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This paper deals with three resolving parameters: the metric dimension, the upper dimen-
sion and the resolving number. We first answer a question raised by Chartrand and Zhang
asking for a characterization of the graphswith equalmetric dimension and resolving num-
ber. We also solve in the affirmative a conjecture posed by Chartrand, Poisson and Zhang
about the realization of the metric dimension and the upper dimension. Finally, we prove
that no integer a ≥ 4 is realizable as the resolving number of an infinite family of graphs.

1. Introduction

In this paper,we study resolving sets for finite simple connected graphs. Theywere introduced in the 1970s independently
by Slater [9], and Harary andMelter [5]. The usefulness of these sets comes from their multiple applications in several areas,
among them: coinweighing problems, network discovery and verification, robot navigation, strategies forMastermind game
andpharmaceutical chemistry (we refer the reader to [1] for a number of references on this topic). Resolving sets are formally
defined as follows.

Let G = (V (G), E(G)) be a finite simple connected graph of order n = |V (G)|. The distance d(u, v) between two vertices
u, v ∈ V (G) is the length of a shortest u–v path in G. A vertex u ∈ V (G) resolves a pair {x, y} ⊂ V (G) if d(u, x) ≠ d(u, y). A
set of vertices S ⊆ V (G) is a resolving set of G if every pair of vertices of G is resolved by some vertex of S. A resolving set S
of minimum size is ametric basis, and |S| is themetric dimension of G, denoted by dim(G).

Our aim is not only to deal withmetric bases andmetric dimension but also with two other resolving parameters defined
by Chartrand et al. [3], namely the upper dimension and the resolving number, that give an insight of how large the set of
resolving sets of a graph is.

A resolving set S of G is minimal if no proper subset of S is a resolving set. An upper basis is a minimal resolving set
containing the maximum number of vertices. The upper dimension dim+(G) is the size of an upper basis. The resolving
number res(G) is theminimum k such that every k-subset of V (G) is a resolving set of G. For instance, dim+(Pn) = res(Pn) =

2, dim+(Cn) = 2 and res(Cn) = 3 where Pn and Cn denote, respectively, a path of order n ≥ 4 and a cycle of even order
n ≥ 4 [3].

Clearly, every (n − 1)-subset of V (G) is a resolving set and every resolving set contains a minimal resolving set. Hence,

1 ≤ dim(G) ≤ dim+(G) ≤ res(G) ≤ n − 1.
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When dim(G) = res(G) = k, the graph G is called randomly k-dimensional, i.e., every k-subset of V (G) is a metric basis
and so G has the maximum number of metric bases of a fixed size k.

Chartrand and Zhang [4] posed the problem of characterizing the randomly k-dimensional graphs. They solved the case
k ≤ 2, obtaining the complete graphs K1 and K2 (for k = 1) and odd cycles (for k = 2), and leaving open the main following
question.

Problem 1.1 ([4]). Are there randomly k-dimensional graphs other than complete graphs and odd cycles?

Concerning the three parameters, Chartrand et al. [3] investigated different questions related to graph realization. In
particular, they proved that every pair a, b of integers with 2 ≤ a ≤ b is realizable as themetric dimension and the resolving
number, respectively, of some connected graph G. It was also shown the analogous result for dim(G) = dim+(G) = a and
res(G) = b. Moreover, the authors proved that every pair among the three parameters can differ by an arbitrarily large
number. Finally, it was remarked that there were reasons to believe that every pair a, b of integers with 2 ≤ a ≤ b is
realizable as the metric dimension and the upper dimension, respectively, of some connected graph. Thus, they proposed
the following conjecture.

Conjecture 1.2 ([3]). For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G with dim(G) = a and
dim+(G) = b.

In this paper, we solve Problem 1.1 (Theorem 2.5) and settle in the affirmative Conjecture 1.2 (Theorem 3.5). We also
show that, unlike the metric dimension and the upper dimension, no integer a ≥ 4 is realizable as the resolving number of
an infinite family of graphs (Theorem 3.7).

