
On Catalytic P Systems with One Catalyst

Dragoş Sburlan

Faculty of Mathematics and Informatics
Ovidius University of Constanta, Romania
dsburlan@univ-ovidius.ro

Summary. In this paper we address the possibility of studying the computational ca-
pabilities of catalytic P systems with one catalyst by the means of iterated finite state
transducers. We also give a normal form for catalytic P systems.

1 Introduction

P systems are a computational model introduced by G. Păun in [4]. One of the basic
variant considered there was P systems with catalysts and priorities; these systems
where shown to be computationally universal. In [2], Sośık and Freund proved that
priorities among the rules can be discarded from the model without any loss of
computational power. Moreover, it was shown that for extended P systems only one
membrane and two catalysts are enough for reaching computational universality.
However, the computational power for P systems with only one catalyst was not
established. The present paper characterize these systems in terms of iterated finite
state transducers hence it converts an open problem from P system framework to
an open problem from string rewriting theory. Additionally, a normal form for
catalytic P systems is presented.

2 Preliminaries

We assume the reader is acquainted with the basic notions and notations from the
formal language theory (see [3] for more details). Here we only recall the definitions
and the results which are useful for the present work.

If FL is a family of languages, then NFL denotes the family of length sets of
languages in FL. We denote by REG, CF , REC, and RE the family of regular,
context-free, recursive, and recursively enumerable languages, respectively. It is
known that NREG = NCF (NREC (NRE.

284 D. Sburlan

2.1 Iterated Finite State Transducers

An iterated (finite state) sequential transducer (IFT) is a construct γ =
(K,V, q0, a0, F, P), where K is a finite set of states, V is a finite set of symbols
(the alphabet of γ), K ∩ V = ∅, q0 ∈ K is the initial state, a0 ∈ V is the starting
symbol, F ⊆ K is the set of final states, and P is a finite set of transition rules of
the form qa → xp, for q, p ∈ K, a ∈ V , and x ∈ V ∗.

For q, p ∈ K and u, v, x ∈ V ∗, a ∈ V , a direct transition step of γ is defined
as uqav ` uxpv if and only if qa → xp ∈ P . The reflexive and transitive closure
of the relation ` is denoted by `∗. In general, for α, β ∈ V ∗ we say that α derives
into β and we write α =⇒ β, if and only if q0α `∗ βp for some p ∈ K. By =⇒∗ we
denote the reflexive transitive closure of =⇒. If q0α `∗ βp such that p ∈ F , then
we write α =⇒f β.

The language generated by γ is L(γ) = {β ∈ V | a0 =⇒∗ α =⇒f

β, for some α ∈ V ∗}.
If for each pair (q, a) ∈ K×V , there is at most one transition rule qa ` xp ∈ P ,

then γ is called deterministic (otherwise, it is called nondeterministic). The family
of languages generated by nondeterministic IFTs with at most n ≥ 1 states is
denoted by IFTn. It is known from [1] that CF ⊂ IFT2 ⊆ IFT3 ⊆ IFT4 = RE.
Moreover, there are non-semilinear languages belonging to IFT2, and there are
non-recursive languages belonging to IFT3. Consequently, if we denote by NIFTn,
n ≥ 1, the family of length sets of languages from IFTn, then we have that
NREG = NCF (NIFT2 ⊆ NIFT3 ⊆ NIFT4 = NRE.

2.2 Membrane Systems

A catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ, w1, . . . , wm, R1, . . . , Rm, i0)

where
• O is an alphabet of objects;
• C ⊆ O is the set of catalysts;
• µ is a hierarchical tree structure of m ≥ 1 uniquely labelled membranes

(which delimit the regions of Π); typically, the set of labels is {1, . . . ,m};
• wi ∈ O∗, for 1 ≤ i ≤ m, are the multisets of objects initially present in the

m regions of µ;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules; these rules can be non-

cooperative a → v or catalytic ca → cv, where a ∈ O \ C, v ∈ ((O \ C) ×
{here, out, in})∗, and c ∈ C;

• i0 ∈ {1, . . . , m} is the label of the output region of Π.
A configuration of Π is a vector C = (α1, . . . , αm), where αi ∈ O∗, 1 ≤ i ≤ m,

is a multiset of objects present in the region i of Π. The vector C0 = (w1, . . . , wm)
is the initial configuration of Π. Starting from the initial configuration and always
applying in all membranes a maximal multiset of evolution rules in parallel, one

