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Preface

This volume contains the papers emerged from the Sixth Brainstorming Week on
Membrane Computing (BWMC), held in Sevilla, from February 4 to February 8,
2008, in the organization of the Research Group on Natural Computing from the
Department of Computer Science and Artificial Intelligence of Sevilla University.
The first edition of BWMC was organized at the beginning of February 2003 in
Rovira i Virgili University, Tarragona, and the next four editions took place in
Sevilla at the beginning of February 2004, 2005, 2006, and 2007, respectively.

In the style of previous meetings in this series, the sixth BWMC was again
a period of active interaction among the participants, with the emphasis on ex-
changing ideas and cooperation, with only a few (“provocative”, of any length
between 5 and 55 minutes, depending on the interaction with audience) presenta-
tions scheduled in the first days of the meeting and with most of the time devoted
to the joint work. The efficiency of this type of meetings was again proved to be
very high and the present volume proves this assertion.

Among the features of the 2008 BWMC, we mention the usual high number of
participants, the presentation of a PhD thesis in membrane computing (this was
the case also in the last years), the presentation of new results, and, especially, of
new applications.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from these volumes will be considered for publication
in a special issues of Fundamenta Informaticae. After the first BWMC, a special
issue of Natural Computing – volume 2, number 3, 2003, and a special issue of
New Generation Computing – volume 22, number 4, 2004, were published; papers
from the second BWMC have appeared in a special issue of Journal of Universal
Computer Science – volume 10, number 5, 2004, as well as in a special issue
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of Soft Computing – volume 9, number 5, 2005; a selection of papers written
during the third BWMC have appeared in a special issue of International Journal
of Foundations of Computer Science – volume 17, number 1, 2006); after the
fourth BWMC a special issue of Theoretical Computer Science was edited – volume
372, numbers 2-3, 2007; after the fifth edition, a special issue of International
Journal of Unconventional Computing was edited – now in press. Other papers
elaborated during the sixth BWMC will be submitted to other journals or to
suitable conferences. The reader interested in the final version of these papers is
advised to check the current bibliography of membrane computing available in the
Milano web page http://psystems.disco.unimib.it (with a mirror in China,
at http://bmc.hust.edu.cn/psystems); soon, possibly before the publication of
this volume, the page will have a new address, http://ppage.psystems.eu, a new
look and a new host – Vienna.

The Sixth Brainstorming Week on Membrane Computing was dedicated to the
memory of Nadia Busi, one of the most active researchers in membrane computing,
a friendly, highly creative, and reliable member of our community, who passed away
last year.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Ardelean Ioan I., Institute of Biology of the Romanian Academy, Romania,
ioan.ardelean@ibiol.ro

2. Balbont́ın-Noval Delia, University of Sevilla, Spain,
delia@us.es

3. Beyreder Markus, Technical University Wien, Austria,
e9526745@stud3.tuwien.ac.at

4. Binder Aneta, Technical University Wien, Austria,
ani@logic.at

5. Castellini Alberto, University of Verona, Italy,
alb.caste@gmail.com

6. Ceterchi Rodica, University of Bucharest, Romania,
rceterchi@gmail.com

7. Colomer M. Angels, University of Lleida, Spain,
Colomer@matematica.UdL.es

8. Cordón Franco Andrés, University of Sevilla, Spain,
acordon@us.es

9. Dı́az-Pernil Daniel, University of Sevilla, Spain,
sbdani@us.es

10. Ferretti Claudio, University of Milano-Bicocca, Italy,
ferretti@disco.unimib.it

11. Franco Giuditta, University of Verona, Italy,
franco@sci.univr.it

12. Freund Rudolf, Technical University Wien, Austria,
rudi@emcc.at, rudi@logic.at
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13. Frisco Pierluigi, Heriot-Watt University, United Kingdom,
pier@macs.hw.ac.uk

14. Gálvez-Santisteban Manuel Angel, University of Sevilla, Spain,
mangalsan@alum.us.es

15. Gheorghe Marian, University of Sheffield, United Kingdom,
marian@dcs.shef.ac.uk

16. Graciani Carmen, University of Sevilla, Spain,
cgdiaz@us.es

17. Gutiérrez-Naranjo Miguel Angel, University of Sevilla, Spain,
magutier@us.es

18. Hitzler Pascal, Univertity of Karlsruhe, Germany,
hitzler@aifb.uni-karlsruhe.de

19. Ishdorj Tseren-Onolt, Abo Akademi, Finland,
tishdorj@abo.fi

20. Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

21. Maggiolo-Schettini Andrea, University of Pisa, Italy,
maggiolo@di.unipi.it

22. Mauri Giancarlo, University of Milano-Bicocca, Italy,
mauri@disco.unimib.it

23. Milazzo Paolo, University of Pisa, Italy,
milazzo@di.unipi.it

24. Mira-Mira José, U.N.E.D., Spain,
jmira@dia.uned.es

25. Murphy Niall, NUI Maynooth, Ireland,
nmurphy@cs.nuim.ie

26. ObtuÃlowicz Adam, Polish Academy of Sciences, Poland,
A.Obtulowicz@impan.gov.pl

27. Păun Gheorghe, Institute of Mathematics of the Romanian Academy, Roma-
nia, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

28. Pérez-Hurtado Ignacio, University of Sevilla, Spain,
perezh@us.es

29. Pérez-Jiménez Mario de Jesús, University of Sevilla, Spain,
marper@us.es

30. Ramı́rez-Mart́ınez Daniel, University of Sevilla, Spain,
thebluebishop@gmail.com

31. Reyes-Jurado Fernando, University of Sevilla, Spain,
donepi@gmail.com

32. Riscos-Núñez Agust́ın, University of Sevilla, Spain,
ariscosn@us.es

33. Rivero-Gil Elena, University of Sevilla, Spain,
elen.rg@gmail.com
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34. Rodrigues de Alcântara Júnior, Oséas, University of Sevilla, Spain,
oseas@live.com

35. Romero-Campero Francisco José, University of Sevilla, Spain,
fran@us.es

36. Romero Jiménez Alvaro, University of Sevilla, Spain,
Alvaro.Romero@cs.us.es

37. Roselló Francesc, University of Balearic Islands, Spain,
cesc.rossello@uib.es

38. Sempere José Maŕıa, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

39. Tomescu Alexandru I., University of Bucharest, Romania,
alexandru.tomescu@gmail.com

40. Zandron Claudio, University of Milano-Bicocca, Italy,
zandron@disco.unimib.it

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all the
members of this group were enthusiastically involved in this (not always easy) work.
The meeting was supported from various sources: (i) Proyecto de Investigación
TIN2006–13425 del Ministerio de Educación y Ciencia of Spain, (ii) Grupo de
Investigación en Computación Natural (PAI TIC 193) de la Junta de Andalućıa,
(iii) Proyecto de Excelencia TIC–581 de la Junta de Andalućıa, (iv) III Plan Propio
de la Universidad de Sevilla, as well as by the Department of Computer Science
and Artificial Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, April 10, 2008)
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P. Frisco, Gh. Păun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Testing Einstein’s Formula on Brownian Motion
Using Membrane Computing
M.A. Gálvez-Santisteban, M.A. Gutiérrez-Naranjo,
D. Ramı́rez-Mart́ınez, E. Rivero-Gil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Research Topics Arising from the (Planned) P Systems
Implementation Experiment in Technion
R. Gershoni, E. Keinan, Gh. Păun,
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A Biological Perspective on Sorting with P
Systems
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Academiei 14, RO-010014, Bucharest, Romania
E-mails: ioan.ardelean@ibiol.ro, rceterchi@gmail.com,

alexandru.tomescu@gmail.com

Summary. The aim of this contribution is to argue that the processes occurring in bio-
logical membranes in bacteria are also important as natural examples of communication
between membranes, which, in the formal framework of P systems, leads (among other
things) to simulations of sorting operations.

1 Introduction

Sorting is one of the most studied problem in Computer Science, as it has a
wide range of applications, including sequential and parallel algorithms. Static
sorting algorithms have been developed and proposed also in the P systems area.
Among the first approaches, made independently, we mention [6] and [10], [11].
The problem of sorting with P systems occupies Chapter 8, [1], of the monograph
[12].

The aim of this contribution is to show that the processes occurring in bio-
logical membranes in bacteria (cell membrane, external membrane or intracellular
vesicles) which are essential for cell life being, are also important as natural ex-
amples of sorting processes occurring in bacteria. The argument is presented in
Section 2. Accordingly, we have abstracted a formal model for a comparator of two
values, which uses 3 membranes and communication rules between them. From the
formal point of view, an immediate generalization follows, for N arbitrary values,
whose biological feasibility remains to be investigated, and is probably heavily
dependent on the value of N . Along the lines of previous work on sorting with
membranes, a system is proposed to sort 4 values, by simulating a sorting network
with 4 wires. This is the content of Section 3.
? Corresponding author
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2 Biochemical Reactions

Biochemical reactions in living cells occur following precise rules and laws; one
rule shows that in a given chemical reaction there is a given numerical proportion
between the reactants.

Respiration is the biological process that allows the cells (from bacteria to
humans) to obtain energy. In short, respiration promotes a flux of electrons from
electron donors to a final electron acceptor, which in most cases is molecular
oxygen. The ability of many bacteria to use molecular oxygen as final electron
acceptor in their respiration is provided by the work of an enzyme named: citocrom
c oxidase which catalyzes the following equations:

O2 in + 4H+
in + 4H+

in + 4e−within = 2H2O + 4H+
out

The subscript “in” means on the inner face of the membrane, “out” the outer
face of the membrane while “within” simply means within membrane.

Thus, during the last step of respiration shortly presented above, water is
formed from molecular oxygen, protons (4H+) and electrons(4e−). 4 protons are
simultaneously transferred across membrane from inside to outside the cell con-
tributing to energy conservation. Apart from its biological significance, the function
of cy tocrom c oxidase could offer to P system scientists an example of a new type
of developmental rule more complex that those already taken into account [18]. In
a general formulation this rule is:

Ain + Bin + Cwithin = Din + Bout

Moreover, coefficients before the symbols could be of help in establishing
whether or not the function of cytocrom c oxidase could be used for sorting.

The overall process of photosynthesis as it occurs in cyanobacteria (as well as
in algae and plants) consists in using electrons from water to ultimately reduce
carbon dioxide thus forming substances such as carbohydrates. This process is
essential for the life on Earth, being the main energy source for almost all living
cells, including humans, the only source of molecular oxygen needed for respiration
(and many oxygen-consuming related activities) as well as a huge carbon dioxide-
consuming process.

The first major event in photosynthesis is the splitting of water at the expense
of light energy to molecular oxygen, protons and electrons, which occurs at the
level of intracitoplasmatoic vesicles called thylakoids. To be more precise, we focus
on cyanobacteria which are Gram-negative bacteria, and we recall a few structural
aspects of these bacteria which are relevant for sorting.

In Gram-negative bacteria, apart from the cell membrane (CM) covering the
cytoplasm, there is a second membrane, called external membrane (EM), because
it is located at the exterior of the cell membrane; the space between these two
membranes is called periplasmic space.
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The two membranes, EM and CM with a structure described by the fluid
mosaic model, have different chemical composition and different particularization
of the functions. When it comes to the transport of ions and molecules across them
there are some important differences. Inogranic ions for example, can pass through
the EM while there are special proteins and mechanisms controlling their passage
across CM (see below).

Apart from CM and EM in some bacteria inside the cell there are some in-
tracellular membranes (IM) organized in very tiny vesicles, these structures being
associated with specific metabolic functions, photosynthesis being the most im-
portant.

Notwithstanding its biological significance, the splitting of water could offer to
P system scientists an example of a new type of developmental rule more complex
that those already taken into account, with applications, for example, in sorting
with P systems. In photosynthesis, there is a movement of molecules and ions
across the cytoplasmic membrane (skin membrane) the intrathylakoidal space to
cytoplasm which could be interesting to be studied from the point of view of
sorting.

For P systems symport and antiport rules are nice examples of how bacterial
cells manage the developmental rules [18, 19]. In Bacteria these processes are
needed to transport useful substances inside the cell and to transport outside
the cell toxic substances, thus maintaining intracellular composition stable in a
changing environment.

Another important transport system used by bacteria, is TRAP (tripartite
ATP independent periplasmic) transporters [13]. Mechanistically TRAP systems
are symporters transporting across CM protons and one solute (glutamate, for
example). However, the significant differences with respect to a pure symport sys-
tem, it that the transport of the solute takes place only when a specific periplasmic
protein to bind the solute is present. So, there is the control of the transport of
solute, carried out by a specific periplasmic protein that does not cross the CM!
For P systems, the transport of a solute, chemical species controlled by another
component, not passing through the membrane could be important for in vitro
implementation of sorting.

The incorporation of different active (mainly) protein molecules in artificial
membranes opens the possibility to move objects across these membranes. In
our opinion, these experiments (with antiporters, symporters or any other ac-
tive molecule biologically produced or chemically synthesized, but arranged in an
appropriate way within the artificial membrane) could be useful for P systems
for molecule sorting. Furthermore, in artificial membranes one could incorporate
molecules which function as molecular logic gates such as those active in respi-
ration [5]. Moreover, very recent results show that it is possible to improve the
structure of artificial vesicle membranes by coating hollow polyelectrolyte cap-
sules with biological interfaces such as phospholipid membrane and proteins [15],
a step toward an artificial cell assembly [16]. The results in artificial membrane
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research support the hope that they are appropriate tools for sorting experiments
proposed in this contribution.

3 The Abstract Model for Sorting

Comparison-based sorting has been previously addressed in the field of P systems
[1, 9]. Although it is well known that such sequential sorting algorithms require
at least N log N comparisons to sort N items, performing many comparisons in
parallel can reduce the sorting time. For example, the bitonic sorting algorithm
proposed by Batcher [7] has complexity O(log2 N). The intrinsic parallelism of
P systems leads to a natural adaptation of classical parallel algorithms, which
has been exploited in [9]. The P system consisted of a 2D-mesh of

√
N ×

√
N

membranes which were used to route values, but also to compare values.
We are concerned in this section with the crucial step of constructing a com-

parator of two values, which can serve as a building block for a P system which
can sort N values. However, we do this by keeping in mind the biological processes
and biochemical reactions illustrated in Section 2.

The formalism we adopt is that of a P system with dynamic communication
[8, 10], along the same general lines as the model proposed in [9]. The computation
takes place according to a finite sequence Rµ of pairs [E, rules]. The rules are
applied on the set E of directed edges between membranes.

The comparator P system we propose is illustrated in Figure 2.

ab !ab

a!b

b !b

b !bax   by

0

1

2

ax   by

0

1

2

ab !ab

a!b

b !b

b !b

(a) Increasing comparator

ab !ab

a!b

b !b

b !bax   by

0

1

2

ax   by

0

1

2

ab !ab

a!b

b !b

b !b

(b) Decreasing comparator

Fig. 1. A P system which sorts numbers x and y codified as occurrences of symbols a
and b in membrane 0.
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The formal definition of the P system which sorts ascending (Figure 1(a)) is
the following:

Π =< V = {a, b}, 〈[ax, by]1, []2, []3〉,
Rµ = [{(0, 1)}, rules(0, 1) = {ab → ab}]·

·[{(0, 2), (1, 2)}, rules(0, 2) = {a → b, b → b}, rules(1, 2) = {b → b}] > .

At the beginning of the computation, x copies of a and y copies of b are loaded
in membrane 0. The first pair of Rµ sends min(x, y) copies of ab into membrane 1.
In the next step, the b symbols from membrane 1 are sent to membrane 2, while
the remaining max(x, y)−min(x, y) symbols of membrane 0 are rewritten to b and
sent to membrane 2. At this point we have obtained min(x, y) as the number of
occurrences of symbol a in membrane 1, and max(x, y) as number of occurrences
of symbol b in membrane 2.

In our opinion the biological implementation probably could be done by the use
of artificial lipid membranes in which appropriate membrane transporters (sym-
porters, antiporters, ABC transporters, etc) have been included.

In the following, we put forward the design of a biological experiment which
could in vitro implement such a comparator. The only modification of the proposed
P system is that on edge (0, 2) the rules are no longer rewriting rules, but simply:
a → a, b → b. In this case, we still obtain the maximum in membrane 2, except
that now it is codified as the total number of occurrences of both symbols a and
b.

The proposal comprises the following biological-biochemical-biophysical steps:

i) in membrane 0 a specific type of enzyme which links one occurrence of a with
one occurrence of b, thus forming one occurrence of ab; the process is repeated
until the number of ab occurrences equals the min(x, y);

ii) in membrane 0 a uniporter protein transports all the occurrences of ab in
membrane 1;

iii) in membrane 1, a specific enzyme split all the occurrences of ab in a and b;
iv) in membrane 1, a membrane carrier, an antiporter, sends all the occurrences

of b in membrane 2;
iv’)concurrently with step iv), in membrane 0 another membrane carrier, sends

all remaining, unpaired occurrences of a or b in membrane 2, where there are
already the bs arrived from membrane 1.

The particular biochemical nature of a and b, and transporters is in work.
However is has to be said that the spatial relationships between these three types
of membranes is important for computation and sorting.

A first generalization of this comparator to sort N numbers can be obtained
by using N + 1 membranes. In membrane 0, number xi is codified as numbers of
occurrences of symbol ai, with 1 ≤ i ≤ N . In the first N steps, only one of the edges
linking membranes 0 with 1, until 0 with N is active. The edge between membranes
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0 and 1 contains the rule a1 . . . aN → a1 . . . aN , the edge between membranes 0
and 2 contains all rules {a1 . . . ai−1ai+1 . . . aN → a2 . . . aN | 1 ≤ i ≤ N}, and
so on. Finally, on the edge linking membrane 0 and membrane N the rules are
{ai → aN | 1 ≤ i ≤ N}. In the meantime, we also send from membrane 0 down
to membrane N all symbols a2 . . . aN , a3 . . . aN , and so on, the only symbol being
sent between membranes N−1 and N being aN . Having specified how to generate
the rules attached to edges, the sequence of active edges has length N and is the
following:

{(0, 1)}, {(0, 2), (1, 2)}, {(0, 3), (2, 3)}, · · · {(0, N), (N − 1, N)}.

In the end, after N steps, the sequence of numbers codified as occurrences of
symbols in membranes 1 to N is increasing.

a0a1 ! c+d+

c+d+ ! a0a1 

a0! d+

a1! d+

d+ ! a1

a1...aN ! a1...aN

a1...aN-1 ! a2...aN

....

a2...aN ! a2...aN

...

a1a2 ! aN-1aN

a1a3 ! aN-1aN

....

aN-1aN ! aN-1...aN

a1 ! aN

....

aN ! aN

0 1

2

N-1

N

a2 ! a2

...

aN ! aN

aN ! aN

a3 ! a3

aN ! aN

...

aN-1 ! aN-1

aN ! aN

...

Fig. 2. A P system which sorts N numbers codified as occurrences of symbols a1 . . . aN

in membrane 0.
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As mentioned before, one of the fastest parallel sorting algorithm is the bitonic
sorting network. Following [14] it is customary to represent a network as an ordered
set of N lines (wires) connected by a set of compare-exchange devices (compara-
tors, for brevity). A comparator has two input terminals, a and b, and produces
two output terminals c and d. If the comparator is increasing, then c = min(a, b)
and d = max(a, b), while if the comparator is decreasing, c = max(a, b) and
d = min(a, b). A bitonic sorting network for N = 4 is represented in Figure 3.

As we have built comparators of two elements, one can think of replacing each
comparator of the bitonic network with the equivalent P system, and then connect
the P systems according to the topology of the network. The rules according to
these communication edges simply send all the symbols from the output mem-
branes of the previous comparators to membrane 0 of the following one.

The P system described in Figure 4 has the following formal presentation:

Π4 =< {a, b, c, d}, [axcz]0, []1, []2, [bydt]3, []4, []5, · · · , []17, Rµ > .

The sequence Rµ of pairs [graph, rules] is given below, where by · we denote
sequential composition, and pairs grouped in the same set act in parallel.

Rµ = {[(0, 1), ac → ac][(3, 5), bd → bd]}·

·{[(1, 2), c → c], [(0, 2), a → c, c → c], [(3, 4), b → d, d → d], [(5, 4), d → d]}·

·{[(1, 6), a → a], [(2, 9), c → c], [(4, 6), d → d], [(5, 9), b → b]}·

·{[(6, 7), ad → ad], [(9, 10), bc → bc]}·

·{[(6, 8), a → d, d → d], [(7, 8), d → d], [(9, 11), b → c, c → c], [(10, 11), c → c]}·

·{[(7, 12), a → a], [(8, 15), d → d], [(10, 12), b → b], [(11, 15), c → c]}·

·{[(12, 13), ab → ab], [(15, 16), cd → cd]}·

·{[(12, 14), a → b, b → b], [(13, 14), b → b], [(15, 17), c → d, d → d], [(16, 17), d → d]}.

Thus, after 8 steps, the four numbers {x, y, z, t} are sorted in ascending order in
membranes labeled {13, 14, 16, 17}, codified with symbols {a, b, c, d} respectively.

0

1

2

3

Fig. 3. A bitonic network of size N = 4.
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ac !ac

a!c

c !c

c !caxcz
0

1

2

bd !bd

b!d

d !d

d !dbydt
3

4

5

ad !ad

a!d

d !d

d !d

6

7

8

bc !bc

b!c

c !c

c !c

9

10

11

ab !ab

a!b

b !b

b !b

12

13

14

cd !cd

c!d

d !d

d !d

15

16

17

a !a

d !d

c !c

b !b

a !a

d !d

b !b

c !c

Fig. 4. A P system obtained from the bitonic sorting network of size 4 (Figure 3), in
which each comparator has been replaced by a corresponding P system.
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Summary. The aim of these notes is to contribute to the dialog between P systems
and Biological Sciences focussing on membrane proteins involved either in iron transport
inside the bacterial cells or in elimination outside the bacterial cells of substances which
are dangerous for the cell. The ability of these membrane proteins to behave as Maxwell’s
demon, gate keeper, or as “a being who can see the individual molecules” could be
important for P systems as examples of discrete processes which could be modeled by
discrete mathematics and as real molecular objects for in vitro implementation of P
systems.

1 Introduction

In the framework of the dialog between P systems and Biological Sciences, the aim
of this communication is to develop the already increasing interest in Biological
Sciences for membrane proteins acting as devices commonly known as Maxwell’s
demons (Hopfer, 2002; Otsuka and Nozawa, 1998).

The device originally suggested by Maxwell to separate molecules (actually low-
and high-speed gas molecules) into different compartments has as a crucial element
an intelligent gate keeper (Hopfer, 2002), called by Maxwell himself “a being, who
can see the individual molecules” (Maxwell, 1871), a being which was called later
on Maxwell’s demon. The mechanism was originally described as follows: “Now let
us suppose that such a vessel is divided into two portions, A and B, by a division in
which there is a small hole, and that a being, who can see the individual molecules,
opens and closes this hole, so as to allow only the swifter molecules to pass from
A to B, and only the slower molecules to pass from B to A (Maxwell, 1871).

