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A. Troncoso • J. C. Riquelme

Published online: 22 March 2011

� Springer-Verlag 2011

Abstract An evolutionary approach for finding existing

relationships among several variables of a multidimensional

time series is presented in this work. The proposed model to

discover these relationships is based on quantitative asso-

ciation rules. This algorithm, called QARGA (Quantitative

Association Rules by Genetic Algorithm), uses a particular

codification of the individuals that allows solving two basic

problems. First, it does not perform a previous attribute

discretization and, second, it is not necessary to set which

variables belong to the antecedent or consequent. There-

fore, it may discover all underlying dependencies among

different variables. To evaluate the proposed algorithm

three experiments have been carried out. As initial step,

several public datasets have been analyzed with the purpose

of comparing with other existing evolutionary approaches.

Also, the algorithm has been applied to synthetic time series

(where the relationships are known) to analyze its potential

for discovering rules in time series. Finally, a real-world

multidimensional time series composed by several clima-

tological variables has been considered. All the results show

a remarkable performance of QARGA.

Keywords Time series � Quantitative association rules �
Evolutionary algorithms � Data mining

1 Introduction

It is usual to find natural phenomena correlated to some

other variables. Thus, real-world processes can be modeled

by inferring knowledge from other associated variables that

definitively have an effect on the original process. For

instance, the existence of acid rain cannot be understood

without the existence of other pollutant agents, such as

monoxide carbon or sulfur dioxide. In other words, the

knowledge of how some variables could affect other ones

may be useful to obtain accurate behavior models.

Quantitative association rule (QAR) extraction in time

series can be of the utmost usefulness for predictive pur-

poses (Shidara et al. 2008; Wang et al. 2008). Thus, it

could be interesting to find relationships among several

time series to determine the range of values for a particular

time series in a given time interval depending on the values

of others for the same interval. For instance, rules such as

hour 2 ½10; 12�^ demand 2 ½12; 000; 15; 000� ) price 2
½3:2; 4:5� can provide useful knowledge for forecasting the

electric energy price at peak hours (from 10 am to 12 pm)

depending on the values of the energy demand during these

hours. This information could help to obtain different

models adjusted to different intervals or to develop a

family of models for every rule. Hence, QAR are intro-

duced in a new time series framework with the means of

obtaining relationships among correlated time series that

help to model their behavior.

Evolutionary algorithms (EA) have been extensively

used for optimization and model adjustment in data mining

tasks. In fact, the use metaheuristics in general, and of EA
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in particular, to deal with data mining-based problems is a

hot topic of research nowadays (Alcalá-Fdez et al. 2009a,

2010; Chen et al. 2010; del Jesús et al. 2009; Yan et al.

2009). Also, EA have been used to build rule-based sys-

tems (Aguilar-Ruiz et al. 2007; Berlanga et al. 2010;

Orriols-Puig and Bernadó-Mansilla 2009).

Real-coded genetic algorithms (RCGA) are very

important within EA due to the increasing interest in

solving real-world optimization problems. The main

problem of RCGA, in which many researchers have

focused their works, is the definition of adequate genetic

operators (Herrera et al. 2004; Kalyanmoy et al. 2002). In

particular, a new RCGA, henceforth called QARGA

(Quantitative Association Rules by Genetic Algorithm) is

proposed in this work. It is worth noting that QARGA does

not perform previous variable discretization, that is, it

handles numeric data during the whole rule extraction

process, in contrast with many other approaches that per-

form data discretization to discover rules (Agrawal et al.

1993; Aumann and Lindell 2003; Vannucci and Colla

2004). Furthermore, the approach allows several degrees of

freedom in specifying the user’s preference regarding both

of the number of attributes and structure of the rules. On

the other hand, besides the well-known support and con-

fidence measures, the accuracy of the rules is also obtained

with a measure called lift due to its usefulness in the spe-

cific area of time series analysis (Ramaswamy et al. 1998).

First, QARGA has been applied to datasets from the

Bilkent University Function Approximation (BUFA)

repository (Guvenir and Uysal 2000). These datasets have

been chosen because the literature offers multiple EA

applied to them (Alatas and Akin 2006; Alatas et al. 2008;

Mata et al. 2002). Later, time series have been syntheti-

cally generated to determine the suitability of applying

QARGA to temporal data. Finally, multidimensional real-

world time series have been used to extract QAR. In par-

ticular, climatological time series have been analyzed to

discover the factors that cause high ozone concentration

levels in atmosphere.

The remainder of the paper is divided as follows: Sect. 2

provides a formal description of QAR, as well as intro-

duces the quality indices applied to QARGA. Section 3

presents the most relevant related works found in literature.

Section 4 describes the main features of QARGA used in

this work. The results of applying the proposed algorithm

to different datasets are reported and discussed in Sect. 5.

Finally, Sect. 6 summarizes the conclusions.

2 Preliminaries

This section is devoted to formally describe QAR and to

introduce the quality measures used in this paper.

2.1 Quantitative association rules

Association rules (AR) were first defined by Agrawal et al.

(1993) as follows. Let I ¼ fi1; i2; . . .; ing be a set of n items,

and D ¼ ftr1; tr2; . . .; trNg a set of N transactions, where

each trj contains a subset of items. Thus, a rule can be

defined as X ) Y ;where X; Y � I and X \ Y ¼ ;. Finally, X

and Y are called antecedent (or left side of the rule) and

consequent (or right side of the rule), respectively.

When the domain is continuous, the association rules are

known as QAR. In this context, let F ¼ fF1; . . .;Fng be a set

of features, with values in R. Let A and C be two disjunct

subsets of F, that is, A � F;C � F; and A \ C ¼ ;. A QAR is

a rule X ) Y ; in which features in A belong to the antecedent

X; and features in C belong to the consequent Y; such that

X ¼
^

Fi2A

Fi 2 ½li; ui� ð1Þ

Y ¼
^

Fj2C

Fj 2 ½lj; uj� ð2Þ

where li and lj represent the lower limits of the intervals for

Fi and Fj; respectively, and the couple ui and uj the upper

ones. For instance, a QAR could be numerically expressed

as

F1 2 ½12; 25� ^ F3 2 ½5; 9� ) F2 2 ½3; 7� ^ F5 2 ½2; 8� ð3Þ

where F1 and F3 constitute the features appearing in the

antecedent and F2 and F5 the ones in the consequent.

2.2 Quality parameters

This section provides a description of the support, confi-

dence and lift indices (Brin et al. 1997) used to measure the

interestingness of rules and of a new index, called

recovered; to ensure that the full search space is explored.

The support of an itemset X is defined as the ratio of

transactions in the dataset that contain X. Formally:

supðXÞ ¼ #X

N
¼ PðXÞ ð4Þ

where #X is the number of times that X appear in the

dataset, and N the number of transactions forming such

dataset. Other authors prefer naming the support of X

simply as the probability of X;PðXÞ.
Let X and Y be the itemsets that identify the antecedent

and consequent of a rule, respectively. The confidence of a

rule is expressed as follows:

conf ðX ¼) YÞ ¼ supðX ¼) YÞ
supðXÞ ð5Þ

and it can be interpreted as the probability that transactions

containing X, also contain Y . In other words, how certain is

the rule subjected to analysis.
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Finally, the interest or lift of a rule is defined as

liftðX ¼) YÞ ¼ supðX ¼) YÞ
supðXÞsupðYÞ ð6Þ

Lift means how many times more often X and Y are

together in the dataset than expected, assuming that the

presence of X and Y in transactions are occurrences

statically independent. Lifts greater than one are desired

because this fact would involve statistical dependence in

simultaneous occurrence of X and Y and, therefore, the rule

would provide valuable information about X and Y .

For a better understanding of such indices, a dataset

comprising ten transactions and three features is shown in

Table 1. Also consider an example rule

F1 2 ½180; 189� ^ F2 2 ½85; 95� ) F3 2 ½33; 36� ð7Þ
In this case, the support of the antecedent is 20%, since

two transactions, t2 and t9; simultaneously satisfy that F1 and

F2 belong to the intervals [180, 189] and [85, 95], respec-

tively (two transactions out of ten, supðXÞ ¼ 0:2). As for the

support of the consequent, supðYÞ ¼ 0:2 because only

transactions t6 and t9 satisfy that F3 2 ½33; 36�. Regarding the

confidence, only one transaction t9 satisfies all the three

features (F1 and F2 in the antecedent, and F3 in the conse-

quent) appearing in the rule; in other words,

supðX ) YÞ ¼ 0:1. Therefore, conf ðX ) YÞ ¼ 0:1=0:2 ¼
0:5; that is, the rule has a confidence of 50%. Finally, the lift

is liftðX ¼) YÞ ¼ 0:1=ð0:2 � 0:2Þ ¼ 2:5; since supðX )
YÞ ¼ 0:1; supðXÞ ¼ 0:2 and supðYÞ ¼ 0:2; as discussed

before.