On Catalytic P Systems with One Catalyst 285

gets a sequence of consecutive configurations. By ⇒ is denoted the transition be-
tween two consecutive configurations. A sequence (finite or infinite) of transitions
starting from C0 represents a computation of Π. A computation of Π is a halting
one if no rules can be applied to the last configuration (the halting configuration).
The result of a halting computation is the number of objects from O contained
in the output region i0, in the halting configuration. A non-halting computation
yields no result. By collecting the results of all possible halting computations of a
given P system Π, one gets N(Π) – the set of all natural numbers generated by Π.
The family of all sets of numbers computed by catalytic P systems with at most m
membranes and k catalysts is denoted by NOPm(catk). The above definition can
be relaxed such that in a halting configuration one counts only the symbols from a
given alphabet Σ ⊆ O. In particular, one can consider Σ = O\C; correspondingly,
the family of all sets of numbers computed by such particular P systems will be
denoted by NO−CPm(catk).

It is known (see [7], for instance) that NO−CPm(catk) = NO−CP1(catk). More-
over, in [2] it is shown that NO−CP1(cat2) = NRE.

3 A Normal Form for P Systems with Catalysts

The following result states that any catalytic P system is equivalent with a catalytic
P system having a restriction on the form of the rules.

Theorem 1. For any P system Π with catalysts there exists an equivalent P sys-
tem Π with one region and whose rules are of the form a → α, with |α| ≤ 2, or
ca → cβ, with |β| ≤ 1.

Proof. As we already stated in Section 2.2, for any P system with catalysts and
n > 1 membranes one can construct an equivalent P system with the same number
of catalysts and one membrane. Consequently, without loss of generality, we might
assume that Π has only one membrane, that is Π = (O, C, []1, w1, R1, i0).

Let O \ C = {a1, a2, . . . , ap} and let m = max{|α| | a → α ∈ R1 or ca → cα ∈
R1}. In addition, assume for our convenience that the rules of Π are labeled in an
unique manner with numbers from the set {1, . . . , card(R1)}.

Then one can construct an equivalent P system Π = (O, C, []1, w1, R1, i0)
where

O = O ∪ {a(i,j) | 1 ≤ i ≤ p, 1 ≤ j ≤ m}
∪ {X(i,j) | i : a → αi ∈ R1, 1 ≤ j ≤ m− 2}.

The set R1 is defined as follows (for the simplicity of the explanations, we will
only consider the rules in R1 that are useful for simulating a non-cooperative rule
from R1; the rules corresponding to a catalytic rule are defined similarly, therefore
we will not present them here). Let i : a → aj1aj2 . . . ajk

∈ R1 and let m− k = t.
Then we add to R1 the rules:

286 D. Sburlan

a → X(i,1) (1)
X(i,1) → X(i,2)

. . .

X(i,t−1) → X(i,t)

X(i,t) → a(j1,k−1)X(i,t+1) (2)
X(i,t+1) → a(j2,k−2)X(i,t+2)

. . .

X(i,t+k−3) → a(jk−2,2)X(i,t+k−2)

X(i,t+k−2) → a(jk−1,1)a(jk,1)

a(i,m) → a(i,m−1) (3)
a(i,m−1) → a(i,m−2)

. . .

a(i,1) → ai

The proof is based on the existence of the universal global clock that governs the
functioning of the P system (the clock marks equal time units for the whole system,
hence synchronization is possible). While trying to simulate the application of an
arbitrary non-cooperative rule with several rules of type a → α, with |α| ≤ 2, one
has to accomplish two conditions. Firstly, one has to guarantee that all the objects
from α will eventually be produced. Secondly, these objects must be produced at
the “proper” time: all of them in the same moment (a local synchronization) and
according with the simulation of other rules that were started at the same time
with a → α (a global synchronization).