In this paper, in order to contribute to the dialog between P systems and
Biological Sciences, we will focus on membrane proteins involved in iron transport
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inside the bacterial cells and on other membrane proteins involved in elimination
outside the bacterial cells of substances which are dangerous for the cell (antibiotics
and solvents), the so-called multidrug resistance (MDR) efflux systems.

We also put forward the question if Maxwell could be seen as a precursor
of membrane computing because he imagined nanosized devices working at the
boundary between two compartments.

These membrane proteins involved in iron transport inside the bacterial cells
and in the elimination outside the bacterial cells of substances which are dangerous
for the cell (antibiotics and solvents) could have significance for P systems in the
followings:

a) as examples of discrete processes which could be modeled by discrete mathe-
matics;

b) as real molecular objects for in vitro implementation of P systems.

2 Membrane Proteins Involved in Iron Transport Inside the
Bacterial Cell

Iron is a crucial microelement in microbial metabolism, playing a vital role in many
important biological processes such as respiration and biomineralization. Biomin-
eralization, the process by which organisms transforms soluble substances into
mineral crystals, plays a significant role in environmental iron cycling, the mag-
netization of sediments and thus the geologic record, and in the use of biomarkers
as microbial fossils (Bazylinski et al., 2007; Simmons et al., 2004; Stolz, 1990; Pe-
tersen et al., 1986). Magnetotactic bacteria (MTB) can be considered as a model
system for biomineralization of iron oxide and sulfide nanocrystals produced by
living organisms. MTB are a fascinating group of microorganisms (Blakemore,
1979; Schüler and Baeuerlein, 1998; Ignat et al., 2007; Ardelean et al., 2008; Lo-
gofătu et al., 2008), which exhibit the peculiar ability to orient themselves along
the magnetic field lines of Earth’s magnetic field. The sensitivity of MTB to the
Earth’s magnetic field arises from the fact that the bacteria precipitate within
their cells chains of lipid membrane-enclosed crystals of magnetic minerals mag-
netite (Fe3O4), greigite (Fe3S4), or both, referred to as “magnetosomes”, which
serve as a navigational device for spatial orientation in marine and freshwater habi-
tats. In MTB, a magnetic particle synthesis system was proposed (Mann et al.,
1990), which involves the following discrete processes occurring across and within
biological membranes: (i) uptake of iron, (ii) transport of iron to the cytoplasm
and across the magnetic particle membrane, (iii) precipitation of hydrated ferric
oxide within vesicles, and (iv) phase transformation of the amorphous iron phase
to magnetite, during both nucleation and surface-controlled growth.

Recent molecular studies have postulated the steps of bacterial magnetic par-
ticles (BMP) synthesis in Magnetospirillum magneticum strain AMB-1 (Okamura
et al., 2001; Matsunaga et al., 2000; Nakamura et al., 1995a). The presentation
of these steps in some detail could help the mathematicians and informaticians
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to deeper accommodate with the progresses at molecular level in this hot topic of
nowadays Microbiology and, hopefully, to find inspiration for other application of
these proteins in P systems, than those proposed by us, pure microbiologists, in
this communication.

1. The first event of BMP synthesis is the formation of vesicles (magnetosome
membrane), which further argues the role of membranes in biomineralization. Oka-
mura et al. (2001) identified a 16 kDa protein, called Mms16, which was the most
abundant of the magnetosome specific proteins in M. magneticum AMB-1. The
Mms16 protein was confirmed to be expressed only on the BMP membrane, thus
Okamura and coworkers were the first to report the experimental function of a
BMP-specific protein. Their results also suggested that this novel Mms16 protein,
specifically localized on the magnetic particle membrane, is a GTPase, being able
to split GTP, a compound rich in useful energy for the cell. The proposed mech-
anism supposes that the Mms16 first binds with the cytoplasmic membrane. This
binding serves to prime the invagination of the cytoplasmic membrane for the
intracellular vesicles formation, which will become the future BMP membrane.
Acyl-CoA and GTP hydrolysis might be required during vesicle budding. There-
fore, another magnetosome specific protein, called MpsA, a homolog of an acyl-
CoA carboxylase (transferase) containing a CoA-binding motif, is also considered
to be involved in this process (Matsunaga et al., 2000) functioned as mediator
for BMP membrane invagination (Matsunaga et al., 2000), but its exact function
remains unclear.

2. The second process in BMP synthesis is iron transport (see Figure 1). Iron
exists in two redox states: the reduced Fe2+ ferrous state and the oxidized Fe3+ fer-
ric form. In natural environments, iron predominantly occurs as ferric iron (Fe3+)
under aerobiosis. Fe3+ as iron hydroxide is poorly soluble in aqueous solution, ren-
dering it basically unavailable for the cells (Neilands, 1981). Under anaerobiosis,
reducing or acidic conditions, the iron equilibrium shifts from the ferric Fe3+ to
the ferrous Fe2+ form that is more easily available for microorganisms. Thus, sev-
eral aspects of the general system needs to be made clearer, for example, whether
the ferric or ferrous ion is taken up and transported and which proteins control
the reactions in each stage. The studies of Suzuki et al. (2006) showed that a
robust ferrous ion-uptake system coupled to magnetosome synthesis exist within
M. magneticum AMB-1. It appears that in M. magneticum strain AMB-1 ferric
iron is reduced on the cell surface, taken as ferrous iron into the cytoplasm, trans-
ported into the BMP vesicle, and finally oxidized to produce magnetite (Arakaki
et al., 2003) which is an interesting system to be modeled within the framework
of membrane computing. The later studies of Suzuki et al. (2007) also revealed
that the activity of this ferrous ion-uptake system is modulated by a cytoplasmic
ATPase (gene product of ORF4 operon), which accelerates the uptake of ferrous
ions through the cell membrane into the cytoplasm by energizing cell membrane
ferrous ion transporters FeoAB, Tpd and Ftr1 (see Figure 1).

There are several families of proteins involved in iron transport in Prokaryotes.
These families are grouped in two main groups: ferrous ion (Fe2+) transporters,
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and ferric ion (Fe3+) transporters. From the first group, the following genes (and
consequently the proteins encoded by these genes) are present in M. magneticum
AMB-1: ftr1, tpd, feoA, and feoB. From the later group, the cirA, fepA, fepC,
tonB, exbB, exbD, tolQ, napA, napB, and napC genes (respectively proteins) are
present in M. magneticum AMB-1 (Suzuki et al., 2006).

The ftr, tpd, and feo genes are known to be expressed under low-oxygen con-
ditions when ferrous iron remains stable and predominates over ferric iron (An-
drews et al., 2003; Dubbels et al., 2004; Felice et al., 2005; Kammler et al., 1993;
Marlovits et al., 2002). The studies of Suzuki et al. (2006) also revealed that in
M. magneticum AMB-1 the ferrous iron transport system is triggered under re-
ducing conditions (with low-oxygen levels) these results being consistent with the
microaerobic culture conditions in which the cells were grown. On the other hand,
ferric ions transport genes, which include fepA, tonB, exbB, and exbD (Andrews
et al., 2003), were downregulated under iron-rich conditions. Additionally, higher
transcript levels of nitrate reductase (amb2686, amb2687, amb2690) and ferric
reductase (amb3335) genes were obtained under iron-rich, magnetosome-forming
conditions (Suzuki et al., 2006).

3. The last process is crystallization of magnetite within the intracellular vesi-
cles (magnetosome membranes). Several proteins appear to be required for mag-
netite crystallization and the first reported protein was MagA, isolated from M.
magneticum AMB-1 (Nakamura et al., 1995a). Internal localization analysis of the
MagA protein indicated that, unlike Mms16 protein, MagA is localized on both
cytoplasmic membrane (Nakamura et al., 1995b), and BMP membrane and showed
iron transport activity. Interestingly, MagA topology is inversely oriented between
the cytoplasmic membrane and the BMP membrane (Nakamura et al., 1995a;
1995b), something which would occur if magnetosomes were formed by membrane
invagination. MagA appears to function for iron efflux in the former and iron influx
in the latter. The number of MagA molecules per magnetosome volume is much
larger than per cell volume as calculated from the total amount of expressed MagA
(Nakamura et al., 1995b). This makes the quantity of effluxed iron by MagA on
the cytoplasmic membrane negligible. The iron-uptake activity of MagA was de-
termined using inverted vesicles prepared from fragmented membrane-expressing
MagA protein in E. coli. Addition of ATP initiated the accumulation of ferrous
ions in the vesicles. The ions were released by the addition of carbonyl cyanide
m-chlorophenylhydrazone (CCCP), also known as protonophore (Nakamura et al.,
1995a). This activity was also observed under an artificial proton gradient with-
out ATP. These results suggest that MagA protein is a proton-driving H+/ Fe3+

antiporter (Matsunaga et al., 2000). MagA protein may play roles in transporting
Fe3+ to the vesicle to grow up to BMPs and the alkalization of the inside of vesicles
due to its H+/ Fe3+ antiporter function.

Furthermore, Mms6 protein isolated from BMP membrane was shown to func-
tion for the crystallization of ferric and ferrous ions under anaerobic conditions
(Arakaki et al., 2003). Magnetite crystallization is inorganically derived, as demon-
strated by Frankel et al. (1983), but Mms6 directly binds ferric iron and regulates



Membrane Proteins as Maxwell Demons 15

crystallization and morphology during magnetite formation in M. magneticum
AMB-1 (Arakaki et al., 2003), acting as an organic matrix for crystal formation.

Fig. 1. Schematic representation of the possible ferrous ion uptake system during magne-
tosome synthesis within M. magneticum AMB-1 strain (adapted after Suzuki et al., 2007;
Matsunaga et al., 2004). The Mms16 protein attaches to the CM initiating the intracel-
lular vesicle formation (first step in magnetosome synthesis). Under the microaerobic
growth conditions, the extracellular Fe3+ is reduced on the cell surface to Fe2+, thus
making the iron available for the microorganism. An ATPase (the ORF4 gene product)
present in the cell cytoplasm, accelerates the uptake of the Fe2+ ions through the cellular
membrane into the cytoplasm, by energizing cell membrane Fe2+ transporters FeoAB,
Tpd, and Ftr1. The transported Fe2+ is then oxidized to Fe3+ in the cytoplasm, and
transported into the intracellular vesicles (the future magnetosome membrane) by the
MagA, a H+/Fe3+ antiporter protein. The Mms6 protein present inside the magnetosme
vesicles binds Fe3+, and acts as an organic matrix for magnetite crystal formation in M.
magneticum AMB-1. OM, outer membrane; PP, periplasm; CM, cytoplasmic membrane;
CP, cytoplasm.

3 Multidrug Resistance (MDR) Efflux Systems

The efflux of the hydrocarbons by multidrug resistance (MDR) efflux systems
is the most important mechanism of hydrocarbons tolerance in bacteria used for
maintaining the hydrocarbons concentration in the cell under its equilibrium level.
Together with MDR efflux systems microorganisms can use other mechanisms to
resist toxic hydrocarbons such as: metabolism of toxic hydrocarbons, which can
contribute to their transformation into nontoxic compounds; rigidification of the
cell membrane via alteration of the phospholipids composition; alterations in the
cell surface that make the cells less permeable; formation of vesicles that remove the
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solvent from the cell surface; and efflux of hydrocarbons in an energy-dependent
process (Ramos et al., 2002; Segura et al., 1999, 2007).

MDR efflux systems catalyze the active extrusion of many structurally and
functionally related and unrelated compounds from the bacterial cytoplasm (or
internal membrane) to the external medium (Segura et al., 1999; Ramos et al.,
2002). Some of the substrates of these MDR pumps are hydrocarbons that do not
resemble any of the known natural substrates that these cells may have encountered
during evolution. The data available indicate that it is the physical characteristics
of the compounds (e.g., charge, hydrophobicity or amphipathicity), the Van der
Waals interactions they establish with active sites and effectors pockets, and the
flexibility of these sites in the target proteins that determine the specificity of these
multidrug efflux systems (Neyfakh, 2001).

Multidrug efflux systems have been the subject of recent reviews, and five main
families of MDR transporters have been identified in bacteria. These include: 1)
the major facilitator superfamily (MFS); 2) the ATP-binding cassette (ABC) fam-
ily; 3) the resistance nodulation and cell division (RND) family, which is part of
the larger RND permease superfamily; 4) the small multidrug resistance (SMR)
family; and 5) the multidrug and toxic compound extrusion (MATE) family. The
most well characterized representatives of these families from Gram-positive and
Gram-negative bacteria are shown in Figure 2A and 2B, respectively. Small mul-
tidrug resistance (SMR) and multidrug and toxic compound extrusion (MATE)
look structurally similar with the major facilitator superfamily (MFS) but are
designed as distinct families, based on size (i.e., SMR) or phylogenetic diversity
(i.e., MATE). All of these transporters catalyze active drug efflux and therefore
require energy, mostly in the form of proton motif force (i.e., utilize the H+ or
Na+ transmembrane electrochemical gradient for pumping the antibiotics or other
compounds from the inner to the outer space of the cell), or in the form of ATP
(i.e., utilize the release of phosphate bond-energy by ATP hydrolysis for pumping
the antibiotics or other compounds from the inner to the outer space of the cell)
(Putman et al., 2000; Schweizer, 2003).

The efflux pumps for antibiotics and hydrocarbons work with exceptional ef-
ficiency in Gram-negative bacteria due to synergistic action of cytoplasmic mem-
brane with outer membrane. In Gram-positive bacteria, the efflux pumps move
the substrate across just one membrane. This is rather inefficient, as they have to
compete with the rapid spontaneous influx of the lipophilic molecule back into the
cytoplasm. A high rate of efflux is therefore required to produce significant levels
of resistance. The efflux pumps in the Gram-negative bacteria traverse both the
cytoplasmic and outer membranes. As the outer membrane is composed largely of
lipopolysaccharides (LPS), it has different permeability properties compared to the
membrane of Gram-positive bacteria. The membrane of Gram-negative bacteria
allows the penetration of lipophilic molecules but at a rate 50-100 times slower than
the phospholipid bilayer of Gram-positive bacteria. The decrease in penetration
of lipophilic molecules is responsible for the intrinsic resistance of Gram-negatives
to certain antibiotics and hydrocarbons. Hydrophilic molecules enter in the mem-
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Fig. 2. Schematic illustration of the main types of bacterial drug efflux pumps in Gram-
positive (a) and Gram-negative (b) bacteria. (a) Illustrated are NorA, a member of
the major facilitator superfamily (MFS); LmrA, a member of the ATP-binding cassette
(ABC) family; (b) AcrD and MexAB-OprM, two memers of resistance nodulation and cell
division (RND) family. D, drug; OM, outer membrane; PP, periplasm; CM, cytoplasmic
membrane; CP, cytoplasm; P, porin.

brane of Gram-negative cells through porins, but in the presence of hydrophilic
molecules (e.g., antibiotics, hydrocarbons) or when efflux mechanisms are induced,
a decrease in the number of porins in the membrane is also seen. This leads to
decreased penetration of the hydrophilic molecules (Nikaido, 1998, 2003).

The intellectual framework of metabolic engineering is built upon the inte-
gration of biological information in an attempt to induce higher order principles
that govern cell behavior. As such, metabolic engineering and the emerging field
of systems biology share an over-arching emphasis on revealing general biological
principles from the analysis of the regulation and activity of biological networks
ranging from gene sequence to gene expression to metabolic flux (Stephanopoulos
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and Gill, 2000). The engineering of new traits or re-engineering of existing traits,
which is dependent upon such biological networks, is a major thrust of metabolic
engineering. Specifically, metabolic engineering involves the modification of the
genetic makeup of an organism in an attempt to re-direct cell behavior in a spe-
cific manner. This might involve, for example, engineering increased or decreased
expression of a gene that is thought to influence production of a valuable chemical
product. While such an example may appear to be straightforward, it is com-
plicated by the fact that metabolism forms a network of chemical reactions that
are mutually interdependent and that incommensurately influence overall network
activity, which itself influences the relative fitness of an organism in a particular
environment. Therefore, any attempt to engineer flux through a specific pathway
in an organism can result in secondary effects that may include a reduction in
the overall fitness of the organism and, as a result, reduce the attractiveness of
the engineering strategy). Antibiotic resistance provides numerous examples of
how nature has approached this problem. In particular, antibiotic resistance ex-
emplifies how bacteria routinely develop new phenotypes through combinations of
creative and hard to predict mechanisms and the importance that environment
plays in selection and maintenance of such phenotypes. As such, it serves as a
model to elucidate underlying evolutionary mechanisms that might be applied to
the development of future metabolic engineering efforts (Bailey, 1991; Bailey, 1999;
Bonomo and Gill, 2005).

In our opinion, the development of future metabolic engineering of MDR efflux
systems would benefit if they would be studied in the framework of P systems
which could deeply take into account the discrete nature of these proteins working
at/within the biological membranes
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Summary. Starting from a compositional operational semantics of transition P Systems
we have previously defined, we face the problem of developing an axiomatization that is
sound and complete with respect to some behavioural equivalence. To achieve this goal,
we propose to transform the systems into a unique normal form which preserves the
semantics. As a first step, we introduce axioms which allow the transformation of mem-
brane structures with no dissolving rules into flat membranes. We discuss the problems
which arise when dissolving rules are allowed and we suggest possible solutions. We leave
as future work the further step that leads to the wanted normal form.

1 Introduction

We have recently defined a compositional operational semantics of P Systems as a
labeled transition system (LTS) [2]. The class of P Systems we have considered are
the so called transition P Systems with dissolving rules and without restrictions on
evolution rules. In the definition of the semantics, P Systems are seen as reactive

systems, namely as systems that can receive stimuli from an environment and can
react to these stimuli, possibly by sending some reply back to the environment. In
particular, membranes are seen as the entities that can receive stimuli, in terms
of objects, from an environment. The environment of a membrane can be another
membrane containing it and having some rules which send objects into it. As an
environment of a membrane we consider also other membranes possibly contained
in it and having some rules which send objects out. The objects received by a
membrane from the environment could enable the application of some rules of
the membrane that eventually could send some objects back to the environment,
namely to outer and inner membranes.

The LTS we have defined allows us to observe the behavior of membranes
in terms of objects sent to and received from inner and external membranes. A
state of the LTS is a configuration of the considered P System, and a transition
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from a state to another describes an execution step of the P System, in which
rules are applied according to maximal parallelism in all the membranes of the
system. Transitions are labeled with the multiset of objects received from the
environment, the multiset of objects sent to outer membranes, and the multiset of
objects sent to inner membranes in the described execution step. Other information
carried by labels is needed to build the LTS in a compositional way. This means
that the semantics of a complex system can be inferred from the semantics of its
components.

In [2] we have proved that some well–known behavioural equivalences such
as trace equivalence and bisimulation defined on our LTS are congruences. This
means that if we can prove that a membrane system that is a component of some
bigger system is behaviourally equivalent to another membrane system, then the
former can be replaced with the latter in the bigger system without changing the
global behaviour. In other words, there exists no environment in which the bigger
system with the original component reacts differently to stimuli with respect to
the same system with the replaced component.

Behavioural equivalences are powerful analysis tools as they allow us to com-
pare the behaviours of two systems and to verify properties of a system by as-
sessing the equivalence between such a system and another one known to satisfy
those properties. However, proving behavioural equivalence is not easy because the
semantics of a system often consists of infinite states and infinite transitions. For
this reason, it is usually important to find an axiomatization of some behavioural
equivalence, namely a sound and complete characterization of the equivalence in
terms of axioms on the syntax of systems. In this way the equivalence between two
systems could be proved by showing that there exists a sequence of applications of
such axioms that transform one system into the other. This allows the proof of the
equivalence to be performed without considering the (possibly complex) semantics
of the compared systems, and this usually favors the development of tools for the
comparison of systems.

We would like to define a sound and complete axiomatization of the semantics
we have given in [2]. It is not easy to prove soundness and completeness of an
axiomatization, namely that axioms relate behaviorally equivalent systems and
that all behaviourally equivalent systems are in the relation characterized by the
axioms. In particular, completeness proof is usually difficult. What can help to
prove this result is a notion of normal form to which all the considered systems
can be reduced. This could allow the set of axioms to be split into two subsets: one
consisting of the axioms that can be used to bring the systems into their normal
form and the other consisting of axioms that relate systems in normal form. This,
in turn, could allow the proof of completeness to be simplified by considering only
the axioms in the second set.

In this paper we perform the first steps towards the definition of a normal
form for P Systems preserving behavioural equivalences. In particular, we face the
problem of determining the membrane structure of the normal form of a system.
We start by considering P Systems without dissolving rules, and we show, by
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giving a few axioms, that any P System in this class can be transformed into an
equivalent P System consisting of one only membrane (a flat system). In order
to obtain this result we slightly enrich the membranes of a P System, namely we
associate with each membrane an interface, that is a set of objects that are allowed
to be received by the membrane from the environment.

We also discuss the problem of considering P Systems containing dissolving
rules. We show that in this case it is no longer possible to find an equivalent flat
form, but we discuss how an alternative “standard” form can be reached.

Related work

Operational semantics for P Systems have been proposed in [1, 5, 6, 8]. All these
semantics are not compositional and have no notion of observable behavior. In
fact, they have not been defined with the aim of developing behavioural equiva-
lences. In particular, [1] aims at simplifying the development of an interpreter of P
Systems proved to be correct, [5] aims at proving the decidability of the divergence
problem for the considered variant of P Systems, [6] aims at describing the causal
dependencies occurring between applications of rules of a P System, and in [8] a
formal framework is proposed to describe a large number of variants of P Systems.

The flattening result we obtain by considering P Systems without dissolving
rules is similar to the result given in [3], where a notion of computational en-

coding is introduced and used to show that n–PBR Systems (PBR Systems with
n > 0 membranes) can be simulated by 0–PBR Systems (PBR Systems with no
membranes). We refer the reader to [4] for an introduction to PBR Systems. The
difference between the result given in [3] and ours is that the axioms we give to
transform a P System into its flat form is proved to preserve our compositional
semantics, hence it is sound with respect to any behavioural equivalence. The
flat system we obtain can replace the original one in any bigger system without
changing the global behaviour.

Another normal form of P Systems is introduced in [9], where it is shown that
any P System of grade k (namely, in which the depth of the membrane nesting tree
is k) consisting of a composition of n membranes can be reduced to an equivalent
P System of grade 2 with the same number of membranes. In this case the P
System in normal form is equivalent to the original one in the sense that it can
generate the same language, where a word of the language is the concatenation of
the objects sent outside the skin membrane during the execution of the system.
This means that the original system and the one in normal form can be considered
as equivalent even if one of the two performs additional steps in which no objects
are sent out of the skin. The notion of equivalence we consider here, instead, is
stronger. In fact, in order to ensure that a system in normal form can always
replace its original system in any context, we need to require that the two systems
are step–by–step equivalent.
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2 The P Algebra: Syntax and Semantics

In this section we recall the P Algebra, the algebraic notation of P Systems we
have introduced in [2]. Constants of the P Algebra correspond to single objects or
single evolution rules, and they can be composed into membrane systems by using
operations of union, containment in a membrane, juxtaposition of membranes, and
so on. Terms of the P Algebra are the states of the LTS.

