
Dynamics of Randomly Constructed
Computational Systems

Miguel A. Peña1, Pierluigi Frisco2

1 Dpto. Inteligencia Artificial, Facultad de Informática
Universitad Politécnica de Madrid
Campus de Montegancedo, 28660 Madrid, Spain
m.pena@upm.es

2 School of Mathematical and Computer Sciences
Heriot-Watt University, EH14 4AS Edinburgh, UK
P.Frisco@hw.ac.uk

Summary. We studied Petri nets with five places constructed in a pseudo-random way:
their underlying net is composed of join and fork. We report initial results linking the
dynamical properties of these systems to the topology of their underlying net.

The obtained results can be easily related to the computational power of some ab-
stract models of computation.

1 Introduction

Recently [4, 5, 1, 7], several abstract models of computation operating with multi-
sets of objects have been related to Petri nets. This study let to define new ways to
prove the computational power of these abstract models of computations. More-
over, it also let a hierarchy of computational process to be defined. This hierarchy
is based on building blocks (small Petri nets used to construct more complex Petri
nets), the way the building blocks are combined, and the way the Petri net runs.

The results related to this hierarchy have been obtained using systems created
ad hoc: the Petri nets were engineered in specific ways so to be able to generate
specific languages. The languages generated by ‘pseudo-random’ Petri nets, remain
to be investigated. Here ‘random’ refers to the fact that Petri nets are created
composing building blocks in a random way, while ‘pseudo’ refers to the fact that
some limitations to this randomness or to the way the Petri nets runs, are imposed.
This direction of research was raised in [3] (suggestion for research 4).

In this paper we report our initial results on these investigations. The overall
aims of this research is to be able to predict the behaviour of a computing system
just looking at what has been called topology of information flow [6], that is, at
the way the several parts of the system interact.



236 M.A. Peña, P. Frisco

2 Basic Definitions

The model of Petri nets considered by us are known either as elementary net sys-
tems (EN systems), as 1-bounded place-transitions systems (1-bounded P/T sys-
tems), or safe Petri nets [8].

An elementary net system (or EN system) is a tuple N = (P, T, F, Cin), where:

i) (P, T, F ) is a net, that is:
1. P and T are sets with P ∩ T = ∅;
2. F ⊆ (P × T ) ∪ (T × P );
3. for every t ∈ T there exist p, q ∈ P such that (p, t), (t, q) ∈ F ;
4. for every t ∈ T and p, q,∈ P , if (p, t), (t, q) ∈ F , then p 6= q;

ii) Cin ⊆ P is the initial configuration (or initial marking).

Elements of P are called places (graphically represented with circles), elements
of T are called transitions (graphically represented with rectangles). We use the
common Petri net terminology and notation [8] with the exception of using the
term configuration instead of marking.

We consider maximal strategy as running mode (i.e., the way transitions fire): in
each configuration all transitions that can fire do so. Moreover, if in a configuration
there is a conflict (two different transitions with a not empty intersection of input
sets can fire), then all the transitions in the conflict fire. If after a firing a place
should receive more than one token (from the firing of two different transitions),
then only one token is assumed to be present in that place. This ensures that in
every configuration places have at most one token and that the behaviour (sequence
of configurations) of an EN system is deterministic.

This rather restrictive firing strategy (similar to the ones present in random
Boolean networks [2]) has been mainly dictated by efficiency during these initial
simulations. In section 5 we note that the firing strategy should be definitely
changed in order to obtain results of a more general use.

We considered EN systems composed of only two building blocks: join and fork
depicted in Figure 1.

join fork

Fig. 1. Building blocks: join and fork.



Dynamics of Randomly Constructed Computational Systems 237

Definition 1. Let x, y ∈ {join, fork} be building blocks and let t̄x and t̂y be the
transitions present in x and y respectively.

We say that y comes after x (or x is followed by y, or x comes before y or x
and y are in sequence) if t̄•x ∩ •t̂y 6= ∅ and •t̄x ∩ •t̂y = ∅. We say that x and y are
in parallel if •t̄x ∩ •t̂y 6= ∅ and t̄•x ∩ •t̂y = ∅.