Finally, the measure recovered is defined for finding

rules covering different regions of the search space. An

example e is covered by the rule r if the values of attributes

of e belong to the intervals defined by the rule r. That is,

covðe; rÞ ¼ 1 if e is covered by r

0 otherwise

�
ð8Þ

Given a set of rules r1; . . .; rn the measure recovered for

the rule rnþ1 is defined by

recovðrnþ1Þ ¼
1

N

X

e2D

Xn

i¼1

covðe; riÞ ð9Þ

Thus, this index provides a measure of the number of

instances which have already been covered by a set of

previous rules.

3 Related work

A thorough review of recently published works reveals that

the extraction of AR with numeric attributes is an emerging

topic.

Mata et al. (2001) proposed a novel technique based on

evolutionary techniques to find QAR that was improved in

Mata et al. (2002). First, the approach found the sets of

attributes which were frequently present in database and

called frequent itemsets, and later AR were extracted from

these sets.

Following with this topic, the optimization of the con-

fidence—avoiding the initial threshold for the minimum

support—was the main contribution of the work introduced

in Yan et al. (2009). The authors used fitness function and

non-threshold requirements for the minimum support. The

fitness function is a key parameter in EA and the authors

just used the relative confidence as fitness function.

Recently, Alcalá-Fdez et al. presented a study about

three algorithms to analyze their effectiveness for mining

QAR. In particular, EARMGA (Yan et al. 2009), GAR

(Mata et al. 2002) and GENAR (Mata et al. 2001) were

applied to two real-world datasets, showing their efficiency

in terms of coverage and confidence.

On the other hand, data mining techniques for discov-

ering AR in time series can be found in Bellazzi et al.

(2005). The authors successfully mined temporal data

retrieved from multiple hemodialysis sessions by applying

preprocessing, data reduction and filtering as a previous

step of the AR extraction process. Finally, AR were

obtained by following the well-known Apriori itemset

generation strategy (Venturini 1994).

An algorithm to discover frequent temporal patterns and

temporal AR was introduced in Winarko and Roddick

(2007). The algorithm extends the MEMISP algorithm (Lin

and Lee 2002) which discovers sequential patterns by using

a recursive find-then-index technique. Especially remark-

able was the maximum gap time constraint included to

remove insignificant patterns and consequently to reduce

the number of temporal association rules.

Usually, the sliding window concept has been success-

fully applied to forecast time series (Martı́nez–Álvarez

et al. 2011; Nikolaidou and Mitkas 2009). However, this

concept has been recently used in (Khan et al. 2010) with

the purpose of obtaining a low use of memory and low

Table 1 Illustrative dataset

Transaction F1 F2 F3

t1 178 75 24

t2 186 93 37

t3 167 60 22

t4 199 112 30

t5 154 47 42

t6 173 83 33

t7 177 91 63

t8 159 53 48

t9 183 88 35

t10 178 93 58
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computational cost of the Apriori-based algorithm pre-

sented for discovering itemsets whose support increase

over time.

In the non-supervised classification domain, the authors

in Wan et al. (2007) made use of clustering processes to

discretize the attributes of hydrological time series, as a

first step of the rules extraction, which were eventually

obtained by means of the Apriori algorithm. Following

with clustering techniques, fuzzy clustering was used in

Chen et al. (2010) to speed up the calculation for

requirement satisfaction with multiple minimum supports,

enhancing thus the results published in its initial work

(Chen et al. 2009).

The work introduced in Huang et al. (2008) mined

ocean data time series in order to discover relationship

between salinity and temperature variations. Concretely,

the authors discovered spatio-temporal patterns from the

aforementioned variables and reported QAR using Prefix-

Span and FITI algorithms (Pei et al. 2001; Tung et al.

2003).

Different models to forecast the ozone concentration

levels have been recently proposed. Hence, the authors in

Agirre-Basurko et al. (2006) developed two multilayer

preceptron and a linear regression model for this purpose

and prognosticated eight hours ahead for the Spanish city

of Bilbao. They concluded that the insertion of extra sea-

sonal variables may improve the general forecasting pro-

cess. On the other hand, an artificial neural network model

was presented in Elkamel et al. (2001). The authors also

predicted the ozone concentrations by considering the

analysis of additional climatological time series. Finally,

temporal variations of the tropospheric ozone levels were

analyzed in four sites of the Iberian Peninsula (Adame-

Carnero et al. 2010) by means of statistical approaches.

Alternatively, the application of QAR can also be found

in the data streams domain. In fact, the authors in Orriols-

Puig et al. (2008) developed a model capable to classify

on-line generated data for both continuous and discrete

data streams.

MODENAR is a multi-objective pareto-based genetic

algorithm that was presented in Alatas et al. (2008). In this

approach, the fitness function aimed at optimizing four

different variables: Support, confidence, comprehensibility

of the rule and the amplitude of the intervals that consti-

tutes the rule. A similar issue was addressed in Tong et al.

(2005), in which the authors conducted research on the

determination of existing conflicts when minimum support

and minimum confidence are simultaneously required.

In Alatas and Akin (2008), the use of rough particle

swarm techniques as an optimization metaheuristic was

presented. In this work, the authors obtained the values for

the intervals instead of frequent itemsets. Moreover, they

proposed the use of some new operators such as rounding,

repairing or filtrating.

Finally, QAR have also been used in the bioinformatics

field. Thus, microarray data analysis by means of QAR was

addressed in Georgii et al. (2005). The main novelty pro-

posed by the authors was the definition of an AR as a linear

combination of weighted variables, against a constant. Also

in this context, the authors in Gupta et al. (2006) intro-

duced a multi-step algorithm devoted to mine QAR for

protein sequences. Once again, an Apriori-based method-

ology was used in Nam et al. (2009) to discover temporal

associations from gene expression data.

4 Description of the search of rules

In a continuous domain, it is necessary to group certain sets

of values that share same features and therefore it is

required to express the membership of the values to each

group. Adaptive intervals instead of fixed ranges have been

chosen to represent the membership of such values in this

work.

The search for the most appropriate intervals has been

carried out by means of QARGA. Thus, the intervals are

adjusted to find QAR with high values for support and

confidence, together with other measures used in order to

quantify the quality of the rule.

In the population, each individual constitutes a rule.

These rules are then subjected to an evolutionary process,

in which the mutation and crossover operators are applied

and, at the end of the process, the individual that presents

the best fitness is designated as the best rule. Moreover, the

fitness function has been provided with a set of parameters

so that the user can drive the process of search depending

on the desired rules. The punishment of the covered

instances allows the subsequent rules, found by QARGA,

trying to cover those instances that were still uncovered, by

means of an iterative rule learning (IRL) (Venturini 1993).

The following subsections detail the general scheme of

the algorithm as well as the fitness function, the repre-

sentation of the individuals, and the genetic operators.

4.1 Codification of the individuals

Each gene of an individual represents the upper and lower

limit of the intervals of each attribute. The individuals are

represented by an array of fixed length n; where n is the

number of attributes belonging to the database. Further-

more, the elements are real-valued since the values of the

attributes are continuous. Two structures are available for

the representation of an individual:
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• Upper structure. All the attributes included in the

database are depicted in this structure. The limits of the

intervals of each attribute are stored, where li is

the inferior limit of the interval and ui the superior one.

• Lower structure. Nevertheless, not all the attributes will

be present in the rules that describe an individual. This

structure indicates the type of each attribute, ti; which

can have three different values:

– 0 when the attribute does not belong to the

individual,

– 1 when the attribute belongs to the antecedent, and

– 2 when it belongs to the consequent.

Figure 1 shows the codification of a general individual of

the population.

With the proposed codification, if an attribute is wanted

to be retrieved for a specific rule, it can be done by mod-

ifying the value equal to 0 of the type by a value equal to 1

or 2. Analogously, an attribute that appears in a rule may

stop belonging to such rule by changing the type of the

attribute from values 1 or 2 to 0. An illustrative example is

depicted in Fig. 2. In particular, the rule X1 2 ½20; 34� ^
X3 2 ½7; 18� ) X4 2 ½12; 27� is represented. Note that

attributes X1 and X3 appear in the antecedent, X4 in the

consequent, and X2 is not involved in the rule. Therefore,

t1 ¼ t3 ¼ 1; t2 ¼ 0 and t4 ¼ 2.

4.2 Generation of the initial population

The individuals of the initial population are randomly

generated. In other words, the number of attributes

appearing in the rule and the type and interval for each

attribute are randomly generated. To assure that the

individuals represent sound rules when the genes are gen-

erated, the following constraints are considered:

• Limits of the interval:

– The lower limit of the interval has to be less than

the upper limit of the interval. If the randomly

generated values do not fulfill this requirement, the

limits are swapped.

