
About the Efficiency of Spiking Neural P Systems

Jun Wang1, Tseren-Onolt Ishdorj2, Linqiang Pan1,3

1 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
junwangjf@gmail.com, lqpan@mail.hust.edu.cn

2 Computational Biomodelling Laboratory
Åbo Akademi University
Department of Information Technologies
20520 Turku, Finland
tishdorj@abo.fi

3 Research Group on Natural Computing
Department of CS and AI, University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
Institute of Mathematics of the Romanian Academy

Summary. Spiking neural P systems were proved to be Turing complete as function
computing or number generating devices. Moreover, it has been considered in several
papers that spiking neural P systems are also computationally efficient devices working
in a non-deterministic way or with exponential pre-computed resources. In this paper,
neuron budding rules are introduced in the framework of spiking neural P systems, which
is biologically inspired by the growth of dendritic tree of neuron. Using neuron budding
rules in SN P systems is a way to trade space for time to solve computational intractable
problems. The approach is examined here with a deterministic and polynomial time
solution to sat problem without using exponential pre-computed resources.

1 Introduction

Computational efficiency of spiking neural P systems (in short, SN P systems) has
been investigated in a series of works [1, 6, 8, 9, 10], recently. In the framework of
SN P systems, most of the solutions to computationally hard problems are based
on non-determinism [9, 10, 11] or exponential pre-computed resources [1, 6, 8, 7].
The present paper proposes a rather different way to address this issue in a sense
that no pre-computed resource is used but it is computed by a SN P system.

It has been claimed in [11] that an SN P system of polynomial size cannot
solve in a deterministic way in a polynomial time an NP-complete problem (unless
P=NP). Hence, under the assumption that P 6= NP, efficient solutions to NP-
complete problems cannot be obtained without introducing features which enhance

236 J. Wang, T.-O. Ishdorj, L. Pan

the efficiency (pre-computed resources, ways to exponentially grow the workspace
during the computation, non-determinism, and so on).

A possibility of using spiking neural P systems for solving computationally
hard problems, under the assumption that some (possibly exponentially large)
pre-computed resources are given in advance has been presented in [6]. Specially,
in [6], a uniform family of spiking neural P systems was proposed which can be
used to address the NP-complete problems, in particular, to solve all the instances
of sat which can be built using n Boolean variables and m clauses, in a time which
is quadratic in n and linear in m.

In the present paper, we continue the study considered in [6] and particularly
focus on a possible way to construct an SN P system such that the system can
compute the necessary resources (exponentially large work space) to be used in
advance by itself. For this purpose, we extend the SN P systems [6] by introducing
neuron budding rules. We show that the SN P systems with budding rules can (pre-
)compute the exponential work space in polynomial time with respect to the size
of the instances of the problem we want to solve, however, the problem is solved
too by the same system. All the systems we will propose work in a deterministic

way.
The biological motivation of the mechanism for expanding the work space (net

structure) of SN P systems by introducing neuron budding comes from the growth
of dendritic tree of neural cells [15]. The brain is made up of about 100 billion
cells. Almost all brain cells are formed before birth. Dendrites (from Greek, tree)
are the branched projections of a neuron. The point at which the dendrites from
one cell contact the dendrites from another cell is where the miracle of information
transfer (communication) occurs. Brain cells can grow as many as 1 million bil-

lion dendrite connections – a universe of touch points. The greater the number of
dendrites, the more information that can be processed. Dendrites grow as a result
of stimulation from and interaction with the environment. With limited stimula-
tion there is limited growth. With no stimulation, dendrites actually retreat and
disappear. These microscope photographs illustrated in Figure 1 show actual den-
drite development. Dendrites begin to emerge from a single neuron (brain cell)
developing into a cluster of touch points seeking to connect with dendrites from
other cells.

In the framework of SN P systems, the dendrite connection points are consid-
ered as abstract neurons and the branches of dendrite tree are consider as abstract
synapses. The new connection between dendrites from two different neuron cells is
understood as new created synapses. In this way, new neurons and synapses can
be produced during the growth of dendrite tree.

The formal definition of neuron budding rule and its semantics will be given
in Section 2.

Efficiency of Spiking Neural P Systems 237

Fig. 1. Growing neuron: a. dendrites begin to emerge from a single neuron, b. developed
into a cluster of touch points; c. Ramon y Cajal, Santiago. Classical drawing: Purkinje
cell; d. newborn neuron dendrites, e. 3 months later. Photos from Tag Toys [15]

2 SN P systems with neuron budding rules

A spiking neural P system with neuron budding of (initial) degree m ≥ 1 is a
construct of the form

Π = (O,Σ,H, syn,R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {σ1, σ2, . . . , σm} is a finite set of initial neurons;
3. H is a finite set of labels for neurons;
4. syn ⊆ H × H is a finite set of synapses, with (i, i) 6∈ syn for i ∈ H;
5. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also called spiking) rule [E/ac → ap; d]
i
, where i ∈ H, E

is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction
c ≥ p;

(2) neuron budding rule x[]
i
→ y[]

j
, where x ∈ {(k, i), (i, k), λ}, y ∈

{(i, j), (j, i)}, i, j, k ∈ H, i 6= k, i 6= j.
6. in, out ∈ H indicate the input and the output neurons of Π.

