
Solving the N-Queens Puzzle with P Systems

Miguel A. Gutiérrez-Naranjo, Miguel A. Mart́ınez-del-Amor,
Ignacio Pérez-Hurtado, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es, mdelamor@us.es, perezh@us.es, marper@us.es

Summary. The N -queens puzzle consists on placing N queens on an N ×Ngrid in such
way that no two queens are on the same row, column or diagonal line. In this paper we
present a family of P systems with active membranes (one P system for each value of N)
that provides all the possible solutions to the puzzle.

1 Introduction

The N -queens puzzle is very popular among computer scientists. It is a generaliza-
tion of a classic puzzle known as the 8-queens puzzle. The original one is attributed
to the chess player Max Bezzel and it consists on putting eight queens on an 8× 8
chessboard in such way that none of them is able to capture any other using the
standard movement of the queens in chess, i.e., only one queen can be placed on
each row, column and diagonal line.

The 8-queens puzzle was later generalized to the N-queens puzzle, with the
same rules but placing N queens on a N × N board. The problem is compu-
tationally very expensive, since there exists 64!/(56! × 8!) ∼ 4.4 × 109 possible
arrangements of 8 queens in a 8× 8 chessboard and there are only 92 solutions. If
two solutions are considered the same when one of them can be obtained from the
other one via a rotation or a symmetry, then there are only 12 different solutions.

For this reason, the brute force algorithm is not useful with current computers.
In fact, this simple puzzle is usually presented in Computer Science as an standard
of use of heuristics which allows us discard options and deal with a little number
of candidate solutions.

In this paper, we present a first solution to the N -queens puzzle in Membrane
Computing. For that purpose, we propose a family of deterministic P systems with
active membranes (the N -th element of the family solves the N -queens puzzle) such
that the halting configuration encodes all the solutions of the puzzle. As usual, we
use the massive parallelism to check all the feasible solutions at the same time and
obtain the solution in a reduced number of steps.

200 M.A. Gutiérrez-Naranjo et al.

The paper is organized as follows: In Section 2 we show how an instance of
the N -queens puzzle can be expressed as a formula in conjunctive normal form. In
Section 3, we briefly recall the P systems with active membranes and in Section
4, we present our family of P systems that solve SAT. The difference with other
solutions is that in this case the P system does not only send Yes or No to the
environment by showing the existence or not of a solution to the problem, but
it keeps all the truth values that satisfy the formula. In section 5 we build the
family of P systems that solve the N -queens problem by choosing the appropriate
P systems from the previous family. Section 6 shows several experimental results
obtained by running these solutions in an updated version of the P-lingua [1]
simulator. Finally, some conclusions and new open research lines are presented.

2 Changing the Representation

The key idea of our solution is that an instance of the N -queens puzzle for a fixed
N can be represented as a formula in conjunctive normal form (CNF) in such way
that one truth assignment of the formula can be considered as a solution of the
puzzle. In Section 5 we will show a family of P systems with active membranes
associated to the N -queens puzzle which encodes the truth assignments of the
associate formula in the halting configuration.

The N -queens puzzle can be represented by a formula in CNF with N2 propo-
sitional variables sij , where sij stands for the cell (i, j) of the N ×N chessboard.
The variable sij is assigned true if and only if a queen is assigned to the cell (i, j).
The different constraints of the puzzle can be expressed with this representation
in the following way:

• There is at most one queen in each column.

ψ1 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sij ∨ ¬sik)

• There is at most one queen in each row.

ψ2 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sji ∨ ¬ski)

Next we deal with the restriction of diagonal lines. Let us call D1 the set of diag-
onal lines parallel to the bottom-left to up-right diagonal and D2 the set of diagonal
lines parallel to the bottom-right to up-left diagonal. It is easy to see that any line
of D1 is characterized by a number from {−(n− 1),−(n− 2), . . . ,−1, 0, 1, . . . , n−
2, n−1} which represents the difference i− j in the cell (i, j). In order to fix ideas,
let us consider an 8×8 and the diagonal line 〈(1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8)〉.
Cells (i, j) in this diagonal line are characterized by number −2, since in all of them
i− j = −2.

On the other hand, any line of D2 is characterized by a number from
{2, 3, . . . , 2n − 1, 2n} which represents the sum i + j. For example, in a 8 × 8

Solving the N-Queens Problem with P Systems 201

chessboard diagonal line 〈(5, 8), (6, 7), (7, 6), (8, 5)〉 can be characterized by num-
ber 13 since in all of them i + j = 13.