– The lower and upper limits of the interval have to

be greater and less than the lower and upper limits

of the domain of the attribute, respectively.

Otherwise, the corresponding limits of the domain

of the attribute are assigned.

• Type of the attribute:

– The number of attributes of the rule has to be

greater than a minimum number of attributes

defined by the user depending on the desired rule.

– The number of attributes belonging to the anteced-

ent of the rule has to be greater than 1.

– The number of attributes belonging to the conse-

quent of the rule has to be greater than 1, and less

than a maximum number of allowed consequents,

which is a parameter defined by the user depending

for the desired rule.

4.3 Genetic operators

This section describes the genetic operators used in the

proposed algorithm, that is, selection, crossover and

mutation operators.

1. Selection. An elitist strategy is used to replicate the

individual with the best fitness. By contrast, a roulette

selection method is used for the remaining individuals

rewarding the best individuals according to the fitness.

Note that the tournament selection was also used in

preliminary studies, showing similar performance to

that of roulette selection.

2. Crossover. Two parent individuals x and y, chosen by

means of the roulette selection, are combined to

generate a new individual z. Formally, let

½lxi ; ux
i �; ½l

y
i ; u

y
i � and ½lzi ; uz

i � be the intervals in which the

attribute ai vary for the individuals x; y and z;

respectively, and let tx
i ; t

y
i and tz

i be the type of the

attribute ai for the individuals x; y and z; respectively.

Then, for each attribute ai two cases can occur:

• tx
i ¼ ty

i : The same type is assigned to the descen-

dent and the interval is obtained by generating two

random numbers among the limits of the intervals

of both parents, as shown in Eqs. 10 and 11.

l2      u2l1      u1

t2t1

ln      un...

t n...

Fig. 1 Representation of an individual of the population

1      520      34

01

12      27

2

7      18

1

        X1                 X2                  X3                  X4

Fig. 2 Example of an individual
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tz
i ¼ tx

i ð10Þ

½lz
i ; u

z
i � ¼ ½randomðlx

i ; l
y
i Þ; randomðux

i ; u
y
i Þ� ð11Þ

• tx
i 6¼ ty

i : One of the two types is randomly chosen

between both of the parents, without modifying the

intervals of such attribute, as shown in Eqs. 12 and

13.

lz
i ; u

z
i

� �
¼ lx

i ; u
x
i

� �
; if tz

i ¼ tx
i ð12Þ

lz
i ; u

z
i

� �
¼ lyi ; u

y
i½ �; if tz

i ¼ ty
i ð13Þ

The limits and types of the attributes of the offspring are

checked, as described in Sect. 4.2, to assure that it repre-

sents sound rules. If any attribute does not fulfill the

required constraints regarding the type of attributes the

individual is discarded and a new individual is obtained

from the same parents. The crossover process is depicted in

Fig. 3.

3. Mutation. The mutation process consists in modifying

according to a probability the genes of randomly

selected individuals. The mutation of a gene can be

focused on

• Type of the attribute. Two equally probable cases

can be distinguished:

– Null Mutation. The type ti of the selected

attribute is different to null, and eventually

changed to null.

– Not Null Mutation. The type ti of the selected

attribute is null and changed to antecedent or

consequent.

• Intervals of the attribute. Three equally probable

cases are possible:

– Lower Limit. A random value is added or

subtracted to the lower limit of the interval.

– Upper Limit. A random value is added or

subtracted to the upper limit of the interval.

– Both Limits. A random value is added or

subtracted to both limits of the interval.

For all the three cases, the random value is

generated between 0 and a percentage (usually

10%) of the amplitude of the interval and it will

be added or subtracted according to a certain

probability.

The choice between the mutation of the type or the

mutation of the interval depends on a given probability.

The limits and types of the attributes of the offspring are

checked, as described in Sect. 4.2, to assure that it repre-

sents sound rules. If any attribute does not fulfill the

required constraints regarding of the type of attributes, the

individual is discarded and a new mutation is obtained

from the same original individual.

Some examples of all the kind of mutations are illus-

trated in Figs. 4, 5, 6, 7 and 8.

4.4 The fitness function

The fitness of each individual allows deciding which are

the best candidates to remain in subsequent generations. In

order to make this decision, it is desirable that the support

would be high, since this fact implies that more samples

from the database are covered. Nevertheless, to take into

consideration only the support is not enough to calculate

the fitness because the algorithm would try to enlarge the

amplitude of the intervals until the whole domain of each

attribute would be completed. For this reason, it is

34      4738    5718    32

211

ytneraPxtneraP

23   3720   4418   32

211

Child z

13   3619    4011     25

210

])75,04(modnar,)83,91(modnar[

  [random (13, 34)   ,   random (36, 47)] 

  [18,32] 

Fig. 3 Crossover for the

individuals x and y
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necessary to include a measure to limit the growth of the

intervals during the evolutionary process. The chosen fit-

ness function to be maximized is

f ¼ws �supþwc �conf �wr �recovþwn �nAttrib�wa �ampl

ð14Þ

where sup; conf and recov are defined in Sect. 2.2, nAttrib

is the number of attributes appearing in the rule, ampl is the

average size of intervals of the attributes that compose the

rule, and ws;wc;wr;wn and wa are the weights to drive

the search, and will vary depending on the required rules.

The support rewards the rules fulfilled by many instan-

ces and the weight ws can increase or decrease its effect.

The confidence together with the support are the most

widely measures used to evaluate the quality of the QAR.

The confidence is the grade of reliability of the rule. High

values of wc may be used when rules without error are

desired, and viceversa.

The number of recovered instances is used to indicate

that a sample has already been covered by a previous rule.

Thus, rules covering different regions of the search space

are preferred. The process of punishing the covered

34      4738    5718    32

211

Individual x

34      4738    5718    32

201

Individual x’

Fig. 4 Scheme of Null Mutation

1

Individual y’

Individual y

13   3619    4011     25

210

1

13   3619    4011     25

2

Fig. 5 Scheme of Not Null Mutation

34       4738    5718    32

201

Individual x

36       4738    5718    32

201

Individual x’

Fig. 6 Scheme of Lower Limit Mutation

34       4738    5718    32

201

Individual x

34      4538    5718    32

201

Individual x’

Fig. 7 Scheme of Upper Limit Mutation

34    4738    5718    32

201

Individual x

36   4538    5718    32

201

Individual x’

Fig. 8 Scheme of Lower and Upper Limits Mutation
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instances is now described. Every time the evolutionary

process ends and the best individual is chosen as the best

rule, the database is processed in order to find those

instances already covered by the rule. Hence, each instance

has a counter that increases its value by one every time a

rule covers it.

The number of attributes of a rule can be adjusted by

means of the weight wn. Thus, when wn is set to a value

close to 0, few attributes are obtained and, on the other

hand, when wn is set to a value close to 1, many attributes

appear in rules.

The amplitude controls the size of the intervals of the

attributes that compose the rules and those individuals with

large intervals are penalized by means of the factor wa;

which allows the rules be more or less permissive regard-

ing the amplitude of the intervals.

Hence, the user can model the behavior of the rules that

can be obtained by varying the weights in the fitness

function. Therefore, the user can obtain rules according to

their needs without a previous data discretization.

4.5 The IRL approach

The proposed algorithm is based on the iterative rule

learning (IRL) process, whose general scheme is shown in

Fig. 9.

The EA is applied in each iteration obtaining one rule

per iteration, which is precisely the best individual dis-

covered. While the number of desired rules is not reached,

IRL allows penalization in already covered instances, with

the aim of finding rules that cover those instances that have

not been covered yet in subsequent iterations. The main

advantage of the approach is that attempts at covering

every region in the solutions domain, that is, the set of rules

will cover all the consequent domain. The iterative process

ends when it finds the desired number of rules.

Figure 10 provides the scheme of the EA, which is the

main step of the IRL process depicted in Fig. 9.

First, the rules population is initialized and evaluated.

All rules are evaluated according to (14). Thus, in each

iteration the selection operator is applied to select the best

rules on the basis of the fitness function. Then, the cross-

over operator is applied to the selected rules while the

population size is not completed. Individuals are randomly

selected in order to apply the mutation operator. Finally,

the new population is again evaluated by the fitness func-

tion and the evolutionary process restarts. Note that the

process will be repeated as many times as the maximum

number of preset generations indicates.

5 Results

In this section the results obtained from the application of

the proposed approach to different datasets are presented.

First, Sect. 5.1 provides a detailed description of all used

datasets. A summary of the key parameters configuration

used for all the algorithms can be found in Sect. 5.2.

Finally, the results are gathered and discussed in Sect. 5.3.