The way of presentation of SN P system is here slightly different from the
usual definition present in the literature, where the neurons presented initially in
the system are explicitly listed as σi = (ni, Ri), 1 ≤ i ≤ m and Ri are the rules

238 J. Wang, T.-O. Ishdorj, L. Pan

associated with neuron with label i. In what follows we will refer to neuron with
label i ∈ H also denoting it with σi.

If an extended firing rule [E/ac → ap; d]
i

has E = ac, then we will write it in
the simplified form [ac → ap; d]

i
; similarly, if a rule [E/ac → ap; d]

i
has d = 0,

then we can simply write it as [E/ac → ap]
i
; hence, if a rule [E/ac → ap; d]

i
has

E = ac and d = 0, then we can write [ac → ap]
i
. A rule [E/ac → ap]

i
with p = 0

is written in the form [E/ac → λ]
i

and is called extended forgetting rule. Rules of
the types [E/ac → a; d]

i
and [ac → λ]

i
are said to be standard.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and it can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

If a neuron σi has only synapse x where x ∈ {(i, k), (k, i), λ}, i 6= k, then rule
x[]

i
→ y[]

j
is enabled and can be applied, where y ∈ {(i, j), (j, i)}. The synapse

x describes the interaction environment of neuron σi with another neuron. As a
result of the rule application, a new neuron σj and a synapse y are established
provided that they do not exist already; if a neuron with label j does already exist
in the system but no synapse of type y exists, then only the synaptic connection y
between the neurons σi and σj is established, no new neuron with label j is budded.
We stress here that the application of budding rules depends on the environment
of the associated neuron, instead of the spikes contained in the associated neuron;
a budding rule can be applied only if the associated neuron has the environment
exactly as the rule described; in other words, even if the environment has a proper
sub-environment that enables a budding rule, but the whole environment does not
enables the budding rule, then the rule cannot be applied. The rules of such type
are applied in a maximal parallel way: if the environment of neuron σi enables
several budding rules, then all these rules are applied; as a result, several new
neurons and synapses are produced (which corresponds to have several branches at

Efficiency of Spiking Neural P Systems 239

a touch point in the dendrite tree). Note that the way of using neuron budding rules
is different with the usual way in P systems with cell division or cell creation, where
at most one rule division rule or creation rules can be applied to one membrane
or one object, respectively.

In each time unit, if a neuron σi can use one of its rules, then a rule from
R must be used. If several spiking rules are enabled in neuron σi, then only one
of them is chosen non-deterministically. If the environment of neuron σi enables
several budding rules, then all these rules are applied. If both spiking rules and
budding rules are enabled in the same step, then one type of rules is chosen non-
deterministically. When a spiking rule is used, the state of neuron σi (open or
closed) depends on the delay d. When a neuron budding rule is applied, at this
step the associated neuron is closed, it cannot receive spikes. In the next step, the
neurons obtained by budding will be open and can receive spikes.

The configuration of the system is described by the topology structure of the
system, the number of spikes associated with each neuron, and the state of each
neuron (open or closed). Using the rules as described above, one can define tran-

sitions among configurations. Any sequence of transitions starting in the initial
configuration is called a computation. A computation halts if it reaches a configu-
ration where all neurons are open and no rule can be used.

In the following, we give an example to make the usage of budding rules trans-
parent, where neither spike nor spiking rule is of interest.
An example. The system Π1 has initial topological structure shown in Fig-
ure 2(a), and the budding rules (1, 3)[]3 → (3, 4)[]4, (1, 3)[]3 → (3, 5)[]5,
(2, 1)[]2 → (6, 2)[]6, (3, 4)[]4 → (4, 7)[]7 and (6, 2)[]6 → (6, 5)[]5.

In the initial topological structure, neuron σ3 has two synapses (1, 3) and (2, 1),
and no other synapses are associated with it; as the environment of neuron σ3

enables both rules (1, 3)[]
3
→ (3, 4)[]

4
and (1, 3)[]

3
→ (3, 5)[]

5
, the rules are

applied in the maximal parallel application manner. As a result, two new neurons
σ4 and σ5, and two synapses (3, 4) and (3, 5) are produced. At the same time,
the rule (2, 1)[]

2
→ (6, 2)[]

6
is applied to neuron σ2 with a synapse (2, 1), thus,

neuron σ6 and synapse (6, 2) are produced. The structure is shown in 2(b) after
step 1.