2. Randomly k-dimensional graphs

In this section, we characterize the randomly k-dimensional graphs. While preparing this paper, we have learnt of [6],
where the authors prove the same result. Here we present an alternative, shorter proof.

We start with some technical lemmas needed for the case k = 3. Denote by Pλ(G) the λ-subsets of V (G) and let Ni(u) be
the set of vertices at distance i from u ∈ V (G). For {u, v}, {x, y} ∈ P2(G) we say that the pair {u, v} resolves the pair {x, y} if
either u or v resolves it. In general, T ∈ Pλ(G) resolves a pair {x, y} if there is a vertex in T that resolves it.

Lemma 2.1. Let G be a randomly 3-dimensional graph. Then, the following statements hold.
(a) For every pair {u, v} ∈ P2(G) there exist unique pairs {x, y}, {r, s} ∈ P2(G) such that {x, y} is not resolved by {u, v}, and

{u, v} is not resolved by {r, s}.
(b) Every vertex u ∈ V (G) satisfies

1≤i≤ecc(u)


|Ni(u)|

2


= n − 1 (1)

where by convention


1
2


= 0, and ecc(u) denotes the eccentricity of u, i.e., the maximum distance from u to any other

vertex.

Proof. To prove Statement (a), consider a graph G verifying that dim(G) = res(G) = 3. For every pair P = {u, v} ∈ P2(G),
consider the set

SP = {{x, y} | P does not resolve {x, y}} ⊂ P2(G).

Since dim(G) = 3 then SP is non-empty. Moreover, SP ∩ SP ′ = ∅ whenever P ≠ P ′. Indeed, suppose on the contrary that
there is a pair {x, y} resolved by neither P = {u, v} nor P ′

= {u′, v′
}, and assume that u, v ≠ u′. Then the set {u, v, u′

} is not
a metric basis, which is a contradiction. Therefore, SP ∩ SP ′ = ∅. Thus, |SP | = 1 for every P ∈ P2(G). This proves that for
every pair {u, v} there is a unique pair {x, y} such that {u, v} does not resolve {x, y}. Further, the map ϕ : P2(G) → P2(G)
given by ϕ(P) = SP is well-defined and injective (where by abuse of notation, we consider SP ∈ P2(G)). Then ϕ is a bijection
and so there is a unique pair {r, s} which does not resolve {u, v}. Hence, Statement (a) follows.

Consider now the set Su of non-resolvedpairs by a vertexu ∈ V (G). As a consequence of Statement (a)wehave |Su| = n−1
(it suffices to consider the n − 1 distinct pairs {u, v} with v ∈ V (G) \ {u}). On the other hand, a pair {x, y} ∈ Su if and only if
x, y ∈ Ni(u) for i = d(x, u) = d(y, u). Hence,

|Su| =


1≤i≤ecc(u)


|Ni(u)|

2


which proves Statement (b). �

Given u ∈ V (G), consider the partition P (u) = {Ni(u) | 0 ≤ i ≤ ecc(u)} of V (G) into classes (where N0(u) = {u}).
Lemma 2.1(b) says that there is a compensation between vertices of V (G) \ {u} and pairs of vertices located in the same
class of P (u). For instance, classes of size at least 4 always contribute to Eq. (1) with more pairs than vertices (6 pairs and
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4 vertices in case of size 4) and so they have to be compensated with classes of size at most 2 whose contribution is bigger
in terms of vertices than in pairs. Note that classes of size 3 which contribute with 3 pairs, are self-compensated. Therefore,
we have the following lemma.

Lemma 2.2. Let u ∈ V (G) and let P (u) = {Ni(u) | 0 ≤ i ≤ ecc(u)} be a partition of V (G) into classes with N0(u) = {u}. Then,
the following statements hold.

(a) If P (u) contains a class of size at least 4 then it contains at least two classes of size at most 2 different than N0(u).
(b) If P (u) contains a class of size at most 2 different than N0(u) then it contains a class of size at least 4.

The following straightforward observation will be useful for the proofs of this paper.