We assume that objects belong to an alphabet V , and we assume the usual
string notation to represent multisets of objects. For instance, to represent
{a, a, b, b, c} we may write either aabbc, or a2b2c, or (ab)2c. We denote multiset
(and set) union as string concatenation, hence we write u1u2 for u1 ∪ u2. For the
sake of readability, we shall write u → vhvo{vli} for the generic non–dissolving
evolution rule u → (vh, here)(vo, out)(v1, inl1) . . . (vn, inln), and u → vhvo{vli}δ
for the similar generic dissolving evolution rule.

The abstract syntax of the P Algebra is defined as follows.

Definition 1 (P Algebra). The abstract syntax of membrane contents c, mem-
branes m, and membrane systems ms is given by the following grammar, where l

ranges over IN and a over the set of object names V :

c ::= (∅, ∅)
∣

∣ (u → vhvo{vli}, ∅)
∣

∣ (u → vhvo{vli}δ, ∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c ]l

ms ::= m
∣

∣ ms | ms
∣

∣ µ(m,ms)
∣

∣ v

A membrane content c represents a pair (R, u), where R is a set of evolution
rules and u is a multiset of objects. A membrane content is obtained through
the union operation ∪ from constants representing single evolution rules and
constants representing single objects, and can be plugged into a membrane with
label l by means of the operation [l ]l of membranes m. As a consequence, given
a membrane content c representing the pair (R, u) and l ∈ IN, [l c ]l represents
the membrane having l as label, R as evolution rules and u as objects. For the
sake of simplicity, we shall usually write (R1R2, u1u2) for (R1 u1)∪ (R2, u2), [l u ]l
for [l (∅, u) ]l and [l u1 → vh1vo1{vli1}, . . . , u1 → vhnvon{vlin}, u ]l for [l (R, u) ]l if
R = {u1 → vh1vo1{vli1}, . . . , u1 → vhnvon{vlin}}.

Membrane systems ms have the following meaning: ms1 | ms2 represents the
juxtaposition of ms1 and ms2, µ(m,ms) represents the hierarchical composition
of m and ms, namely the containment of ms in m, and v represents the dissolved

membrane. Juxtaposition is used to group sibling membranes, namely membranes
all having the same parent in a membrane structure. This operation allows hier-
archical composition µ to be defined as a binary operator on a single membrane
(the parent) and a juxtaposition of membrane (all the children) rather than on
n + 1 membranes, for any possible number of children n. Finally, the dissolved
membrane v will be used in the definition of the LTS to denote the state of a
membrane after the application of one of its dissolving rules.
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a → (aa, here)

c

a → (a, here)

ac → (a, out)δ

a → (cd, out)

e → (a, in2)

e

Fig. 1. An example of P System that may send out of the skin membrane a multiset of
objects cndn for any n ∈ IN.

As an example, the P System shown in Figure 1 corresponds to the following
membrane system:

µ( [1 a → (cd, out) , e → (a, in2) , e ]1 ,

[2 a → (aa, here) , a → (a, here) , ac → (a, out)δ , c ]2 ) .

Moreover, a P System similar to the one shown in Figure 1, but in which membrane
1 contains also a membrane with label 3 containing, in turn, an object a and no
rules, corresponds to the following membrane system:

µ( [1 a → (cd, out) , e → (a, in2) , e ]1 ,

[2 a → (aa, here) , a → (a, here) , ac → (a, out)δ , c ]2 | [3 a ]3 ) .

The semantics of the P Algebra is given in terms of an LTS, namely a triple

(S,L, {
ℓ
−→ | ℓ ∈ L}), where S is a set of states, L is a set of labels, and

ℓ
−→⊆ S × S

is a transition relation for each ℓ ∈ L. As usual, we write s
ℓ
−→ s′ for (s, s′) ∈

ℓ
−→.

LTS labels can be of the following forms:

• (u,U, v, v′,M, I,O↑, O↓), describing a computation step performed by a mem-
brane content c, where:
– u is the multiset of objects consumed by the application of evolution rules

in c, as it results from the composition, by means of ∪ , of the constants
representing these evolution rules.

– U is the set of multisets of objects corresponding to the left hand sides of
the evolution rules in c.

– v is the multiset of objects in c offered for the application of the evolution
rules, as it results from the composition, by means of ∪ , of the con-
stants representing these objects. When operation [l ]l is applied to c, it
is required that v and u coincide.

– v′ is the multiset of objects in c that are not used to apply any evolution
rule and, therefore, are not consumed, as it results from the composition, by
means of ∪ , of the constants representing these objects. When operation
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[l ]l is applied to c, it is required that no multiset in U is contained in
v′, thus implying that no evolution rule in c can be further applied by
exploiting the available objects. This constraint is mandatory to ensure
maximal parallelism.

– M contains a membrane label l if some evolution rule in c is not applied
since its firing would imply sending objects to some child membrane labeled
l, but no child membrane labeled l exists. When the operation µ is applied
to ([l′c]l′ ,ms), for any membrane system ms and membrane label l′, it is
required that l is not a membrane in ms.

– I is the multiset of objects received as input from the parent membrane
and from the child membranes.

– O↑ is the multiset of objects sent as an output to the parent membrane.
– O↓ is a set of pairs (li, vli) describing the multiset of objects sent as an

output to each child membrane li.
• (M, I, O↑, O↓), describing a computation step performed by a membrane sys-

tem ms, where: I is a set of pairs (li, vli) describing the multiset of objects
received as an input by each membrane li in ms, and M , O↑ and O↓ are as in
the previous case.

Components I, O↓, O↑ in labels of the first form, and components I, O↓, O↑ in
labels of the second form, describe the input/output behavior of P Algebra terms,
namely what is usually considered to be the observable behavior. Labels of the
first form are more complex since u,U, v, v′ are needed to infer the behavior of
membrane contents compositionally. For the same reason M is used in both forms
of labels.

Now, LTS transitions are defined through SOS transition rules of the form
premises

conclusion
, where the premises are a set of transitions, and the conclusion is a tran-

sition. Intuitively, SOS transition rules permit us to infer moves of P Algebra terms
from moves of their subterms. Rules of the semantics are given in Appendix A.

3 Flattening Systems without Dissolving Rules

c→ (c, in3)

2

a→ (b, out)

3

c→ (a, out)

c→ (c3, here)

2

a→ (b, out)

c3
c3 → (a, here)

c
ac

ac

Fig. 2. An example of flattening of a P System without dissolving rules.
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c→ (c, in3)

2:abc

a→ (b, out)

3:abc

c→ (a, out)

c→ (c3, here)
a→ (b, out)

c3
c3 → (a, here)

c

ac

ac

2:abc

Fig. 3. An example of flattening of a P System without dissolving rules in which mem-
branes are enriched with interfaces.

As shown in [3], any transition P System with a fixed membrane structure (i.e.
without dissolving rules) can be reduced to a flat form in which the membrane
structure consists only of one membrane. If we assume that membrane labels of a P
System are unique, this result can be obtained by moving objects and rules of inner
membranes into the external membrane, after suitable renaming. An example of
application of this technique is shown in Figure 2. However, the behaviour of the
flat membrane is the same as the behaviour of the original membrane structure
only under the assumption that the membrane cannot receive any object from the
external environment. In fact, if the external environment could send to the flat
membrane an object that is the renaming of some object originally in an inner
membrane, this could enable the application of some rules among those that have
been added to the external membrane by the flattening technique. In the example
of the figure, if the environment could send an object c3 inside the membrane on
the right, this would enable the application of rule c3 → (a, here) which would
result, after one more step, in the output of a b that would not be sent out by the
original system.

To solve this problem we consider a slightly extended variant of P Systems
in which each membrane is enriched with an interface, namely a set of objects
representing the only objects that can be received from the environment. This
means that if in the environment of a membrane there is a rule willing to send into
it some objects that are not in the corresponding interface, then such a rule will
never be applicable. Note that this extension is rather conservative, namely it is
always possible to find a set of objects large enough to ensure that the behaviour
of a P System extended with interfaces is the same as the intended behaviour of
the original P System. As an example, in Figure 3 we extend the P Systems of
Figure 2 with interfaces (placed together with membrane labels), and we obtain
that in this case the behaviour of the two systems is really the same, as now the
environment cannot send c3 into the external membrane.

Now we formally define the syntax of the P Algebra extended with interfaces
on membranes. The main difference with respect to the original syntax, given in
Definition 1, is that the operation [l ]l of membranes m is extended with a set
of objects i. Moreover, since we aim at introducing a notion of flat membrane,



28 R. Barbuti et al.

namely a membrane which cannot have inner membranes, we extend the syntax of
the P Algebra also with a new operation [[l ]]il denoting a membrane that cannot
be used as the first operand of a µ( , ) operation.

Definition 2 (P Algebra with Interfaces). The abstract syntax of membrane
contents c, membranes m, and membrane systems ms is given by the following

grammar, where l ranges over IN, a over V and i ⊆ V :

c ::= (∅, ∅)
∣

∣ (u → vhvo{vli}, ∅)
∣

∣ (u → vhvo{vli}δ, ∅)
∣

∣ (∅, a)
∣

∣ c ∪ c

m ::= [l c ]il

ms ::= m
∣

∣ ms | ms
∣

∣ µ(m,ms)
∣

∣ [[l c ]]il
∣

∣ v

We also give the formal definition of the semantics of the P Algebra extended
with interfaces on membranes. The main difference with respect to the original
semantics is that the objects that can be received as an input by a membrane
must belong to the interface of the membrane itself. Moreover, the new semantics
has also to describe the behaviour of the new operation [[l ]]il. Formally, the SOS
rules of the semantics of the P Algebra with Interfaces can be defined by starting
from those given in Appendix A. In order to describe the behaviour of interfaces
we replace rules (m1) and (m2) with the following four rules:

x
M,∅,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑

[l x ]il
M,∅,O↑,O↓

−−−−−−−→ [l y ]il

(m1′)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑ Set(I) ⊆ i I 6= ∅

[l x ]il
M,(l,I),O↑,O↓

−−−−−−−−−→ [l y ]il

(m1′′)

x
M,∅,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑

[l x ]il
M,∅,O↑,O↓

−−−−−−−→ v

(m2′)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑ Set(I) ⊆ i I 6= ∅

[l x ]il
M,(l,I),O↑,O↓

−−−−−−−−−→ v

(m2′′)

where Set(I) is the underlying set of multiset I, namely the set of all the objects
occurring in I. The rules (m1′) and (m1′′) replace the old rule (m1). Here we
distinguish the case I = ∅ and the case I 6= ∅, since we prefer to have ∅ instead
of (l, ∅) in the label component showing inputs received from the environment.
Finally, in order to describe the behaviour of flat membranes we add the following
four rules:
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x
M,∅,O↑,∅
−−−−−−−→

u,U,u,v′
y δ 6∈ O↑

[[l x ]]il
M,∅,O↑,∅
−−−−−−−→ [[l y ]]il

(fm1′)

x
M,I,O↑,∅
−−−−−−→

u,U,u,v′
y δ 6∈ O↑ Set(I) ⊆ i I 6= ∅

[[l x ]]il
M,(l,I),O↑,∅
−−−−−−−−→ [[l y ]]il

(fm1′′)

x
M,∅,O↑,∅
−−−−−−−→

u,U,u,v′
y δ ∈ O↑

[[l x ]]il
M,∅,O↑,∅
−−−−−−−→ v

(fm2′)

x
M,I,O↑,∅
−−−−−−→

u,U,u,v′
y δ ∈ O↑ Set(I) ⊆ i I 6= ∅

[[l x ]]il
M,(l,I),O↑,∅
−−−−−−−−→ v

(fm2′′)

Notice that rules for [[l x ]]il require that the multiset of objects sent to inner
membranes (fourth component of the label) is empty.

The new semantics rules, similarly to all the other rules of the semantics,
respect the constraints of the well–known de Simone format [7] which ensures
that all the behavioural equivalences considered in [2] are congruences.

Now, the flattening technique for systems without dissolving rules can be ex-
pressed be means of axioms. We first give some basic axioms on the commutativity
and associativity of the operations of the P Algebra and on simple properties of
membranes with empty interfaces and of flat membranes.

Definition 3 (Basic axioms). The basic axioms are the following:

c1 ∪ c2 = c2 ∪ c1 (∪1)

c1 ∪ (c2 ∪ c3) = (c1 ∪ c2) ∪ c3 (∪2)

ms1 | ms2 = ms2 | ms1 (|1)

ms1 | (ms2 | ms3) = ms1 | (ms2 | ms3) (|2)

[l1 c ]∅l1 = [l2 c ]∅l2 (if1)

ms = ms | [l R, ∅ ]∅l (if2)

[[l1 c ]]∅l1 = [[l2 c ]]∅l2 (if3)

ms = ms | [[l R, ∅ ]]∅l (if4)

[[l1 c ]]il1 = µ
(

[l1 c ]il1 , [l2 R, ∅ ]∅l2
)

(fm1)

[[l1 c ]]il1 = µ
(

[l1 c ]il1 , [[l2 R, ∅ ]]∅l2
)

(fm2)
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The first four axioms state commutativity and associativity of union of mem-
brane contents and juxtaposition of membrane systems. Axiom (if1) states that
if a membrane has empty interface then its name l1 can be changed into l2. The
reason is that l1 cannot receive any object from any outer membrane, and any
evolution rule sending objects to l1 is never applicable. Axioms (if2) and (fm1)
state that a membrane with no object and with empty interface can be juxtaposed
with any membrane system or inserted inside another membrane, since its rules
are never applicable. Axioms (if3), (if4) and (fm2) are the same as (if1), (if2)
and (fm1), respectively, but dealing with flat membranes.

The flattening technique we are going to define is based on renaming of ob-
jects. In the example of Figure 3, the object c contained in membrane 3 is re-
named into c3 when it is moved to membrane 2 in order to distinguish it from
the other object c that occurs in membrane 2. Consequently, rules of membranes
2 and 3 have to be modified before merging them in membrane 2 resulting from
flattening. For this reason, we define two functions FlatIn and FlatOut. The for-
mer gives the result of the renaming of the rules of the membrane that is re-
moved by the flattening. The latter gives the result of the renaming of the rules
of the membrane which contains the one that is removed. In order to avoid
ambiguities, in the definitions of FlatIn and FlatOut we shall use the notation
u → (vh, here)(vo, out)(vl1 , inl1) . . . (vln , inln) for evolution rules rather than the
more compact notation u → vhvo{vli}.

We assume that the alphabet V is partitioned as follows: V = V ∪(
⋃

L∈IN+ VL),

where V is the set of all objects without subscripts and VL is the set obtained by
adding L ∈ IN+ as a subscript to each object of V . In other words, if V = a, b, c, . . .,
then V1 = a1, b1, c1, . . ., V1·2 = a1·2, b1·2, c1·2, . . . and so on. Moreover, let Rid(u, l)
denote the multiset obtained by replacing each occurrence of each object aL in u

with an occurrence of object aL·l. For example, Rid(aabccc, 3) = a3a3b3c3c3c3 =
a2
3b3c

3
3, and Rid(aa1bb2, 3) = a3a1·3b3b2·3. The functions FlatIn and FlatOut are

defined as follows:

FlatIn (u → (vh, here)(vo, out)(vl1 , inl1) . . . (vln , inln) , l) =

Rid(u, l) → (Rid(vh, l)vo, here)(∅, out)(vl1 , inl1) . . . (vln , inln)

FlatOut (u → (vh, here)(vo, out)(vl1 , inl1) . . . (vli , inli) . . . (vln , inln) , li) =

u → (vhRid(vli , li), here)(vo, out)(vl1 , inl1) . . . (∅, inli) . . . (vln , inln)

Both FlatIn and FlatOut take a rule and a membrane label as arguments, and
give a new rule as result. In both cases the membrane label represents the label
of the membrane that is removed by the flattening. In the first case such a label
(denoted l) should not occur in the evolution rule, as the rule is assumed to be
one of those of the inner membrane involved in the flattening. In the second case
the label certainly occurs in the evolution rule (in fact it is denoted li) as the rule
is assumed to be one of those of the outer membrane involved in the flattening.
With abuse of notation we shall write FlatIn(R, l) for {FlatIn(r, l) | r ∈ R}, and
FlatOut(R, l) for {FlatOut(r, l) | r ∈ R}.
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Now, the flattening technique is expressed by means of the following axioms.

Definition 4 (Flattening axioms). Let R1 and R2 be sets of evolution rules

containing no dissolving rule, and let R1 and u1 contain no objects in VL·l2 . The

flattening axioms are the following:

ms 6= v VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

= µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

) (f1)

ms 6= v VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1 ]i1l1 , [[l2 R2, u2 ]]i2l2 | ms
)

= µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

) (f2)

VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2
)

= [[l1 R
′
1R

′
2 , u1Rid(u2, l2) ]]i1l1

(f3)

VL·l2 ∩ i1 = ∅ FlatOut(R1, l2) = R′
1 FlatIn(R2, l2) = R′

2

µ
(

[l1 R1, u1 ]i1l1 , [[l2 R2, u2 ]]i2l2
)

= [[l1 R
′
1R

′
2 , u1Rid(u2, l2) ]]i1l1

(f4)

1:abe

2:abe

a→ (b, out)

e

3:abe

4:abe

e→ (e, out)
e

ea→ (e, here)(b, out)

b→ (b, out)

ea→ (e, here)(a, in2)(a, in3)

Fig. 4. An example of P System.

As an example, let us consider the P System in Figure 4 which corresponds to the
P Algebra term t = µ(m1 , m2 | µ(m3,m4)) where:

m1 = [1 R1, e ]abe
1 with R1 = {ea → (e, here)(a, in2)(a, in3) , b → (b, out)}

m2 = [2 R2, ∅ ]abe
2 with R2 = {a → (b, out)}

m3 = [3 R3, ∅ ]abe
3 with R3 = {ea → (e, here)(b, out)}

m4 = [4 R4, e ]abe
4 with R4 = {e → (e, out)} .

Now, we have that
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µ(m3,m4)
(f3)
= [[3 FlatOut(R3, 4)FlatIn(R4, 4) , ∅Rid(e, 4) ]]abe

3

= [[3 ea → (e, here)(b, out) , e4 → (e, here) , e4 ]]abe
3 .

Let us denote with fm3 the flat membrane we have obtained. Now, we can go on
applying axioms as follows:

t = µ(m1 , m2 | µ(m3,m4)) = µ(m1 , m2 | fm3)

(f1)
= µ( [1 FlatOut(R1, 2)FlatIn(R2, 2) , eRid(∅, 2) ]abe

1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , e4 ]]abe
3 )

= µ( [1 ea → (ea2, here)(a, in3) , b → (b, out) , a2 → (b, here) , e ]abe
1 ,

[[3 ea → (e, here)(b, out) , e4 → (e, here) , e4 ]]abe
3 )

(f4)
= [[1 ea → (ea2a3, here) , b → (b, out) , a2 → (b, here) ,

e3a3 → (e3, here)(b, out) , e43 → (e3, here) , ee43 ]]abe
1 .

Proposition 1 (soundness). The portions of the LTS that are rooted in terms

equated by axioms (f1)–(f4) are isomorphic.

Proof. We start with the proof for (f1). We prove that the portion of the LTS
rooted in µ

(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

is isomorphic to a part of the portion

of the LTS rooted in µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

)

. More precisely, we prove

that, given any transition µ
(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
) l
→ t, for any term t,

then there is a transition µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

) l
→ t′ such that t and

t′ are equated by the same axiom (f1).
Take any transition from µ

(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

. Such a transition
must be inferred from a transition of each of its three components. These three
transitions have the following shape:

[l1 R1, u1 ]i1l1
M1,{(l1,I1)},O

↑

1
,O

↓

1−−−−−−−−−−−−−→ [l1 R1, u
′
1 ]i1l1 (1)

[l2 R2, u2 ]i2l2
M2,{(l2,I2)},O

↑

2
,∅

−−−−−−−−−−−−→ [l2 R2, u
′
2 ]i2l2 (2)

ms
M,I,O↑,∅
−−−−−−→ ms′ (3)

Then, transitions (2) and (3) originate transition

[l2 R2, u2 ]i2l2 | ms
∅,{(l2,I2)}I,O

↑

2
O↑,∅

−−−−−−−−−−−−−−→ [l2 R2, u
′
2 ]i2l2 | ms′ (4)

by semantic rule (jux1). The transition from µ
(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

is
inferred through semantic rule (h1) from (1) and (4) and takes the shape:
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µ
(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

∅,{(l1,I1\(O
↑O

↑

2
)},O

↑

1
,∅

−−−−−−−−−−−−−−−−→

µ
(

[l1 R1, u
′
1 ]i1l1 , [l2 R2, u

′
2 ]i2l2 | ms′

)

(5)

provided that:

1. O
↓
1 ≏ I ∪ {(l2, I2)};

2. O↑O
↑
2 ⊆ I1.

Note that the first constraint above implies that there exists some O
′↓
1 such that

O
↓
1 = {(l2, I2)} ∪ O

′↓
1 (6)

Now, (1) can be inferred through (m1′) or (m1′′). The two cases are similar, let
us assume the case (m1′). Analogously, let us assume that (2) is inferred through
semantic rule (m2′). The two originating transitions have the shape:

(R1, u1)
M1,I1,O

↑

1
,{(l2,I2)}∪O

′↓

1−−−−−−−−−−−−−−−→
v1,U1,v1,v′

1

(R1, u
′
1) (7)

(R2, u2)
M2,I2,O

↑

2
,∅

−−−−−−−−→
v2,U2,v2,v′

2

(R2, u
′
2) (8)

for suitable values v1, U1, v
′
1, v2, U2, v

′
2.

Notice that this implies that Set(I1) ⊆ i1. From (7) we infer

(R′
1, u1)

M1,I
↑

1
,O

↑

1
,O

′↓

1−−−−−−−−−→
v1,U1,v1,v′

1

(R′
1, u

′
1 \ (Rid(I2, l2))) (9)

By removing input O
↑
2 we infer

(R′
1, u1)

M1,I1\O
↑

2
,O

↑

1
,O

′↓

1−−−−−−−−−−−→
v1,U1,v1,v′

1

(R′
1, u

′
1 \ (O↑

2Rid(I2, l2))) (10)

From (8) we infer:

(R′
2,Rid(u2, l2))

M2,∅,∅,∅
−−−−−−−→
v̂2,Û2,v̂2,v̂′

2

(R′
2,Rid(u′

2 \ I2, l2)O
↑
2) (11)

where v̂2, Û2, v̂2 denote Rid(v2, l2), Rid(U2, l2), Rid(v′
2, l2), respectively.

Through semantic rule (u1), from (10) and (11) we infer

(R′
1R

′
2, u1Rid(u2, l2))

M1M2,I1\O
↑

2
,O

↑

1
,O

′↓

1−−−−−−−−−−−−−→
v1v̂2,U1⊕Û2,v1v̂2,v′

1
v̂′
2

(R′
1R

′
2, u

′
1Rid(u′

2, l2)) (12)

By applying semantic rule (m1), which is applicable since Set(I1) ⊆ i1, we infer:
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[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1

M1M2,{(l1,I1\O
↑

2
)},O

↑

1
,O

′↓

1−−−−−−−−−−−−−−−−−−→ [l1 R
′
1R

′
2, u

′
1Rid(u′

2, l2) ]i1l1 (13)

We already know that O
↓
1 ≏ I ∪ {(l2, I2)}, O↑O

↑
2 ⊆ I1 and O

↓
1 = {(l2, I2)} ∪ O

′↓
1 .