Firstly, we consider the diagonal lines of D1 corresponding to the bottom semi-
square. Each of these lines is characterized by a number d in {0, . . . , n − 2}, and
each line is compounded by the cells (i, j) such that i−j = d. Notice that d = n−1
is not considered, since such a diagonal line has only one cell. The formula that
codifies that there must occur one queen at most in these lines is

ψ3 ≡
n−2∧

d=0

n−d∧

j=1

n−2∧

k=j+1

(¬sd+j j ∨ ¬sd+k k)

The remaining diagonal lines from D1 correspond to the values d from the set
{−(n− 2), . . . ,−1} and they are codified by the formula

ψ4 ≡
−1∧

d=−(n−2)

n+d∧

j=1

n+d∧

k=j+1

(¬sj j−d ∨ ¬sk k−d)

We also split the set D2 into two subsets. The first of them corresponds to
the lines associated with numbers d in {3, . . . , n + 1} which represents the bottom
semi-square. Notice that the line with only one cell (the corner) is removed. The
formula that codifies that there must appear one queen at most in these lines is

ψ5 ≡
n+1∧

d=3

d−1∧

j=1

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

Analogously, the upper semi-square is associated with numbers d in {n +
2, . . . , 2n− 1}. The formula associated to these lines is

ψ6 ≡
2n−1∧

d=n+2

n∧

j=d−n

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

The conjunction of the previous formula says that in each column, row and
diagonal line, there must be at most one queen. These conditions are satisfied
by the empty board or by a board with only one queen. In order to fulfill the
conditions of the N -queens puzzle we need to impose N queens to be placed.
Since ψ1 encodes that There is at most one queen in each column, it suffices to
add the restriction There is at least one queen in each column in order to get that
There is exactly one queen in each column. Since there are N columns, this leads
us to place exactly N queens.

• There is at least one queen in each column.

ψ7 ≡
n∧

i=1

n∨

j=1

sij

The conjunction of these seven formulae

Φ ≡ ψ1

∧
ψ2

∧
ψ3

∧
ψ4

∧
ψ5

∧
ψ6

∧
ψ7

is a formula in conjunctive normal form and each truth assignment which makes
it true represents a solution to the N -queens puzzle.

202 M.A. Gutiérrez-Naranjo et al.

3 The P System Model

P systems with active membranes is one of the most studied models on Membrane
Computing and it is very well-known by the P system community. It is one of the
first models presented by Gh. Păun in [4]. Here we provide a brief recall of its
features.

A P system with active membranes is a construct:

(V,H, µ,w1, . . . , wm, R)

where:

1. m ≥ 1, is the initial degree of the system;
2. V is the alphabet of symbol-objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, of m membranes, bijectively labeled with elements

of H;
5. w1, . . . , wm are strings over V , describing the initial multisets of objects placed

in the m regions of µ;
6. R is a finite set of evolution rules, of the following forms:

a) [x → y]αh , for h ∈ H, α ∈ {+,−, 0}, x ∈ V , y ∈ V ∗. This is an object
evolution rule, associated with a membrane labeled with h and depending
on the polarity of that membrane. The empty string is represented by
λ ∈ V ∗.

b) x []α1
h → [y]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object from the
region immediately outside a membrane labeled with h is introduced in this
membrane, possibly transformed into another object, and simultaneously,
the polarity of the membrane can be changed.

c) [x]α1
h → y []α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, x, y ∈ V . An object is
sent out from membrane labeled with h to the region immediately outside,
possibly transformed into another object, and simultaneously, the polarity
of the membrane can be changed.

d) [x]αh → y, for h ∈ H, α ∈ {+,−, 0}, x, y ∈ V . A membrane labeled with h
is dissolved in reaction with an object. The skin is never dissolved.

e) [x]α1
h → [y]α2

h [z]α3
h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, x, y, z ∈ V . A mem-

brane can be divided into two membranes with the same label, possibly
transforming some objects and their polarities.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. At one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object being able to evolve by one rule of any
form, should evolve.

• If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

Solving the N-Queens Problem with P Systems 203

• All objects and membranes not specified in a rule and which do not evolve
remain unchanged to the next step.