Observation 2.3 ([8]). Let u, v, w ∈ V (G) such that {v, w} ∈ E(G) and d(u, v) = d. Then, d(u, w) ∈ {d − 1, d, d + 1}.

Lemmas 2.1 and 2.2 are the key tools to avoid the case analysis in the characterization of the randomly 3-dimensional
graphs.

Proposition 2.4. If a graph G is randomly 3-dimensional then G is the complete graph on 4 vertices.

Proof. First, observe thatGdoes not contain vertices of degree 1 (Lemma1of [7]). Indeed, if a vertexuhas a uniqueneighbour
v, then the pair {u, v} is resolved by every vertex of G, which contradicts Lemma 2.1(a).

Claim 1. The degree of every vertex of G is at most 3.

Proof of Claim 1. Suppose on the contrary that there is a vertex u ∈ V (G) of degree at least 4, and let u1, u2, u3, u4 ∈ N1(u).
By Lemma 2.1(a), each set Aij = {v ∈ V (G) | d(v, ui) = d(v, uj)} with 1 ≤ i < j ≤ 4 contains exactly two vertices of G. Let
v ∈ V (G) such that d(u, v) = d. By Observation 2.3, d(v, ui) ∈ {d − 1, d, d + 1} and so the set {d(v, ui) | 1 ≤ i ≤ 4} has at
most 3 elements which implies that v belongs to at least one of the six sets Aij. Hence, n ≤ 7 since u ∈ Aij for all i, j.

Consider now the partitionP (u) in which N1(u) is a class of size at least 4. By Lemma 2.2(a), there are at least two classes
of size at most 2 different than N0(u). Further, n ≤ 7 and so there are exactly three classes of size 1 in P (u) (one being
N0(u)) which implies that the furthest vertex from u has degree 1; a contradiction. Therefore, every vertex of G has degree
at most 3. �

Claim 2. n ∈ {4, 7, 10}.

Proof of Claim 2. Since dim(G) = 3, then G is neither a path nor a cycle and so there is a vertex u ∈ V (G) of degree 3 with
neighbours, say u1, u2, u3. Arguing as in the proof of Claim 1, defining the analogous setsAij but for the vertices u, u1, u2, u3,
we have n ≤ 10 since every set contains exactly two vertices of G, u belongs to three of them, and every vertex of G belongs
to at least one of the six sets.

The sets {u} and {u1, u2, u3} are the classes N0(u) and N1(u), respectively, in the partition P (u). If this partition does not
contain more classes, then n = 4. Otherwise, by Lemma 2.2, there are three possibilities for P (u): (1) one class of size 4
and two classes of size 1 (plus N0(u) and N1(u)); (2) N0(u) and three classes of size 3 (one being N1(u)); (2) N0(u) and two
classes of size 3 (one being N1(u)). This gives n = 10 or n = 7. �

Claim 3. There is no vertex of degree 2.

Proof of Claim 3. Suppose on the contrary that there is a vertex u ∈ V (G) of degree 2. Then, |N1(u)| = 2. By Lemma 2.2,
P (u) contains a class of size at least 4 and another class of size at most 2 different than N0(u). Since n ≤ 10, we have the
following two possibilities for P (u): (1) one class of size 4, two classes of size 1 (one being N0(u)) and one class of size 2;
(2) one class of size 4, one class of size 1 (being N0(u)) and two classes of size 2. This gives, respectively, n = 8 and n = 9
contradicting Claim 2. �

The three previous claims prove that a graph G of order n satisfying dim(G) = res(G) = 3 is 3-regular and n ∈ {4, 7, 10}.
Clearly, n ≠ 7 since there is no 3-regular graph with 7 vertices.

Consider now two vertices u, v ∈ V (G) such that d(u, v) = d(G), where d(G) denotes the diameter of G, and let
N1(u) = {u1, u2, u3}. By Observation 2.3, the distance from v to every vertex of the set {u, u1, u2, u3} is either d(G) or
d(G) − 1. Hence, v belongs to at least two of the six sets Aij as defined in the proof of Claim 2. By Lemma 2.1(a), each set
contains exactly two vertices of G and u belongs to three of them. This gives n < 10 and so n = 4, which implies that G is
isomorphic to the complete graph K4 (the only 3-regular graph on 4 vertices). �

Now, we reach the desired characterization that solves Problem 1.1.