The approach has been initially tested on several widely

studied datasets from the public BUFA repository, and the

accuracy of QARGA has been compared with that of the

algorithms introduced in Yan et al. (2009) and Mata et al.

(2001) in Sect. 5.3.1. On the other hand, two different kind
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of time series are analyzed: synthetically generated and

real-world multidimensional temporal data. Sect. 5.3.2 is

devoted to evaluate the accuracy of QARGA when it is

applied to synthetically generated multidimensional time

series. Likewise, the real-world case is reported in

Sect. 5.3.3, where QAR are obtained to discover relation-

ships between the tropospheric ozone and other climato-

logical time series.

5.1 Dataset description

This section presents the number of records and number of

attributes of the BUFA repository datasets as well as how

synthetic time series were generated and what real-world

time series consist of.

5.1.1 Public datasets

QARGA has been applied to 15 public datasets: Basketball,

Bodyfat, Bolts, Kinematics, Longley, Normal Body Tem-

perature, Plastic, Pollution, Pw Linear, Pyramidines,

Quake, Schools, Sleep, Stock Price and Vineyard, which

can be found at BUFA repository (Guvenir and Uysal

2000). Relevant information about these datasets is sum-

marized in Table 2.

5.1.2 Synthetic multidimensional time series

In this section two different synthetically generated mul-

tidimensional time series are described: time series without

and with disjunctions, respectively. In particular, multidi-

mensional time series are generated, that is, time series

characterized by more than one variable in each time

stamp. Or, in other words, two or more time series simul-

taneously observed that characterize the same phenome-

non. Formally, a multidimensional time series MTS can be

expressed as MTS ¼ ½X1ðtÞ; . . .;XnðtÞ�T ; where each XiðtÞ is

a variable measured along with the time, t; and n is the

number of inter-related time series that identifies the whole

MTS. Thus, the goal of applying QAR to MTS is to dis-

cover existing relationships among those Xi forming the

MTS; along with the time.

Regarding the time series with no disjunctions, Table 3

defines a three-dimensional time series, n ¼ 3; in which

three variables X1;X2 and X3 share static relationships in

fixed intervals of time.

Thus, 100 values for each variable X1;X2 and X3 were

generated and uniformly distributed in four intervals. To

obtain these series, values for variables X1;X2 and X3 were

randomly selected for every ti according to constraints

listed in Table 3, where ti varies from 1 to 100. Finally, the

resulting time series are depicted in Fig. 11.

With reference to time series with disjunctions, a

bi-dimensional time series represented by two variables, X1

and X2, has been generated with, again, 100 values for each

time series uniformly distributed in four intervals. How-

ever, the main difference regarding the previous situation

lies in the fact that now the variables X1 and X2 can be

defined by more than one possible set of values.

Table 4 shows the constraints considered to generate the

time series with disjunctions. The series is generated then

as follows: For every ti and Xj one interval is randomly

chosen and, then, a value is randomly chosen from the

interval previously selected. For instance, X1 can indistinc-

tively belong to intervals ½10; 20� or ½15; 35� when t 2
½26; 50� in set #1.

Table 2 Public datasets.

Dataset Records Attributes

Basketball 96 5

Bodyfat 252 18

Bolts 40 8

Kinematics 8192 9

Longley 16 7

Normal Body Temperature 130 3

Plastic 1650 3

Pw Linear 200 11

Pollution 60 16

Pyramidines 74 28

Quake 2178 4

School 62 20

Sleep 57 8

Stock price 950 10

Vineyard 52 4
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Fig. 11 Time series with no disjunctions
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The resulting MTS according with Table 4 is illustrated

in Fig. 12. As it can be observed, relationships between

time and variables are considerably more difficult to be

mined. In fact, the expected rules are listed in Table 5,

where every disjunction in the interval for each variable

involve two possible conjunctions. For instance, the set #0

in Table 4 would solely generate rule #0 from Table 5.

Nevertheless, set #1 would diverge into two different

expect rules, #11 and #12 from Table 5, and so on. Note

that the support in Table 5 for all possible rules is, actually,

the expected support assuming that the portion of values of

a variable for every disjunction were equal.

5.1.3 Real-world time series application:

ozone concentration

The proposed algorithm has also been applied in order to

discover QAR in real-world multidimensional time series.

Specifically, QAR are intended to be found among clima-

tological time series such as temperature, humidity,

direction and speed of the wind, several temporal variables

such as the hour of the day and the day of the week and,

finally, the tropospheric ozone. These variables have

influence on the ozone concentration in the atmosphere

which is the target agent.

All variables have been retrieved from the meteorolog-

ical station of the city of Seville in Spain for the months

from July to August during years 2003 and 2004, gener-

ating a dataset with 1488 instances. The reason for

selecting such periods is because during these periods the

highest concentration of ozone was reported.

For predictive purposes, the climatological time series

have been forced to belong to the antecedent and the ozone

to the consequent. As a result, a prediction of the ozone is

achieved on the basis of the rules extracted from these

variables.

5.2 Parameters configuration

In this section, the values for the parameters of each

method analyzed in Sect. 5.3 are described. This section is

Table 3 Time series with no

disjunctions
ID Sets Sup. (%)

#0 t 2 ½1; 25� ¼) X1 2 [1, 15] ^ X2 2 [7, 35] ^ X3 2 [60, 75] 25.0

#1 t 2 ½26; 50� ¼) X1 2 [5, 30] ^ X2 2 [25, 40] ^ X3 2 [10, 30] 25.0

#2 t 2 ½51; 75� ¼) X1 2 [45, 60] ^ X2 2 [55, 85] ^ X3 2 [20, 35] 25.0

#3 t 2 ½76; 100� ¼) X1 2 [75, 100] ^ X2 2 [0, 20] ^ X3 2 [40, 60] 25.0

Table 4 Time series with

disjunctions
ID Sets

#0 t 2 [1, 25]¼) X1 2 [20, 30] ^ X2 2 [50, 80]

#1 t 2 [26, 50]¼) ðX1 2 [10, 20] _X1 2 [15, 35]) ^ X2 2 [40, 60]

#2 t 2 [51, 75]¼) X1 2 [1, 15] ^ ðX2 2 [40, 50] _ X2 2 [60, 70])

#3 t 2 [76, 100]¼) ðX1 2 [15, 25] _X1 2 [30, 40]) ^ ðX2 2 [30, 45] _X2 2 [40,50])
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Fig. 12 Time series with disjunctions

Table 5 Expected rules from time series with disjunctions

ID Sets Sup. (%)

#0 t 2 [1, 25] ^ X1 2 [20, 30] ^ X2 2 [50, 80] 25.0

#11 t 2 [26, 50] ^ X1 2 [10, 20] ^ X2 2 [40, 60] 12.5

#12 t 2 [26, 50] ^ X1 2 [15, 35] ^ X2 2 [40, 60] 12.5

#21 t 2 [51, 75] ^ X1 2 [1, 15] ^ X2 2 [40, 50] 12.5

#22 t 2 [51, 75] ^ X1 2 [1, 15] ^ X2 2 [60, 70] 12.5

#31 t 2 [76, 100] ^ X1 2 [15, 25] ^ X2 2 [30, 45] 6.25

#32 t 2 [76, 100] ^ X1 2 [15, 25] ^ X2 2 [40, 50] 6.25

#33 t 2 [76, 100] ^ X1 2 [30, 40] ^ X2 2 [30, 45] 6.25

#34 t 2 [76, 100] ^ X1 2 [30, 40] ^ X2 2 [40, 50] 6.25
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divided in subsections for all used datasets. It is noteworthy

that the parameters of every method with which QARGA is

compared were obtained from the original papers.

5.2.1 Configuration for public datasets

1. EARMGA. This algorithm (Yan et al. 2009) was exe-

cuted five times and the average values of such exe-

cutions were presented. The main parameters of

EARMGA algorithm are 100 for the number of the

rules, 100 for the size of the population and 100 for

the number of generations. EARMGA use 0.0 for the

minimum support and minimum confidence; 0.75 for

the probability of selection; 0.7 for the probability of

crossover, 0.1 for the probability of mutation; 0.01 for

difference boundary and 4 for the number of partitions

for numeric attributes.

2. GENAR. This algorithm was executed five times and

the average values of such executions were presented.

The main parameters of GENAR algorithm (Mata

et al. 2001) are 100 for the number of the rules, 100 for

the size of population and 100 for the number of

generations. GENAR use 0.0 for the minimum support

and minimum confidence; 0.25 for the probability of

selection; 0.7 for the probability of crossover and 0.1

for the probability of mutation; 0.7 for the penalization

factor and 2 for the amplitude factor.