• At the same time, if a membrane h is divided by a rule of type (e) or dissolved
by a rule of type (d) and there are objects in this membrane which evolve by
means of rules of type (a), then we suppose that evolution rules of type (a) are
used first and then, the division is produced. This process takes of course only
one step.

• The rules associated with membranes labeled with h are used for all copies of
this membrane. At one step, a membrane labeled with h can be the subject of
only one rule of types (b)-(e).

4 A New Solution for the SAT Problem

Propositional Satisfiability is the problem to determine, for a formula of the propo-
sitional calculus, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulas in conjunctive normal form.

According to Section 2, in order to solve the N-queens puzzle we need to find
a truth assignment such that it makes true a formula in CNF. This problem is
exactly SAT. In [3], we can find a uniform solution to the problem SAT. This
design takes SAT as a decision problem and each P system of the family sends a
Yes or No answer to the environment at the last step of computation specifying
whether the solution exists or not. In this paper, we are not interested in the
existence or not of a solution for the N-queens puzzle, but finding (and storing)
the truth assignment in an effective way.

In this section we present a uniform family of deterministic recognizer P sys-
tems1 which solves SAT as a decision problem (i.e., the P system sends a Yes or No
answer to the environment at the last computation step) but it also stores truth
assignments that make the formula true. We can find all the solutions to the N-
queens puzzle encoded in the elementary membranes of the halting configuration.

Let us suppose that ϕ = C1 ∧ · · · ∧ Cm in a formula in CNF, and V ar(ϕ) =
{x1, . . . , xn} is the set of variables in ϕ. Formula ϕ will be provided to the P
systems as the following input multiset

cod(ϕ) = {xji |xi ∈ Cj} ∪ {yji | ¬xi ∈ Cj}
Such initial multiset will be placed in the membrane with input label at the initial
configuration. For each (m,n) ∈ N2 we consider the recognizer P system

(Π(〈m, n〉), Σ(m,n), i(m,n))

where the input alphabet is
1 A detailed description of recognizer P systems can be found in [3].

204 M.A. Gutiérrez-Naranjo et al.

Σ(m,n) = {xij , yij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input label is i(m,n) = 2 and the P system

Π(〈n,m〉) = (Γ (m,n), {1, 2}, [[]2]1, w1, w2, R)

is defined as follows:
Γ (m,n) = Σ(m,n) ∪ {dk : 1 ≤ k ≤ 43n + 2m + 1} ∪ {sk : 1 ≤ k ≤ n} ∪
{tj , fj : 1 ≤ j ≤ n} ∪ {zij , hij : 1 ≤ i ≤ m 2 ≤ j ≤ n, } ∪
{rij , 1 ≤ i ≤ m, 1 ≤ j ≤ 2n, } ∪ {ck : 1 ≤ k ≤ m + 1} ∪
{vk : 1 ≤ k ≤ 6n + 2m− 1} ∪ {e, r, Yes, No}
The initial content of each membrane is w1 = ∅ y w2 = {d0, v0}. As usual, the
initial polarization is 0. The set of rules, R, is given by:

(a.1) [dj]02 → [sj+1]+2 [sj+1]−2 for all j ∈ {0, . . . , n− 1}.
(a.2) [dj]+2 → dj []02 [dj]−2 → dj []02 for all j ∈ {1, . . . , n}.
(a.3) dj []02 → [dj]02 for all j ∈ {1, . . . , n− 1}.
(a.4) [di → di+1]01 for all i ∈ {n, . . . , 3n− 4} ∪ {3n− 2, . . . , 3n + 2m}.
(a.5) [d3n−3 → d3n−2e]01.
(a.6) [d3n+2m+1]01 → No []+1 .

By using these rules, a membrane with label 2 is divided into two membranes
with the same label, but with different polarizations. These rules allow us to du-
plicate, in one step, the total number of internal membranes. When object dn is
reached, the counter changes its function. From dn to d4n+2m−3 the sequence of
objects di is just a counter. If object d4n+2m−3 is reached in the membrane labeled
with 1 with polarization 0, then the answer No is sent to the environment.

(b) [sj → tjdj]+2 [sj → fjdj]−2 for all j ∈ {1, . . . , n}.
Instead of producing an object dj+1, objects dj (0 ≤ j ≤ n− 1) produce an object
sj+1 (see the set (a.1)). With this new set of rules (b) we get such dj from sj . We
also obtain markers tj (true) and fj (false) depending on the polarization of the
membranes.