Consequently, the rules presented above are grouped according with their func-
tion in the simulation. The first group represents a set of “delaying” rules (they
are used while simulating the rules with a shorter right hand side in order to syn-
chronize their executions with those that have the longest right hand side). These
rules are “chained”, hence, staring from an object a, an object X(i,t) is produced
in exactly t computational steps. The second group is responsible for producing in
consecutive computational steps the objects a(j1,k−1), a(j2,k−2), . . . , a(jk−1,1), a(jk,1)

(in order of their production, the last two being produced in the same time). For
an object a(i,l) in this sequence, the index l represents the number of computa-
tional steps that Π will perform, starting from its production and until the object
ai is produced (see the third group of rules). Finally, one can remark that the
objects aj1 , aj2 , . . . , ajk

are produced in the same computational step by Π (while
simulating the rule i : a → aj1aj2 . . . ajk

∈ R1). Moreover, all the other rules from
Π that stated at the same moment as i : a → aj1aj2 . . . ajk

, are simulated in the
same manner by Π and their output is produced in the same computational step
as mentioned above. Consequently Π correctly simulates any computation of Π,
hence the theorem holds true.

On Catalytic P Systems with One Catalyst 287

4 Catalytic P Systems with One Catalyst and IFTs

In what follows we prove that the family of sets of numbers computed by catalytic
P systems with only one catalyst is included in the family of the length sets of the
languages generated by iterated finite state transducers with at most 3 states.

Theorem 2. NIFT3 ⊇ NOP1(cat1).

Proof. Given an arbitrary catalytic P system Π = (O, C,w1, R1, i1) such that C =
{c}, then one can construct an iterated finite transducer γ = (K, V, q0, a0, F, P)
which simulates Π as follows.

Without loss of generality we assume that the initial configuration of Π is
w1 = ca0.

Let w = a1a2 . . . am be a string. We denote by

Perm(w) = {ai1ai2 . . . aim
| 1 ≤ ij ≤ m, 1 ≤ j ≤ m, with ij 6= il, 1 ≤ j, l ≤ m}

the set of all permutations of string w, i.e., the set of all strings that can be
obtained from w by changing the order of symbols.

In addition, let us consider the following sets of objects from O:
X = {A ∈ O | (∃) A → α ∈ R1 and (6 ∃) cA → cβ ∈ R1};
Y = {A ∈ O | (∃) A → α ∈ R1 and cA → cβ ∈ R1};
Z = {A ∈ O | (∃) cA → cα ∈ R1 and (6 ∃) A → β ∈ R1};
T = {A ∈ O | (6 ∃) A → α ∈ R1 and (6 ∃) cA → cβ ∈ R1}.
One can remark that O = X ∪ Y ∪ Z ∪ T ∪ {c}.
Based on the above settings the IFT γ is defined as follows:

K = {q0, q1, q2},
V = O \ {c},
F = {q0},

and the set of rules P is constructed in the following manner:
• for any a ∈ T we add to P the rule q0a → aq0;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q0a → αq1, where

α ∈ Perm(α);
• for any a ∈ T we add to P the rule q1a → aq1;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q1a → αq1, where

α ∈ Perm(α);
• for any a ∈ Y ∪Z and ca → cα ∈ R1 we add to P the rules q1a → αq2, where

α ∈ Perm(α);
• for any a ∈ T ∪ Z we add to P the rule q2a → aq2;
• for any a ∈ X ∪ Y and a → α ∈ R1 we add to P the rules q2a → αq2, where

α ∈ Perm(α);

288 D. Sburlan

• for any a ∈ Y ∪Z and ca → cα ∈ R1 we add to P the rules q0a → αq2, where
α ∈ Perm(α).

The construction was designed such that each string processed by γ during its
computation will correspond to a configuration of Π. Moreover, one iteration of γ
simulates the maximal parallel applications of the rules of Π.

If the current string (say w) processed by the IFT is composed only by the
symbols from T , then γ remains in q0 ∈ F and stops, accepting the string. This
situation corresponds to the halting configuration of Π (that is, Π contains in its
region the multiset cw and no rules can be further applied).

In case w contains symbols form X ∪Y ∪Z, then γ starts the simulation of the
maximal parallel applications of the rules of Π. Since γ processes strings at each
iteration, then the simulation of Π has to accomplish the following task: all the
symbols which are the subject of a rule of Π have to be processed also by γ. Recall
that γ processes strings and in these strings there might be symbols from T (which
are not the subject of any rule) in any position. Consequently, one has be sure that
any symbol in a configuration of Π that is a subject of a rule (non-cooperative or
catalytic) has to have the opportunity to be rewritten in the corresponding string
processed by γ (by the corresponding rule). This is why, γ uses the rules qia → aqi

for qi ∈ Q, 1 ≤ i ≤ 3, and a ∈ T (that is, while processing the string, γ ”skips” all
the symbols that are not the subject of any rule).