At the second step, the rules (1, 3)[]
3
→ (3, 4)[]

4
and (1, 3)[]

3
→ (3, 5)[]

5
cannot apply again as the two newly created synapses (3, 4) and (3, 5) going
out from neuron σ3 have changed the environment of it. Similarly, the rule
(2, 1)[]

2
→ (6, 2)[]

6
cannot be used again. As neuron σ4 has only synapse (3, 4),

its environment enables the rule (3, 4)[]4 → (4, 7)[]7 to be applied to it, then
a new neuron σ7 and a synapse (4, 7) are produced. Neuron σ6 has only synapse
(6, 2), then rule (6, 2)[]

6
→ (6, 5)[]

5
is enabled and applied. Since a neuron with

label 5 already exist, no new neuron with label 5 is budded instead, a synapse
(6, 5) to neuron σ5 from neuron σ6 is established, this is the principle of neuron
budding rules. The corresponding structure is shown in Figure 2(c). Now no rule
is enabled by any neuron interaction environment, thus the system halts.

240 J. Wang, T.-O. Ishdorj, L. Pan

Fig. 2. Structure transition of SN P system Π1

3 Brief of pre-computed SN P systems solving sat

As we mentioned in Section 1, a way to solve NP hard problems by SN P systems
is to assume an exponential working space has been pre-computed in advance,
based on that given work space a family of SN P systems solves all the possible
instances of the problem in polynomial time, [6].

Let us recall here the basic description of sat (satisfiability) problem, a well
know NP-complete problem. An instance of sat is a propositional formula γn =
C1 ∧ C2 ∧ · · · ∧ Cm, expressed in the conjunctive normal form as a conjunction of
m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. An assignment of the variables x1, x2, . . . , xn is a mapping
a : X → {0, 1} that associates to each variable a truth value. The number of all
possible assignments to the variables of X is 2n. We say that an assignment satisfies

the clause C if, assigned the truth values to all the variables which occur in C, the
evaluation of C gives 1 (true) as a result.

Let us denote by sat(n,m) the set of instances of sat which have n variables
and m clauses. In [6], a uniform family {ΠSAT (〈n,m〉)}n,m∈N of SN P systems was
built such that for all n,m ∈ N the system ΠSAT (〈n,m〉) solves all the instances
of sat(n,m) in a number of steps which is quadratic in n and linear in m.

Let us first briefly summarize here the overview of the considered system
ΠSAT (〈n,m〉) from [6], and its structure and functioning that solves all the possi-
ble instances of sat(n,m).

The system structure is composed by n + 5 layers, see Figure 3. The first layer
(numbered by 0) is composed by a single input neuron, that is used to insert the
representation of the instance γn ∈ sat(n,m) to be solved. Note that layer 1, as
well as the subsequent n − 1 layers, is composed by a sequence of n neurons, so
that the layer contains the representation of one clause of the instance. In layer n,
we have got 2n copies of the subsystem; each subsystem contained in this layer is
bijectively associated to one possible assignment to variables x1, x2, . . . , xn. Sim-
ply say, the neurons in a subsystem are two types: f and t; the types indicate that
the corresponding Boolean variable is assigned with the Boolean values t(rue) or
f(alse), respectively. However, the all subsystems of layer n are injectively distin-

Efficiency of Spiking Neural P Systems 241

Fig. 3. SN P system structure which solves sat(m,n). From [6].

guished from each other with respect to the all possible different truth assignments
for variables x1, x2, . . . , xn represented by each subsystem. The subsystems that
occur in layer n together with the so called generator have a very specific functions
such that all possible assignments are tested in here in parallel against the clause.
The assignment is performed by sending 3 spikes to all the neurons labelled with t,
and 4 spikes to all the neurons labelled with f from the generator. This means that
the generator have three synapses going to neurons t and four synapses towards
neurons f .

Those assignments that satisfy the clause produce a (single) spike in the corre-
sponding neuron 2 (that occurs in the same row, in layer n+2), which is accumu-
lated in the associated neuron 3, that operates like a counter. When the first clause
of γn has been processed, the second takes place in the subsystems in layer n in n
steps, and all possible assignments are tested, etc. When all the m clauses of γn

have been processed, neurons 3 in layer n + 3 contain each the number of clauses
which are satisfied by the corresponding assignment. The neurons that contain m
spikes fire, sending one spike to neuron out, thus signalling that their correspond-
ing assignment satisfies all the clauses of the instance. Neuron out operates like an
or gate: it fires if and only if it contains at least one spike, that is, if and only if
at least one of the assignments satisfies all the clauses of γn.

242 J. Wang, T.-O. Ishdorj, L. Pan

In the next section, in particular, we aim to show the fact that the assumed pre-
computed work space used in [6] to solve SAT can be pre-computed practically in
advance in polynomial time by SN P systems with budding rules. Then, a solution
to SAT problem is given by the systems with already pre-computed work space.

4 Uniform solution to sat by (dendritic) SN P systems

Our SN P system with budding rules is composed of two subsequent subsystems:
construction of a SN P system structure which meant to solve sat problem uni-
formly and the SN P systems family, [6], which solves the sat problem efficiently
– for the sake of simplicity, we avoid the neuron budding and the spike firing rules
are used at the same time in each subsystem.