Therefore, O
′↓
1 ≏ I and O↑ ⊆ I1 \ O

↑
2 . So, we can apply the semantic rule (h1) to

infer that (3) and (13) originate

µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

)

∅,{(l1,I1\O↑O
↑

2
)},O

↑

1
,∅

−−−−−−−−−−−−−−−→

µ
(

[l1 R
′
1R

′
2, u

′
1Rid(u′

2, l2) ]i1l1 , ms′
)

. (14)

Summarizing, we have proved that if we take any transition from term
µ

(

[l1 R1, u1 ]i1l1 , [l2 R2, u2 ]i2l2 | ms
)

we have a corresponding transition from term

µ
(

[l1 R
′
1R

′
2, u1Rid(u2, l2) ]i1l1 , ms

)

, where the two transitions have the same label
and have terms related by axiom (f1) in the right side.

The converse is similar, with the use of premise VL·l2 ∩ i1 = ∅.
The proof of the case of axiom (f2) is the same as the one of axiom (f1),

but for minor differences in transition labels. Moreover, the cases of axioms (f3)
and (f4) are analogous to the case of (f1) and (f2), respectively, thanks to ba-
sic axioms that allow us to rewrite the term [[l1 R

′
1R

′
2 , u1Rid(u2, l2) ]]i1l1 as the

term µ
(

[l1 R
′
1R

′
2 , u1Rid(u2, l2) ]i1l1 , [l ∅ ]∅l

)

and µ
(

[l1 R1, u1 ]i1l1 , [[l2 R2, u2 ]]i2l2
)

as

the term µ
(

[l1 R1, u1 ]i1l1 , [[l2 R2, u2 ]]i2l2 | [l ∅ ]∅l
)

.

Theorem 1. Any membrane system µ(m,ms) with multisets of objects and evolu-

tion rules built over V , without dissolving rules and with membranes having unique

labels, can be reduced to an equivalent flat membrane.

Proof. This can be proved by induction on the number of membrane nodes in the
membrane nesting tree of µ(m,ms). If the membrane nesting tree contains two
membranes, namely µ(m,ms) is either µ([l1 c1 ]l1 , [l2 c2 ]l2) or µ([l1 c1 ]l1 , [[l2 c2 ]]l2),
then the proof follows immediately from axioms (f3) and (f4). If the membrane
nesting tree contains more that two membranes, then the proof can be done by re-
sorting to the induction hypothesis after applying one of the axioms (f1), (f2), (f3)
and (f4) to one of the leaves of the tree.

Since the size of a term is always finite (and consequently the membrane nesting
tree is finite) the flat form is reached after a finite number of steps. The facts
that no dissolving rules are present, that multisets of objects and evolution rules
are built by using objects from V and that membranes are labeled with unique
labels, ensure that the assumptions and the premises of the axioms are always
satisfied. Finally, Proposition 1 ensures that all the applications of the flattening
axioms preserve the behaviour, hence the behaviour of the final flat membrane is
equivalent to the one of the original membrane system.
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4 Problems that Arise with Dissolving Rules and Possible

Solutions

c → (c, in3)

2:abc

a → (b, out)

3:abc

c → (a, out)δ

c → (c3, here)|¬d

a → (b, out)

a3c3
c3 → (ad, here)|¬d

ac

ac

ac

2:abc

a3 → (b, out)|d

Fig. 5. Example of flattening in which the inner membrane contains a dissolving rule.

In the membrane obtained by our flattening technique, dissolution of a mem-
brane contained in another one has to be simulated. In general, when a dissolving
rule is applied in a membrane, we have that (i) the objects of such a membrane
become immediately available to the outer membrane, (ii) rules of such a mem-
brane disappear, and (iii) rules of the outer membrane which send objects to the
membrane that has been dissolved become no longer applicable.

One possible way of simulating dissolution is by replacing δ with a special
object d in every dissolving rule and using such a special object as a promoter or
inhibitor of some rules obtained by the flattening (after extending the syntax and
the semantics of the P Algebra to deal with promoters and inhibitors). This would
allow (ii) and (iii) to be simulated by using d as an inhibitor of those rules obtained
by the flattening and corresponding to the rules of the dissolved membrane and
to the rules sending objects to the dissolved membranes. Moreover, (i) can be
simulated by defining the flattening in such a way that the rules of the outer
membrane are copied with the objects they consume renamed, in order to allow
such rules to be applied to the objects representing the objects of the dissolved
membrane. These new rules should have d has a promoter.

We give a simple example of flattening with dissolution of inner membranes in
Figure 5. Here, the rule causing dissolution of membrane 3 is rewritten into a new
rule having objects renamed as described in the previous section and producing d.
Now, both the rule originally in 2 and sending objects to 3, and the rule originally
in 3 require that d has not yet been produced. Moreover, a new rule promoted by
d has been introduced to simulate that the objects originally in membrane 3 are
available in membrane 2 after its dissolution.

The flattening technique explained in the previous section cannot be applied
if the outer membrane contains a dissolving rule. As an example, let us consider
Fig. 6, where flattening is applied. We can provide a context in which the original
membrane system and the flat membrane behave differently (see Fig. 7). The point
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c→ (c, in3)

2:abc

a→ (b, out)δ

3:abc

c→ (a, out)

c→ (c3, here)
a→ (b, out)δ

c3c3 → (a, here)

c

ac

ac

2:abc

Fig. 6. Example of flattening in which the outer membrane contains a dissolving rule.

c→ (c, in3)

2:abc

a→ (b, out)δ

3:abc

c→ (a, out)

b→ (c3, here)
a→ (b, out)δ

c3

c3 → (a, here)

c

ab

ab

b→ (c, in3)

a→ (a, out)

c

c→ (c, in3)

2:abc

1:abc

a→ (a, out)

c

1:abc

eventually applied, leading

Here c→ (c, in3) can be

to an output of a after
a few steps.

be applied.

Here c→ (c, in3) cannot

Fig. 7. Example of context in which the two membranes systems in Figure 6 behave
differently.

is that the rule of membrane 1 sending object c to membrane 3 can be eventually
applied if and only if membrane 3 still exists after the dissolution of membrane 2.
In this case the only possible solution is to avoid flattening of membrane structures
in which the outermost membrane can be dissolved. As a consequence, a general
normal form for P Systems will have two shapes:

• If the external membrane of a membrane structure cannot be dissolved its
normal form is a single flat membrane that cannot be dissolved.

• If the external membrane of a membrane structure can be dissolved its normal
form is a structure consisting only of membranes that can be dissolved, but for
innermost membranes that might be non–dissolvable.
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5 Conclusions and Future Work

We have faced the problem of defining a flattening technique for P Systems defined
by means of axioms on terms of the algebra of such systems we have introduced in
[2], the P Algebra, and preserving the semantics. We have formally defined such
a technique in the case of P Systems without dissolving rules. This has required
extending the syntax and the semantics of the P Algebra with a notion of inter-
face and with a notion of flat membrane, defining some axioms and proving that
these axioms preserve the semantics. We have discussed the problems that arise
when dissolving rules are taken into account, and we have proposed some possible
solutions to these problems.

Our long term aim is to define a normal form of P System. In order to reach
the normal form of a P System, in addition to apply our flattening technique we
would also need to transform rules and objects of such a system into some minimal
form. We believe that, given two systems in normal form, it will be possible to
check their equivalence as follows:

• if they are both flat, they should contain the same rules and objects, up to a
suitable renaming;

• if they are both non flat because the external membrane contain a dissolv-
ing rule (see Section 4), they should have the same membrane structure of
equivalent membranes.
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A Rules of the Operational Semantics

In this section we recall the rules of the operational sematics of the P Algebra
given in [2].

A.1 Rules for membrane contents

I ∈ V ∗ n ∈ IN

(u → vhvo{vli}, ∅)
∅,I,vn

o
,{(li,vn

li
)}

−−−−−−−−−−−→
un,{u},∅,∅

(u → vhvo{vli}, Ivn
h )

(mc1n)

I ∈ V ∗ n ∈ IN n > 0

(u → vhvo{vli}δ, ∅)
∅,I,Ivn

o
vn

h
δ,{(li,vn

li
)}

−−−−−−−−−−−−−−→
un,{u},∅,∅

v

(mc2n)

I ∈ V ∗

(u → vhvo{vli}δ, ∅)
∅,I,∅,∅
−−−−−→
∅,{u},∅,∅

(u → vhvo{vli}δ, I)
(mc3)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅

(u → vhvo{vli}, ∅)
M,I,∅,∅
−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}, I)
(mc4)

I ∈ V ∗ M ⊆ Labels({vli}) M 6= ∅

(u → vhvo{vli}δ, ∅)
M,I,∅,∅
−−−−−−→
∅,∅,∅,∅

(u → vhvo{vli}δ, I)
(mc5)

I ∈ V ∗

(∅, a)
∅,I,∅,∅
−−−−−→
∅,∅,a,∅

(∅, I)
(mc6)

I ∈ V ∗

(∅, a)
∅,I,∅,∅
−−−−−→
∅,∅,∅,a

(∅, Ia)
(mc7)

I ∈ V ∗

(∅, ∅)
∅,I,∅,∅
−−−−−→
∅,∅,∅,∅

(∅, I)
(mc8)



Towards a P Systems Normal Form Preserving Step-by-step Behavior 39

A.2 Rules for union of membrane contents

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ 6∈ O

↑
1O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

,O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

y1 ∪ y2

(u1)

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ ∈ O

↑
1 δ 6∈ O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

Objects(y2),O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

v

(u2)

x1

M1,I1,O
↑
1

,O
↓
1−−−−−−−−−→

u1,U1,v1,v′
1

y1 x2

M2,I2,O
↑
2

,O
↓
2−−−−−−−−−→

u2,U2,v2,v′
2

y2
M1M2 ∩ Labels(O↓

1 ∪IN O
↓
2) = ∅

v′
1v

′
2 0 U1 ⊕ U2 δ ∈ O

↑
1 ∩ O

↑
2

x1 ∪ x2

M1M2,I1I2,O
↑
1

O
↑
2

,O
↓
1
∪INO

↓
2−−−−−−−−−−−−−−−−−−→

u1u2,U1⊕U2,v1v2,v′
1
v′
2

v

(u3)

A.3 Rules for single membranes and juxtaposition of membranes

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ 6∈ O↑

[l x ]l
M,{(l,I)},O↑,O↓

−−−−−−−−−−−→ [l y ]l

(m1)

x
M,I,O↑,O↓

−−−−−−−→
u,U,u,v′

y δ ∈ O↑

[l x ]l
M,{(l,I)},O↑,O↓

−−−−−−−−−−−→ v

(m2)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ 6∈ O

↑
1O

↑
2

x1|x2

∅,I1I2,O
↑
1

O
↑
2

,∅
−−−−−−−−−−→ y1|y2

(jux1)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ ∈ O

↑
1 , δ 6∈ O

↑
2

x1|x2

∅,I1I2,(O
↑
1

O
↑
2
)−δ,∅

−−−−−−−−−−−−−→ y2

(jux2)

x1

M1,I1,O
↑
1

,∅
−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2 δ ∈ O

↑
1 ∩ O

↑
2

x1|x2

∅,I1I2,(O
↑
1

O
↑
2
),∅

−−−−−−−−−−−−→ v

(jux3)
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A.4 Rules for hierarchy of membranes

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 ⊆ I1

M1 ∩ Labels(I2) = ∅ δ 6∈ O
↑
1O

↑
2

µ(x1, x2)
∅,(l1,I1\O

↑
2
),O

↑
1

,∅
−−−−−−−−−−−−→ µ(y1, y2)

(h1)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 ⊆ I1 δ ∈ O

↑
1

M1 ∩ Labels(I2) = ∅ δ 6∈ O
↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1
−δ,∅

−−−−−−−−−−−−−−−−→ y2

(h2)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 − δ ⊆ I1 δ 6∈ O

↑
1

M1 ∩ Labels(I2) = ∅ δ ∈ O
↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1

,∅
−−−−−−−−−−−−−−→ y1

(h3)

x1

M1,{(l1,I1)},O
↑
1

,O
↓
1−−−−−−−−−−−−−→ y1 x2

M2,I2,O
↑
2

,∅
−−−−−−−−→ y2

O
↓
1 ≏ I2 O

↑
2 − δ ⊆ I1

M1 ∩ Labels(I2) = ∅ δ ∈ O
↑
1 ∩ O

↑
2

µ(x1, x2)
∅,{(l1,I1\O

↑
2
)},O

↑
1

,∅
−−−−−−−−−−−−−−→ v

(h4)
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Summary. We consider (tissue) P systems using non-cooperative rules, but consider-
ing computations without halting conditions. As results of a computation we take the
contents of a specified output membrane/cell in each derivation step, no matter whether
this computation will ever halt or not, eventually taking only results completely con-
sisting of terminal objects only. The computational power of (tissue) P systems using
non-cooperative rules turns out to be equivalent to that of (E)0L systems.

1 Introduction

In contrast to the original model of P systems introduced in [5], in this paper we
only consider non-cooperative rules. Moreover, as results of a computation we take
the contents of a specified output membrane in each derivation step, no matter
whether this computation will ever halt or not, eventually taking only results
completely consisting of terminal objects. In every derivation step, we apply the
traditional maximal parallelism. Other derivation modes could be considered, too,
but, for example, applying the sequential derivation mode would not allow us to
go beyond context-free languages. As the model defined in this paper we shall take
the more general one of tissue P systems (where the communication structure of
the system is an arbitrary graph, e.g., see [4], [2]), which as a specific subvariant
includes the original model of membrane systems if the communication structure
allows for arranging the cells in a hierarchical tree structure.

The motivation to consider this specific variant of tissue P systems came during
the Sixth Brainstorming Week in Sevilla 2008 when discussing the ideas presented
in [3] with the authors Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménez. They
consider the evolution of deterministic (tissue) P systems with simple (i.e., non-
cooperative) rules and aim to find a mathematically sound representation of such
systems in order to deduce their behaviour and, on the other hand, to find suitable
corresponding P systems for a given mathematical system with specific behaviour.
Whereas in that paper only deterministic P systems are considered, which allows
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for a mathematical representation like for deterministic 0L systems, and as well
real values for the coefficients assigned to the symbols are allowed, in this paper
we restrict ourselves to the non-negative integer coefficients commonly used in
traditional variants of (tissue) P systems.

We shall prove that the computational power of extended tissue P systems
using non-cooperative rules is equivalent to that of E0L systems when taking all
results appearing in the specified output cell consisting of terminal objects only.

The present paper is organized as follows. Section 2 briefly recalls the notations
commonly used in membrane computing and the few notions of formal language
theory that will be used in the rest of the paper; in particular, we report the defi-
nition of (extended) Lindenmayer systems. Section 3 is dedicated to the definition
of tissue P systems with non-cooperative rules working in the maximally parallel
derivation mode. The computational power of these classes of (extended) tissue
P systems is then investigated in Section 4 in comparison with the power of the
corresponding classes of (extended) Lindenmayer systems. Some further remarks
and directions for future research are discussed in the last section.

2 Preliminaries

We here recall some basic notions concerning the notations commonly used in
membrane computing (we refer to [6] for further details and to [9] for the actual
state of the art in the area of P systems) and the few notions of formal language
theory we need in the rest of the paper (see, for example, [8] and [1], as well as [7]
for the mathematical theory of L systems).

An alphabet is a finite non-empty set of abstract symbols. Given an alphabet V ,
by V ∗ we denote the set of all possible strings over V , including the empty string λ.
The length of a string x ∈ V ∗ is denoted by |x| and, for each a ∈ V , |x|a denotes
the number of occurrences of the symbol a in x. A multiset over V is a mapping
M : V −→ N such that M(a) defines the multiplicity of a in the multiset M (N
denotes the set of non-negative integers). Such a multiset can be represented by
a string a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗ and by all its permutations, with aj ∈ V ,

M(aj) ≥ 0, 1 ≤ j ≤ n. In other words, we can say that each string x ∈ V ∗

identifies a finite multiset over V defined by Mx = {(a, |x|a) | a ∈ V }. Ordering
the symbols in V in a specific way, i.e., (a1, . . . , an) such that {a1, . . . , an} = V ,
we get a Parikh vector

(|x|a1
, . . . , |x|an

)
associated with x. The set of all multisets

over V is denoted by MV , the set of all Parikh vectors by Ps (V ∗). In the following,
we shall not distinguish between multisets and the corresponding Parikh vectors.
Given two multisets x and y, with x, y ∈ V ∗, we say that the multiset x includes
the multiset y, or the multiset y is included in the multiset x, and we write x w y,
or y v x, if and only if |x|a ≥ |y|a, for every a ∈ V . The union of two multisets x
and y is denoted by xty and is defined to be the multiset with |x t y|a = |x|a+|y|a,
for every a ∈ V . For m,n ∈ N, by [m..n] we denote the set {x ∈ N | m ≤ x ≤ n}.
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An extended Lindenmayer system (an E0L system for short) is a construct
G = (V, T, P,w), where V is an alphabet, T ⊆ V is the terminal alphabet, w ∈ V ∗

is the axiom, and P is a finite set of non-cooperative rules over V of the form
a → x. In a derivation step, each symbol present in the current sentential form is
rewritten using one rule arbitrarily chosen from P . The language generated by G,
denoted by L(G), consists of all the strings over T which can be generated in this
way by starting from w. An E0L system with T = V is called a 0L system. As
a technical detail we have to mention that in the theory of Lindenmayer systems
usually it is required that for every symbol a from V at least one rule a → w in
P exists. If for every symbol a from V exactly one rule a → w in P exists, then
this Lindenmayer system is called deterministic, and we use the notations DE0L
and D0L systems. By E0L and 0L (DE0L and D0L) we denote the families of
languages generated by (deterministic) E0L systems and 0L systems, respectively.
It is known from [8] that CF ⊂ E0L ⊂ CS, with CF being the family of context-
free languages and CS being the family of context-sensitive languages, and that
CF and 0L are incomparable, with

{
a2n | n ≥ 0

} ∈ D0L− CF .
As the paper deals with P systems where we consider symbol objects, we will

also consider E0L systems as devices that generate sets of (vectors of) non-negative
integers; to this aim, given an E0L system G, we define the set of non-negative
integers generated by G as the length set N(G) = { |x| | x ∈ L(G) } as well as
Ps (G) to be the set of Parikh vectors corresponding to the strings in L (G). In
the same way, the length sets and the Parikh sets of the languages generated by
context-free and context-sensitive grammars can be defined. The corresponding
families of sets of (vectors of) non-negative integers then are denoted by NX and
PsX, for X ∈ {E0L, 0L, DE0L,D0L,CF, CS}, respectively.

3 Tissue P Systems With Non-cooperative Rules

Now we formally introduce the notion of tissue P systems with non-cooperative
rules by giving the following definition.

Definition 1. An extended tissue P system with non-cooperative rules is a con-
struct

Π = (n, V, T, R, C0, i0)

where

1. n is the number of cells;
2. V is a finite alphabet of symbols called objects;
3. T ⊆ V is a finite alphabet of terminal symbols ( terminal objects);
4. R is a finite set of multiset rewriting rules of the form

(a, i) → (b1, h1) . . . (bk, hk)

for i ∈ [1..k] , a ∈ V as well as bj ∈ V and hj ∈ [1..n] , j ∈ [1..k];
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5. C0 = (w1, . . . , wn), where the wi ∈ V ∗, i ∈ [1..n], are finite multisets of objects
for each i ∈ [1..n],

6. i0 is the output cell.

A rule (a, i) → (b1, h1) . . . (bk, hk) in Ri indicates that a copy of the symbol a
in cell i is erased and instead, for all j ∈ [1..k], a copy of the symbol bj is added
in cell hj .

In any configuration of the tissue P system, a copy of the symbol a in cell i is
represented by (a, i), i.e., (a, i) is an element of V × [1..n].

Π is called deterministic if in every cell for every symbol from V exactly one
rule exists.

From the initial configuration specified by (w1, ..., wn), the system evolves by
transitions getting from one configuration to the next one by applying a maximal
set of rules in every cell, i.e., by working in the maximally parallel derivation mode.
A computation is a sequence of transitions. In contrast to the common use of P
systems to generate sets of multisets, as a result of the P system we take the
contents of cell i0, provided it only consists of terminal objects only, at each step
of any computation, no matter whether this computation will ever stop or not,
i.e., we do not take into account any halting condition. The set of all multisets
generated in that way by Π is denoted by L (Π). If we are only interested in the
number of symbols instead of the Parikh vectors, the corresponding set of numbers
generated by Π is denoted by N (Π).

The family of sets of multisets generated by tissue P systems with non-
cooperative rules with at most n cells in the maximally parallel derivation mode is
denoted by PsEtOPn (noncoop, maxpar). Considering only the length sets instead
of the Parikh vectors of the results obtained in the output cell during the computa-
tions of the tissue P systems, we obtain the family of sets of non-negative integers
generated by tissue P systems with non-cooperative rules with at most n cells in
the maximally parallel derivation mode, denoted by NEtOPn (noncoop, maxpar).
The corresponding families generated by non-extended tissue P systems – where all
symbols are terminal – are denoted by XtOPn (noncoop, maxpar), X ∈ {Ps,N}.
For all families generated by (extended) tissue P systems as defined before, we
add the symbol D in front of t if the underlying systems are deterministic. If the
number of cells is allowed to be arbitrarily chosen, we replace n by ∗.

3.1 A well-known example

Consider the D0L system with the only rule a → aa, i.e.,

G = ({a} , {a} , {a → aa} , a) .

As is well known, the language generated by G is
{
a2n | n ≥ 0

}
and therefore

N (G) = {2n | n ≥ 0}.
The corresponding deterministic one-cell tissue P system is

Π = ({a} , {a} , {(a, 1) → (a, 1) (a, 1)} , (a)) .
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Obviously, we get L (Π) = Ps (L (G)) and N (G) = N (Π).

We should like to point out that in contrast to this tissue P system without
imposing halting, there exists no tissue P system with only one symbol in one cell

Π = ({a} , {a} , R, (w))

that with imposing halting is able to generate {2n | n ≥ 0}, because such systems
can generate only finite sets (singletons or the empty set):

• if w = λ, then N (Π) = {0};
• if R is empty, then N (Π) = {|w|};
• if w 6= λ and R contains the rule a → λ, then N (Π) = {0}, because no

computation can stop as long as the contents of the cell is not empty;
• if w 6= λ and R is not empty, but does not contain the rule a → λ, then R

must contain a rule of the form a → an for some n ≥ 1, yet this means that
there exists no halting computation, i.e., N (Π) is empty.

4 The Computational Power of Tissue P Systems With
Non-cooperative Rules

In this section we present some results concerning the generative power of (ex-
tended) tissue P systems with non-cooperative rules; as we shall show, there is a
strong correspondence between these P systems with non-cooperative rules and
E0L systems.

Theorem 1. For all n ≥ 1,

PsE0L = PsEtOPn (noncoop,maxpar)
= PsEtOP∗ (noncoop,maxpar) .