3. QARGA. It has been executed five times, and the average

results are also shown for this case. The main parameters

of QARGA are 100 for the number of the rules, 100 for

the size of the population, 100 for the number of

generations, 0.0 for the minimum support and minimum

confidence and 0.8 for the probability of mutation.

5.2.2 Configuration for synthetic time series

with no disjunctions

1. QARGA. The proposed algorithm has been executed five

times. The main parameters are as follows: 100 for the

size of the population, 100 for the number of genera-

tions, 20 for the number of rules to be obtained, and 0.8

for the mutation probability. After an experimental

study to assess the influence of the weights on the rules to

be obtained, the weights chosen for the fitness function

were 3 for ws; 1 for wc; 2 for wr; 0.2 for wn and 0.5 for wa.

5.2.3 Configuration for synthetic time series

with disjunctions

1. QARGA. The main parameters for these time series are

exactly the same that those used to generate rules for

synthetic time series with no disjunctions. That is, 100

for the size of the population, 100 for the number of

generations, 20 for the number of rules to be obtained,

and 0.8 for the mutation probability. In this case, the

weights chosen for the fitness function were 1.5 for ws;

0.5 for wc; 0.2 for wr, 0.2 for wn and 0.3 for wa.

5.2.4 Configuration for ozone time series

For this time series, QARGA has been compared with

Apriori and due to its previous required discretization, two

different kind of experimentation are distinguished. First,

all the continuous variables have been discretized with

three intervals. Thus, the obtained rules by Apriori present

high amplitudes and therefore high supports. Second, all

the real-valued attributes have been discretized in ten

intervals, which involves rules with small amplitudes and

low supports. For both of the experimentations, the selec-

ted rules are the ones that presented greater confidence.

For the first kind of experimentation, the main param-

eters of QARGA have been set as follows: 100 for the size

of the population, 100 for the number of generations, 20 for

the number of rules to be obtained and 0.8 for the mutation

probability. After an empirical study to test the influence of

the weights on the rules to be obtained, the weights of the

fitness function, 3 for ws; 0.2 for wc; 0.2 for wr; 0.3 for wn

and 0.2 for wa have been chosen. This study consisted in

determining the values of the weights for which the con-

fidence of the rules was maximized. Note that ws is high

compared to the other ones because rules with high support

are desired, making thus possible the comparison with the

rules obtained by Apriori.

For the second kind of experimentation, the main param-

eters of QARGA have been set as follows: 100 for the size of

the population, 100 for the number of generations, 20 for the

number of rules to be obtained and 0.8 for the mutation

probability. After an empirical study to test the influence of the

weights on the rules to be obtained, the weights of the fitness

function, 1 for ws, 0.2 for wc; 0.2 for wr; 1 for wn and 0.2 for wa

have been chosen. Analogous to the first experimentation, the

weight associated with support is low to make possible the

comparison with the Apriori algorithm.

5.3 Analysis of results

This section discusses all the results obtained from the

application of QARGA to the selected datasets introduced

in previous sections.

5.3.1 Results in public datasets

To carry out the experimentation and make a comparison

with QARGA, the evolutionary algorithms EARMGA
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(Yan et al. 2009) and GENAR (Mata et al. 2001), available

in the KEEL tool (Alcalá-Fdez et al. 2009b), have been

chosen.

Table 6 shows the results obtained by EARMGA,

GENAR and QARGA for every dataset. The column

Number of rules indicates the average of the number of

the rules found by each algorithm after executions

specified in Sect. 5.2. The percentage of the records

covered by the rules for these datasets is shown in col-

umn Records.

It can be noticed that the average of the number of rules

and the average of the percentage of the records covered by

the rules founds by QARGA are greater than the rest of the

algorithms.

Table 6 Number of rules and percentages of records covered by the mined rules obtained by QARGA and all other algorithms

Dataset Number of rules Records (%)

EARMGA GENAR QARGA EARMGA GENAR QARGA

Basketball 100 100 100 74.16 91.04 99.48

Bodyfat 100 100 100 46.67 69.44 100

Bolts 100 100 100 57.50 51.00 100

Kinematics 100 100 100 42.33 38.84 89.17

Longley 100 11.70 100 50.00 100 100

Normal Body Temperature 100 100 100 100 97.08 98.00

Plastic 96.40 100 100 100 99.44 99.67

Pw Linear 100 100 100 53.00 21.40 98.00

Pollution 100 100 100 42.67 52.33 96.67

Pyramidines 100 82.15 100 43.78 100 100

Quake 100 100 100 97.41 82.12 91.85

School 100 100 100 55.08 85.57 100

Sleep 100 100 100 67.84 88.24 100

Stock price 100 100 100 59.37 87.98 100

Vineyar 100 100 100 93.85 94.62 100

99.76 92.92 100 65.58 77.27 98.19

Table 7 Quality measurements of rules obtained by QARGA and all other algorithms.

Dataset Support (%) Confidence (%)

EARMGA GENAR QARGA EARMGA GENAR QARGA

Basketball 2.70 30.82 33.52 100 96.52 97.43

Bodyfat 4.97 41.52 74.06 100 96.53 98.17

Bolts 11.43 14.43 11.17 100 100 99.76

Kinematics 2.09 0.53 22.02 100 96.50 83.89

Longley 12.69 24.37 36.68 100 100 100

Normal Body Temperature 22.29 64.27 7.70 100 72.89 97.55

Plastic 10.06 24.43 8.51 97.76 55.17 98.56

Pw Linear 3.68 1.09 16.47 100 100 98.50

Pollution 5.36 22.64 49.83 100 99.72 99.90

Pyramidines 7.84 2.19 11.34 38.49 100 99.82

Quake 3.40 35.17 7.73 100 64.40 94.66

School 7.21 8.13 41.73 100 100 99.23

Sleep 9.05 36.69 49.71 100 71.17 99.68

Stock price 4.05 30.71 32.71 100 91.49 98.93

Vineyar 7.80 43.75 39.35 100 98.60 99.31

7.64 25.38 29.50 95.75 89.53 97.69
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Table 7 shows some quality measurements of rules

obtained by every algorithm. The first column, support

(%), reports the average support obtained, that is, the

percentage of covered instances. The next column, confi-

dence (%), shows the average confidence obtained by every

algorithm.

Concentrating on the results themselves, it can be

appreciated that the average support found by QARGA is

greater than that found by the other algorithms in almost all

the datasets. The average confidence obtained by QARGA

is greater than that of EARMGA and GENAR, that is,

QARGA provides more reliable rules with smaller errors.

Table 8 and Table 9 show the average number of attri-

butes and the average amplitude for both the antecedent

and the consequent for the rules extracted by EARMGA,

GENAR and QARGA. From its observation it can be

Table 8 Amplitudes for the antecedents, consequents and rules obtained by QARGA and all other algorithms

Dataset Antecedent amplitude (%) Consequent amplitude (%) Rule amplitude (%)

EARMGA GENAR QARGA EARMGA GENAR QARGA EARMGA GENAR QARGA

Basketball 40.37 49.55 26.84 69.71 49.85 32.35 46.55 49.61 29.22

Bodyfat 39.19 47.20 28.80 81.57 49.99 26.86 48.65 47.35 27.80

Bolts 41.75 38.49 11.69 67.67 31.85 9.49 48.67 37.45 10.57

Kinematics 39.23 49.80 29.54 100 49.61 30.65 51.80 49.78 30.03

Longley 44.85 42.31 26.85 57.20 43.90 22.09 48.70 42.53 24.44

Normal Body Temperature 45.23 74.90 12.60 89.90 50 16.21 60.13 66.60 13.92

Plastic 32.06 49.17 15.89 81.96 46.90 25.78 48.70 48.41 19.43

Pw Linear 32.63 47.84 18.81 89.40 41 13.57 44.36 47.22 15.51

Pollution 40 45.73 14.30 53.38 49.82 13.90 43.18 45.98 14.15

Pyramidines 35.32 32.16 8.09 46.29 45.60 8 100 32.56 8.05

Quake 35.59 49.90 10.75 94.55 48.63 11.28 50.59 49.65 10.88

School 41.36 40.92 20.77 80.90 46.13 19.86 50.28 41.18 20.35

Sleep 43.84 41.92 10.51 79.13 49.89 10.33 51.74 42.91 10.41

Stock price 38.45 48.07 29.89 96.18 48.56 30.21 50.39 48.12 30.06

Vineyar 39.57 48.97 29.86 72.30 45.43 29.87 47.88 48.08 29.82

39.30 47.13 19.68 77.34 46.48 20.03 52.77 46.50 19.64

Table 9 Size of the antecedents, consequents and rules obtained by QARGA and all other algorithms