Theorem 2.5. A graph G is randomly k-dimensional if and only if G is a complete graph or an odd cycle.
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Proof. IfG is isomorphic to a complete graph or an odd cycle, it is straightforward to prove thatG is randomly k-dimensional.
Suppose now that G is a graph of order n satisfying dim(G) = res(G) = k. As was said before the case k ≤ 2 was proved

in [4], obtaining the complete graphs K1 and K2 (for k = 1) and odd cycles (for k = 2). Moreover, Proposition 2.4 proves the
result for k = 3 and so we can assume k ≥ 4.

Arguing as in the proof of Lemma 2.1(a) we have that for every T ∈ Pk−1(G), the non-empty set

ST = {{x, y} | T does not resolve {x, y}} ⊂ P2(G)

verifies that ST ∩ ST ′ = ∅ whenever T ≠ T ′. Therefore |Pk−1(G)| ≤ |P2(G)|, i.e.,
n

k − 1


≤

n
2


H⇒ k ∈ {1, 2, 3, n − 1, n, n + 1}.

Hence, k = n − 1 since 4 ≤ k = dim(G) ≤ n − 1. This implies that G is isomorphic to the complete graph Kn, which is the
only graph of order nwith metric dimension n − 1 [2]. �

3. Realization

3.1. The metric dimension and the upper dimension

This subsection is devoted to settle in the affirmative Conjecture 1.2. In order to do this, we compute the upper dimension
of two families of graphs for which the metric dimension is easily obtained. These graphs are constructed from the grid
graphs attaching at the origin either a triangle or a number of pendant vertices. We start with some notation and technical
lemmas.

Let Gℓ be the grid graph of order ℓ × ℓ with ℓ ≥ 2, whose vertex set is the Cartesian product [0, ℓ − 1] × [0, ℓ − 1] and
distances given by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|.

We shall use (x1, x2) to indicate the coordinates of a vertex x ∈ V (Gℓ) (analogously, y = (y1, y2), z = (z1, z2), etc.). The
following sets of vertices are called quadrants of x ∈ V (Gℓ):

Q1(x) = {y ∈ V (Gℓ) | y1 ≥ x1, y2 ≥ x2}, Q2(x) = {y ∈ V (Gℓ) | y1 ≤ x1, y2 ≥ x2},
Q3(x) = {y ∈ V (Gℓ) | y1 ≤ x1, y2 ≤ x2}, Q4(x) = {y ∈ V (Gℓ) | y1 ≥ x1, y2 ≤ x2},

and the sets Di = {x ∈ V (Gℓ) | x1 + x2 = i} with 0 ≤ i ≤ 2ℓ − 2 are the diagonals of Gℓ (see Fig. 1(a)). A pair of vertices
{x, y} is said to be a diagonal pair if x, y ∈ Di for some i. Note that a quadrant Qi(x) might be equal to {x} and there is a total
order <i in each diagonal Di (or simply ‘‘<’’ when no confusion can arise) given by

x<i y ⇐⇒ x1 < y1.

In the sequel we shall assume, without loss of generality, that the order of the two elements of a diagonal pair {x, y} is
x < y (analogously, r < s for {r, s} or t < z for {t, z}).

Let R(x, y) be the set of vertices of Gℓ that resolve the pair {x, y} ⊂ V (Gℓ), and let S be a resolving set of Gℓ. Note that the
set R(x, y) ∩ S is non-empty for every pair {x, y}.

Lemma 3.1. Let {x, y} be a diagonal pair such that d(x, y) = 2. Then,

R(x, y) = Q2(x) ∪ Q4(y).