Proof. We first show that

PsE0L ⊆ PsEtOP1 (noncoop,maxpar) :

Let G = (V, T, P, w) be an E0L system. Then we construct the corresponding
extended one-cell tissue P system

Π = (1, V, T, R, (w) , 1)

with
R = {(a, 1) → (b1, 1) . . . (bk, 1) | a → b1 . . . bk ∈ P} .

Due to the maximal parallel derivation mode applied in the extended tissue P
system Π, the derivations in Π directly correspond to the derivations in G. Hence,
L (Π) = Ps (L (G)).
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As for all n ≥ 1, by definition we have

PsEtOP1 (noncoop, maxpar) ⊆ PsEtOPn (noncoop,maxpar) ,

it only remains to show that

PsEtOP∗ (noncoop,maxpar) ⊆ PsE0L :

Let
Π = (n, V, T,R, (w1, . . . , wn) , i0)

be an extended tissue P system. Then we first construct the E0L system

G = (V × [1..n] , T0, P, w)

with
w = tn

i=1hi (wi)

(t represents the union of multisets) and

T0 = hi0 (T ) ∪ ∪j∈[1..n],j 6=i0hj (V )

where the hi : V ∗ → {(a, i) | a ∈ V }∗ are morphisms with hi (a) = (a, i) for a ∈ V
and i ∈ [1..n], as well as

P = R ∪ P ′

where P ′ contains the rule (a, i) → (a, i) for a ∈ V and i ∈ [1..n] if and only if
R contains no rule for (a, i) (which guarantees that in P there exists at least one
rule for every b ∈ V × [1..n]).

We now take the projection h : T ∗0 → T ∗ with h ((a, i0)) = a for all a ∈ T and
h ((a, j)) = λ for all a ∈ V and j ∈ [1..n], j 6= i0. Due to the direct correspondence
of derivations in Π and G, respectively, we immediately obtain Ps (h (L (G))) =
L (Π).

As E0L is closed under morphisms (e.g., see [8], vol. 1, p. 266f.) and therefore
L (Π) = Ps (L (G′)) for some E0L system G′, we finally obtain L (Π) ∈ PsE0L.
¤

As an immediate consequence of Theorem 1, we obtain the following results:

Corollary 1. For all n ≥ 1,

NE0L = NEtOPn (noncoop,maxpar)
= NEtOP∗ (noncoop,maxpar) .

Proof. Given an E0L system G, we construct the corresponding extended tissue
P system Π as above in Theorem 1; then we immediately infer N (G) = N (Π).
On the other hand, given an extended tissue P system Π, by the constructions
elaborated in Theorem 1, we obtain

N (Π) = N (G′) = {|x| | x ∈ h (L (G))}
and therefore N (Π) ∈ NE0L. ¤



(Tissue) P Systems Using Non-cooperative Rules Without Halting 47

Corollary 2. For X ∈ {Ps, N}, X0L = XtOP1 (noncoop,maxpar) .

Proof. This result immediately follows from the constructions elaborated
in Theorem 1 with the specific restriction that for proving the inclusion
PstOP1 (noncoop,maxpar) ⊆ Ps0L we can directly work with the symbols of
V from the given non-extended tissue P system Π for the 0L system G to be
constructed (instead of the symbols from V × {1}) and thus do not need the pro-
jection h to get the desired result L (Π) = L (G) ∈ Ps0L. Besides this important
technical detail, the results of this corollary directly follow from Theorem 1 and
Corollary 1, because any non-extended system corresponds to an extended system
where all symbols are terminal. ¤

For tissue P systems with only one cell, the non-cooperative rules can also
be interpreted as antiport rules in the following sense: an antiport rule of the
form a/x in a single-cell tissue P system means that the symbol a goes out to
the environment and from there (every symbol is assumed to be available in the
environment in an unbounded number) the multiset x enters the single cell. The
families of Parikh sets and length sets generated by (extended, non-extended)
one-cell tissue P systems using antiport rules of this specific form working in the
maximally parallel derivation mode are denoted by XEtOP1 (anti1,∗,maxpar) and
XtOP1 (anti1,∗,maxpar) for X ∈ {Ps, N}, respectively. We then get the following
corollary:

Corollary 3. For X ∈ {Ps, N},

XEtOP1 (anti1,∗,maxpar) = XE0L

and
XtOP1 (anti1,∗,maxpar) = X0L.

Proof. The results immediately follow from the previous results and the fact
that the application of an antiport rule a/b1 . . . bk has exactly the same ef-
fect on the contents of the single cell as the non-cooperative evolution rule
(a, 1) → (b1, 1) . . . (bk, 1). ¤

For one-cell tissue P systems, we obtain a characterization of the families gen-
erated by the deterministic variants of these systems by the families generated by
the corresponding variants of Lindenmayer systems:

Corollary 4. For X ∈ {Ps, N} and Y ∈ {noncoop, anti1,∗},

XED0L = XtEDOP1 (Y,maxpar)

and
XD0L = XtDOP1 (Y,maxpar) .
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Proof. As already mentioned in the proof of Corollary 2, the results immediately
follow from the constructions elaborated in Theorem 1 with the specific restriction
that for proving the inclusion PsEDtOP1 (noncoop,maxpar) ⊆ PsED0L we can
directly work with the symbols of V from the given (extended) deterministic tissue
P system Π for the ED0L system G to be constructed (instead of the symbols from
V × {1}) and thus do not need the projection h to get the desired result L (Π) =
L (G) ∈ PsED0L. The remaining statements follow from these constructions in a
similar way as the results stated in Corollaries 1, 2, and 3. ¤

The constructions described in the proofs of Corollary 2 and 4 cannot be ex-
tended to (non-extended, deterministic) tissue P systems with an arbitrary num-
ber of cells, because in that case again the application of a projection h would be
needed.

5 Conclusions and Future Research

In this paper we have shown that the Parikh sets as well as the length sets gener-
ated by (extended) tissue P systems with non-cooperative rules (without halting)
coincide with the Parikh sets as well as the length sets generated by (extended)
Lindenmayer systems.

In the future, we may also consider other variants of extracting results from
computations in (extended) tissue P systems with non-cooperative rules, for exam-
ple, variants of halting computations or only infinite computations, as well as other
derivation modes as the sequential or the minimally parallel derivation mode. For
the extraction of results, instead of the intersection with a terminal alphabet we
may also use other criteria like the occurrence/absence of a specific symbol.

As inspired by the ideas elaborated in [3], we may investigate in more detail the
evolution/behaviour of deterministic tissue P systems with non-cooperative rules
based on the mathematical theory of Lindenmayer systems: as there is a one-to-one
correspondence between deterministic tissue P systems with non-cooperative rules
in one cell and D0L systems, the well-known mathematical theory for D0L systems
can directly be used to describe/ investigate the behaviour of the corresponding
deterministic tissue P systems with non-cooperative rules.

Acknowledgements. The authors gratefully acknowledge the interesting discus-
sions with Miguel Gutiérrez-Naranjo and Mario Pérez-Jiménez on the ideas pre-
sented in their paper [3].
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P systems, see this volume.

4. C. Mart́ın-Vide, Gh. Păun, J. Pazos, and A. Rodŕıguez-Patón, Tissue P Systems,
Theoretical Computer Science, 296 (2003), 295–326.
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Summary. The Bearded Vulture is one of the rarest raptors in Europe and it is an
endangered species. In this paper, we present a model of an ecosystem related with the
Bearded Vulture which is located in the Catalan Pyrenees, by using P systems. The
population dynamics constituted by the Bearded Vulture (that feeds almost exclusively
on bones) and other five subfamilies that provide the bones they feed on, is studied.

P systems provide a high level computational modeling framework which integrates
the structural and dynamical aspects of ecosystems in a comprehensive and relevant way.
P systems explicitly represent the discrete character of the components of an ecosystem by
using rewriting rules on multisets of objects which represent individuals of the population
and bones. The inherent stochasticity and uncertainty in ecosystems is captured by using
probabilistic strategies.

In order to give an experimental validation of the P system designed, we have con-
structed a simulator that allows us to analyze the evolution of the ecosystem with different
initial conditions.

1 Introduction

An ecosystem is a natural unit consisting of all plants, animals and micro-
organisms (biotic factors) in an area functioning together with all of the non-living
physical (abiotic) factors of the environment.
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Animal species are interconnected in a food chain in which some species depend
on others [6], [16]. The variations of different biomass affect the composition of
the population structures [15]. In mountain ecosystems where livestock activities
are developed in a traditional way, the relationship among ungulates and their
predators has been disrupted by the presence of domestic animals [5]. Animals
located at the top of the ecological pyramid are influenced by their presence and
number. The abandonment of corpses on mountains is a major source of food for
necrophagous animals [8].

The study of population ecology and how the species interact with the envi-
ronment is one of the aspects of the conservation biology with more and more
interest for managers and conservationists [2]. A widespread tool used are the
ecological models, based on mathematical representations of ecological processes
[13]. Ecosystems are dynamic entities composed of the biological community and
the abiotic environment. An ecosystem’s abiotic and biotic composition and struc-
ture is determined by the state of a number of interrelated environmental factors.
Changes in any of these factors, such as nutrient availability, temperature, light
intensity, grazing intensity, and species population density, will result in dynamic
changes in the nature of these systems.

Scientists have recognized that organisms can be organized according to several
different functional levels. The functional level known as species refers to a group
of organisms that are similar in morphology and physiology and which have the
ability to interbreed. A population is formed by all the different organisms of a
single species occupying a specific area on the Earth. A community is defined
as all the populations of different species inhabiting a particular region of the
Earth. The most complex functional level of organization is the ecosystem. An
ecosystem consists of the community and its relationship with the abiotic factors
of the environment.

Ecosystems are primarily governed by stochastic events, the reactions they
provoke on non-living materials and the responses by organisms to the conditions
surrounding them. Thus, an ecosystem results from the sum of myriad individual
responses of organisms to stimuli from non-living and living elements from the
environment. As the number of species in an ecosystem increases, the number
of stimuli also does. Ever since life began, organisms have survived continuous
change through natural selection of successful feeding, reproductive and dispersal
behavior. Ecosystems can be of any size. An ecosystem can be as large as a desert
or a lake or as small as a tree or a puddle. A terrarium can be described as an
artificial ecosystem.

Ecosystem models, or ecological models, are mathematical representations of
ecosystems. Given the complexity of the problems to be modeled, simplifications
need to be made in order to achieve a good numerical approach. Ecosystem models
are a development of theoretical ecology that describes the major dynamics of
ecosystems. Ecosystem models aim not only to integrate the understanding of
these systems but also to be able to predict their behavior (in general terms, or in
response to particular changes). Due to the complexity of ecosystems in terms of
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numbers of species/ecological interactions, ecosystem models tend to simplify the
systems they are studying down to a limited number of pragmatic components.
These may be particular species of interest, or may be broad functional types such
as autotrophs, heterotrophs or saprotrophs. In biogeochemistry, ecosystem models
usually include representations of non-living “resources” such as nutrients, which
are consumed by living components of the model.

The process of simplification reduces an ecosystem to a small number of state
variables. Depending upon the system under study, these may represent ecological
components in terms of numbers of discrete individuals or quantify the component
continuously as a measure of the total biomass of all organisms of that type,
often using a common model currency. The components are then linked together
by mathematical functions that describe the nature of the relationships between
them. For instance, in models which include predator-prey relationships, the two
components are usually linked by some function that relates total prey captured
to the populations of both predators and prey. Deriving these relationships is
often extremely difficult given habitat heterogeneity, the details of component
behavioral ecology (including issues such as perception, foraging behavior), and
the difficulties involved in unobtrusively studying these relationships under field
conditions. Typically, relationships are derived statistically or heuristically. For
example, some standard functional forms describing these relationships are linear,
quadratic, hyperbolic or sigmoid functions.

Besides establishing the components to be modeled and the relationships be-
tween them, another important factor in ecosystem model structure is the rep-
resentation of space used. Historically, models have often ignored the confusing
issue of space by using zero-dimensional approaches such as ordinary differential
equations. As computing power increases in, models which incorporate space are
being increasingly used, for example, based on partial differential equations or cel-
lular automata. The inclusion of the factor of space allows dynamics not present in
non-spatial frameworks to be considered, and sheds light on processes that lead to
the formation of patterns in ecological systems. One of the earliest and best-known
ecological models is the predator-prey model described by Alfred J. Lotka (1925)
and Vito Volterra (1926). This model is composed of a pair of ordinary differential
equations where one represents a prey species and the other its predator.

Volterra originally devised the model to explain fluctuations in fish and shark
populations observed in the Adriatic Sea following the First World War when
fishing had been curtailed. However, the equations have subsequently been applied
more generally. Although simple, they illustrate some of the salient features of
ecological models: the considered biological populations grow, interact with other
populations (either as predators, prey or competitors), and suffer mortality.

The objective of this paper is to design a model that studies the evolution
of an ecosystem located in the Pyrenees, taking advantage of the capacity the
P Systems to work in parallel. The ecosystem includes six species: the Bearded
Vulture (Gypaetus barbatus) as scavenger (predator) species and the Pyrenean
Chamois (Rupicapra pyrenaica), Red Deer (Cervus elaphus), Fallow Deer (Dama
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dama), Roe Deer (Capreolus capreolus) and Sheep (Ovis capra) as carrion (prey)
species.

The paper is structured as follows. In the next section, basic concepts of the
ecosystem to be modeled are introduced. The most outstanding aspects of each
species are detailed as well as interactions among them. In Section 3, a probabilistic
P system is presented in order to describe the ecosystem. A simulator of that
probabilistic P system is designed in Section 4, in order to study the dynamics of
the ecosystem. Section 5 is devoted to the analysis of the results produced by the
simulator. Finally, conclusions are presented in the last section.

2 Modeling the Ecosystem

The ecosystem to be modeled is located in the Catalan Pyrenees, in the Northeast
of Spain. This area contains a total of 35 territories that constitutes the 34.3% of
the population of the Bearded Vulture Spanish population in 2007 (n = 102). See
Figure 1 [8].

CATALONIA

Fig. 1. Regional distribution of the Bearded Vulture in the Catalan Pyrenees (NE Spain).

The ecosystem is composed of six species: the Bearded Vulture (predator
species) and the Pyrenean Chamois, Red Deer, Fallow Deer, Roe Deer, and Sheep
(prey species). The last five prey species belong to the bovid family, they are herbi-
vores and their bone remains form the basic source of nourishment for the Bearded
Vulture in the Pyrenees.

The Bearded Vulture (Gypaetus barbatus) is a cliff-nesting and territorial large
scavenger distributed in mountains ranges in Eurasia and Africa. It is one of the
rarest raptors in Europe (150 breeding pairs in 2007), it inhabits areas of high
altitude (1500-4000 m), though it can be seen in areas of lower altitude (500-800
m) in the winter when high mountains are covered with snow. The mean lifespan of
wild Bearded Vultures is 21.4 years [4]. The mean age of first breeding is 8.1 years,
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whereas the mean age of first successful breeding is 11.4 years [1]. Egg-laying take
places during December-February and, after 52-54 days of incubation and around
120 days of chick-rearing, the chick abandons the nest between June-August [12].
The clutch size in this species is usually two eggs, but only one chick survives
as a consequence of sibling aggression [11]. Bearded Vultures are fertile from the
age of eight, when they become adult, and they cease to be fertile at the age of
twenty. The female’s annual fertility rate in Catalonia during the last five years is
estimated around 38% [8], the female lays two eggs and incubates them for 55-57
days. However, as with most birds of prey, only one of the youngsters fledges.

The Bearded Vulture is the only vertebrate animal that feeds almost exclusively
on bone remains. Its main food source is bone remains of dead small and medium-
sized animals. It searches for food either alone or in pairs. In the Pyrenees the bone
remains of Pyrenean Chamois, Red Deer, Fallow Deer, Roe Deer, and Sheep form
67% of the vulture’s food resources of nourishment, and the other 33% includes
the bone remains of small size mammals (e.g., dogs, cats), badgers, least weasel,
large mammals (cows, horses), medium size mammals (e.g., wild boars) and birds
[8]. A pair of Bearded Vultures needs an average 341 Kg of bones per year [10],
[9].

During the dispersal period (from fledgling until the bird become territorial at
5-6 years), the non-adult Bearded Vultures birds cover large distances surveying
different areas. For example, the averaged surface covered by four young monitored
after fledging was 4932 km2 (range 950-10294 km2, [14]). They may return to breed
in the area where they were born but it is not frequent. The choice of the area
where they settle down definitively is based on different parameters such as the
availability of food and the vulture population density. Breeding mature birds are
territorial and the approximate home ranges obtained for eight pairs studied varied
between 250 km2 and 650 km2. They almost never leave their territory to settle
in neighboring mountainous areas even if these are close by, and this fact makes
it more difficult to estimate the growth of its population. Studies by Margalida
estimate the average annual growth in the population of Bearded Vultures in the
Pyrenees to be 4-53% of the existing population, and that the average floating
population is 20 principally remains in feeding stations situated in the central
Pyrenees (Aragon) birds.

The natural behavior of the five bovid species is similar as they are all herbi-
vores and they all reach the size of the adult animal when they are one year old. In
general, they arrive at the sexual maturity within two years from birth. Chamois
and the Red Deer have a longer life expectancy than Fallow Deer and Roe Deer.
The natural mortality rates are similar in all five species, in the first year of life it
is calculated to be 50% and 6% during the remaining years. In spite of the great
degree of similarity among these five species, there are differences among them,
some are of natural origin and other are induced by human action. It is essential
to bear them in mind in order to define a P system that can reliably simulate the
ecosystem.
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Red Deer are very much appreciated by the hunters, not for their meat but as
trophies and so only males are hunted, and this causes the natural evolution of
the population to be modified. The hunter only takes the head as a trophy leaving
the animal’s body on the field, and so the carcass is eaten by other species and
the bones may then be eaten by the Bearded Vulture.

Fallow Deer and Roe Deer live in areas that are difficult to reach and for this
reason the Bearded Vulture cannot take advantage of the bones of all of the dead
animals. Studies estimate that the Bearded Vulture only uses 20% of the bones
available on the field.

As sheep are domestic animals, humans exert a high level of control over the
sheep populations. The size and growth of the sheep population is limited by the
owners of the flocks. The natural average life expectancy of sheep is longer that
their actual life expectancy in the field because when its fertility rate decreases at
the age of eight, they are taken out of the habitat. Most of the lambs are sold to
market and so they are taken out of the habitat too in the first year of life. Only
20% of the lambs, mostly females, are left on the field and they are used to replace
sheep that have died naturally and the old ones that have been removed from the
flock.

As the Bearded Vulture is an endangered species, there are many projects that
study its behavior and the way it is affected by its environment. Thanks to these
studies there is available a large amount of information which is required to define
the P System and to validate the results obtained.

In this study, the feeding of the Bearded Vulture is dependent on the evolution
of the P System. However, the P System does not consider that the availability of
food limits the feeding of the herbivores, and so the growth of the vegetation is
not modeled.

Taking all of this background information into consideration, the following data
was required for each species:

• ki,1: age at which adult size is reached. This is the age at which the animal eats
like the adult does, and at which if the animal dies, the amount of biomass it
leaves is similar to the ole left by an adult. Moreover, at this age it will have
surpassed the critical early phase during which the mortality rate is high.

• ki,2: age at which it starts to be fertile.
• ki,3: age at which it stops being fertile.
• ki,4: average life expectancy.
• ki,5: fertile ratio (number of descendants by fertile female).
• ki,6: population growth.
• ki,7: mortality ratio in first years (age < ki,1) in which biomass in the form of

bones is not left on the field.
• ki,8: mortality ratio in first years (age < ki,1) in which biomass in the form of

bones is left on the field.
• ki,9: mortality ratio in adult animals (age ≥ ki,11) in which biomass in the form

of bones is not left on the field.
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• ki,10: mortality ratio in adults animals (age ≥ ki,1) in which biomass in the
form of bones is left on the field.

• ki,11 is equal to 1 if the animal dies at the age of ki,4 leaving biomass, and it
is equal to 0 if the animal dies at the age of ki,4 without leaving bones.

• ki,12: amount of bones from young animals (age < ki,1).
• ki,13: amount of bones from adult animals (age ≥ ki,1).
• ki,14: percentage of females in the population.
• ki,15: type of food.
• ki,16: amount of food necessary per year and animal (1 unit is equal 0.5 kg of

bones).

When an animal dies, the weight of bones which it leaves is around 20% of
its total weight. Table 1 shows the average weight of each animal as well as the
weight of bones they leave. In the case of Fallow Deer and Roe Deer, the value of
the weight of bones must then be multiplied by 0,2 (20%) which is the proportion
of bones that are accessible for the Bearded Vulture.

Table 1. Bones

Species Weigh Weigh Percentage Average Biomass: Biomass: Kg accessible
Male Female Female weigh bons adult bons young by B.Vulture

(adult/young)

B.Vulture 5 6.5 60 2 - - -

Chamois 28 32 50 30 6 3 6/3

Red Deer
Female - 75 - 75 15 7.5 15/7.5

Red Deer
Male 120 - - 120 24 12 24/12

Fallow
Deer 63 42 80 46 9 4.5 2/1

Roe Deer 27 23 66 24 5 2.5 1/0.5

Sheep 42 35 97 35.2 7 3.5 7/3.5

33% of the Bearded Vulture’s nutrition is formed by bone remains of other
species that belong to the ecosystem but which are not studied in this model, and
so it was necessary for the P system to include an annual contribution from the
ecosystem. This contribution was calculated to be 12500 kg bones by considering
the size of the Bearded Vulture population and its weight. By subtracting the 3500
kg of food in form of bones that is consumed by the floating population of Bearded
Vultures, the annual external contribution is calculated to be 9000 kg of bones.
There are seven feeding stations in Catalonia which provide around 10500 kg of
bone remains annually. These artificial feeding sites have not been considered in
the study and most of the floating birds feed at these sites.

The required information about each species is shown in Table 2.
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Table 2. Constants

Specie i ki,1 ki,2 ki,3 ki,4 ki,5 ki,6 ki,7 ki,8 ki,9 ki,10 ki,11 ki,12 ki,13 ki,14 ki,15 ki,16

B.Vulture 1 1 8 20 21 0 3 6 0 7 0 0 0 0 50 bones 341

Chamois 2 1 2 18 18 75 0 0 55 0 6 1 6 12 55 grass 0

Red Deer
Female 3 1 2 13 17 50 0 0 50 0 6 1 15 30 100 grass 0

Red Deer
Male 4 1 2 18 20 0 0 0 50 0 36 1 24 48 0 grass 0

Fallow
Deer 5 1 2 11 12 50 0 0 50 0 7 1 2 4 75 grass 0

Roe Deer 6 1 2 9 10 90 0 0 55 0 5 1 1 2 67 grass 0

Sheep 7 1 2 7 7 75 0 59 15 0 4 0 7 14 96 grass 0

3 A P System Based Model of the Ecosystem

In this section we present a model of the ecosystem described in Section 2 by
means of probabilistic P systems. We will study the behavior of this ecosystem in
diverse initial conditions.

First, we define the P systems based framework (probabilistic P systems),
where additional features such as two electrical charges which describe specific
properties in a better way, are used.

Definition 1. A probabilistic P system of degree n is a tuple

Π = (Γ, µ,M0, . . . ,Mn−1, R)

where:

• Γ is the alphabet (finite and nonempty) of objects (the working alphabet).
• µ is a membrane structure, consisting of n membranes, labeled 0, 1, . . . , n− 1.

