
defines the priority of selection, from greater to smaller importance. SOAP presumes
to eliminate the basic redundancy between attributes, that is to say, the attributes with
interdependence have been eliminated. Finally, to choose the more advisable number
of features, we define a reduction factor, RF, in order to take the subset from
attributes formed by the first of the aforementioned list.

Before formally exposing the algorithm, we will explain with more details the
main idea. We considered the situation depicted in Fig. 2: the projection of the
examples on the abscissas axis produces a ordered sequence of intervals (some of then
can be a single point) which have assigned a single label or a set of them: {[0,0.6] Se,
[1.0,1.3] Ve, [1.4,1.4] Ve-Vi, [1.5,1.5] Ve-Vi, [1.6,1.6] Ve-Vi, [1.7,1.7] Ve-Vi,
[1.8,1.8] Ve-Vi, [1.9,2.5] Vi}. If we apply the same idea with the projection on the
ordinate axis, we calculate the partitions of the ordered sequences: {Ve, R, R, Ve, R,
R, R, R, R, R, R, R, R, R, Se, R, Se, R, Se}, where R is a combination of two or three
labels. We can observe that we obtain almost one subsequence of the same value with
different classes for each value from the ordered projection. That is to say, projections
on the ordinate axis provide much less information that on the abscissas axis.

In the intervals with multiple labels we will consider the worst case, that being the
maximum number of label changes possible for a same value.

The number of label changes obtained by the algorithm in the projection of each
dimension is: Petalwidth 16, Petallength 19, Sepallenth 87 and Sepalwidth 120. In this
way, we can achieve a ranking with the best attributes from the point of view of the
classification. This result agrees with what is common knowledge in data mining,
which states that the width and length of petals are more important than those related
to sepals.
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Fig. 1. Two-dimensional representation
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Fig. 2. Two-dimensional representation
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3.2 Definitions

Definition 1: Let the attribute Ai be a continuous variable that takes values in
Ii=[mini,maxi]. Then, A is the attributes space defined as A=I1×I2×⋅⋅⋅×Im, where m is
the number of attributes.

Definition 2: An example e∈ E is a tuple formed by the Cartesian product of the
value sets of each attribute and the set C of labels. We define the operations att and
lab to access the attribute and its label (or class): att: E x N → A and lab: E → C,
where N is the set of natural numbers.

Definition 3: Let the universe U be a sequence of example from E. We will say
that a database with n examples, each of them with m attributes and one class, forms a
particular universe. Then U=<u[1],...,u[n]> and as the database is a séquense, the
access to an example is achieved by means of its position. Likewise, the access to j-th
attribute of the i-th example is made by att(u[i],j), and for identifying its label
lab(u[i]).

Definition 4: An ordered projected sequence is a sequence formed by the
projection of the universe onto the i-th attribute. This sequence is sorted out in
ascending order.

Definition 5: A partition in subsequences is the set of subsequences formed from
the ordered projected sequence of an attribute in such a way as to maintain the
projection order. All the examples belonging to a subsequence have the same class
and every two consecutive subsequences are disjointed with respect to the class.
Henceforth, a subsequence will be called a partition.

Definition 6: A subsequence of the same value is the sequence composed of the
examples with identical value from the i-th attribute within the ordered projected
sequence.

3.3 Algorithm

The algorithm is very simple and fast, see Fig. 4. It operates with continuous variables
as well as with databases which have two classes or multiple classes. In the
ascending-order-task for each attribute, the QuickSort algorithm is used [7]. This
algorithm is O(n log n), on average. Once ordered by an attribute, we can count the
label changes throughout the ordered projected sequence. NumberChanges in Fig. 5,
considers whether we deal with different values from an attribute, or with a
subsequence of the same value. In the first case, it compares the present label with
that of the following value. Whereas in the second case, where the subsequence is of
the same value, it counts as many label changes as are possible (function
ChangesSameValue).