Π = (O,Σ,H, syn,R, soma, out)

where:

1. O = {a} is the singleton alphabet;
2. H is a finite set of labels for neurons,

H ⊇ H0 = {soma, out, e0, e1, e2, e3, b1, b2, b3, c, s,+,−} is the labels for neu-
rons initially given;

3. Σ = {σi | i ∈ H0} is the set of initial neurons;
4. syn ⊆ H × H is a finite set of synapses, with (i, i) /∈ syn for i ∈ H),

syn ⊇ syn0 = {(e, ei) | 0 ≤ i ≤ 3, e ∈ {+,−}} ∪ {(e0, bi) | 1 ≤ i ≤ 3} ∪
{(b3, c), (s,+), (+,−), (−,+), λ} is the set of synapses initially in use;

5. R is a set of neuron budding and extended spiking rules specified as follows.

Fig. 4. The initial topological structure (new born dendrite) of the system Π: soma and
out neurons, generator.

Efficiency of Spiking Neural P Systems 243

Constructing the system structure

The system initially contains an input neuron σsoma, an output neuron σout, and
a sub-structure so-called generator block G composed of the set of neurons Σ
and the set of synapses syn0, |Σ| = |syn0| = 13, the corresponding topological
structure is illustrated in Figure 4.

The generation mechanism is governed by only neuron budding rules and con-
trolled by the labels of budding neurons and the created synapses. The labels of
each neuron in a subsystem in layer n encodes an associated truth assignment.

The system construction algorithm consists of two main parts:
A. To generate the dendritic-tree sub-structure (the layers 0 – n in Figure 3,

exponentially large in n) and the truth assignments for n Boolean variables. The
process starts from the initial neuron σsoma (the root node).

B. To complete the network structure. The subsystems in nth layer of the
system establish connections to the generator block according to the truth assign-
ments represented in those subsystems, and they are expanded by further three
layers, finally converged to the output neuron σout.

A. The dendritic-tree generation process, controlled by the labels of neurons
as well as the synapses, starts from the initial neuron σsoma (cell body). It is
noteworthy that since the truth assignments associated with the subsystems in nth
layer are encoded in the labels of those neurons compose each subsystem, the truth
assignments are being generated while the dendritic-tree has been constructed.

The label of a neuron σc is a sequence of the form

c = (k, j, x
(p)
k) = (k, j, xk(1) = p) = (k, j, p, xk2, . . . , xkk),

p ∈ {t, f}, where the first pair (k, j) indicates the location of the neuron on the
dendritic-tree: k is the layer number, j is the place where the neuron is in its

subsystem, the subsequence x
(p)
k represents a string of length k formed by Boolean

values t and f being generated. Whereas p in x
(p)
k indicates that the first entry

of the subsequence is exactly p – which is later importantly used in the budding
rules to distinguish the being generated truth assignments from a same neuron.
Moreover, we stress again that the labels of neurons of a chain of length k in a layer
k represents a truth-assignment v of length k, precisely, v is a sequence formed by
xk(j), 1 ≤ j ≤ k, of the neuron labels c = (k, j, xk) of a chain. However, hence each
chain or subsystem of a layer structure is a separate unit and associates with a truth
assignment, all the truth assignments represented in a layer are distinguishable
from each other. In other words, the truth assignments are encoded in both the
labels of neurons of the chains and its layer structure of composing units too. We
do not care which assignment is associated with which subsystem of the layer.

In this phase of computation three types of budding rules are performed for
the role: budding rules of type a0) applied to the neuron σsoma which initiates the
generation of the structure; the dendritic-tree structure is constructed from the
layer 0 towards the layer n, for each layer two types of rules such as a1) n − 1
times and a2) once, are alternated, total n × n steps needed to complete.

244 J. Wang, T.-O. Ishdorj, L. Pan

a0) []
csoma

→ (csoma, c(1,1,t))[]
c(1,1,t)

,

[]
csoma

→ (csoma, c(1,1,f))[]
c(1,1,f)

,

where (csoma, c(1,1,t)), (csoma, c(1,1,f)) ∈ syn.
The initial neuron σcsoma

buds two new neurons as the rules a0) apply to
it simultaneously. The newly produced neurons are: σc(1,1,t)

with a synapse
(csoma, c(1,1,t)) coming from the father neuron and σc(1,1,f)

connected with the
father neuron by a synapse (csoma, c(1,1,f)), respectively. Where the symbols
t and f in the neuron labels indicate truth values t(rue) and f(alse), respec-
tively, hence the two truth assignments (t) and (f) of length 1 for a single
Boolean variable y1 are formed. Note that the left hand side of each rule a0)
(where λ ∈ syn0 is omitted) requires its interaction environment is empty i.e
no synapse exists connected to the neuron σcsoma

. Once the rules have applied,
the interaction environment of the neuron σcsoma

has been evolved having two
new synapses going out are created, which makes those rules are not applicable
to this neuron anymore. Thus, the base of the first layer of the dendritic-tree
has been established, at the first step of the computation.
An almost complete system structure for sat(2,m) is depicted in Figure 5,
which is worth to follow during the construction.
To complete the established layer 1 (in general, i, 1 ≤ i ≤ n), the rules of type
a1) generate the 2 (in general 2i number of) subsystems or the chains of n
neurons.