The skin membrane is labeled by 0. We also associate electrical charges with
membranes from the set {0, +}, neutral and positive.

• M0, . . . ,Mn−1 are strings over Γ , describing the multisets of objects initially
placed in the n regions of µ.

• R is a finite set of evolution rules. An evolution rule is of the form r : u
k−→ v,

where u, v are a multiset over Γ and k ∈ [0, 1] is a real number between 0 and
1 associated with the rule.

We assume that a global clock exists, marking the time for the whole system (for
all compartments of the system); that is, all membranes and the application of all
rules are synchronized.

The n-tuple of multisets of objects present at any moment in the n regions of
the system constitutes the configuration of the system at that moment. The tuple
(M0, . . . ,Mn−1) is the initial configuration of the system.

We can pass from one configuration to another one by using the rules from R
as follows: at each transition step the rules to be applied are selected according
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to the probabilities assigned to them, and all applicable rules are simultaneously
applied and all occurrences of the left–hand side of the rules are consumed, as
usual.

3.1 The model

Our model consists in the following probabilistic P system of degree 2 with two
electrical charges:

Π = (Γ, µ,M0,M1, R)

where:

• In the alphabet Γ we represent the six species of the ecosystem (index i is
associated with the species and index j is associated with their age, and the
symbols X, Y and Z represent the same animal but in different state); it also
contains the auxiliary symbols B and C.

Γ = {Xij , Yij , Zij : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,5} ∪ { B, C}

• In the membrane structure we represent two regions, the skin (where animals
reproduce) and an inner membrane (where animals feed and die): µ = [ [ ]1 ]0
(neutral polarization will be omitted)

• In M0 and M1 we specify the initial number of objects present in each regions
(encoding the initial population and the initial food).
– M0 = {Xqij

ij : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,}, where the multiplicity qij indicates
the number of animals, of species i whose age is j that are initially present
in the ecosystem.

– M1 = {C B18000}, where the object B represent 0.5 kg of bones, and 9000
kg is the external contribution of bones to the P system corresponding to
the 33% of feeding that come from animals do not modeled in the P system.

• The set R of evolution rules consists of:
– Reproduction-rules

Adult males:
r0 ≡ [Xij

1−ki,14−−−→Yij ]0, 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4

Adult females that reproduce:

r1 ≡ [Xij

ki,5ki,14−−−→ YijYi0]0, 1 ≤ i ≤ 7, ki,2 ≤ j < ki,3

Adult females that do not reproduce:

r2 ≡ [Xij

(1−ki,5)ki,14−−−→ Yij ]0, 1 ≤ i ≤ 7, ki,2 ≤ j < ki,3

Young animals that do not reproduce:
r3 ≡ [Xij → Yij ]0, 1 ≤ i ≤ 7, ki,3 ≤ j < ki,2

– Young animals mortality rules:
Those which survive:
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r4 ≡ Yij [ ]1
1−ki,7−ki,8−−−→ [Zij ]1 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1

Those which die and leaving bones:

r5 ≡ Yij [ ]1
ki,8−−−→[Bki,12 ]1 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1

Those which die and do not leave bones:
r6 ≡ Yij [ ]1

ki,7−−−→[ ]1 : 1 ≤ i ≤ 7, 0 ≤ j < ki,1

– Adult animals mortality rules:
Those which survive:

r7 ≡ Yij [ ]1
1−ki,9−ki,10−−−→ [Zij ]1 : 1 ≤ i ≤ 7, ki,1 ≤ j < ki,4

Those which die leaving bones:

r8 ≡ Yij [ ]1
ki,10−−−→[Bki,13 ]1 : 1 ≤ i ≤ 7, ki,1 ≤ j < ki,4

Those which die and do not leave bones:
r9 ≡ Yij [ ]1

ki,9−−−→[ ]1 : 1 ≤ i ≤ 7, ki,1 ≤ j < k1,4

Animals that die at an average life expectancy:
r10 ≡ Yij [ ]1 → [Bki,13·ki,11 ]1 : 1 ≤ i ≤ 7, j = ki,4

– Feeding rules:
r11 ≡ [ZijB

ki,16 ]1 → Xij+1[ ]+1 : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4

– Rules of mortality due to lack of food, and the elimination from the system
of bones that are not eaten by the Bearded Vulture:
Elimination of remaining bones:

r12 ≡ [B]+1 → [ ]1
External contribution that represent the bones:

r13 ≡ [C]+1 → [CB18000]1

Adult animals that die because they have not enough food:
r14 ≡ [Zij ]+1 → [Bki,13·ki,11 ]1 : 1 ≤ i ≤ 7, ki,1 ≤ j ≤ ki,4

Young animals that die because they have not enough food:
r15 ≡ [Zij ]+1 → [Bki,12·ki,11 ]1 : 1 ≤ i ≤ 7, j < ki,1

Figure 2 gives a schematic view of how the P system works.

4 A Simulator

In order to study the dynamics of the species that belong to the ecosystem, we
have designed a simulator written in C ++ language. This program runs on a PC.

In the simulation, the objects that encode the species and the age are rep-
resented by two vectors which are related through the number assigned to each
animal of the ecosystem. The objects of the P system evolve in a random way; this
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Fig. 2. Schema

stochasticity is implemented by generating random numbers between 1 and 100,
according to an uniform distribution. One of the generated numbers is assigned to
each animal. Then, the animal evolves according to the assigned number and the
constant probability. For example, when the probability of surviving is 70%, the
animal will die if the assigned number is greater than 70.

The input of the program consists of the parameters of each species that are
considered in the P system and the number of animals of each species and age
that are present at time zero. The output is the number of animals and age of
each species that are present every year after completing the following processes:
reproduction, mortality and feeding.

In nature an ecosystem is governed by nondeterminism, and this implies a
complex mathematical model. Nevertheless all the processes that are carried out
have an important degree of randomness. This randomness can be predicted and
can be quantified at every moment and situation of the ecosystem.

The program has been structured in four modules:

• Reproduction. The inputs are the age at which each species begins to be fertile,
the age at which it stops being fertile, the fertility rate, and the proportion of
females of the species. This module also requires the total number of existing
animals and the distribution of these animals in terms of species and ages. The
output of this module is the number and age of animals of each species.
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• Mortality. The inputs are the mortality rate based on the age, the average life
expectancy of each species, and finally the weight of bones left by the dead
animal which is dependent on its age. Once again this module also requires the
total number of animals and their distribution in terms of species and ages. As
with the other modules, the output of this module is the number and age of
animals of each species when the process is completed. Another output of this
module is the amount of food that is generated in terms of the weight of bones
produced that provide the Bearded Vulture’s basic source of nourishment.

• Feeding. The inputs are the amount of food available in the ecosystem and the
annual amount of food that is necessary for the animal to survive in suitable
conditions, in other words, conditions under which the animals are not debili-
tated and do not suffer the consequent effects on their capabilities. As was seen
in the previous modules, inputs are generated by the P system itself as it quan-
tifies objects representing the number of animals of each existing species and
age. Once again, the output of this module is the number and age of animals
of each species.

• Elimination of unused leftover food and the animal mortality from insufficient
feeding. The input of this module is part of output of the feeding module. The
aim of this process is to eliminate the number of animals that were not able to
find the necessary amount of food for their survival, and also to consider the
amount of leftover food that is degraded with time and that therefore stops
having a role in the model. The animals that die due to a lack of food are
transformed into bones that can then be eaten by the Bearded Vulture. The
output of this module is an amount of food in form of bones that is available
to the Bearded Vulture.

The unit of reference used in this study is the year, that is, the food consumed
throughout an annual period is given at one single point in time, and with one
application of each rule. The mortality of animals in an ecosystem is also a process
that is carried out in a continuous way, throughout the year. However, reproduction
is an activity that takes place at a specific time of the year, and moreover, it takes
place at the same time for all of the species considered in this study. It will be
necessary to verify if the one year unit time which was chosen is correct or whether
a shorter inferior unit of time should be used in the P system. It was also necessary
to check the robustness of the proposed model and to do this, it was ran a second
time with a modified order of application of the four processes modules. Given
independence of the four modules that form the P system, it would be a simple
exercise to run probability experiments with each module.

5 Results and Discussions

In order to validate the P system, it is necessary to check its robustness. Consid-
ering the year as unit time it was necessary to discretize feeding and mortality
variables.
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According to the design of the P system, reproduction rules have a higher
priority than mortality ones. Then, the robustness of the model regarding the
change of that priority is analyzed. For that reason, two variants of the simulator
have been studied changing the order of the corresponding modules (in the P
system we change variable X by variable Y in the initial multiset M0).

The data used to verify the robustness of the P system correspond to the
present situation (2008) in the Catalan Pyrenees of the ecosystem formed by the
Bearded Vulture, Chamois, Red Deer, Fallow Deer, Roe Deer and Sheep (see Table
3).

Table 3. Number of animals, at the moment, in the Pyrenean Catalan

Species Number

Bearded Vulture 74

Chamois 12000

Red deer female 4400

Red deer male 1100

Fallow deer 900

Roe deer 10000

Sheep 200000

As shown in Table 3, the data of the current number of animals in the Catalan
Pyrenees does not indicate the ages of animals. An age distribution has been gen-
erated considering the different constants that affect the animals throughout their
life. These constants are fertility rate, mortality rate and percentage of females in
the population. The age distribution obtained is shown in Table 4.

In both cases, the simulator was ran 10 times until it covered a period of 20
years.

In these figures, solid lines and dashed lines represent the population dynam-
ics when the simulator modules are applied following the orders reproduction–
mortality–feeding and mortality–feeding–reproduction, respectively. Taking into
account that the P system behavior is similar in both cases, it can be deduced
that our model is robust with regard to the properties considered.

The very important factor of population density was not considered in the
model of the ecosystem. This is the reason why the population of some of the
species grew in an exponential way reaching values which cannot be obtained in
the ecosystem. It is well-known, for example, that when a population of Red Deer
reaches a level of 15000 animals, a regulation process starts that implies a drastic
decrease of the population down to 1000 individuals.

6 Conclusions

A probabilistic P System modeling an ecosystem related with the Bearded Vulture
which is located in the Catalan Pyrinees, has been presented.



64 M. Cardona et al.

Table 4. Number of animals for age

Age B. Vulture Chamois Red deer female Red deer male Fallow deer Roe deer Sheep

1 0 988 978 254 125 1210 31246

2 0 987 780 192 110 1207 30310

3 0 890 625 154 103 1207 29400

4 0 889 500 124 95 1207 28519

5 0 889 400 99 89 1085 27663

6 0 795 240 60 83 1083 26834

7 0 792 195 48 77 1083 26028

8 6 690 155 38 71 959 0

9 6 689 123 30 52 959 0

10 6 592 97 24 50 0 0

11 6 592 78 20 45 0 0

12 5 592 62 16 0 0 0

13 5 497 50 12 0 0 0

14 5 497 40 10 0 0 0

15 5 496 32 8 0 0 0

16 5 395 25 6 0 0 0

17 5 394 20 5 0 0 0

18 5 336 0 0 0 0 0

19 5 0 0 0 0 0 0

20 5 0 0 0 0 0 0

21 5 0 0 0 0 0 0

By using this P system has been possible to study the dynamics of the ecosys-
tem modifying the framework in order to calculate how the ecosystem would evolve
if different biological factors were modified either by nature or through human in-
tervention.

A simulator of the P system has been designed and the robustness of the model
with respect the order of application of the different kinds of rules, has been shown.

The P system does not consider levels of population density and, as a conse-
quence, an exponential growth of populations of species was obtained. In a future
work this factor and other parameters (e.g., the amount of food of the herbivores
species, the climatic changes in the ecosystem, etc.) should be considered.
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Summary. Signal transduction networks are very complex processes employed by the
living cell to suitably react to environmental stimuli. Qualitative and quantitative com-
putational models play an increasingly important role in the representation of these
networks and in the search of new insights about these phenomena. In this work we an-
alyze some graph-based models used to discover qualitative properties of such networks.
In turn, we show that MP systems can naturally extend these graph-based models by
adding some qualitative elements. The case study of integrins activation during the lym-
phocyte recruitment, a crucial phenomenon in inflammatory processes, is described, and
a first MP graph for this network is designed. Finally, we discuss some open problems
related to the qualitative modeling of signaling networks.

1 Introduction

Biological signal transduction is a series of processes employed by the living cell to
convert signals coming from the external environment [17, 1]. Signal conversions
usually involve sequences of chemical reactions among proteins which generate
complex networks. By these mechanisms the cell can suitably react in order to
accomplish its biological functions.

The discovery of hidden interaction mechanisms supports the development of
new medical treatments and drugs for specific diseases, thus, in the last decades
many efforts have been addressed to “decipher” the interactions among the actors
of signaling networks. Despite of the great medical and pharmaceutical interest for
these networks, a lot of them are still completely or partially unknown, because of
their huge size and high complexity. So far, the best results have been achieved at a
qualitative level, by the representation and the analysis of protein interactions [18].
Such results have been mainly reached by means of suitable data structures (mainly
graphs) that support the topological analysis of biological networks, while an open
challenge concerns the modeling of dynamics related to the protein activation. This
could provide significant improvements for the prediction of signaling network
behaviors.
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Both qualitative and quantitative modeling of metabolic and signal transduc-
tion networks have drawn large advantages from the use of computational models,
which disclose new features of these systems by processing a great deal of data
[33]. The most used mathematical models for the dynamical analysis of biologi-
cal networks are the traditional systems of ordinary differential equations (ODE).
They represent a biological system by a set of mathematical equations, where every
equation rules the temporal evolution of a substance. Unfortunately, ODE models
have some drawbacks, such as the hard definition of equations from observed phe-
nomena, since a deep knowledge about microscopic molecular kinetics is required
[20]. Thus, several discrete and bio-inspired models have been proposed, in order
to symbolically describe cellular processes.

P systems, or membrane systems, were introduced in [28] as a new computa-
tional model which takes its inspiration from the structure and functioning of the
living cell. This model is rooted in the context of formal language theory and it is
based on multisets and membranes rewriting for which many computational uni-
versality results have been achieved [29]. This mathematical framework has been
often employed to model biological processes underlying metabolism [2, 5, 27],
pathologies [14, 13] and signaling [12, 26, 32].

Metabolic P systems, shortly MP systems, were recently introduced in [24] and
developed, along with different lines, see for example [6, 21, 22, 23]. The aim of this
non-conventional mathematical framework is properly the modeling of metabolic
dynamics. In fact the development of this model has been based on the mass
partition principle, which defines the transformation rate of object populations,
according to a suitable generalization of chemical laws [20].

Some equivalence results have been proved in [11] and in [9] between MP sys-
tems and, respectively, autonomous ODE and Hybrid Functional Petri nets. The
dynamics of several biological processes has been effectively modeled by means of
MP systems [3], among them: the Belousov-Zhabotinsky reaction (in the Brussela-
tor formulation) [5, 6], the Lotka-Volterra dynamics [5, 24], the SIR (Susceptible-
Infected-Recovered) epidemic [5, 3], the leukocyte selective recruitment in the im-
mune response [5], the Protein Kinase C activation [6], the circadian rhythms [3],
the mitotic cycles in early amphibian embryos [23, 12], a Pseudomonas quorum
sensing model [7] and the lac operon gene regulatory mechanism in glycolytic
pathway [9].

In this work we investigate the possibility to employ MP systems for modeling
signal transduction networks. We point out that some chemical laws which regulate
metabolic processes cannot be applied to signaling processes, and several measure-
ment problems can arise, due to current experimental limitations. With respect to
models of metabolism, the focus has to be moved from substance transformations
(complex creation and disintegration) to protein activation (e.g., phosphorylation
and dephosphorylation).

In section 2 it is presented a qualitative model currently used to represent pro-
tein interactions [18], and some motivations and problems related to quantitative
models are discussed. In Section 3 it is proposed the case study of a signaling
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network involved in the lymphocyte recruitment, while in the last section some
approaches are addressed for modeling the above network by MP systems.

2 From Qualitative to Quantitative Modeling

Several biological systems can be represented, at a qualitative level, by a net-
work of elements connected by functional interactions. Some examples are the
nervous system (physically connected neurons), the immune system (where cells
and molecules are connected with different kinds of interaction) and also signal-
ing systems (physically connected intracellular molecules). These networks can
be symbolically represented by graphs, mathematical structures used to model
pairwise relations (edges) between objects (nodes) from a certain collection. In
signal transduction networks, nodes act as molecules, typically proteins, and arcs
represent the capability of a molecule to activate or deactivate another molecule
(Figure 1).

Fig. 1. A qualitative representation of a signal transduction network by a directed graph.
Nodes correspond to molecules and arcs represent activation or deactivation [18].

Graph theory investigates structural properties of graphs, and these proper-
ties can assume a biological meaning if the graph represents a specific biological
network. Topological analyses based on graph theory often address interesting
questions about single elements of the network, clusters of elements, or the en-
tire network. There exist specific computational tools [31] to visualize networks
and analyze topological properties, such as the node degree (the number of edges
connected to a node), the average degree of the network, the shortest path be-
tween two nodes, the average shortest path of the network, the network diameter,
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clustering coefficients, the presence of network motifs (e.g., loops) or network sta-
tistical properties [18]. In a signal transduction network, the knowledge of such
properties most of the times allows the identification of substances which regulate
the process.

The qualitative approach described above is valid for a statical analysis of
networks. While structural properties can be found, the temporal evolution of
a network instead cannot be “simulated” to forecast dynamical behaviors (e.g.,
oscillations) occurring under different conditions. Quantitative models aim at ex-
tending qualitative models to achieve this target. They rely on new experimental
methods which support the measurement of real systems (e.g., activation levels or
concentration values), absolutely necessary to validate models. Namely, in the last
decade, the wide improvements of high-throughput data acquisition techniques in
molecular biology have made possible to screen and to analyze the expression of
entire genomes, as well as to assess large numbers of proteins and to character-
ize in detail the metabolic state of a cell population, although several problems
must be still overcome. On the other hand, new mathematical and computational
techniques have been conceived to infer coherent theories and models from huge
amounts of experimental data [33].

Systems of Ordinary Differential Equations (ODE) have been largely used
for the quantitative modeling of signal transduction networks, but lately some
network-oriented and bio-inspired models are overcoming several drawbacks of tra-
ditional ODE models. They allow a new insight about biological processes, which
cannot be obtained using the “glasses” of classical mathematics [2].

In the next section we focus on a cellular process of great immunological inter-
est, with the goal to design a model for this case study. It is a partially unknown
network obtained by long and complex laboratory experiments and proposed very
recently in [8].

3 A Case Study

Inflammatory processes in living organisms activate a tissue-specific recruitment
of leukocytes, that relies on the complex functional interplay between some surface
molecules of leukocytes circulating in the blood and the endothelial cells covering
the blood vessel. Leukocyte recruitment into tissues requires extravasation from
blood, by a process of transendothelial migration. Three major steps have been
identified in the process of leukocyte extravasation: tethering-rolling of free-flowing
white bloods cells, leukocyte activation and their arrest by the adherence to en-
dothelial cells. After the arrest diapedesis happens, namely leukocytes pass from
blood to the tissue beyond endothelial cells [30].

The recruitment process takes place when molecules called chemokines are
produced by the epithelium and by bacteria that have activated the inflamma-
tion. Chemokines bind with receptors located on the leukocyte membrane, then
activating an internal signaling network. The main output of this network is the
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activation of integrins, different receptors that interact with endothelial counter-
receptors slowing down the leukocyte speed, until its arrest. If we call A the initial
state, with leukocytes quickly circulating into the blood, B the state of rolling,
C the state of activation, and D the state of adhesion, three main phases can
be recognized: A → B ruled by receptor-receptor interactions, B → C ruled by
chemokine-receptor interactions, and C → D ruled by integrin-receptor interac-
tions. This process was modeled by P systems in [14], where the concept of recep-
tor was integrated with objects transformed and moved through membranes by
rewriting systems having rules with priority.

Very recent works have discovered a minimal signaling module activated by
chemokines and controlling the integrin activation during the whole process of re-
cruitment of lymphocytes B and T, two specific types of leukocyte [8]. Figure 2
shows the entire module (in the center) surrounded by the lymphocyte membrane
in which receptors CXCR4 and integrins LFA-1 are placed. Elliptical nodes rep-
resent types of molecules, PA and PIP2 are second messengers, continuous arrows
indicate experimentally demonstrated direct activations (with physical interac-
tions and complex formations), dashed arrows indicate indirect effects, flat line
endings indicate inhibitions, empty circle endings indicate second messenger pro-
duction, the arch ending indicates a direct binding, that is without any enzymatic
activation.

Fig. 2. Model of the Rho-signaling module, activated by chemokines and controlling
conformer-specific LFA-1 affinity triggering during the lymphocyte homing [8].
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The Rho pro-adhesive signaling module proposed in [8] and reported in Fig-
ure 2 takes its input from the receptor CXCR4, which is activated by chemokines
CXCL12 and indirectly activates RhoGEFs molecules . In turn, RhoGEFs activate
the three small GTPase proteins RhoA, Rac1 and CDC42 inside of the functional
module. RhoA and Rac1 activate PLD1, thus leading to phosphatidic acid (PA)
accumulation. PIP5KC bind to RhoA and it may be activated by Rac1 and PA.
At the same time, PLD1 may interact with alpha-actinin1 (ACTN1 ), facilitating
the interaction between ACTN1 and the integrins LFA-1 leading their transition
to intermediate affinity state. LFA-1 transitions among low, intermediate and high
level are depicted from the top to the bottom (they are all integrins) on the right
side of Figure 2. Simultaneously, activated PIP5KC triggers the local accumula-
tion of phosphatidylinositol 1-4-5 phosphate (PIP2 ), which has a central role in the
transition of LFA-1 from intermediate to high affinity state, and for the leukocyte
firm arrest. The increase of the PIP2 concentration, in fact, may inhibit ACTN1,
facilitating its detachment from LFA-1, and may activate Talin1 (TLN1 ), driving
the final transition to the high affinity state. We also notice that PIP5KC may
activate directly TLN1, and this may promote direct transition of LFA-1 to the
high affinity state. In this complex context, CDC42 plays a “negative” regulatory
role by preventing LFA-1 activation.

The signaling network reported in Figure 2 is a qualitative representation of
the integrin LFA-1 activation during the lymphocyte homing. An interesting open
problem from the biomedical viewpoint is the discovery of qualitative parameters
which rule the dynamics of the network over time, such as activation speeds or
delays. The development of a qualitative model would allow notable predictions
of system behaviors in presence of normal or abnormal (e.g., pathological and
pharmacological) conditions. However, qualitative models could imply quite a few
experimental problems, because only some quantities are measurable over time,
while most of them cannot be measured by current technologies. Our final goal is
the discovery of regulative mechanisms of the Rho pro-adesive signaling module,
namely starting from the curve of LFA-1 affinity in lymphocytes stimulated by
chemokines, showed in Figure 3.