We say that a net is composed of building blocks (it is composed of x) if it can
be defined by building blocks (it is defined by x) sharing places but not transitions.
So, for instance, to say that a net is composed of joins means that the only building
blocks present in the net are join.

3 The Simulator and Its Complexity

A computer program (in the following called simulator) able to create and run EN
systems composed of join and fork has been written and it can be downloaded
from http://www.macs.hw.ac.uk/~pier/download.html.

In the following j denotes the number of join, f denotes the number of forks
and p denotes the number of places in a Petri net.

The maximum number of join (or fork) that can be present in a Petri net with
p places is p(p−1)(p−2)

2 . Moreover, when the Petri net is connected, j + f ≥ p
2 .

Given the number of places, the number of Petri nets with j join and f forks
is

(p(p−1)(p−2)
2 )!

j(p(p−1)(p−2)
2 − j)!

∗ (p(p−1)(p−2)
2 )!

f(p(p−1)(p−2)
2 − f)!

This number is definitely high even if one considers that it includes isomorphic
nets. Due to this high number, we could only generate and run nets with 5 places.
This means that the number of join and fork in these nets ranged from 1 to 30.

For each different triple of p, j and f , only 1% of the possible nets has been
created and run for all its possible initial configurations.

The simulator created these nets in a random way.
The set of all possible configurations of such a net is called configuration space.

The dynamics of an EN system is such that it will start from its initial configuration
and it will reach an attractor. With attractor we define both a configuration from
which no firing is possible or a set of configurations that are cyclically repeated.
We name the configurations in the following way: With isolated configuration we
refer to a configuration which is not reachable from any configuration and from
which no transition is possible; with final configuration we refer to a configuration
from which no transition is possible. Clearly, any isolated configuration is also a
final configuration but a configuration can be final but not isolated.

The tests run on a computer with a single CPU of 2.4 GHz and with 1.5 GB of
800 MHz RAM. The simulation took 70 hours and the output files occupy 5 GB.

In Figure 2 a net and its configuration spaces are depicted. In this figure the
configuration with no tokens is not shown (and in the following we do not consider
this configuration). Each configuration in the configuration space is represented as



238 M.A. Peña, P. Frisco

a number in a circle. The number encodes the configuration of the EN system (as
a conversion from binary to decimal). For instance, the encoding of configuration
{0, 1, 0, 1, 1} (nodes 0 and 2 have no token while the remaining nodes have 1 token)
in the net depicted in Figure 2 is 11 (place 0 is the leftmost and place 4 is the
rightmost).

Fig. 2. A net and its configuration space

The attractors in Figure 2 are configurations 1, 2, 4, 5, 6, (11, 22) and 31,
where (11, 22) define a cycle (i.e., an attractor with more than one configuration)
in the configuration space. The configurations 1, 2, 5 and 6 are isolated (and
final). Configuration 31 is not isolated as a transition (to itself) indeed is possible.
Configurations 1, 2, 4, 5 and 6 are final.

4 Results

We addressed several questions during our study. The plotted answers to these
questions and brief comments are present in the following. The tables used to gen-
erate the plots can be downloaded from
http://www.macs.hw.ac.uk/~pier/cvPublications.html

How does the probability to have at least one cycle in the configuration space
depend on the number of join and fork?

We found that join and fork equally influence the presence of cycles in the
configuration space. The plot in Figure 3 shows that if the number of fork is
bigger than 9 or the number of join is bigger than 19, then it is certain that the
configuration space contains at least one cycle.

How does the number of not-isolated configurations depend on the number of
join and fork?



Dynamics of Randomly Constructed Computational Systems 239

Fig. 3. Probability to have at least one cycle in the configuration space as a function of
the number of join and fork

We found that the number of fork have a strong influence on the number
of not-isolated configurations decreasing them to 0 with only 5 forks are present
in the net. Also the increase of join tend to decrease the number of not-isolated
configurations, but not with a marked effect as the number of forks. This is clearly
shown by the plot in Figure 4.