a1) (c
(k,j−1,x

(p)
k

)
, c

(k,j,x
(p)
k

)
)[]

c
(k,j,x

(p)
k

)

→ (c
(k,j,x

(p)
k

)
, c

(k,j+1,x
(p)
k

)
)[]

c
(k,j+1,x

(p)
k

)

,

p ∈ {t, f}, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n, c
(k,0,x

(p)
k

)
= c(k−1,n,xk−1), x

(p)
k =

(p, xk−1) ∈ {t, f}k.
The chains composed of n neurons in a layer k are generated by iterative ap-
plications of the rules of type a1) in n − 1 steps. This rule can be applied in
a neuron of type σc

(k,j,x
(p)
k

)
, 1 ≤ j ≤ n − 1, when its interaction environment

is provided in which exists a single synapse (c
(k,j−1,x

(p)
k

)
, c

(k,j,x
(p)
k

)
) coming to

the neuron. Then each rule buds a single neuron σc
(k,j+1,x

(p)
k

)
with a synap-

tic connection (c
(k,j,x

(p)
k

)
, c

(k,j+1,x
(p)
k

)
), where the second entry (j + 1) of the

neuron label differs from the father neuron as its corresponding label entry
as (j), otherwise the rest of the labeling sequence is inherited from the father
neuron’s label; xk is a truth assignment of length k over {t, f}. The newly cre-
ated synapse changes the interaction environment of the father neuron, which
prevents another application of the rule.
As soon as the last neurons, whose second entry of the label is n, of the layer
are produced, the next two types of rules are enabled to apply to those neurons
as follows.

Efficiency of Spiking Neural P Systems 245

a2) (c
(k,n−1,x

(p)
k

)
, c

(k,n,x
(p)
k

)
)[]

c
(k,n,x

(p)
k

)

→ (c
(k,n,x

(p)
k

)
, c

(k+1,1,t,x
(p)
k

)
)[]

c
(k+1,1,t,x

(p)
k

)

,

(c
(k,n−1,x

(p)
k

)
, c

(k,n,x
(p)
k

)
)[]

c
(k,n,x

(p)
k

)

→ (c
(k,n,x

(p)
k

)
, c

(k+1,1,f,x
(p)
k

)
)[]

c
(k+1,1,f,x

(p)
k

)

,

p ∈ t, f , and 1 ≤ k ≤ n − 1.
Those two rules of type a2) apply simultaneously to each last neuron of type
σc

(k,n,x
(p)
k

)
of each chain in the current layer k, the interaction environments

must satisfy the rule condition. As a result, each neuron buds two new neurons
with respective synapses. The next layer of the system is thus established.
Hence the interaction environment of each father neuron extended by two
new synapses, none of these rules is possible to apply again to those neurons.
We shall look at the labels of newly produced pairs of type σc

(k+1,1,t,x
(p)
k

)
and

σc
(k+1,1,f,x

(p)
k

)
, the labels are formed as follows: first of all the pair (k + 1, 1)

corresponds to the neuron location where k+1 indicates the new layer number
while 1 says the neuron is the very first one in its corresponding chain of length

n in the new layer; the rest of the labeling sequence as (t, x
(p)
k) or (f, x

(p)
k)

represents a new truth assignment for Boolean variables x1, x2, . . . , xk+1, where
the newly inserted symbol t or f associates with a truth value t(rue) or f(alse),

respectively, while x
(p)
k is an heritage from the father neuron. Thus, all the

possible 2k+1 different truth assignments are generated in layer k + 1.
The truth assignment generation steps for two Boolean variables y1, y2 can be
observed as described in Figure 5.

The rules of type a1) are enabled in turn to complete the newly established layer
by continued generation of the chains of length n.

By the alternated applications of the rules of types a1) (n − 1 times) and a2)
(once), in n2 steps the layers from 0 to n are, the dendritic-tree, constructed by
means an exponential work space and all the truth assignments of length n are
generated.

Now, we come to the part B of the algorithm.
B. The pre-computation to construct the SN P system structure continues until

it converges to the output neuron in a further few steps. The main function of this
part of the algorithm is to design the substructure which is devoted to the test of
the satisfiability of truth assignments against the clauses and to the exploration
of the possibility whether any solution to the clauses of the propositional formula
exists.

The very first task in part B is to connect the layer n to the generator block
appropriately according to the truth assignments formed in this layer. We recall
here that, in layer n, there are 2n number of subsystems each one is composed of a
sequence of n neurons (chains). However, each subsystem injectively corresponds
to a different truth assignment of length n.