Proof. For every vertex u ∈ Q2(x), there is a shortest u − y path going through x and so d(u, y) = d(u, x) + d(x, y) =

d(u, x) + 2. Thus, u resolves {x, y} (analogous for u ∈ Q4(y)).
Let u ∈ V (Gℓ) \ (Q2(x) ∪ Q4(y)), z = (x1, y2) and z̃ = (y1, x2). Clearly, there are two shortest paths P1 and P2 joining u

to x and u to y, respectively, such that either z ∈ P1, P2 or z̃ ∈ P1, P2 (see Fig. 1(b)). Since z, z̃ do not resolve the pair {x, y}
then u ∉ R(x, y). �

Given a resolving set S of Gℓ, a pair {x, y} is said to be S-unique if there is a unique vertex u ∈ S resolving {x, y}, i.e.,
R(x, y) ∩ S = {u}. The vertex u and the pair {x, y} are said to be associated to each other. The following observation is
straightforward.

Observation 3.2. Let S be a resolving set of Gℓ, and let {x, y} be an S-unique pair with associated vertex u. If there is a pair {r, s}
such that R(r, s) ⊆ R(x, y) then {r, s} is S-unique with associated vertex u. Note that necessarily u ∈ R(r, s).

Lemma 3.3. Let S be a resolving set of Gℓ, and let {x, y} = {(x1, x2), (y1, y2)} be an S-unique diagonal pair with associated
vertex u such that d(x, y) > 2. Then, there exist exactly y1 − x1 S-unique diagonal pairs {r, s} with associated vertex u and
d(r, s) = 2.
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Fig. 1. (a) Quadrants of x and a diagonal Di , (b) the shadowed region illustrates Q2(x) ∪ Q4(y), and the dotted edges form the paths P1 and P2 .

Fig. 2. (a) All the vertices in the shadowed region plus the two squared vertices do not resolve the pair {x, y}, (b) the shadowed region illustrates R(x, y).

Proof. A similar argument as in the proof of Lemma 3.1, considering z = (x1, y2) and z̃ = (y1, x2), gives that every vertex
u ∈ Q3(z) ∪ Q1(z̃) does not resolve the pair {x, y}. Clearly, the vertices (x1 + j, y2 + j) with 0 < j < y1 − x1 do not resolve
the pair {x, y} either (see Fig. 2(a)). Thus, the expression of R(x, y) in this case is

R(x, y) = V (Gℓ) \ (Q3(z) ∪ Q1(z̃) ∪ {(x1 + j, y2 + j) | 0 < j < y1 − x1}).

This set can also be expressed as follows:

R(x, y) =


0≤j<y1−x1

R(r j, sj)

where r j = (x1+j, y2+j+1), sj = (x1+j+1, y2+j) and d(r j, sj) = 2 (see Fig. 2(b)). Since R(r j, sj) ⊆ R(x, y), Observation 3.2
proves the result. �

Two diagonal pairs {x, y}, {r, s} such that d(x, y) = d(r, s) = 2 are said to be in the same row if x2 = r2 and y2 = s2.
Analogously, they are in the same column if x1 = r1 and y1 = s1.

Lemma 3.4. Let S be a resolving set of Gℓ, and let {x, y} be an S-unique diagonal pair with associated vertex u such that
d(x, y) = 2. If there exist two S-unique diagonal pairs {r, s}, {t, z} in the same row (column) than {x, y} with associated vertices,
respectively, v and w and u ≠ v, w, then v = w.

Proof. Suppose that the pairs {r, s}, {t, z} are in the same row (analogous for columns) than {x, y}, i.e., x2 = r2 = t2 and
y2 = s2 = z2. Assume also that x1 < r1 < t1. Clearly, R(r, s) ⊂ (R(x, y) ∪ R(t, z)) and so v = w since v ≠ u. �

Now, we reach our main result in this subsection which settles in the affirmative Conjecture 1.2.

Theorem 3.5. For every pair a, b of integers with 2 ≤ a ≤ b, there exists a connected graph G with dim(G) = a and
dim+(G) = b.