Dataset Antecedent size Consequent size Rule size

EARMGA GENAR QARGA EARMGA GENAR QARGA EARMGA GENAR QARGA

Basketball 3.96 4 1.37 1.04 1 1.01 5 5 2.38

Bodyfat 3.83 17 1.26 1.17 1 1.05 5 18 2.31

Bolts 3.60 7 4.31 1.40 1 2.15 5 8 6.46

Kinematics 3.97 8 1.96 1.03 1 1.03 5 9 2.99

Longley 3.58 6 1.08 1.42 1 1.08 5 7 2.15

Normal Body Temperature 2.00 2 1.87 1.00 1 1.04 3 3 2.92

Plastic 1.99 2 1.86 1.01 1 1.00 3 3 2.86

Pw Linear 3.97 10 1.65 1.03 1 1.01 5 11 2.65

Pollution 3.81 15 6.13 1.19 1 1.42 5 16 7.54

Pyramidines 3.65 27 12.51 1.35 1 2.62 5 28 15.13

Quake 2.97 3 2.79 1.03 1 1.02 4 4 3.81

School 3.90 19 1.37 1.10 1 1.13 5 20 2.50

Sleep 3.72 7 1.50 1.28 1 1.38 5 8 2.88

Stock price 3.96 9 1.48 1.04 1 1.01 5 10 2.49

Vineyar 2.98 3 1.09 1.02 1 1.03 4 4 2.11

3.46 9.27 2.82 1.14 1.00 1.26 4.60 10.27 4.08
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concluded that QARGA mined rules with short antecedent

and short consequent, which helps to the comprehensive-

ness of the rules. The number of attributes per rule obtained

by QARGA is similar to that of EARMGA and does not

present relevant differences. For the case of the amplitude,

QARGA obtained amplitudes smaller than EARMGA and

GENAR in all datasets.

In short, QARGA presents greater average support, less

number of attributes and smaller amplitudes than the other

ones, which leads to the conclusion that QARGA obtained

better rules in general terms.

From the reported results, it can be seen that rules with

high support and confidence as well as moderate amplitude

of intervals with small number of attributes have been

found. In terms of support, confidence and amplitude,

QARGA outperforms EARMGA and GENAR which leads

to the obtention of more precise as well as comprehensible

rules, since the number of attributes that appear in both

antecedent and consequent is small, helping the user to

easily understand them.

Last, a statistical analysis has been conducted to eval-

uate the significance of QARGA, following the non-para-

metric procedures discussed in Garcı́a et al. (2009). For

this purpose, the lift obtained from the application of

QARGA, EARMGA and GENAR to the 15 datasets has

been calculated, and it is shown in Table 10. From this

table, it can be noticed that the algorithm QARGA reaches

the highest rank in 15 datasets, EARMGA reaches the

second and third positions in 10 and 5 datasets, respec-

tively, and finally, GENAR obtains the second and third

positions in 5 and 10 datasets. The average ranking for

each algorithm is summarized in Table 11. It can be

observed that the lowest value of average ranking is

obtained by QARGA which is, therefore, the control

algorithm.

Friedman and Iman-Davenport (ID) tests have been

applied to assess if there are global differences in the lifts

obtained for three algorithms. The results obtained by both

tests for the level of significance a ¼ 0:05 are summarized

in Table 12. Note that the values in columns Value in v2

and Value in FF have been retrieved from Tables A4 and

A10 in Sheskin (2006), respectively. As the p values

obtained from both of the tests are lower than the level of

significance considered, it can be stated that there exist

significant differences among the results obtained by three

algorithms and a post-hoc statistical analysis is required.

The Holm and Hochberg tests have been applied to

compare separately QARGA to GENAR and EMARGA.

Table 13 shows the sorted p values obtained by GENAR

and EMARGA for two levels of significance (a ¼ 0:05 and

a ¼ 0:10). Both of the tests allow concluding that QARGA

is better than EMARGA and GENAR for both levels of

significance, as the two tests reject all hypotheses.

In addition, it is interesting to discover the precise p

value for which each hypothesis can be rejected. These

exact values are called adjusted p values and how to obtain

them is thoroughly described in Wright (1992). Table 14

Table 10 Lift of the mined rules by QARGA and all other algorithms

Dataset Lift

EARMGA GENAR QARGA

Basketball 1.34 1.09 2.01

Bodyfat 1.77 1.11 4.49

Bolts 1.73 1.60 9.10

Kinematics 1.00 1.38 5.77

Longley 2.79 2.46 2.82

Normal Body Temperature 1.02 0.99 2.78

Plastic 1.26 1.10 3.44

Pw Linear 1.00 1.57 2.04

Pollution 3.00 1.23 6.86

Pyramidines 2.23 2.24 6.78

Quake 1.01 1.00 2.03

School 1.24 1.62 3.50

Sleep 1.93 1.15 9.48

Stock price 1.08 1.64 2.49

Vineyar 1.29 1.27 2.52

1.58 1.43 4.41

Table 11 Average rankings of the algorithms.

Algorithm Ranking

GENAR 2.66

EMARGA 2.33

QARGA 1.00

Table 12 Results of the Friedman and Iman-Davenport tests with

a ¼ 0:05

Lift

Friedman Value

in v2

p ID Value

in FF

p

23.33 5.99 8.57 � 10�6 48.99 3.34 7.16 � 10�10

Table 13 Holm and Hochberg tests results with QARGA as control

algorithm

i Algorithm z p a=i ða ¼ 0:05Þ a=i ða ¼ 0:10Þ

2 GENAR 4.56 5.01 9 10-6 0.025 0.05

1 EMARGA 3.65 2.61 9 10-4 0.05 0.10

2078 M. Martı́nez-Ballesteros et al.

123



shows the adjusted p values for Bonferroni-Dunn (BD),

Holm and Hochberg tests. It can be appreciated that the

Holm and Hochberg tests show that QARGA is signifi-

cantly better than the others with the lowest confidence

level compared to the remaining tests ða ¼ 2:61� 10�4Þ.
Again, the three tests coincide in rejecting all hypotheses

for levels of significance a ¼ 0:05 and a ¼ 0:10, deter-

mining that QARGA is the best algorithm.

5.3.2 Results in synthetic time series

Once compared QARGA with other EA in public data-

sets—that were static and non-temporal-dependent—the

algorithm is assessed when applied to time series. For this

reason, two different types of synthetic time series were

generated, as described in Sect. 5.1.2.

Table 15 shows the rules obtained by an execution of

QARGA when multidimensional synthetic time series with

no disjunctions (see Table 3 for detailed data description)

were analyzed. Similar rules have been obtained by other

executions of QARGA.

From the ten discovered rules, the four first ones (rules

#0 to #3) highlight and are considered especially mean-

ingful insofar as they represent, exactly, the intervals used

in Table 3 to generate the time series itself. That is,

QARGA was able to precisely discover the rules that

model the synthetic time series generation.

It can also be observed that the support (Sup: column) in

these rules is 25%, which coincides with the preset support

when the time series were generated. Equally remarkable is

that the confidence (Conf : column) is 100% for all the four

rules. It is also noteworthy the precision of the intervals

found since most of the limits discovered by QARGA

coincide with those of the Table 3, which means a great

level of reliability in the rules. Finally, note that the lift is

much greater than one, in other words, such antecedents

and consequents are likely to appear together.

As for the six remaining rules (rules #4 to #9), they

correspond to rules with smaller support, confidence and

lift. This fact can be justified by taking into consideration

that when an IRL algorithm is applied, the search space is

constantly being decreased and, therefore, the obtained

rules cover less samples with less precision.

On the other hand, Table 16 shows the 12 most relevant

rules obtained by QARGA when synthetic time series with

disjunctions (see Table 4 for detailed data description)

were analyzed. To facilitate the analysis, they are listed

according to the interval to which the time variable –t

belongs to, as listed in Table 5.

In general terms, each rule in Table 16 represents one of

the expected rules listed in Table 5, except for some cases,

which are discussed now. Thus, rule #0 in Table 16 rep-

resents the expected rule #0 in Table 5. The support is

19%, a value very close to the expected one. In addition,

this rule has a 100% confidence.

When the time is in the interval ½26; 50�; there were two

possible expected conjunctions, #11 and #12. In this case,

rule #1 approximately represents #11 and rule #2 does

#12. Regarding the support, it is not significantly different

from the expected one. Finally, the confidence is nearly

100% for both of the rules.

Rules #4 and #5 identify rules with t 2 ½54; 75� and

correspond to conjunctions #21 and #22; respectively.

Again, the support is not very different from the expected

one and the confidence is 100% for all of them.