More precisely, taking the label of a neuron σc(n,j,xn)
in layer n, where the

subsequence xn = (xn1, xn2, . . . , xnn) ∈ {t, f}n represents a truth assignment.
We associate jth entry of xn with the jth neuron of considering subsystem, thus,

246 J. Wang, T.-O. Ishdorj, L. Pan

Fig. 5. An almost complete structure of Π system for sat(2, m) (maturated dendrite
tree). The neuron budding rules used in each computation step are indicated by their
labels in the corresponding neurons, while the spiking rules are presented too.

each neuron is indicated by an abstract triple (n, j, xn(j)), where 1 ≤ j ≤ n, and
associated with a truth value xnj . This way, a truth assignment of length n is
represented by the n neurons (labels) of a subsystem.

For instance, in a case n = 2 as described in Figure 5, 22 = 4 different truth
assignments of length 2 have been generated for two Boolean variables y1 and y2

and each one is associated with a subsystem of layer n = 2. Technically, the first
subsystem is composed of two neurons with labels c(2,1,f,t) and c(2,2,f,t), respec-
tively. Whereas the former one associates with Boolean t(rue) value as x2 = (f, t)
and x2(1) = f , while the later one with f(alse) value as x2(2) = t, and then al-
together forms an assignment (f, t); the case with other subsystems are the same
where (t, t), (f, f), (t, f), respectively, are generated; one can see that the four
truth assignments are well distinguished from each other by the layer structure of
four subsystems (chains).

Efficiency of Spiking Neural P Systems 247

The next synapse creation (budding) rules establish three synapses coming to
the neurons which associate with a Boolean t(rue) value while four synapses to
the neurons associated with f(alse) value, from the generator block.

b1) (c(n,j−1,xn), c(n,j,xn))[]
c(n,j,xn(j)=p)

→ (c(n,j,xn(j)=p), cei
)[]

ei
,

1 ≤ j ≤ n, p ∈ {t, f} and s ≤ i ≤ 3, where s = 1 if p = t, s = 0 if p = f ,
c(n,0,xn) = c(n−1,n,xn).
Those neurons σc(n,j,xn(j)=t)

whose interaction environment satisfies the con-
dition of the rules b1) create three synapses coming from the neurons σcei

,
1 ≤ i ≤ 3, while the neurons σc(n,j,xn(j)=f)

establish synapses coming to it from
the four neurons σcei

, 0 ≤ i ≤ 3, of the generator block. The synapse creation
rules of type b1) and the neuron budding rules of type a1) are applied to the
same neurons in layer n at the same time in a consequent n− 1 steps as their
interaction environments coincide.
Again looking at Figure 5, neuron σc(2,1,f,t)

associates with f(alse) value gets
4 synapses from the generator as neuron σc(2,1,f,t)

gets 3 cause its identity of
t(rue) value.

b2) (c(n,n−1,xn), c(n,n,xn))[]
c(n,n,xn)

→ (c(n,n,xn), 1)[]1.

The rule of type b2) applies parallel to the last neurons of the layer n and
produce the neurons σ1 forming a new layer n+1. Meantime the rules of type
b1) create synapses from the same neurons of layer n to the generator block
at last.

b3) (c(n,n,xn), 1)[]
1
→ (1, 2)[]

2
,

b4) (c(n,n,xn), 1)[]1 → (bi, 1)[]
bi

, 1 ≤ i ≤ 3.
As rules of type b3) apply to the neurons σ1 and bud neurons σ2, rules of
type b4) apply too and create three synapses coming from the neurons σbi

,
1 ≤ i ≤ 3, to each neuron σ1. Thus, layer n + 2 is formed.

b5) (1, 2)[]
2
→ (2, 3)[]

3
,

b6) (1, 2)[]
2
→ (c, 2)[]

c
.

The rules of types b5) and b6) apply simultaneously to a neuron σ2 with a
synapse (1,2). As a result, the former one buds a new neuron σ3, while the
later one makes a new connection coming from the neuron σc as (c, 2). All
other neurons σ2 get the same effect by the rules as the maximal parallel
applications of the rules.

b7) (2, 3)[]3 → (3, out)[]
out

.
The pre-computation of the SN P system structure construction is completed
by forming the converged connections from the neurons σ3 to the output neu-
ron σout, by means the rules of type b7) are applied parallel to all neurons of
layer n + 3.

Thus, the SN P system device structure totally empty of spikes which is to solve
all the instances of sat(n,m), has been (pre-)computed in a polynomial time. The
next computation stage (post-computation) to solve sat(n,m) is plugged-in as
follows.

248 J. Wang, T.-O. Ishdorj, L. Pan

Solving sat

Any given instance γn of sat(n,m) is encoded in a sequence of spikes. Each clause
Ci of γn can be seen as a disjunction of at most n literals: for each j ∈ {1, 2, . . . ,m},
either yj occurs in Ci, or ¬yj occurs, or none of them occurs. In order to distinguish
these three situations we define the spike variables αij , for 1 ≤ i ≤ m and 1 ≤
j ≤ n, as variables whose values are amounts of spikes, and we assign to them the
following values:

αij =











a if yj occurs in Ci

a2 if ¬yj occurs in Ci

λ otherwise.