(c.1)
{

[xi1 → ri1]+2 [yi1 → λ]+2
[xi1 → λ]−2 [yi1 → ri1]−2

}
for all i ∈ {1, . . . , m}.

(c.2)
{

[xij → zij]+2 [yij → hij]+2
[xij → zij]−2 [yij → hij]−2

}
for all i ∈ {1, . . . , m} and j ∈ {2, . . . , n}.

The rules of (c.1) implement a process allowing internal membranes to encode
the assignment of a variable and, simultaneously, to check the value of all clauses
by this assignment, in such a way that if the clause is true then an object ri,1

will appear in the membrane. In other cases, the object encoding the variable will
disappear. Rules from set (c.2) perform a technical renaming.

Solving the N-Queens Problem with P Systems 205

(d)
{

[zij → xij−1]+2 [hij → yij−1]+2
[zij → xij−1]−2 [hij → yij−1]−2

}
for all i ∈ {1, . . . ,m} and j ∈ {2, . . . , n}.

The checking process previously described is always carried out with respect
to the first variable appearing in the internal membrane. Hence, the rules of (d)
take charge of making a cyclic path through all the variables to get that, initially,
the first variable is x1, then x2, and so on.

(e.1) [rij → rij+1]02 for all i ∈ {1, . . . , m} and j ∈ {1, . . . , 2n− 1}.
(e.2) [r1 2n]+2 → r1 2n[]−2 .
(e.3) [r1 2n → λ]−2 .
(e.4) [rj 2n → rj−1 2n]−2 for all j ∈ {2, . . . , m}.
(e.5) r1 2n []−2 → [r]+2 .

In objects rjk, index j represents a clause. Index i evolves in all the membranes
until reaching rj 2n for each j ∈ {1, . . . , m}. These objects rj 2n play their role at
the checking stage.

(f)e []02 → [c1]+2 .

Objects e are created in membrane 1 by objects d3n−3. They send objects c1

into the elementary membranes and start the checking stage.

(g.1) [vi → vi+1]02 [vi → vi+1]+2 [vi → vi+1]−2 , for all i ∈ {0, . . . , 6n+2m−2}.
(g.2) [v6n+2m−1 → λ]−2 .
(g.3) [v6n+2m−1]+2 → r.

The sequence of objects vi is merely a counter. If object v6n+2m−1 appears in
an elementary membrane with negative polarization, it just disappears. Otherwise,
if the polarization is positive, it dissolves the membrane. The importance of this
counter is crucial since all the membranes which do not encode a solution are
dissolved.

(h.1) [cj → cj+1]−2 for all j ∈ {1, . . . ,m}.
(h.2) [cm+1]+2 → cm+1 []−2 .
(h.3) [cm+1]01 → Yes []+1 .

Evolution from c1 to cm+1 is completed only in the elementary membranes
that represents truth assignments that make the whole formula true. If an object
cm+1 reaches the skin, then it sends out an object Yes.

(i) [r → λ]+2 .

Just a cleaning rule.

206 M.A. Gutiérrez-Naranjo et al.

4.1 Some notes on the computation

All the P systems of the family are deterministic. The first stage of the compu-
tation finishes with configuration C4n−1. In such configuration, there are 2n ele-
mentary membranes, one for each possible truth assignment of the set of variables
{x1, . . . , xn}. We also have 2n copies of the object dn in the membrane labeled by
1. The checking stage starts with the configuration C6n−2. An object c1 appears in
every elementary membrane in such configuration. If the answer is Yes, then the
halting configuration is C6n+2m, otherwise, if the answer is No, then the halting
configuration is C6n+2m+1.

If the answer is No, all the elementary membranes have been dissolved and
the unique membrane in the halting configuration is the skin. If the answer is
Yes, at least one elementary membrane has not been dissolved. Each elementary
membrane in the halting configuration represents a truth assignment that makes
the formula true. The encoding is quite easy: for each i ∈ {1, . . . , n}, either object
ti or object fi belongs to the elementary membrane. Objects ti means that in this
assignment, variable xi takes the value true, and fi means that such variable is
false.

It is easy to check that if we have a formula with n variables and m clauses we
need 10mn + 26n + 5m + 6 rules.

5 A Family of P Systems

In Section 2, we have seen that an instance of the N -queens puzzle can be rep-
resented as a formula in CNF and in Section 4 we have shown that there exists
one P system with active membranes which is able to solve any instance of the
problem SAT with m clauses and n variables.