Four different conjunctions were expected—#31;

#32;#33 and #34—when t 2 ½76; 100�. Rule #8 identifies

Table 14 Adjusted p values when QARGA is compared to the

remaining algorithms

Algorithm Unadjusted p pBD pHolm pHoch

GENAR 5.01 � 10�6 1.00 � 10�5 1.00 � 10�5 1.00 � 10�5

EMARGA 2.61 � 10�4 5.21 � 10�4 2.61 � 10�4 2.61 � 10�4

Table 15 Rules found by QARGA for time series with no disjunctions

ID Rules Conf. (%) Lift Sup. (%) Amp. (%)

#0 X1 2 [1, 15] ^ X3 2 [60, 75] ¼) t 2 [1, 25] ^ X2 2 [7, 34] 100 4.0 25.0 20.0

#1 t 2 [26, 50] ^ X1 2 [5, 30] ¼) X2 2 [27, 40] ^ X3 2 [11, 29] 100 4.0 25.0 20.0

#2 X1 2 [45, 60] ^ X2 2 [55, 85] ^ X3 2 [20, 35] ¼) t 2 [51, 75] 100 4.0 25.0 21.0

#3 t 2 [76, 100] ^ X1 2 [75, 100] ^ X3 2 [40, 60] ¼) X2 2 [1, 18] 100 2.9 25.0 21.5

#4 t 2 [1, 11] ^ X1 2 [1, 14] ^ X2 2 [20, 29] ¼) X3 2 [66, 75] 100 5.9 7.0 10.3

#5 t 2 [82, 92] ^ X2 2 [8, 17] ¼) X1 2 [82, 92] ^ X3 2 [49, 55] 50.0 7.1 3.0 8.7

#6 t 2 [48, 58] ^ X1 2 [47, 57] ¼) X2 2 [72, 81] ^ X3 2 [20, 30] 50.0 10.0 4.0 9.6

#7 X1 2 [1, 12] ^ X2 2 [24, 34] ^ X3 2 [64, 75] ¼) t 2 [11, 21] 85.7 7.8 6.0 10.5

#8 X2 2 [3, 17] ^ X3 2 [41, 49] ¼) t 2 [82, 100] ^ X1 2 [84, 99] 75.0 4.7 9.0 13.8

#9 X1 2 [53, 62] ¼) t 2 [68, 78] ^ X2 2 [53, 61] ^ X3 2 [20, 26] 17.6 5.9 3.0 8.7
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conjunction #31 and rule #7 is approximately #32. In the

same fashion, rule #10 is related to #33 and rule #11 to

#34.

The remaining rules discovered relationships varying

among several conjunctions. For rule #6, note that the X2

time series has values ranging in an interval formed from

the union of rules #31 and #32. Last, rule #9 is a rule

resulting from the four possible conjunctions in t 2
½76; 100�; that is, it combines the intervals for both X1 and

X2. Therefore, it would be a rule shared by #31;#32;#33

and #34. In general, rules in this interval of time share a

support close to the expected one as well as a confidence

verging on 100% for most cases.

Finally, it can be concluded that all the rules discovered

by QARGA can be considered interesting since the lift is

high for all of them. Moreover, the amplitude of intervals is

moderate and intervals limits are very similar to those

initially set in Table 5.

5.3.3 Results in ozone time series

Now QARGA is applied to ozone time series and other

inter-dependant temporal variables. Table 17 shows the

support, confidence, number of records, average amplitude

and lift of the obtained rules by QARGA when the ozone is

imposed to be in the consequent. The climatological vari-

ables that most frequently appear are temperature, humid-

ity and hour of the day. Consequently, it can be concluded

that the other variables are not as correlated with ozone as

the aforementioned ones.

Some other interesting conclusions can be extracted

from these rules. Hence, when the temperature reaches

high values, the ozone concentration in the atmosphere

presents high values, even reaching 203 lg/m3. Neverthe-

less, when the temperature is relatively low, the concen-

tration of ozone falls to values around 116 lg/m3. That is,

there exists a perfect correlation between the ranges of the

temperature and the ozone. With reference to the humidity,

there exists an inversely proportional relationship to the

ozone. Thus, when examining the first rule, in contrast to

the temperature, when the humidity falls, the ozone raises,

and viceversa, as occurred in the fourth rule (rule #3).

From the remaining rules, it can also be observed that

the time slot is present in two rules. This fact is due to the

close association existing between the temperature and the

hour of the day and, possibly, to the traffic, whose density

varies along the day and typically generates high concen-

trations of ozone. Note that during the night and first hours

Table 16 Rules found by QARGA for time series with disjunctions

ID Rules Conf. (%) Lift Sup. (%) Amp. (%)

#0 X1 2 [20, 30] ^ X2 2 [61, 79] ¼) t 2 [1, 25] 100 4.00 19 17.33

#1 t 2 [28, 50] ^ X2 2 [47, 58] ¼) X1 2 [12, 20] 93.3 2.39 14 13.67

#2 t 2 [26, 46] ^ X1 2 [25, 31] ¼) X2 2 [41, 49] 100 2.38 7 11.33

#3 t 2 [32, 47] ^ X2 2 [46, 53] ¼) X1 2 [16, 22] 62.5 2.98 5 9.35

#4 t 2 [58, 75] ^ X2 2 [40, 50] ¼) X1 2 [4, 15] 100 3.23 13 12.67

#5 X1 2 [4, 14] ^ X2 2 [60, 70] ¼) t 2 [54, 72] 100 5.26 8 12.67

#6 t 2 [79, 95] ^ X1 2 [12, 18] ¼) X2 2 [39, 49] 85.7 1.82 6 10.62

#7 t 2 [76, 91] ^ X1 2 [15, 24] ¼) X2 2 [41, 50] 85.7 1.75 6 10.95

#8 t 2 [77, 95] ^ X1 2 [16, 22] ¼) X2 2 [31, 39] 100 33.33 3 10.62

#9 t 2 [76, 99] ^ X1 2 [18, 40] ¼) X2 2 [31, 50] 100 1.79 18 21.33

#10 X1 2 [28, 34] ^ X2 2 [36, 43] ¼) t 2 [83, 98] 60.0 4.29 3 9.35

#11 t 2 [76, 99] ^ X1 2 [30, 38] ¼) X2 2 [40, 50] 100 1.89 13 13.67

Table 17 Association rules found by QARGA with high confidence

ID Rule Sup. (%) Conf. (%) #r Ampl. Lift

#0 temp. 2 [32, 42] and hum. 2 [19, 41] and hour 2 [13, 19]

¼) O3 2 [104, 203]

14 84 213 34 2.27

#1 hour 2 [2, 11] ¼) O3 2 [16, 97] 37 90 557 45 1.64

#2 hour 2 [13, 22] ¼) O3 2 [88, 189] 35 84 522 55 1.67

#3 temp. 2 [16, 22] and hum. 2 [75, 90] ¼) O3 2 [22, 110] 16 100 234 36 1.43

#4 temp. 2 [18, 29] and speed 2 [0, 10] ¼) O3 2 [23, 116] 41 93 613 38 1.28

28.6 (	12.6) 90.2 (	6.7) 427.80 (±189.5) 41.6 (	8.6) 1.7 (	0.4)
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of the day, the ozone is relatively low, reaching values

similar to that of low temperatures. However, from midday

to the nightfall—the rushing hours—the amount of ozone

increases considerably, reaching values near to 200 lg/m3

as it happened with high temperatures.

Also note that in one rule the speed of the wind appears

indicating that when it is low the ozone also is. However,

this rule is not conclusive and the authors do not dare to

state that the speed of the wind is directly proportional to

the ozone.

With the aim of comparing the results and evaluating the

quality, the Apriori algorithm has been applied to these

time series. The most remarkable feature of this algorithm

is that is based on a previous or a priori knowledge of the

frequent itemsets in order to reduce the space of search

and, consequently, increase the efficiency. Besides, the

user has to establish the constraints for minimum support

and confidence. It is also worth mentioning that Apriori

does not work with real values directly and it performs a

previous discretization of all continuous variables.

Hence, Table 18 collects the results provided by Apriori

when discretizing the continuous variables with three

intervals. In this case, the temperature and the humidity

appear again but, by contrast, the hour of the day does not

seem to be an important variable. The speed and the

direction of the wind also appear in the antecedent.

It can also be observed that low temperatures also

involve low ozone concentrations, and viceversa, as it

happened with the rules shown in Table 17. With regard to

the humidity the same situation is reported: it is inversely

proportional to the ozone. However, when analyzing the

direction of the wind in some rules, the results are not

conclusive. Actually, for equal values of the direction,

different ranges of ozone are mined, which means that this

variable presents no proportional (neither direct nor

inverse) relationship with the ozone and, therefore, it does

not contribute with meaningful information. Finally, the

speed of the wind presents the same behavior shown in

Table 17, that is, low values involve low ozone

concentrations.

The comparison between Tables 17 and 18 reveals that

the support reached by QARGA is much greater in three

rules whereas two rules present slightly lower supports.