In this way, clause Ci will be represented by the sequence αi1αi2 · · ·αin of
spike variables; in order to represent the entire formula γn we just concate-
nate the representations of the single clauses, thus obtaining the sequence
α11α12 · · ·α1nα21α22 · · ·α2n · · ·αm1αm2 · · ·αmn. As an example, the representa-
tion of γ3 = (y1 ∨ ¬y2) ∧ (y1 ∨ y3) is aa2λaλa.

The spiking rules residing in the neurons of the system which perform for
solving the introduced problem are listed below with a brief description for each.
But we do not go detailed explanation of each rule functions here, we prefer it
refer to Section 3 and the paper [6], also the neuron budding rules are out of usage
in this stage.

A given instance γn ∈ sat(n,m) encoded in a spike sequence is introduced into
the system structure and will be processed by the spiking rules according to their
roles in each step of the computation.

c1) [a → a]
csoma

; [a2 → a2]
csoma

;

[a → a;n2 − n − 1]
s
.

At each computation step of introducing the input, we insert 0, 1 or 2 spikes
into the system through the input neuron σsoma, according to the value of the
spike variable αij we are considering in the representation of γn. Meantime we
insert a single spike a into neuron σs once, which excites the generator block.

c2) [a → a]
c(k,j,xk)

; [a2 → a2]
c(k,j,xk)

1 ≤ k ≤ n − 1, 1 ≤ j ≤ n, xk ∈ {t, f}k.
Each spike inserted into the input neuron is duplicated here and transmit
along the first layer of the system towards next layers. When a spike passes a
touching point – neuron with label of type c(k,n,xk), it is duplicated and enter
into next layer, etc., finally 2n copies of them will take place at the layer n.

Once the copies of a clause are taken place on the neurons of the chains of
length n in layer n, the combined functioning of the generator block and the layer
n tests the assignments against each copy of the clause in consideration. For this
purpose, the rules c3) − c5) are used.

c3) [a → a]
ei

; 0 ≤ i ≤ 3,
[a → a;n − 1]

+
; [a → a;n − 1]

−
.

Efficiency of Spiking Neural P Systems 249

The generator block and its spiking rules. The generator block provides 3 and 4
spikes, respectively, in each n steps to the neurons associated with truth values
t and f , of layer n, in order to test the satisfiability of the truth assignments
against a clause which has been taken place through the layer.

c4) [a → a]
tt

; [a3 → λ]
tt

; [a2 → a2]
t1

;

[a4 → a]
tt

; [a5 → λ]
tt

; [a2 → a]
t0

;
tt = c(n,j,xn(j)=t), 1 ≤ j ≤ n,
t1 = c(n,j,xn(j)=t), 1 ≤ j ≤ n − 1,
t0 = c(n,n,xn(n)=t), xn ∈ {t, f}n.
The spiking rules residing in the neurons which associate Boolean t(rue) value
in layer n. The rules a2 → a2, a2 → a, and a → a used to transmit the spike
variables a, a2 along the chains. Once a clause placed, each neuron associated
with t(rue) value contains either of a spike a or a2 or empty. As a spike
variable a represents a truth variable y, to which a spike true value a3 sent by
the generator is assigned and it results an yes answer as a4, then it passes to
the neuron σ1 along the chain with a saying that a truth variable of the clause
is satisfied by true value of a truth assignment or simply the clause is satisfied
by a truth assignment of the corresponding chain. Meanwhile, a true value a3

is assigned to the spike variables a2 associates to truth variable ¬y and empty
wherever, which give a result no by means the rules a3 → λ and a5 → λ are
performed.

c5) [a → a]
ff

; [a4 → λ]
ff

; [a2 → a2]
f1

;

[a5 → λ]
ff

; [a6 → a]
ff

; [a2 → a]
f0

;

ff = c(n,j,xn(j)=f), 1 ≤ j ≤ n,
f1 = c(n,j,xn(j)=f), 1 ≤ j ≤ n − 1,
f0 = c(n,n,xn(n)=f), xn ∈ {t, f}n.
The spiking rules residing in the neurons which associate with Boolean f(alse)
value in layer n. The functioning of the rules is similar as rules c5).

c6) [a → a;n − 1]
bi

; 1 ≤ i ≤ 3,

[a2/a → a]
1
; [a3 → λ]

1
;

[a4 → a]1; [a5 → a]1.
Whether an assignment satisfies the considered clause or not is checked by a
combined functioning of the neurons with label 1 in layer n+1 and the neurons
with label bi, 1 ≤ i ≤ 3.

c7) [a → λ]
2
; [a2 → a]

2
;

[a → a]
c
.

With a combined function of neuron σc, neuron σ2 emits a spike into neuron σ3

if the corresponding assignment satisfies the under consideration clause here,
otherwise no spike is emitted.

c8) [am → a]3;
[a+/a → a]

out
.

Neurons with label 3 count how many clauses of the instance γn are satisfied
by the associated truth assignments. If any of those neurons get m spikes,
which fire, hence the number of spikes that reach neuron out is the number of

250 J. Wang, T.-O. Ishdorj, L. Pan

assignments that satisfy all the clauses of γn. Thus, the output neuron fires
if it has got at least one spike by means the problem has a positive solution,
otherwise there is no assignment satisfies the instance γn.