4 Signaling Networks Modeled by MP Systems

As we hinted in the previous sections, the main difficulties of signaling model-
ing, compared to metabolic modeling, are (i) the lack of stoichiometric coefficients
that rule the ratios of chemical interactions, (ii) the consequent non-applicability of
some chemical laws, such as the mass conservation law, the Avogadro principle and
the Dalton principle, that constrain metabolic models, (iii) the lack of data acqui-
sition techniques to measure activation and concentration levels over time. These
difficulties could make inappropriate several methods yet employed for modeling
metabolic pathways. New meaningful models must be identified to predict signal-
ing network behaviors, hopefully despite the current lack of information about the
underlying phenomena.
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Fig. 3. LFA-1 affinity of a cluster of lymphocytes stimulated by chemokines.

In the following we propose a representation of the network of Figure 2 by
means of MP systems, since it is a network-oriented quantitative model which has
several features in common with the graph-based qualitative models described in
Section 2. Petri nets have been also employed to “graphically” model signaling
networks from a qualitative point of view [25], in fact their equivalence with MP
systems has been proved in [9].

MP systems are deterministic P systems developed to model the dynamics of
biological phenomena related to metabolism. They naturally extend graph-based
models because they consist of (i) a set of substances X, each one associated
to (concentration or activation) quantity when observed, (ii)a set of reactions
R, that move substances, (iii) a set of parameters V (such as pressure, tem-
perature,...) each equipped with an evolution function, and (iv)a set Φ of flux
regulation maps, which state the amount of substances consumed/produced by
every reaction in any system transition. The dynamics δ of this model is repre-
sented by the evolution of substances and parameters in every temporal interval
τ starting from the initial state σ0.

A graphical representation of MP systems by means of MP graphs has been
introduced in [23]. MP graphs depict biochemical reactions as bipartite graphs with
two levels, in which the first level describes the stoichiometry of reactions, while
the second level expresses the regulation which tunes the flux of every reaction
(i.e. the quantity of chemicals transformed at each step) depending on the state
of the system (see for example Figure 4).

Recent works aim at deducing MP models from suitable macroscopic obser-
vations of given metabolic behaviors along a certain number of steps [21, 19]. In
order to assist biologists in the simulation of MP systems we implemented a Java
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Fig. 4. An example of MP graph visualized by the MPsim 3 graphical user interface.
Frame labels point out MP system elements in the MP graph representation.

tool called MPsim [4]. The current release of the software employs a friendly user
interface to define MP models by means of MP graphs [23], and it produces the
plotting of curves given by the system dynamics. The last developments of the soft-
ware involve a new plugin framework for solving parameter estimation, analysis,
visualization and importation tasks in order to increase the system capabilities.

Figure 5 shows an MP graph representation of the signal transduction network
depicted in Figure 2. For every chemical involved in the network we set a substance
node (ellipses) and a linked reaction node (circles), which update the substance
quantity at each step. We model the quantities associated to PA and PIP2 as
concentrations, and the quantities associated to the other substances as activation
levels. The activation level of a protein expresses its capability to activate other
chemicals in the signaling cascade, therefore it is a very important feature for
qualitative modeling. Instead, second messengers such as PA and PIP2 tune their
interaction with other chemicals depending on their concentration.

Every reaction node is linked to a flux node (squares) which computes the
quantity added or removed by the reaction at each step, depending on the system
state. Dashed arcs from a substance node x to a flux node ϕy (which regulates
the substance y) indicates that x is a “regulator” of y. For instance, the activation
arc from RhoA to PLD1 in Figure 2 is mapped to the “regulation” arc from
the substance node RhoA to the flux node F6, because the updating of PLD1
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Fig. 5. An MP graph representation of Rho-signaling module activated by chemokines
and controlling conformer-specific LFA-1 affinity.

activation level over time depends on the RhoA activation level. All the arcs of
Figure 2 have been mapped to MP graph dashed arcs in this way.

The mapping of a qualitative model to an MP graph seems quite a simple task
though a crucial problem keeps open: the definition of significant activation speeds
and delays which suitably fit the observed dynamics of the system (Figure 3).
These parameters affect the regulation functions Φ of the MP system and they
would allow good predictions of the system behaviors.

As a future research, we intend to attack this problem by bio-inspired method-
ologies, like neural networks, and evolutionary techniques, like genetic program-
ming, already proposed by John R. Koza in [16] for the automatic synthesis of
metabolic pathways and genetic networks. The latter computational technique
could suggest solutions even for the topology validation of qualitative models. In-
deed, activation arcs of qualitative models (as that in Figure 2) are drawn when an
experiment proves the interaction between two molecules. However, the topology
we have of a network is possibly not complete, because some interactions have not
been discovered yet. In these cases quantitative computational models, which are
based on wide data observations, can point out interaction lacks and suggest new
experiments to discover different networks.
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Summary. The paper introduces some sorting networks and their simulation with P
systems, in which each processor/membrane can hold more than one piece of data, and
perform operations on them internally. Several data layouts are discussed in this context,
and an optimal one is proposed, together with its implementation as a P system with
dynamic communication graphs.

1 Introduction

Paper [9] proposed two models to sort a sequence of N numbers, based on the
bitonic sorting network. The first one consisted of N membranes, each storing two
numbers; one number was an element of the sequence, and the other one was an
auxiliary register used to route values. A number x was codified as the number of
appearances of a symbol a in each membrane. Moreover, the membranes were dis-
posed on a 2D-mesh, where only communication between neighbor membranes on
the mesh are permitted. This model, using a variant of P Systems, called P systems
with dynamic communication graphs, (see [8]), follows closely the implementation
of the bitonic sort on the 2D-mesh.

The second model consisted of only one membrane, where all the N numbers
were encoded as occurrences of N different symbols. Restrictions on communica-
tion were no longer imposed, as if the underlying communication graph were the
complete graph.

In this paper we introduce a model in between the two. First of all, observe
that the first model has the advantage of a codifying alphabet of fixed size, while
the second has the advantage of a small communication overhead. The model we
put forth in this paper captures these two benefits. Each membrane holds a fixed
number of values, and each of the membranes can communicate with any other.
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Additionally, in order to minimize the communication between membranes, we
use a periodic remap of values to membranes, according to the steps of the omega
network.

The problem of mapping values to processors has been previously addressed in
the context of parallel sorting algorithms. The bitonic sorting network, which can
sort N keys in time O(log2 N), is probably one of the most well-known parallel
sorting algorithms. However, modern architectures differ greatly from the theo-
retical models under which such good results were obtained. As coarse-grained
processors can store internally more than one value, the following problem arises:
how to map N keys to P processors (N > P ), such that inter-processor com-
munication is minimized. In the bitonic sorting algorithm, and for N ≥ P 2, the
solution given in [13, 14] consisted in alternating a blocked layout with a cyclic
layout, performing thus the minimal number of remaps. This paper gives an op-
timal mapping strategy for the bitonic sort for any N > P , and then applies this
result to P Systems.

The paper is organized as follows. Section 2 presents preliminaries on bitonic
sorting networks and defines omega networks. Section 3 approaches the problem
of mapping N keys among P processors, each processor manipulating n = N/P
keys, such that overall communication is minimized. Optimal data layouts for the
omega network are proposed along the lines of [20], and some essential results are
proved about them. Section 4 discusses about internal processing in one processor,
and how we model it in our implementation with P systems. Section 5 introduces
the P system which simulates the omega network with optimal data layouts, and
the algorithms which generate the sequence of dynamic communication graphs of
this model. Complexity issues are addressed at the end of Sections 3 and 5.

2 Preliminaries on Bitonic Sorting Networks and Omega
Networks

A bitonic sequence is a concatenation of two monotonic sequences, one ascending,
and the other one descending, or a sequence such that a cyclic shift of its elements
would put them in such a form.

The key components of a bitonic network are the bitonic splitters and the
bitonic mergers. The splitter of size N takes as input a bitonic sequence of length
N and partitions it in two bitonic sequences of equal length, such that all the
elements in the first sequence are smaller than (or greater than) all the elements
in the second sequence. A bitonic merger of size N consists of a splitter of size N
and of two mergers of size N/2, of opposite direction. It accepts as input a bitonic
sequence and sorts it in ascending or descending order (direction).

As any sequence of two numbers is bitonic, the sorting network uses bitonic
mergers of increasing size and alternating direction to construct bitonic sequences
of increasing length. The last such merger, of size N , renders the whole sequence
of N numbers sorted.
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Fig. 1. A bitonic sorting network of size N = 8. The network can be partitioned in three
stages, each containing bitonic mergers of size 2, 4, and 8, respectively.
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Fig. 2. Network devices

Following [15] it is customary to represent a network as an ordered set of
N lines (wires) connected by a set of compare-exchange devices (comparators, for
brevity). A comparator has two input terminals, a and b, and produces two output
terminals c and d. If the comparator is increasing, Fig. 2(a), then c = min(a, b)
and d = max(a, b), while if the comparator is decreasing, Fig. 2(b), c = max(a, b)
and d = min(a, b). A bitonic sorting network for N = 8 is represented in Fig. 1.

We introduce some more notations regarding the serial and parallel connections
of networks T1 and T2, of size N . Their serial connection, T1T2, is a network in
which the i-th output terminal of T1 is connected to the i-th input terminal of T2.
The parallel connection, T1 ◦ T2, is the union of T1 and T2, with terminal i of T1

becoming terminal i of T1 ◦ T2, and terminal i of T2 becoming terminal i + N of
T1 ◦ T2 (i = 0, . . . , N − 1).

Definition 1 (Omega network, Fig. 3(d)). Let Dk, k ≥ 1 be a one-step
network of N = 2k lines with a device between the pair of lines (i, i + N/2),
for i = 0 . . . N/2 − 1. Then the omega network OMk is recursively defined as
OMk = Dk(OMk−1 ◦OMk−1).

In [6] the striking similarity between the bitonic merger (Fig. 3(a), 3(b)) and
the balanced merger (Fig. 3(c)) is investigated. Although prior research [11] showed
that there is no permutation of lines to transform the bitonic merger into a bal-
anced merger, a framework is developed under which it is shown that the two
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Fig. 3. The bitonic merger, the balanced merger, and the omega network of size 8

mergers are isomorphic graphs, also isomorphic to the graph of the omega net-
work (Fig. 3(d)).

As a serial connection of log N identical networks in the class of omega networks
forms a sorting network [6], in what follows we will concentrate mainly on the
omega network.

3 How They Communicate

A sorting network is a fine-grained theoretical model, containing exactly one input
key on each wire. Additionally, comparators require communication between wires,
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which can sometimes be more time consuming than the comparison operation it-
self [1, 3, 10, 16]. When redesigning parallel sorting algorithms for coarse-grained
PRAM, one has to pay particular attention to both communication and compu-
tation.

Given N keys and P processors (N > P ), we have to map n = N/P keys
to each processor, such that overall communication is minimized. Ionescu and
Schauser [13, 14] investigated this problem for the bitonic sorting algorithm. As
initially suggested in [10], they proposed a smart periodical switch between a
blocked layout and a cyclic layout. They observed that in each stage of the sorting
algorithm, the last log n steps can be performed locally under a blocked layout,
while under the cyclic layout the first log n steps are local. A necessary condition
for the two layouts to span enough depth to cover an entire stage of the network is
N ≥ P 2. In addition, the two layouts are particular to the sorting network being
implemented. We shall see, for example, that the balanced merger [11, 12], which,
as the bitonic merger, belongs to the class of omega networks, also admits data
layouts optimizing overall communication.

An approach from the opposite side was put forth by Lee and Batcher [17].
They used a parity strategy for a shared-memory model with N = 2P to store
even-parity keys in local memory, while only odd-parity keys were recirculated.
This decreased by a factor of 2 the number of shared memory references.

The main contribution of this paper is a general scheme to map N values to P
processors, for any N > P and for any sorting network with the topology of the
omega network. Our idea captures the essence from the alternating smart layout
of [14], and makes it generally applicable, even when N < P 2. The number of data
layouts is no longer two, but it depends on the granularity of the processors.

3.1 Optimal Data Layouts for the Omega Network

In the following, without explicitly mentioning it, we assume we have to sort
N = 2k keys using P processors, N > P , each processor holding n = N/P keys.
Any number i ∈ {0, . . . , 2k − 1} has a bit representation i = a1a2 · · · ak, a1 being
the most significant bit, and ak the least significant one. To simplify notation,
we say that a sequence of bits aj · · · ai, where i, j ∈ {1, . . . , k} and j > i, stands
for the void sequence. The number of parallel steps of OMk is k, and step t of
the omega network OMk contains devices linking lines whose bit representations
differ of bit t, with 1 ≤ t ≤ k. For any t ∈ {1, . . . , k}, consider the function
bct : {0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 2k − 1}, the bit complement of the t-th bit,
defined by bct(a1a2 · · · at · · · ak) = a1a2 · · · āt · · · ak. The function bct is injective
and idempotent.

First, we give a formal definition of a data layout.

Definition 2 (Data layout). A data layout of N values to P processors is a
function D : {0, . . . , N − 1} → {0, . . . , P − 1}.

We introduce the following data layouts, as suggested in [10, 14].
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shape are assigned to the same processor in one data lay-
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Fig. 4. Three data layouts for the omega network OM5.

Definition 3 (Blocked layout). A blocked layout for mapping N keys on P
processors is a function Db : {0, . . . , N − 1} → {0, . . . , P − 1}, such that Db(i) =
bi/nc, where n = N/P .

Definition 4 (Cyclic layout). A cyclic layout for mapping N keys on P proces-
sors is a function Dc : {0, . . . , N − 1} → {0, . . . , P − 1}, such that Dc(i) = i mod
P .

We note that Definition 5 in [13], and the definition for the cyclic layout indi-
cated in Section 2.1 of [14] are incorrect, since if we map the i-th key to the i mod
n processor, where n = N/P , we have that n ≤ P , which implies N ≤ P 2, which
clearly is not the case considered.

In a blocked layout, the first log N− log n steps require remote communication,
while the last log n steps are local. In a cyclic layout, the situation is reversed: the
first log N − log n steps are local, while the last log n steps are remote. The idea



Sorting Omega Networks Simulated with P Systems 85

proposed in [14] when mapping N ≥ P 2 values in the bitonic sort is to periodically
switch between the two layouts, such that all steps are local. Moreover, as the
stages in a bitonic sort have increasing size, the author proposes an improved
“smart” remap such that a layout spans through multiple stages of the algorithm,
achieving a total of log P + 1 remaps.

Our paper better highlights the reasoning behind these remaps, in the case of
the bitonic sort. Consider the omega network OMk, and consider we choose to
map key 0 to processor 0. If each processor can hold 2m values, which other keys
are mapped to processor 0? As we can see, at step 1 we have a device linking line
0 with line 0 + 2k−1. At step 2 we have a device linking line 0 with line 2k−2, and
a device linking line 2k−1 and line 2k−1 + 2k−2. We also note that in step 1 lines
2k−2 and 2k−1 + 2k−2 were also linked with a device. We continue until step m,
where we identify 2m lines linked by 2m−1 devices. It would be natural to map
these lines to processor 0, as all comparisons at step m are local. However, one
more problem remains: all comparisons at stages 0 through m− 1 are also local?
As we shall see, the answer is yes.

The following lemma is straightforward from the definition of OMk.

Lemma 1. At each step 1 ≤ t ≤ k of OMk, and for any 0 ≤ i < 2k, line i is
linked by a device only with line bct(i).

Lemma 2. In OMk, for any 0 ≤ i < 2k−m, 1 ≤ m ≤ k and 0 ≤ t ≤ k −m, in
steps t+1, . . . , t+m there is no device linking lines in the set P t,m

i = {a1a2 · · · ak |
a1 · · · atat+m+1 · · · ak = i, where a1 · · · ak is a bit representation} with lines from
{0, . . . , 2k − 1} \ P t,m

i .

Proof. Suppose there are 1 ≤ r ≤ m, l ∈ P t,m
i and l′ /∈ P t,m

i such that at step
t + r there is a device linking l and l′. From Lemma 1 we have that l′ = bct+r(l),
which implies l′ ∈ P t,m

i , a contradiction.

We can therefore derive the data layouts for the omega network. Suppose we
have N = 2k, n = 2m, and P = 2k−m. We first assign to each processor Pi all
values in the set P 0,m

i , for 0 ≤ i ≤ P − 1. By Lemma 2 we have that the first
log n = m steps are entirely local. After m steps, we remap to each processor Pi

all the values in the set Pm,m
i , and perform the next m stages locally, and so on.

We can now give the definition of our proposed data layout.

Definition 5. Given N = 2k keys and P = 2k−m processors, which can store n =
2m values, m ≥ 1, the sequence of optimal data layouts consists of dlog N/ log ne =
dk/me data layouts. In each data layout Ds, 0 ≤ s ≤ dk/me − 1, values in the set
P sm,m

i are mapped to processor Pi, for all 0 ≤ i ≤ 2k−m. More formally, for any
0 ≤ u < 2k such that u ∈ P sm,m

i , we have Ds(u) = i.

The following is a consequence of Lemma 1 of [14].

Lemma 3. The maximum number of successive steps of the omega network that
can be executed locally, under any data layout is log n, where n = N/P .
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Fig. 5. The three data layouts for the omega network in Figure 4(a).
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In each data layout Ds, 0 ≤ s ≤ dk/me − 2, log n = m steps are local. For
s = dk/me − 1, the last k mod m steps of the network are local. From Lemma 3
we have that the proposed data layouts for the omega network are optimal.

In the case N ≥ P 2, we notice that 2m > k, hence two data layouts are enough
to cover the whole omega network. However, they do not coincide with Db or Dc,
as in the blocked layout, the last m stages are local, while in the cyclic layout, the
first k −m stages are local.

3.2 Computation Complexity

In each data layout, a processor holds n values and performs log n steps locally,
taking time O(n log n). As we have dlog N/ log ne data layouts, we get an overall
time complexity of the omega network of O(n log N). From [6] we have that a
serial connection of log N omega networks of size N is enough to sort a sequence
of N numbers. Hence, the complexity to sort N numbers using P processors, each
holding n = N/P values, using our proposed data layouts, is O(n log2 N).

This remark has a quite profound significance. In the fine-grained theoretical
model we have n = 1, and its complexity is O(log2 N). The complexity of the
network using a more coarse-grained model depends linearly on the degree of
parallelism of the model. At the opposite end, when n = N and the entire sorting
network is simulated locally, we have a complexity of O(N log2 N), which is worse
than O(N log N), the complexity of most sequential sorting algorithms. It would
be desirable to choose n such that this bound is not surpassed in the parallel
model. We impose n log2 N ≤ N log N , which implies n ≤ N/ log N .

An algorithm to find the minimum of a bitonic sequence of size n in time
O(log n), was introduced in [14]. This gives a time complexity of each data layout
of O(n). In the case of a network obtained from a serial connection of bitonic
mergers, this observation gives an overall time complexity of O( n

log n log2 N).

4 What Happens Inside One Processor/Membrane

One processor (and the membrane which simulates it) will be capable of hold-
ing n = N/P = 2m, pieces of data. We label the data with indices in the set
{0, 1, · · · , n − 1}. For any such index we consider its writing as a binary string of
length m, for instance i = x1x2 · · ·xt · · ·xm.

Inside one processor, several comparisons are performed, in parallel, between
the n pieces of data, in the following manner: for every bit t, (starting with 1,
the most significant bit, and ending with m) we compare and exchange if neces-
sary (to obtain an increasing order) all pairs of values codified with ai and abct(i).
More precisely, we have the following algorithm to be performed inside each pro-
cessor/membrane:
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for t← 1 to m do
forall i < bct(i) in parallel do

compare(ai, abct(i));

Algorithm 1: A parallel algorithm for the bitonic merger

where by compare(ai, aj) we denote sorting in an ascendant manner the values
codified by ai and aj , i.e. we end by having the minimum of the two values codified
by ai and the maximum by aj .

The procedure compare(ai, aj) works in a membrane in the following manner:
let si, sj and ti, tj be four auxiliary symbols, for the sources and the targets of a
comparator. The set of rules

{ak → sk | k = i, j} ∪ {sisj → titj , si → tjsj → tj} ∪ {tk → ak | k = i, j}

implement an increasing comparator between values codified by ai and aj . We first
rewrite the as to ss, next we have the comparator which writes the minimum to ti
and the maximum to tj , and then we rewrite these back to ai and aj respectively.

For all the comparisons which are to be done in parallel, take auxiliary alpha-
bets S = {s0, · · · , sn−1} and T = {t0, · · · , tn−1}. We rewrite all initial symbols to
symbols in S:

{ai → si | i = 0, 1, · · · , n− 1}.

Next we put the comparators between appropriate pairs:

{sisj → titj , si → tj , sj → tj | i = 0, 1, · · · , n− 1, i < j = bct(i)}.

Then we rewrite back to the original alphabet:

{ti → ai | i = 0, 1, · · · , n− 1}.

The parallel comparisons at each step t

forall i < bct(i) in parallel do
compare(ai, abct(i));

will thus be simulated in a membrane P by the rules

{ai → si | i = 0, 1, · · · , n− 1} ∪

∪ {sisj → titj , si → tj , sj → tj | i = 0, 1, · · · , n− 1, i < j = bct(i)} ∪

∪ {ti → ai | i = 0, 1, · · · , n− 1}.

5 A P System which Simulates the Omega Network

In this section we introduce a P system with dynamic communication [7], along
the same general lines as the model proposed in [8, 9]. For each of the processors
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Pi, i ∈ {0, 1, . . . , P − 1} we have an associated membrane, which we label i. The
graphs we consider are sub-graphs of the complete graph, KP , or of the identity
graph.

Note that at a certain step of the sorting algorithm not all edges are involved in
communication. Therefore we call active sub-graphs of KP those graphs containing
only such edges. We also introduce the identity graph, with

V (Id) = {0, 1, . . . , P − 1},

E(Id) = {(i, i) | 0 ≤ i ≤ P − 1}

for modeling internal processing steps.
In order to describe the evolution of such a P system, we use pairs of the type

[graph, rules]. We have graph a sub-graph of KP or Id and rules a mapping from
the set of all edges of graph, E(graph), to the set of all symbol/object rewriting
rules for routing or comparison operations.

The formal definition of the P system is

Π = (V = {a0, . . . , an−1} ∪ A, 〈[ax0
0

0 , a
x0
1

1 , . . . , a
x0

n−1
n−1 ]0, . . . ,

[axP−1
0

0 , a
xP−1
1

1 , . . . , a
xP−1

n−1
n−1 ]P−1〉, Rµ),

where the membrane indices are {0, 1, . . . , P − 1}. The alphabet {a0, . . . , an−1} is
of fixed size, and the set A contains the auxiliary symbols necessary to simulate
the omega network, as indicated in Section 4. Numbers xj

i with 0 ≤ i ≤ n− 1 are
the values stored on the wires mapped to processor j, 0 ≤ j ≤ P − 1 in the first
data layout. Each of them is codified as the number of occurrences of a symbol ai

inside membrane j. Finally, Rµ is the finite sequence of pairs [graph, rules] which
guides the computation.

We will see in the sequel that Rµ is generated algorithmically, by concatenating
sequences of pairs [graph, rules]3.