In one iteration of γ one can apply at most once a rule corresponding to a
catalytic rule of Π (recall that the P system functioning semantics define such
behaviour). More precisely, assuming that w is the current processed string, we
have

• either γ is in state q0 and executes a rule of type q0a → αq2 for q1, q2 ∈ Q,
a ∈ Y ∪ Z, ca → cα ∈ R1, and α ∈ Perm(α). This situation occurs when γ
processes w = w1aw2, w1 ∈ T ∗, and w2 ∈ (X ∪ Y ∪ Z ∪ T)∗ (w has the prefix
w1 composed only by symbols from T , followed by the symbol a ∈ Y ∪ Z that
triggers the simulation of the catalytic rule; the symbols from w2 that belong
to X ∪ Y will trigger only the simulation of the non-cooperative rules).

• either γ is in state q1 and executes a rule of type q1a → αq2 for q1, q2 ∈
Q, a ∈ Y ∪ Z, ca → cα ∈ R1, and α ∈ Perm(α)). This situation occurs
when γ processes w = w1aw2, where w1 is described by the regular expression
T ∗(X|Y)(X|Y |T)∗, w2 ∈ (X ∪ Y ∪Z ∪ T)∗ (the symbols from w1 and w2 that
belong to X ∪Y will trigger only the simulation of the non-cooperative rules) .

One can also remark that if a configuration w of Π contains at least one
object a ∈ Z, then in the current computational step a catalytic rule will be
executed (because of the maximal parallel applications of the rules); in contrary,
if w does not contain any symbol a ∈ Z then it is not guaranteed that a catalytic
rule will be executed (even if w contains symbols from Y , then, because of the
nondeterminism, it might happen that all the rules selected for application are
non-cooperative). On the other hand, γ simulates Π by processing strings (hence
the order of symbols is precisely defined). The design of γ guarantees that, if

On Catalytic P Systems with One Catalyst 289

applicable, a rule corresponding to a catalytic rule of Π is executed at most once.
The only issue that could appear regards the presence of multiple symbols from
Y ∪Z in the current string processed by γ (in order to perform a correct simulation,
one has to be sure that any of these symbols has a ”chance” to be rewritten). This
is why for any rule a → α ∈ R1 or ca → cα ∈ R1, the IFT γ will use for the
simulation a set of rules of the type qa → pPerm(α).

Based on the above theorem, the following result holds true.

Corollary 1. If NIFT3 ⊂ NRE then NOP1(cat1) ⊂ NRE

5 Conclusions

In this paper we gave a normal-form theorem for catalytic P systems. We also
investigated the relation between P systems with one catalyst and iterated finite
transducers. This last topic is of a particular interest because it converts an open
problem from the P system framework to an open problem from the string rewrit-
ing theory. In addition, the simplicity of the construction gives hopes for solving
an open problem stated from the introduction of P systems.

Acknowledgements

The work of the author was supported by the CNCSIS IDEI-PCE grant, no.
551/2009, Romanian Ministry of Education, Research and Innovation.

References

1. Bordihn H., Fernau H., Holzer M., Manca V., Martin-Vide C., Iterated Sequential
Transducers as Language Generating Devices, Theoretical Computer Science, 369, 1
(2006), pp. 67–81.

2. Freund R., Kari L., Oswald M., Sosik P., Computationally Universal P Systems
Without Priorities: Two Catalysts Are Sufficient, Theoretical Computer Science, 330,
2 (2005), pp. 251–266.

3. Rozenberg G., Salomaa A., eds., Handbook of Formal Languages, 3 volumes, Springer-
Verlag, Berlin, 1997.

4. Păun G., Computing with Membranes: an Introduction. Bulletin EATCS, 67 (1999),
pp. 139–152.

5. Păun G., Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
6. Păun G., Rozenberg G., Salomaa A., eds., The Oxford Handbook of Membrane Com-

puting, Oxford University Press Inc., New York, 2010.
7. Sburlan D., Further Results on P Systems with Promoters/Inhibitors, International

Journal of Foundations of Computer Science, 17 (2006), pp. 205–221.