Proof. Let Hℓ be the graph obtained from Gℓ with ℓ ≥ 2, by attaching a triangle at vertex (0, 0), i.e., V (Hℓ) = V (Gℓ)∪{α, β}

and E(Hℓ) = E(Gℓ) ∪ {{α, β}, {α, (0, 0)}, {β, (0, 0)}} (see Fig. 3(a)). Observe that distances in Hℓ behave as in Gℓ, except for
the new vertices α and β for which d(α, x) = d(β, x) = x1 + x2 + 1 for every x = (x1, x2) ∈ V (Gℓ). Thus, the previous
lemmas can be applied to the graph Hℓ.

Claim A. dim(Hℓ) = 2 and dim+(Hℓ) = 2ℓ − 2.
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Fig. 3. (a) A minimal resolving set of Hℓ of size 2ℓ − 2, (b) a minimal resolving set of Hℓ,m of sizem + 2ℓ − 4.

Proof of Claim A. It is well-known that dim(Gℓ) = 2 the set {(0, 0), (ℓ − 1, 0)} being a metric basis (see for instance [8]).
This set can be adapted to a metric basis of Hℓ by considering {α, (ℓ − 1, 0)}. Hence, dim(Hℓ) = 2.

To prove that dim+(Hℓ) ≥ 2ℓ − 2 one can easily check that the set

S = {(x1, x2) | 1 ≤ x1 ≤ ℓ − 2, x2 ∈ {x1, x1 + 1}} ∪ {(0, 1), α}

is a resolving set of Hℓ of size 2ℓ − 2. Moreover, S is minimal because removing either a vertex (x1, x1) or (x1, x1 + 1) from
S gives that either the pair {(x1, x1), (x1 − 1, x1 + 1)} or the pair {(x1, x1 + 1), (x1 + 1, x1)} is not resolved by any element
of S. Clearly, (0, 1) and α cannot be removed from S. Fig. 3(a) illustrates this minimal resolving set.

We next prove that dim+(Hℓ) ≤ 2ℓ − 2. Let S be a minimal resolving set of Hℓ. Consider the pair {α, β} which is only
resolved by either α or β . Without loss of generality, we assume that α ∈ S and β ∉ S.

Since S isminimal, every vertex u ∈ S has an associated S-unique pair, say p(u). Observe that {β, (0, 0)} is not an S-unique
pair (every vertex of Gℓ resolves it) and so there is no vertex u ∈ S so that p(u) = {β, (0, 0)}. Also note that α resolves all
the non-diagonal pairs of Gℓ. Hence, every vertex u ∈ S \ {α} has an associated S-unique diagonal pair p(u). Moreover, by
Lemma 3.3, we can assume that the elements of p(u) are at distance 2 from each other.

Let us consider all these S-unique pairs. By Lemma 3.4, for all pairs of the same row (or column), there are at most
two distinct vertices associated to these pairs. Moreover, we claim that there is at most one such vertex in the first row
(and the first column). Indeed, by Lemma 3.1 we have R((0, 1), (1, 0)) = Q2((0, 1)) ∪ Q4((1, 0)) = {(0, x2) | 1 ≤ x2 ≤

ℓ − 1} ∪ {(x1, 0) | 1 ≤ x1 ≤ ℓ − 1}. Suppose that there is a vertex v ∈ S ∩ Q2((0, 1)) (analogous for v ∈ S ∩ Q4((1, 0)) by
symmetry). Since all the pairs in the same row as {(0, 1), (1, 0)} are resolved by v and S is minimal, then there is no other
vertex of S associated to pairs in such row.

Hence, in total, since there are ℓ − 1 rows (and columns), there are at most 2(ℓ − 2) + 1 S-unique pairs that can be
associated to the vertices of S \ {α}, and thus |S \ {α}| = |S| − 1 ≤ 2(ℓ − 2) + 1. �

Consider now the graph Hℓ,m obtained from Gℓ with ℓ ≥ 3 by attaching a set of m ≥ 2 pendant vertices {α1, . . . , αm} at
(0, 0) (see Fig. 3(b)).

Claim B. dim(Hℓ,m) = m + 1 and dim+(Hℓ,m) = m + 2ℓ − 4.