Interestingly, the maximum number of not-isolated places is reached in nets
with only 2 joins.

Fig. 4. Number of not-isolated configurations as a function of the number of join and
fork

What is the minimum number of cycles present in the state space of Petri nets
as a function of join and fork?



240 M.A. Peña, P. Frisco

Also in this case the influence of join and fork is asymmetrical: a net can have
up to 18 join and still no cycle is present in the state space of the Petri net.
Differently, if the net has at least 11 fork, then the state space of the Petri net has
at least 1 cycle. This is shown by the plot in Figure 5.

Fig. 5. Probability of the Petri net to end up in a cycle as a function of the number of
join and fork

How many initial configurations will end up in a cycle depending on the number
of join and fork?

The fact that the state space contains at least a cycle does not imply that
all initial configurations will end up in in a cycle. It is confirmed that for high
numbers of join and fork the Petri net will certainly enter a cycle. This is shown
by the plot in Figure 6.

5 Final Remarks

A Petri net whose attractors are all final configurations can only generate or accept
finite languages. Our study proved that the presence of only join or many join and
a few forks let Petri nets have only final configurations as attractor. This result is
rather immediate: a join consumes tokens, so if a net has only join, then sooner
or later it will run out of tokens.

Thinks become more interesting when attractors with more than one place are
present. In this case the set of languages generated or accepted is infinite. The
kind of languages depends on the number of these attractors and their topology.
We did not study this.

As said in Section 1, these results can be easily translated to formal models of
computation operating with multisets of objects. Unfortunately, the firing strategy
adopted by us, does not find a counterpart in any such model. This is, for instance,
due to the fact that we allow one single token to be used in the firing of more than



Dynamics of Randomly Constructed Computational Systems 241

Fig. 6. Number of configurations that end up in a cycle as a function of the number of
join and fork

one transition. The translation of this feature in, for instance, P systems, means
that one single occurrence of an object can be used in the same configuration by
different rules.

For this reason one of our future direction of research will be to implement
firing strategies closer to the operational modes of existing formal models of com-
putation.

Acknowledgment

The work of Miguel A. Peña was supported by a grant for short stays in Spain
and abroad for the beneficiaries of official pre-doctoral programs for training re-
searchers, year 2009, from the Technical University of Madrid.

References

1. G. Păun, G. Rozenberg, and A. Salomaa, editors. The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

2. B. Drossel. Random boolean networks. http://arxiv.org/pdf/0706.3351.
3. P. Frisco. P systems and topology: some suggestions for research. Seventh Brain-

storming Week on Membrane Computing, 2009, pp. 123-132, Universidad de Sevilla,
Technical report num. 1/2009, volume 1.

4. P. Frisco. P systems, Petri nets, and Program machines. In R. Freund, G. Lojka,
M. Oswald, and G. Păun, editors, Membrane Computing. 6th International Workshop,
WMC 2005, Vienna, Austria, July 18-21, 2005, Revised Selected and Invited Papers,
volume 3850 of Lecture Notes in Computer Science, pages 209–223. Springer-Verlag,
Berlin, Heidelberg, New York, 2006.



242 M.A. Peña, P. Frisco

5. P. Frisco. Computing with Cells. Advances in Membrane Computing. Oxford Univer-
sity Press, 2009.

6. P. Frisco. Conformon P systems and topology of information flow. In G. Păun, editor,
Membrane Computing. 10th International Workshop, WMC 2009, Curtea de Arges,
Romania, August 24-27, 2009, Revised Selected and Invited Papers, volume 5957 of
Lecture Notes in Computer Science, pages 30–53. Springer-Verlag, Berlin, Heidelberg,
New York, 2009.

7. Z. Qi, J. You, and H. Mao. P systems and petri nets. volume 2933 of Lecture Notes
in Computer Science, pages 286–303. Springer-Verlag, Berlin, Heidelberg, New York,
2004.

8. G. Rozenberg and J. Engelfriet. Elementary net systems, volume 1491 of Lecture Notes
in Computer Science, pages 12–121. Springer-Verlag, Berlin, Heidelberg, New York,
1998.