The confidence for the majority of the rules found by

QARGA overcomes 90%, even reaching 100% in the

fourth rule. This fact highlights the small errors committed

by QARGA, providing exact rules in the majority of cases.

Furthermore, the number of covered instances is higher

than the ones by Apriori due to the direct relation existing

with the support. The average amplitude for the rules

provided by QARGA is much smaller, ranging from 38 to

55, while the intervals found by Apriori varies from 32 to

98. The lift is very similar in QARGA and Aprori, and for

both algorithms it is greater than 1.

Last, Apriori has just found rules in which the values of

the ozone varied only in two of the three possible intervals

associated with the labels previously generated during the

discretization process. Furthermore, it is unable to find

rules with ozone concentrations higher than 183 lg/m3. On

the contrary, QARGA obtained rules for concentrations of

ozone higher than 200 lg/m3.

To sum up, from this kind of experimentation it can be

concluded that QARGA obtains better results compared

with Apriori, since support and confidence are higher and

amplitude is smaller, which involves less errors in rules.

Table 19 shows the rules obtained by QARGA when the

target is to find rules with the highest number of attributes,

the highest confidence and the smallest amplitude possible,

even if this fact may lead to lower supports. It can be

observed that the majority of rules have a large number of

attributes. The variables that most frequently appear,

therefore the most meaningful ones, are the temperature,

the humidity and the hour of day.

From the extracted rules, several conclusions can be

drawn. First, note that the selected rules are those that

present high concentrations of ozone in the consequent,

since this is the situation that really involves environmental

concerns. As with the first experimentation, a directly

proportional relation between the temperature and the

ozone has been discovered. In other words, when the

Table 18 Association rules found by Apriori (three intervals used for discretization)

ID Rule Sup. (%) Conf. (%) #r Ampl. Lift

#0 temp. 2 [16, 25] and hum. 2 [65, 91]

and speed 2 [0, 9] ¼) O3 2 [14, 99]

20 90 297 32 1.59

#1 temp. 2 [16, 25] and dir. 2 [120, 240]

and speed 2 [0, 9] ¼) O3 2 [14, 99]

16 85 239 56 1.49

#2 dir. 2 [240, 360] and speed 2 [0, 9] ¼) O3 2 [14, 99] 16 79 241 71 1.38

#3 hum. 2 [14, 40] and dir. 2 [120, 240] ¼) O3 2 [99, 183] 18 73 261 77 1.80

#4 temp. 2 [25, 35] and dir. 2 [120, 240] ¼) O3 2 [99, 183] 20 70 296 98 1.70

18.0 (	2.0) 79.4 (	8.3) 266.8 (	28.5) 66.8 (	24.6) 1.6 (	0.2)
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temperature reaches values of almost 40 
C the ozone level

raises up to values greater than 200 lg/m3.

Moreover, the humidity also presents an inversely pro-

portional relationship with the ozone. Thus, when it

reaches high values, the concentration of ozone is low, as it

can be determined from the observation of the second rule.

Alternatively, when the humidity increases, the ozone level

decreases, as listed in the remaining rules.

The hour of the day is also present in the majority of the

rules. The time slot is similar for all the rules since, as

discussed previously, ozone and the hour share a directly

proportional relationship. The peaks of ozone are reached

during the rushing hours (from midday to nightfall), that is,

during the hours in which the temperature is high and the

traffic is usually heavy.

In some rules, the speed of the wind appears as a crucial

factor. However, there does not exist such a higher corre-

lation with the ozone because greater speeds should have

be found in the fourth rule (in which the ozone presents the

highest concentration). By contrast, in the second rule, in

which the ozone is lower, the speed of the wind is slightly

superior.

The analysis of the direction of the wind reveals that it is

not a variable that determines the amount of ozone in the

atmosphere. However, when the direction is comprised in

an interval from 150
 and 200
; the concentration of ozone

increases.

Table 20 gathers the results obtained by Apriori when

data were discretized in ten intervals. The temperature is,

again, the main variable. However, it is worth pointing out

that no relevant rules were discovered in which the

humidity or the hour of the day appear.

One of the most remarkable feature of the extracted

rules by Apriori when discretizing with ten intervals is that

they all have only one attribute in the antecedent. This

situation highlights, once again, that rules provided by

QARGA enhance that of Apriori, since they are more

expressive and provide more information due to a greater

number of attributes in antecedents.

With respect to the temperature, two rules with different

antecedent but same consequent have been discovered.

Note that they could have been fused into one rule as the

consequent is the same. Besides, the obtained confidence is

quite low which leads to rules with considerably high

errors.

The case of the direction of the wind is similar to that of

the temperature. The third and fifth rules share the same

antecedent for the same direction and, however, the con-

sequent for both rules is different even when they could

have been fused into just one rule. The confidence hardly

reaches 30%, which leads to an almost null reliability.

The speed of the wind appears in one rule in which its

value is low and the ozone presents medium values.

However, the confidence is quite low.

Table 19 Association rules found by QARGA with high confidence

ID Rule Sup.

(%)

Conf.

(%)

#r Ampl. Lift

#0 temp. 2 [38, 42] and hum. 2 [25, 33] and hour 2 [15, 18] ¼) O3 2 [140, 206] 3 90 47 20 6.61

#1 temp. 2 [26, 33] and hum. 2 [29, 46] and dir. 2 [149, 231] and speed 2 [12, 20]

and hour 2 [15, 19] ¼) O3 2 [103, 160]

3 93 40 29 2.90

#2 temp. 2 [29, 37] and hum. 2 [21, 36] and dir. 2 [161, 187] and hour 2 [14, 19]

¼) O3 2 [109, 180]

5 83 70 25 2.83

#3 temp. 2 [34, 42] and hum. 2 [22, 32] and dir. 2 [152, 189] and speed 2 [9, 16]

and hour 2 [15, 17] ¼) O3 2 [134, 206]

2 87 33 23 4.99

#4 hum. 2 [22, 32] and hour 2 [13, 18] ¼) O3 2 [144, 198] 7 48 97 23 4.27

4.0

(	2.0)

80.2

(	18.4)

57.4

(	26.1)

24.0

(	3.3)

4.32

(	1.58)

Table 20 Association rules found by Apriori (ten intervals used for discretization)

ID Rule Sup. (%) Conf. (%) #r Ampl. Lift

#0 temp. 2 [27, 30] ¼) O3 2 [90, 115] 5 37 79 14 1.43

#1 temp. 2 [24, 27] ¼) O3 2 [90, 115] 6 33 85 14 1.43

#2 dir. 2 [144, 180] ¼) O3 2 [90, 115] 10 29 156 31 1.18

#3 speed 2 [6, 8] ¼) O3 2 [90, 115] 5 24 75 14 1.03

#4 dir. 2 [144, 180] ¼) O3 2 [115, 141] 6 16 88 31 1.27

6.4 (	2.1) 27.8 (	8.2) 96.6 (	33.6) 20.8 (	9.3) 1.27 (	0.17)
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The comparison of the Tables 19 and 20 leads to several

conclusions. As regards the attributes, QARGA always

obtains rules with greater number of them and, conse-

quently, the information brought by these rules is higher

than that of Apriori.

When taking into consideration the support, QARGA

presents low values since there are few instances in the

dataset with high ozone values. However, if the confidence

of the rules for both algorithms is compared, it can be

observed that QARGA has values even greater than 90%

while Apriori never overcomes 40%.

Unlike the lift values from the first kind of experimen-

tation, where the interest of the rules in QARGA and

Apriori was quite similar, it can be observed that, in this

case, the results of the lift are very different. Rules found

by QARGA present lift values between 3 and 6, while

Apriori never exceeds 1.50. This is an important result that

indicates that QARGA find more interesting rules than

Apriori does.

Another relevant remark is that Apriori discovers rules

with different intervals for the same variable in the ante-

cedent but equal consequents and viceversa. This fact never

occurs in QARGA.

The ozone levels obtained by Apriori never exceeds

140 lg/m3, while QARGA reached values greater than

200 lg/m3. This appreciation is of the utmost relevance,

since environment is really concerned by high levels of

ozone and, consequently, discovering rules with these

values of ozone is useless.

6 Conclusions

An evolutionary algorithm has been proposed in this work

to obtain QAR from time series. In order to evaluate its

performance, the approach has been applied to several

datasets and compared with the most recently published

results. Thus, a bank of public datasets retrieved from the

BUFA repository has been used to test the accuracy of the

algorithm. The algorithm has shown to be efficient when

mining synthetically generated multidimensional time

series. Also, the proposed methodology has successfully

obtained meaningful QAR from multidimensional real-

world time series. In particular, relevant dependencies

between the ozone concentration in the atmosphere and

other climatological-related time series have been found.
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