Proof of Claim B. As was said before, the set {(0, 0), (ℓ−1, 0)} is a metric basis of Gℓ [8]. Thus, it can be easily checked that
the set {α1, . . . , αm, (ℓ−1, 0)} is a resolving set of Hℓ,m, which gives dim(Hℓ,m) ≤ m+1. To prove that dim(Hℓ,m) ≥ m+1,
it suffices to show that |S| ≥ m + 1 for every metric basis S.

A metric basis S must contain all the pendant vertices but at most one. Suppose that {α1, . . . , αm−1} ⊂ S and αm ∉ S (if
{α1, . . . , αm} ⊂ S, the result clearly follows). Since no pendant vertex resolves the pair {(0, 1), (1, 0)}, then there is a vertex,
say u ∈ R((0, 1), (1, 0)) = Q2((0, 1)) ∪ Q4((1, 0)). Without loss of generality, suppose that u ∈ Q2((0, 1)). Then the pair
{αm, (1, 0)} is not resolved by any vertex in the set {α1, . . . , αm−1, u} and so |S| ≥ m + 1. Therefore, dim(Hℓ,m) = m + 1.

Mimicking the proof of Claim A, only replacing α by α1, . . . , αm−1 and β by αm (compare Fig. 3(a) and (b)) it is proved
that dim+(Hℓ,m) = m + 2ℓ − 4. �

Claims A and B give a connected graph G with dim(G) = a and dim+(G) = b whenever a = 2 and b is even (G ∼= Hℓ for
ℓ = (b + 2)/2) or a > 2 and b − a is odd (G ∼= Hℓ,m for ℓ = 2 + (b − a + 1)/2 andm = a − 1).

In order to obtain the graph G in the remaining cases, we modify slightly the graphs Hℓ and Hℓ,m by removing the set of
vertices {(x1, x2) | x1 = ℓ − 1}. Denote by H̃ℓ and H̃ℓ,m the resulting graphs. Note that a (ℓ − 1) × ℓ grid, say G̃ℓ, plays now
the role of Gℓ but all the tools developed above can also be applied in this case. Hence, one can follow the proofs of Claims A
and B to compute the metric dimension and the upper dimension of H̃ℓ and H̃ℓ,m. There are only three changes:

1. Take the set {(0, 0), (ℓ − 2, 0)} as a metric basis of G̃ℓ.
2. Remove the vertex (ℓ−2, ℓ−1) from S obtaining a minimal resolving set of size 2ℓ−3 (for H̃ℓ) or 2ℓ+m−5 (for H̃ℓ,m).
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3. Apply the column version of Lemma 3.4 to get |S \ {α}| ≤ 2(ℓ − 2) or |S \ {α1, . . . , αm−1}| ≤ 2(ℓ − 2) which directly
gives |S| ≤ 2ℓ − 3 (for H̃ℓ) or |S| ≤ 2ℓ + m − 5 (for H̃ℓ,m).

Thus, we have that dim(H̃ℓ) = 2, dim+(H̃ℓ) = 2ℓ − 3, dim(H̃ℓ,m) = m + 1 and dim+(H̃ℓ,m) = m + 2ℓ − 5. Therefore,
we obtain a graph G with dim(G) = a and dim+(G) = b whenever a = 2 and b is odd (G ∼= H̃ℓ for ℓ = 2 + (b − 1)/2) or
a > 2 and b − a is even (G ∼= H̃ℓ,m for ℓ = 3 + (b − a)/2 andm = a − 1). �

3.2. The resolving number

In Section 3.1, we have proved that every pair a, b of integers with 2 ≤ a ≤ b is realizable as the metric dimension and
the upper dimension, respectively, of a certain graph. Modifying slightly the above constructions, one can easily prove that
every pair a, b is realizable as the metric dimension and the upper dimension, respectively, of an infinite family of graphs. It
suffices to replace the vertex (0, 0) in Gℓ by a path of arbitrary length. If the resulting graph plays the role of Gℓ in the study
developed in the previous subsection, then the values of the metric dimension and the upper dimension are preserved.