In this section, we will select one P system of the family for each N . Since there
exist one P system associated to each pair (m,n) where m is the number of clauses
and n the number of variables, it only remains to know how many variables and
how many clauses there are in the CNF formula associated to each instance on
the N-queens puzzle. Both amounts are fixed by the following theorem.

Theorem 1. Given an integer N ≥ 3, the formula Φ in conjunctive normal form
that encodes the N-queens puzzle according to the previous description has N2

variables and 1
3 (5N3 − 6N2 + 4N) clauses.

Proof. It is trivial to check that the number of variables is N2, since each variable
represents a cell in a N ×N chessboard. In order to obtain the number of clauses,
we will sum the number of clauses in clauses ψ1, . . . ,ψ7, since the global formula
Φ is the conjunction of these seven formulae in CNF.

• Clause 1: ψ1 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sij ∨ ¬sik)

Solving the N-Queens Problem with P Systems 207

For each column i ∈ {1, . . . , n} we compare the cells pairwise, so, in the formula
∧n

j=1 ∧n
k=j+1 (¬sij ∨ ¬sik) there are 1 + 2 + · · ·+ N − 1 = N(N−1)

2 clauses and
in ψ1 the number of clauses is

M1 =
N2(N − 1)

2

• Clause 2: ψ2 ≡
n∧

i=1

n∧

j=1

n∧

k=j+1

(¬sji ∨ ¬ski)

The situation is symmetric to the previous one, but considering rows instead
of columns, so the number of clauses is the same

M2 =
N2(N − 1)

2

• Clause 3: ψ3 ≡
n−2∧

d=0

n−d∧

j=1

n−2∧

k=j+1

(¬sd+j j ∨ ¬sd+k k)

In this set of diagonal lines, the first one corresponds to d = 0. In this line
there are n cells. The number of pairwise comparisons between cells of this
line is Sn−1 = 1 + 2 + · · · + n − 1. The following line corresponds to d = 1.
In this line there are n − 1 cells and the number of pairwise comparisons is
Sn−2 = 1 + 2 + · · · + n − 2. The whole number of comparisons is the sum
M = S1 + S2 + · · ·+ Sn−1 where

Sk = 1 + · · ·+ k =
k(k + 1)

2
=

1
2
k2 +

1
2
k for all k ∈ {1, . . . , n− 1}

Bearing in mind that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6

we have that

M3 =
n−1∑

k=1

Sk =
1
2

(
n−1∑

k=1

k2 +
n−1∑

k=1

k

)
=

1
2

(
(n− 1) n (2n− 1)

6
+

n(n− 1)
2

)

=
1
6

n (n + 1) (n− 1)

• Clause 4: ψ4 ≡
−1∧

d=−(n−2)

n+d∧

j=1

n+d∧

k=j+1

(¬sj j−d ∨ ¬sk k−d)

The reasoning for ψ3 is also valid in this case. The difference is that we sum
from S1 to Sn−2, so the number of clauses in this case is

M4 =
1
6

n (n− 1) (n− 2)

208 M.A. Gutiérrez-Naranjo et al.

• Clause 5: ψ5 ≡
n+1∧

d=3

d−1∧

j=1

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

• Clause 6: ψ6 ≡
2n−1∧

d=n+2

n∧

j=d−n

d−1∧

k=j+1

(¬sj d−j ∨ ¬sk d−k)

Due to the symmetry, the number of clauses in these formulae are the same
than in ψ3 and ψ4, which are

M5 =
1
6

n (n + 1) (n− 1) and M6 =
1
6

n (n− 1) (n− 2)

• Clause 7: ψ7 ≡
n∧

i=1

n∨

j=1

sij

Trivially ψ7 has n clauses, M7 = n.

Finally, a simple calculus show that the whole number of clauses is

M1 + M2 + · · ·+ M7 =
1
3
(5n3 − 6n2 + 4n)

From the previous theorem we have the set of all solutions of the N-queens
puzzle are encoded in the elementary membranes of the halting configuration of
the P system

Π(〈1
3
(5N3 − 6N2 + 4N), N2〉)

with input membrane i(〈 13 (5N3− 6N2 +4N), N2〉) = 2 and input the appropriate
multiset on Σ(〈 13 (5N3 − 6N2 + 4N), N2〉) = 2 encoding the formula Φ.