This stage of the computation ends at the n2 + nm + 4th step. The entire system
halts in total at most in 2(n2 + nm + 4) number of computation steps.

Thus, we got a full (deterministic, polynomial time and uniform) solution to
sat(n,m) in the framework of SN P systems.

5 Discussion

The present paper concerns the efficiency of SN P systems, we proposed a way
to solve NP-complete problems, particularly sat, in polynomial time. Specifi-
cally, the neuron budding rule is introduced in the framework of SN P systems,
which a new feature enhances the efficiency of the systems to generate necessary
work space. Neuron budding rules drive the mechanism of neuron production and
synapse creation according to the interaction of a neuron with its environment
(described by its synapses connected to other neurons). A very restricted type of
rule of neuron budding, at most one synapse is involved in an environment, is used,
but it is powerful enough to solve the considered problem, sat. The solution to
sat by SN P systems with neuron budding contains two computation stages: first,
constructing the device structure which has no spikes inside, second, introducing
the considered problem to be solved encoded in spikes into the device. The system
works in deterministic and maximally parallel manner. The whole mechanism we
considered here for solutions to computational intractable problems is elegant from
computational complexity theory point of view as the designed algorithm can be
computed by a deterministic Turing machine in polynomial time; the operation of
neuron budding is well motivated by neural biology.

We believe that SN P systems use the restricted budding rules can be an
efficient computing tool to solve other NP hard problems.

The SN P systems with neuron budding rules can be extended by introducing
more general rules, which in some sense capture the dynamic interaction of neurons
with their environment. One possible form of such general rules is as follows:
Ai[]

i
Bi → Cj []

j
Dj , where Ai, Bi and Cj ,Dj are the set of synapses coming

to and going out from, respectively, the specified neurons σi and σj . Clearly, in
such general rules, more than one synapses are involved in the environment of the
considered neuron.

Acknowledgments

The work of Tseren-Onolt Ishdorj was supported by the project “Biotarget”,
it is a joint project between U. of Turku and Åbo Akademi University funded
by the Academy of Finland. The work of L. Pan was supported by Na-
tional Natural Science Foundation of China (Grant Nos. 60674106, 30870826,

Efficiency of Spiking Neural P Systems 251

60703047, and 60533010), Program for New Century Excellent Talents in Uni-
versity (NCET-05-0612), Ph.D. Programs Foundation of Ministry of Education of
China (20060487014), Chenguang Program of Wuhan (200750731262), HUST-SRF
(2007Z015A), and Natural Science Foundation of Hubei Province (2008CDB113
and 2008CDB180).

References

1. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
Proc. 8th Inter. Conf. on Electronics, Information, and Communication, Ulanbator,
Mongolia, June 2006, 49–52.

2. H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spik-
ing neural P systems with extended rules. Fourth Brainstorming Week on Membrane

Computing (M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-
Campero, eds.), vol. I, RGNC Report 02/2006, Research Group on Natural Comput-
ing, Sevilla University, Fénix Editora, 2006, 241–266.

3. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae 75 (2007), 141–162.

4. V. Danos, J. Feret, W. Fontana, R.Harmer and J. Krivine, Investigation of a Bio-

logical Repair Scheme, In Proceedings of 9th International Workshop on Membrane
Computing, Edinburgh, UK, July 28-31, 2008, LNCS 5391, 1–12, 2009.

5. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-

maticae, 71, 2–3 (2006), 279–308.
6. T.-O. Ishdorj, A. Leporati: Uniform solutions to SAT and 3-SAT by spiking neural P

systems with pre-computed resources. Natural Computing, 7, 4 (2008), 519–534.
7. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zhang, X. Zeng: Uniform solutions to QSAT

and Q3SAT by spiking neural P systems with pre-computed resources. In the present
volume.

8. M.A. Gutiérrez-Naranjo, A. Leporati: Solving numerical NP-complete problems by
spiking neural P systems with pre-computed resources. Proceedings of Sixth Brain-

storming Weeks on Membrane Computing, Sevilla University, Sevilla, February 2-8,
2008, 193–210.

9. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete prob-
lem with spiking neural P systems. Membrane Computing, International Workshop,

WMC8, Thessaloniki, Greece, 2007, Selected and Invited Papers (G. Eleftherakis, P.
Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 4860, Springer-Verlag,
Berlin, 2007, 336–352.

10. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M. J. Pérez-Jiménez: Uniform solu-
tions to SAT and SUBset SUM by spiking neural P systems. Submitted.

11. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. International Journal of Unconventional Computing, 2007,
in press.

12. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
13. Gh. Păun: Twenty six research topics about spiking neural P systems. Fifth brain-

storming week on membrane computing, Fenix Editora, Sevilla, 2007, 263-280.
14. M. Sipser: Introduction to the Theory of Computation. PWS Publishing Company,

Boston, 1997.
15. Think and Grow Toys: http://www.tagtoys.com/dendrites.htm