Theorem 3.7 below says that no integer a ≥ 4 is realizable as the resolving number of an infinite family of graphs (note
that the path P2 is the only graph with resolving number 1 but there are infinite families of graphs with resolving number 2
and 3, concretely, odd cycles and paths for a = 2 and even cycles for a = 3). In order to prove this result, we first relate the
resolving number to the diameter of a graph, which is of independent interest.

Proposition 3.6. Let G be a graph with diameter d(G) and resolving number res(G) ≥ 3. If G is not an even cycle, then
d(G) ≤ 3res(G) − 5.

Proof. Let us denote r = res(G). Suppose on the contrary that d(G) > 3r−5. Then,we can assume that there are two vertices
u, v ∈ V (G) such that d(u, v) = 3r − 4 = 3(r − 1) − 1. Consider a shortest u–v path P = {u = u1, u2, . . . , u3(r−1) = v | ui
is adjacent to ui+1}, and suppose that there is a vertex w ∉ P adjacent to some vertex ui with i ≠ 1, 3(r − 1) (otherwise it
can be easily checked that {u1, . . . , ur} is not a resolving set).

Clearly, every vertex uj ∈ P does not resolve either {w, ui−1} or {w, ui} or {w, ui+1}. Indeed, assume i ≤ j (analogous
for i > j). By Observation 2.3, uj does not resolve at least one pair among those formed by the vertices ui−1, ui, ui+1, w.
Moreover, the pairs {ui−1, ui}, {ui−1, ui+1} and {ui, ui+1} are all resolved by uj, since P is a shortest path. Thus, one pair
among {w, ui−1}, {w, ui}, {w, ui+1} is not resolved by uj.

Consider now the sets A = {uj ∈ P | d(uj, w) = d(uj, ui−1)}, B = {uj ∈ P | d(uj, w) = d(uj, ui)} and C = {uj ∈

P | d(uj, w) = d(uj, ui+1)}. By the argument above, A ∪ B ∪ C = P . Furthermore, |P| = 3(r − 1) and |A|, |B|, |C | ≤ r − 1
(since these sets are not resolving sets of G) and so |A| = |B| = |C | = r −1. This implies that A, B and C are pairwise disjoint
but ui ∈ A ∩ C; a contradiction. �

Observe that when res(G) ≤ 2 or G is an even cycle, the bound of Proposition 3.6 does not hold. It suffices to consider
the path P2 (for res(G) = 1), an odd cycle of length at least 5 (for res(G) = 2) and an even cycle of length at least 6 (for
res(G) = 3).

Theorem 3.7. For every integer a ≥ 4, the set of graphs with resolving number a is finite.

Proof. A graph G of order n, diameter d(G) and metric dimension dim(G) satisfies the following relation [8]:

n ≤ d(G)dim(G)
+ dim(G).

Since dim(G) ≤ res(G) then

n ≤ d(G)res(G)
+ res(G).

By Proposition 3.6, we obtain

n ≤ (3res(G) − 5)res(G)
+ res(G) = (3a − 5)a + a.

This upper bound for n depends only on the value of a and so the result follows. �

4. Concluding remarks and open questions

In this paper, we have settled in the affirmative a conjecture posed by Chartrand et al. [3] claiming that every pair a, b
of integers with 2 ≤ a ≤ b is realizable as the metric dimension and the upper dimension, respectively, of some connected
graph. We have also shown that, surprisingly, the set of graphs with given resolving number a ≥ 4 is always finite, and we
have characterized the randomly k-dimensional graphs, avoiding the brute force case analysis.

It would be interesting to study the realization of triples a, b, c of integers as the metric dimension, the upper dimension
and the resolving number, respectively, of some connected graph. Also, the question of bounding the size of the set of graphs
(may be restricting to specific families) with given resolving number a remains open. It would be also interesting to provide
a polynomial upper bound on n in terms of the resolving number since we believe that the exponential upper bound given
in the proof of Theorem 3.7 is not tight.
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