The k first attribute which NCE (number of label changes) under NCElim will be
selected. NCElim is calculated applying the follow equation:

NCElim=NCEmin+(NCEmax-NCEmin)*RF (1)

RF: reduction factor.
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Input: E training (n examples, m attributes) 

Output: E reduced (n examples, k attributes (k<=m)) 

 For each attribute ai with i in {1..m} 

   Ei ← QuickSort(Ei,ai) 

   NCEi ← NumberChanges(Ei,ai) 

 NCE Attribute Ranking 

 Select the k first 

Fig. 4. SOAP algorithm

Input: E training (n examples, m attributes) 

Output: number of label changes 

 For each example ej ∈  E with j in {1..n} 

   If att(u[j],i) ∈  Subsequence same value 
     labelChanges += ChangesSameValue() 

   Else 

     If lab(u[j]) <> lab(u[j+1]) 

       labelChanges++ 

Fig. 5. NumberChanges algorithm

4 Experiments

In order to compare the effectiveness of SOAP as a feature selector for common
machine learning algorithms, experiments were performed using twelve standard data
sets form the UCI collection [4]. The data sets and their characteristics are
summarized in Table 3. The percentage of correct classification with C4.5 and 1NN,
averaged over ten ten-fold cross-validation runs, were calculated for each algorithm-
data set combination before and after feature selection by SOAP (RF 0.35 and 0.25),
CFS and ReliefF (threshold 0.05). For each train-test split, the dimensionality was
reduced by each feature selector before being passed to the learning algorithms. The
same fold were used for each feature selector-learning scheme combination.

To perform the experiment with CFS and ReliefF we used the Weka1 (Waikato
Environment for Knowledge Analysis) implementation.

Table 1 shows the results for attribute selection with C4.5 and compares the size
(number of nodes) of the trees produced by each attribute selection scheme against the
size of the trees produced by C4.5 with no attribute selection. Smaller trees are
preferred as they are easier to interpret, but accuracy is generally degraded. The table
shows how often each method performs significantly better (denoted by ����������
(denoted by �� �	
�� �	��� ���������� ��� �
����� ���������� �������� �� 
��� ���
Throughout we speak of results being significantly different if the difference is
statistically at the 5% level according to a paired two-sided t test. Each pair of points
                                                          
1 http://www.cs.waikato.ac.nz/~ml
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consisting of the estimates obtained in one of the ten, ten-fold cross-validation runs,
for before and after feature selection. For SOAP, feature selection degrades
performance on four datasets, improves on one and it is equal on seven. The results
are similar to ReliefF and a little worse than those provided by CFS. From this table it
can be seen that SOAP produces the smallest trees, it improves C4.5´s performances
on nine data sets and degrades it on one.

Tables 1 and 2 show the average for two execution of SOAP (RF 0.35 and 0.25,
equation 1).

Table 1. Result of attribute selection with C4.5. Accuracy and size of trees. � �Statistically
significant improvement or degradation (p=0.05).

Data Set Ac. Size Ac. Size Ac. Size Ac. Size
balance-scale 78,18 81,08 57,94 6,28 78,18 81,08 78,29 81,54
breast-w 95,01 24,96 94,84 21,62 95,02 24,68 95,02 24,68
diabetes 74,64 42,06 74,34 8,56 74,36 14,68 65,10 1,00
glass 68,18 46,34 66,78 46,10 69,35 40,90 68,97 30,32
glass2 78,71 24,00 78,90 16,32 79,82 14,06 53,50 1,70
heart-stat 78,11 34,58 79,56 28,20 80,63 23,84 82,33 14,78
ionosphere 89,83 26,36 90,06 22,52 90,26 23,38 89,91 22,72
iris 94,27 8,18 94,40 8,12 94,13 7,98 94,40 8,16
segment 96,94 80,98 90,94 110,68 96,35 73,92 96,93 80,66
sonar 74,28 27,98 70,72 13,18 74,38 28,18 70,19 9,74
vehicle 71,83 139,34 52,84 22,26 66,42 106,60 66,22 137,42
waveform 75,36 592,92 77,47 485,26 77,18 513,78 75,51 217,72
Average (35) 81 94 77 66 81 79 78 53
Average (25) 77 59

Original SOAP CFS RLF

Table 2. Result of attribute selection with 1NN. Average number of features selected, the
percentage of the original features retained and the accuracy. � � Statistically significant
improvement or degradation (p=0.05).