6 Experimental Results

In this section, we show a couple of experimental results obtained by running the
corresponding P systems with an updated version of the P-lingua simulator [1].
The experiments were performed on a one-processor Intel core2 Quad (with 4 cores
at 2,83Ghz), 8GB of RAM and using a C++ simulator over the operating system
Ubuntu Server 8.04.

The 3-queens puzzle. In this case the problem consists on putting three queens
on a 3×3 chessboard. According to our representation, the puzzle can be expressed
by a formula in CNF with 9 variables and 31 clauses. This means that we can use
the P system Π(〈31, 9〉) from the family that solves the SAT problem to obtain
the solution. The input multiset has 65 elements and the P system has 3185 rules.

Along the computation, 29 = 512 elementary membranes need to be considered
in parallel. Since the simulation is carried out in a one-processor computer, in the
simulation, these membranes are evaluated sequentially. It takes 7 seconds to reach
the halting configuration. It is the 117-th configuration and in this configuration

Solving the N-Queens Problem with P Systems 209

1 2 4

6 7 8

9 10 11

13 15 16

1 3 4

5 6 7

10 11 12

13 14 16

¡¡@@

¡¡@@

¡¡@@

¡¡@@ ¡¡@@

¡¡@@

¡¡@@

¡¡@@

Fig. 1. Solutions to the 4-queens puzzle

one object No appears in the environment. As expected, this means that we cannot
place three queens on a 3×3 chessboard satisfying the restriction of puzzle.

The 4-queens puzzle. In this case, we try to place four queens on a 4×4 chess-
board. According to our representation, the puzzle can be expressed by a formula
in CNF with 16 variables and 80 clauses. This means that we can use the P system
Π(〈80, 16〉) from the family that solves the SAT problem to obtain the solution.
The input multiset has 168 elements.

Along the computation, 216 = 65536 elementary membranes need to be con-
sidered in parallel and the P system has 13622 rules.

The simulation takes 20583 seconds (> 5 hours) to reach the halting config-
uration. It is the 256-th configuration and in this configuration one object Yes
appears in the environment. This means that there exists at least one solution to
the problem. In order to know such solutions, we check the multiset of the elemen-
tary membranes. In this case there are two elementary membranes in the halting
configuration with the following multisets:

w1 = {f1, f2, t3, f4, t5, f6, f7, f8, f9, f10, f11, t12, f13, t14, f15, f16}
w2 = {f1, t2, f3, f4, f5, f6, f7, t8, t9, f10, f11, f12, f13, f14, t15, f16}

Such multisets encode the solution showed in the Figure 1

7 Conclusions and Future Work

In this paper we have presented a first solution to the N -queens puzzle based on
Membrane Computing. The necessary resources and the number of computational
steps for obtaining all the solutions of the puzzle are polynomial in N . Nonetheless,
the simulation in one-processor computer needs an exponential amount of time.

Looking for solutions to toy puzzles as this one is not viable in the current
conditions. This leads to us to three reflections: The first one is the necessity of
giving the first steps for a wet implementation of P systems. The second aim, in
the short-term, is to explore the possibilities of the most recent hardware, able to
implement in parallel a big amount of simple rules as a realistic implementation

210 M.A. Gutiérrez-Naranjo et al.

of P systems [2]. A third research line is to follow the same path than other
computation models: To avoid brute force algorithms and start to go deeply in the
study of heuristics in the design of cellular solutions.

Acknowledgements

The authors acknowledge the support of the project TIN2006-13425 of the Min-
isterio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and the
support of the Project of Excellence with Investigador de Reconocida Vaĺıa of the
Junta de Andalućıa, grant P08-TIC-04200.

References

1. D. Dı́az-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos–Núñez: A P-Lingua
Programming Environment for Membrane Computing. LNCS 5391, Springer, 2009,
187–203.

2. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, J.M. Cecilia, G.
Guerrero, J.M. Garćıa: Simulation of Recognizer P Systems by Using Manycore
GPUs. In these proceedings.

3. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrinini: A polynomial com-
plexity class in P systems using membrane division. In E. Csuhaj-Varjú, C. Kintala,
D. Wotschke, G. Vaszil, eds., Proceedings of the 5th Workshop on Descriptional Com-
plexity of Formal Systems, DCFS 2003, Computer and Automaton Research Institute
of the Hungarian Academy of Sciences, 2003, 284–294.

4. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berĺın, 2002.