Data Set Atts Ac. Atts % Ac. Atts % Ac. Atts % Ac.
balance-scale 4 86,56 1,39 35 57,98 4,00 100 86,56 4,00 100 86,56
breast-w 9 95,25 6,00 67 94,16 8,97 100 95,24 8,05 89 95,35
diabetes 8 70,35 2,99 37 70,16 3,11 39 70,07 0,00 0 34,90
glass 9 70,28 3,94 44 73,04 6,30 70 74,25 3,39 38 63,83
glass2 9 77,79 4,72 52 80,37 3,95 44 83,07 0,32 4 54,29
heart-stat 13 75,59 7,11 55 77,74 6,26 48 78,37 6,27 48 78,89
ionosphere 34 86,78 31,55 93 87,07 12,30 36 89,72 30,88 91 87,49
iris 4 95,27 2,00 50 96,33 1,93 48 95,60 4,00 100 95,27
segment 19 97,13 7,00 37 91,29 5,66 30 97,00 15,04 79 97,19
sonar 60 84,47 5,42 9 70,63 17,84 30 83,56 3,89 6 68,61
vehicle 18 69,48 1,09 6 46,50 7,45 41 62,86 5,81 32 61,28
waveform 40 73,59 12,99 32 79,33 14,85 37 79,13 5,77 14 73,09
Average (35) 19 82 7 43 77 8 52 83 7 50 75
Average (25) 6 35 75

RLFOriginal SOAP CFS



240         R. Ruiz, J.S. Aguilar-Ruiz, and J.C. Riquelme

Table 2 shows the average number of features selected, the percentage of the
original features retained and the accuracy of 1NN. SOAP is a specially selective
algorithm compared with CFS and RLF. If SOAP and CFS are compared, only in one
dataset (ionosphere) is the number of characteristics significantly greater than those
selected by CFS. In five data sets there are no significant differences, and in six, the
number of features is significantly smaller than CFS. Compare to RLF, only in glass2
and diabetes, SOAP obtains more parameters in the reduction process (threshold 0.05
is not sufficient). It can be seen (by looking at the fifth column) that SOAP retained
43% (35%) of the attributes on average. Figure 6 shows the average number of feature
selected by SOAP, CFS and ReliefF as well as the number present in the full data set.

Table 3. Discrete class data sets with numeric attributes. Time in milliseconds.

Data Set Instances Atts Clases t-ms t-ms t-ms
1 balance-scale 625 4 3 10 17455 561
2 breast-cancer 699 9 2 10 40 1322
3 diabetes 768 8 2 10 30 1422
4 glass 214 9 7 0 20 160
5 glass2 163 9 2 0 10 80
6 heart-statlog 270 13 2 10 10 281
7 ionosphere 351 34 2 10 120 1202
8 iris 150 4 3 0 10 40
9 segment 2310 19 7 40 521 29362

10 sonar 208 60 2 10 100 771
11 vehicle 846 18 4 10 70 3956
12 waveform 5000 40 3 210 2434 282366

Sum 320 20820 321523

Original SOAP CFS RLF

It is interesting to compare the speed of the attribute selection techniques. We
measured the time taken in milliseconds2 to select the final subset of attributes. SOAP
is an algorithm with a very short computation time. The results shown in Table 3
confirm the expectations. SOAP takes 320 milliseconds in reducing 12 datasets
whereas CFS takes more than 20 seconds and RLF almost 6 minutes. In general,
SOAP is faster than the other methods and it is independent of the classes number, a
factor that excessively affects CFS, as it is possible to observe in the set “segment”
with seven classes. Also it is possible to be observed that ReliefF is affected very
negatively by the number of instances in the dataset, it can be seen in “segment” and
“waveform”. Eventhough these two datasets were eliminated, SOAP is more than 200
times faster than CFS, and more than 100 times than ReliefF.

5 Conclusions

In this paper we present a deterministic attribute selection algorithm. It is a very
efficient and simple method used in the preprocessing phase A considerable reduction
of the number of attributes is produced in comparison to other techniques. It does not
                                                          
2 This is a rough measure. Obtaining true cpu time from within a Java program is quite difficult.
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need distance nor statistical calculations, which could be very costly in time
(correlation, gain of information, etc.). The computational cost is lower than other
methods O(m⋅n⋅log n).

In later works, we will focus our research on the selection of the subset of
attributes once they have been obtained. Finally we will try to adapt SOAP to
databases with discrete attributes where redundant features have not been eliminated.
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