Lemma 4. Given N = 2k keys and P = 2k−m membranes, which can store n =
2m values, m ≥ 1, after the computation for the data layout Ds is finished, symbol
ai of membrane j codifies the value corresponding to wire u ∈ {0, . . . , N−1}, where
the bit representation of u is u = j1 . . . jsmi1 . . . imjsm+1 . . . jk−m. By j1 . . . jk−m

and by i1 . . . im we denoted the bit representations of j, and i, respectively.

Proof. The proof is immediate by Definitions 1, 5 and Lemma 2.

We observe that the remap of values from a data layout to the other can be done
in P +1 steps. When passing from data layout Ds−1 to Ds, with 0 < s ≤ dk/me−1,
in each step j, 0 ≤ j ≤ P − 1, membrane j sends its contents along the edges of
the communication graph Cj

s . To avoid collisions in the destination membranes,

3 We denote the empty sequence by λ, and the concatenation of two sequences by “·”.
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it also performs a rewriting of symbols from at to a′t, for all t ∈ {0, . . . , n − 1}.
In the last step P + 1, all auxiliary symbols a′t will be rewritten back to at in all
membranes, and the local computation can begin in each membrane.

We give below two algorithms generating the communication graphs Cj
s , and

the rules associated to each edge.

E(Cj
s)← ∅ ;

for j ← 0 to P − 1 do
for i← 0 to n− 1 do

let j have bit representation j1 · · · jsmjsm+1 · · · jk−m;
let i have bit representation i1 · · · im;
// the destination membrane of value encoded by ai in
membrane j z ← j1 · · · jsmi1 · · · imj(s+1)m+1 · · · jk−m;
// the destination symbol of value encoded by ai in
membrane j t← jsm+1 · · · jsm+m;

E(Cj
s) := E(Cj

s) ∪ {j, z};
rulesCj

s
((j, z)) := ai → a′t ;

Algorithm 2: Generation of the sequence of P communication graphs when
passing from data layout Ds−1 to Ds, with 0 < s ≤ dk/me − 1.

for j ← 0 to P − 1 do
rules-endcomm((j, j)) := {a′i → ai | 0 ≤ i ≤ n− 1};

Algorithm 3: Generation of the rules associated to the identity graph which
rewrite back the auxiliary symbols a′t when passing from any data layout Ds−1

to Ds, with 0 < s ≤ dk/me − 1.

We assume that the sequence denoted by SimOM is the sequence of pairs
[graph, rules] which simulates the omega network of size n, OMm (n = 2m). Its
construction was indicated in Section 4 and is expressed algorithmically below.

SimOM ← λ;
for t← 1 to m = log n do

forall p← 0 to P − 1 in parallel do
rulest,1((p, p))← {ai → si | i = 0, 1, . . . n− 1};
rulest,2((p, p))← {sisj → titj , si → tj , sj → tj | i =
0, 1, . . . , n− 1, i < j = bct(i)};
rulest,3((p, p))← {ti → ai | i = 0, 1, · · ·n− 1};

SimOM ← SimOM · [Id,rulest,1] · [Id,rulest,2] · [Id,rulest,3];
Algorithm 4: Generation of the sequence SimOM which simulates the omega
network of size n.

We can now give the algorithm which generates the whole sequence Rµ guiding
the computation.
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Rµ ← λ;
for s← 1 to dk/me − 1 do

Rµ ← Rµ · SimOM ;
for j ← 0 to P − 1 do

Rµ ← Rµ · [Cj
s , rulesCj

s
];

Rµ ← Rµ · [Id, rules-endcomm];
Rµ ← Rµ · SimOM ;

Algorithm 5: Generation of the sequence Rµ which guides the computation.

5.1 Computation complexity

Observe that the length of the sequence SimOM is 3 log n. As we have log N
log n data

layouts, and that in each data layout 3 log n steps are needed for SimOM and
another P + 1 steps are needed for communication, the length of Rµ is 3 log N +
N log N
n log n . A sorting network can be obtained by a serial connection of log N omega

networks, hence our model can sort in time O(log2 N + N log2 N
n log n ). Note that when

n = N all computation is local, and the complexity is the best possible, O(log2 N).
When n = 2 the complexity increases to O(N log2 N).
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Summary. This paper proposes two simulations of sorting networks with spiking neural
P systems. A comparison between different models is also made.

1 Introduction

Sorting is one of the most studied problem in Computer Science, as it has a wide
range of applications, including sequential and parallel algorithms. Over the last
decades, it has been investigated under parallel architectures, as utilizing many
functional units to sort concurrently can improve performance. Batcher introduced
the bitonic sorting network and the odd-even sorting network in [5], which can sort
N keys in O(log2 N) time, and with O(N log2 N) comparators. Various improve-
ments over these networks have been proposed in [2, 17, 18], which provide better
bounds for depth or number of comparators.

Spiking Neural (SN) P systems were introduced in [10]. They simulate the
behavior of neurons sending signals through axons, consisting of membranes which
contain a number of occurrences of only one symbol, and release them through
connections towards other membranes.

In the paper [11] an application of SN P systems for sorting N numbers has been
proposed. We introduce in this paper a different approach, by first constructing
SN P systems which act as comparators, and next by assembling these building
blocks according to the topology of a sorting network.

Sorting has been modeled or simulated with a variety of P systems. In this
paper we introduce first a model which uses a SN P system comparator (of two
values), and next another model based on an n-comparator. Section 2 presents
preliminaries on sorting networks. Section 3 introduces the SN P systems used as
ascending/descending comparators, and shows how to connect them by classical
sorting networks in order to obtain sorting SN P systems. Section 4 presents yet
another model, an n-comparator generalization. This question is related to optimal
data layouts for networks of processors capable of holding more than one piece of
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data. Finally, in Section 5 a comparison is made between the three models, the
one introduced in [11], and the two other ones presented in this paper.

2 Preliminaries on Sorting Networks

A bitonic sequence is a concatenation of two monotnic sequences, one ascending,
and the other one descending, or a sequence such that a cyclic shift of its elements
would put them in such a form.

The key components of a bitonic network are the bitonic splitters and the
bitonic mergers. The splitter of size N takes as input a bitonic sequence of length
N and partitions it in two bitonic sequences of equal length, such that all the
elements in the first sequence are smaller than (or greater than) all the elements
in the second sequence. A bitonic merger of size N consists of a splitter of size N
and of two mergers of size N/2, of opposite direction. It accepts as input a bitonic
sequence and sorts it in ascending or descending order (direction).

As any sequence of two numbers is bitonic, the sorting network uses bitonic
mergers of increasing size and alternating direction to construct bitonic sequences
of increasing length. The last such merger, of size N , renders the whole sequence
of N numbers sorted.
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Fig. 1. Network devices

Following [14] it is customary to represent a network as an ordered set of
N lines (wires) connected by a set of compare-exchange devices (comparators, for
brevity). A comparator has two input terminals, a and b, and produces two output
terminals c and d. If the comparator is increasing, Fig. 1(a), then c = min(a, b)
and d = max(a, b), while if the comparator is decreasing, Fig. 1(b), c = max(a, b)
and d = min(a, b). A bitonic sorting network for N = 8 is represented in Fig. 2(a).

A network can also be represented as a directed acyclic graph [8].

Definition 1 (Network). A network T of size N is a directed acyclic graph such
that:

1. there are N nodes, called input terminals, with in-degree 0 and out-degree 1,
labeled from 0 to N − 1;
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Fig. 2. The bitonic sorting network and the bitonic merger of size 8.

2. there are N nodes, called output terminals, with in-degree 1 and out-degree 0,
labeled from 0 to N − 1;

3. all the remaining nodes u, representing comparators, have in-degree and out-
degree 2.

In Fig. 2(b) is represented the bitonic merger under the above formalism.
We define the depth of a node u of network T , d(u), as the length of the longest

path in T from an input node to u. The depth of network T , d(T ), is the maximum
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depth of a node of in-degree and out-degree 2 in T . Any network can be viewed as
a series of steps, each containing at most N/2 parallel devices. Each step t contains
the nodes of T at depth t.

The arcs of a network can be partitioned in N arc-disjoint paths, each joining
an input node to an output node. Such a partition yields a line-representation of
T , as in [14].

3 Spiking Neural P Systems for Sorting Networks

We note that the above representation is a theoretical model which indicates the
comparisons between input values. However, in the context of SN P systems, this
model has a straightforward implementation. Each wire is now represented by a
synapse between two neurons, and each value x travels between two neurons as x
spikes, one spike per time unit. Comparators are implemented by a set of neurons
which send the minimum and the maximum (as number of spikes) through desig-
nated synapses. Once these two ingredients are at hand, we proceed to construct
a SN P system in the same way the original sorting network was constructed.

Ionescu and Sburlan [11] introduced a SN P system which sorts N numbers,
and consisted of 3 layers of N neurons each. The first layer was made up of input
neurons which in the initial configuration contained the input values codified as
numbers of spikes. At each time unit these neurons sent one spike each to the
second layer. This layer decanted the spikes to the third layer, where the output
neurons were located. After a number of steps equal to the maximum value of
the N numbers, the ith output neuron received the ith smallest value, codified
as number of spikes, sorting thus in ascending order. In a way, the idea of the
algorithm is the same as that of bead sort [4].

In this section we are concerned only with comparators of two elements, hence
with SN P systems which sort two numbers (called for brevity SN P comparators).
In Fig. 3(a) we give an ascending comparator, and in Fig. 3(b) we give a descending
comparator. The SN P ascending comparator functions in the following way: the
first layer of neurons (labelled with i) initially contains the values to be compared,
codified as number of spikes. At each step they instantaneously send one spike to
both s0 and s1. As long as both s0 and s1 receive spikes, only s0 sends one spike
to o0 and o1. After one input neuron has consumed its spikes, the minimum is
obtained in o0. There will be only one input neuron to send spikes to s0 and s1.
In this case, s0 forgets its spikes, and s1 sends them to o1, where the maximum is
obtained.

Consider the SN P system modeling an ascending comparator and the numbers
x and y to be sorted. In order to be able to use these SN P systems as building
blocks of a bitonic sorting network, we assume that instead of loading the numbers
x and y as spikes in i0 and i1 in the initial configuration, they are fed one by one
to these input neurons by another neuron.
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Fig. 3. SN P systems modeling comparators

Lemma 1 (Composition lemma). Suppose that in each time unit from t0 until
t0+(x−1) neuron i0 receives one spike and that in rest it does not receive any spike.
Analogously, suppose that in each time unit from t0 to t0+(y−1) neuron i1 receives
one spike, and that in rest it does not receive any spike. Then neuron o0 does not
receive any spike, except for time moments from t0+2 until t0+2+(min(x, y)−1),
when it receives one spike at each moment. Analogously, neuron o1 does not receive
any spike, except for time moments from t0 +2 until t0 +2+(max(x, y)−1), when
it receives one spike at each moment.

Proof. Consider the time moments t, with t0 ≤ t ≤ t0 + (min(x, y) − 1). Both
neurons i0 and i1 receive spikes and in turn send them through the synapses (by
the rule a→ a). s0 and s1 receive two spikes each, neuron s0 sends one spike to o0

and o1 (by the rule a2 → a), while neuron s1 forgets them (by the rule a2 → λ).
Therefore at time moment t + 2 neurons o0 and o1 receive one spike each. From
time moment t0 + min(x, y) onward, only one neuron of i0 and i1 sends spikes,
hence the configuration of the synapses of s0 and s1 prevent o0 from receiving
other spikes. The first part of the claim is proved.
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At each time moment t, with t0 + min(x, y) ≤ t ≤ t0 + (max(x, y)− 1), neuron
o1 receives one spike at moment t+2. After time moment t0 +max(x, y) there are
no other spikes entering in system, hence from time moment t0 + 2 + max(x, y)
onward there will be no other spikes entering neuron o1.

A similar lemma is valid in the case of a SN P decreasing comparator.
Assume that we are given a network T as a graph, and that we have a line-

representation of it (i.e. a set of N arc-disjoint path linking input terminals with
output terminals). Hence, we extend Definition 1, by labeling edges, apart from
input and output terminals. For every path that begins with input terminal labeled
i, we label all its edges with i. More formally, we have the following definition.

Definition 2 (Edge labeling). Given a graph T as in Definition 1 representing
a sorting network, and a line-representation of T , we attach to each edge e ∈ E(T )
that belongs to a path in the line representation of T beginning with i, label l(e) =
l(i) (supposing that i is labeled with l(i)).

For example, in Figure 5 we have a labeled bitonic merger.
A SN P system modeling a sorting network given as a graph is obtained in

the following way. For each input terminal node i we have a corresponding in-
put neuron ii. For each comparator (ascending / descending) we have the s- and
o-neurons of a SN P comparator (ascending / descending). For each edge of the
graph between two comparators we have synapses between corresponding SN P
comparators. The output terminal nodes are the o-neurons of the last SN P com-
parators. Additionally, we add to all o-neurons, except the output ones, the rule
a→ a.

More formally, we construct and label the SN P system in the following recur-
sive way.

i) for each input terminal node i we have a corresponding input neuron ii = ii,1,
0 ≤ i ≤ n− 1;

ii) for each comparator at depth 1 ≤ k ≤ d(T ) with incident edges labeled with
i and j, i < j, we add the s- and o-neurons of a SN P comparator, connected
in the previously specified way. With the notations in Figure 3, let s0 and
s1, and o0 and o1 be the s-, and o-neurons, respectively, just added. We add
synapses between the following pairs of neurons: (ii,k, s0), (ii,k, s1), (ij,k, s0),
(ij,k, s1). Additionally, if k < d(T ) , we label o0 with oi,k = ii,k+1, and o1 with
oj,k = ij,k+1; else we label o0 with oi,k = oi, and o1 with oj,k = oj .

As an example, Figure 4 depicts a SN P system which models the bitonic
merger of size N = 8.

Theorem 1. For any SN P comparator at depth k corresponding to a comparator
with incident edges i < j which carry values x and y, respectively, we have that

1a) in each time moment from 2(k− 1) until 2(k− 1) + x neuron ii,k receives one
spike;
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Fig. 4. A SN P system modeling the bitonic merger of size N = 8.

1b) in each time moment from 2(k− 1) until 2(k− 1) + y neuron ij,k receives one
spike.

In case of an ascending comparator,

2a) in each time moment from 2k until 2k + min(x, y) neuron oi,k receives one
spike;

2b) in each time moment from 2k until 2k + max(x, y) neuron oj,k receives one
spike.

In case of a descending comparator,

3a) in each time moment from 2k until 2k + max(x, y) neuron oi,k receives one
spike;

3b) in each time moment from 2k until 2k + min(x, y) neuron oj,k receives one
spike.

Proof. We prove the claim by induction on k. When k = 1 we are at time moment
t = 0. We have explained previously that the behaviour of the system when the
spikes are loaded initially in the input neurons is identical to when they are fed
one by one to these neurons. Claims 2 and 3 are true from Lemma 1 and t0 = 0.
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We now suppose that the claim is true for k, with 1 ≤ k < log N , and prove
it for k + 1. From claims 2b and 3b of the induction hypothesis, we know that
oi,k = ii,k+1 receives one spike from 2k until 2k + u, where u is the value carried
by wire i before the comparator at depth k +1. Analogously, oj,k = ij,k+1 receives
one spike from 2k until 2k + v, where v is the value carried by wire t before the
comparator at depth k+1. This proves claims 1a and 1b. If we take t0 = 2k, x = u,
and y = v in Lemma 1, we have that claims 2 and 3 are true.

Corolary 1 Given a network T of size N , if we replace the comparator nodes by
the appropriate SN P systems sub-networks, the result is still a sorting network.

The sorting network obtained with SN P systems works differently than
the initial one. At time moment 2d(T ) + min{x0, . . . , xN−1} all output neu-
rons contain the value min{x0, . . . , xN−1} as number of spikes a. Let us denote
with min1 = min({x0, . . . , xN−1} \ {min(x0, . . . , xN−1)}). Then at time moment
2d(T )+min1 all output neurons o1, . . . , oN−1 contain min1 spikes and o0 remains
with min{x0, . . . , xN−1}. Finally, at 2d(T ) + max{x0, . . . , xN−1} we have in oN−1

the value max{x0, . . . , xN−1}, and all other output neurons contain the initial set
in ascending order.

4 An n-Comparator Improvement

In the previous section we were concerned with constructing a SN P system which
implemented a given sorting network, each comparator having a corresponding
SN P systems. We now address the problem of comparators of more than two
values, and show how we can transform a network given as in Definition 1 into a
generalized one, with n-comparators which can sort n values. The only restriction
we make is that the network has comparators on only one direction (ascending or
descending). This is not a limiting assumption in our treatment of sorting with
spiking neural P systems, as, for example, a bitonic sorting network is a serial
and parallel connection of bitonic mergers, which have comparators of the same
direction. From [11] we have at hand a SN P system which can sort n values,
therefore we show how to assemble these building blocks to get a sorting SN P
system which can sort N values.

The idea of the algorithm we propose stems from the following observation.
Suppose we have N input terminals, and we can use comparators of at most n
values. We try to design the first step of the generalized network, and have that
the depth of the furthest comparator of the initial network that can be simulated
by one n-comparator is log2 n. Let this device be u and let i and j be its incident
edges. This implies that all prior devices involving lines i, j and all other lines that
they were connected with, have to be implemented by the same n-comparator as
the one which act on i and j. We call these lines predecessors of depth log n of u
and we say that they are mapped to the same comparator as i and j. In addition,
observe that as the n-comparator sorts the whole sequence of predecessors, then
it also implemented correctly the standard comparators.
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Definition 3 (Predecessors of a node). We denote by predecessors of depth m
of node u the set Pm(u) = {l(xy) | xy ∈ E(T ) and there exists a path from y to u
of length m− 1}

Apart from u, at depth d(u) reside other devices between lines mapped to
the same comparator as i and j by the above procedure. These devices have to be
simulated by the same comparator holding i and j. We call these devices neighbours
of depth log n of u, and give the following definition.

Definition 4 (Neighbours of a device). We denote by neighbours of depth m
of node u of T having d(u) ≥ 2, the set Nm(u) = {v ∈ V (T ) | d(v) ≥ 2 and
Pm(u) ∩ Pm(v) 6= ∅}

In order to simulate log n steps locally in one n-comparator, any n-comparator
should accommodate all the lines which compare values in these log n steps. This
imposes a limit on the number of neighbours of depth log n of a device u. More
specifically, we have the following property:

Property 1. We say that a network T of size N admits a generalized network with
comparators of n values if |Nlog n(u)| ≤ n/2, for any 1 ≤ s ≤ d(T )/ log n, and any
node u ∈ V (T ) with d(u) = s log n.

Bearing all this in mind, we give an algorithm to construct dd(T )/ log ne map-
ping functions Ds which for any wire i ∈ {0, . . . , N − 1} indicates the comparator
to which is mapped at step s of the generalized network T ′.
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Fig. 5. The bitonic merger of size 8, given as a graph. Edges are labeled as in Definition
2, according to the classical line-representation of the bitonic merger. Neighbouring nodes
u and v at depth 2 are shown in black. They have predecessors {0, 2, 4, 6}. The rest of
devices linking these lines are shown in gray.
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Input: A network T of size N and a line-representation of it, n the
maximum capacity of one comparator. Network T has all
comparators of the same direction and satisfies Property 1.

Output: A sequence of functions Ds, 0 ≤ s < dd(T )/ log ne, with domain
{0, . . . , N − 1} representing a mapping of wires to comparators at
stage s of the generalized network T ′.

label edges of T as in Definition 2;
forall 0 ≤ s < bd(T )/ log nc do

set counter p = 0;
reset previous markings;
forall nodes u ∈ V (T ) not marked, at depth d(u) = log n + s log n do

forall v ∈ Plog n(u) do
Ds(v) = p;

forall v ∈ Nlog n(u) do
mark node v;

p = p + 1;

// treatment of the special case when d(T ) is not divisible by
log n
remaining-depth ← d(T ) mod log n;
if remaining-depth > 0 then

s← bd(T )/ log nc;
set counter p = 0;
reset previous markings;
forall nodes u ∈ V (T ) not marked, at depth d(T ) do

forall v ∈ Premaining−depth(u) do
Ds(v) = p;

forall v ∈ Nremaining−depth(u) do
mark node v;

p = p + 1;

Algorithm 1: Deriving the mapping of wires to comparators in the generalized
network.

5 Conclusions and Open Problems

This paper has proposed two models (which we call Model 2 and Model 3) of
simulating a sorting network with SN P systems and has proved the correctness of
the construction. These systems do not have a simple form as the one in [11] (Model
1), so their usefulness remains to be investigated. We consider here a number of
measures of the models: number of neurons, number of synapses, total number of
rules in all neurons, maximal length of rules, and time complexity.

Model 1 has three layers, with N neurons each. On the other hand, Model 2
has 1+2+ . . .+log N steps, each being implemented by 2N neurons. If we also add
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Fig. 6. A SN P system constructed from the generalized network of the bitonic merger
of size 8.

the N input neurons, we get a total number of neurons of N +N log N(log N +1).
In Model 3 the situation is similar, except that now we have log N(log N+1)

2 log n steps,

which give a total number of N + N log N(log N+1)
log n neurons. Even if in the two

proposed models this measure has increased by a factor of log2 N , we will see that
concerning other measures, we get a benefit of at least log2 N

N .
The number of synapses of Model 1 is quadratic in N , as we have synapses

between any pair of neurons in the first two layers. The total number of synapses
is 3N2+N

2 . In Model 2, for each step of the bitonic sorting network, we have 2N

synapses between i-neurons and s-neurons, and 2N
2 + N

2 between s-neurons and
o-neurons. In Model 3, at each step of the generalized network we have 3n2+n

2
N
n

synapses. This gives a total number of synapses in Model 2 of 7
2N log N(log N+1)

2 ,
and in Model 3 of 3n+1

2 N log N(log N+1)
2 log n .

Concerning the total number of rules, in Model 1 we have again a quadratic
dependence N2 + N . In Model 2 we have 3N rules in each step of the network,
hence 3N log N(log N+1)

2 rules in all. The number of rules per step in Model 3 is
N
n (n + n2), which gives a total of N(n + 1) log N(log N+1)

2 log n .
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As in each time unit only one spike is discharged from the input neurons, then
the complexity of the algorithm of [11] is O(M), where M is the maximum of
the N numbers. As, in general, we have to sort N distinct numbers, then the
maximum of them is N , hence the complexity of the algorithm is Ω(N). The time
complexity of the two proposed models is O(M + d(T )), where d(T ) is the depth
of the network being simulated (i.e. log2 N , and log2 N

log n , respectively). Usually, the
maximum number M does not depend on N , so we have O(M) = O(M + d(T )).

We also note that now the length of the rules is constant. An overview of these
measures are presented in Table 1.

An open problem that remains to be investigated is how to further reduce
the number of neurons of a sorting SN P system. We propose for scrutiny the
class of periodic sorting networks, which are composed of a sequence of identical
blocks. Since only one block needs to have a SN P system implementation, then
a periodic sorting network can be realized by recirculating the output of a block
back as its input. This results in savings in neurons and synapses. Consider for
example the odd-even sorting network of Batcher [5] which is composed of N
identical applications of a period of depth 2. This can provide a linear number of
neurons in N , with the same time complexity O(M).

However, the main difficulty behind such an approach is the ability to tell when
the numbers are sorted. We note that the output neuron holding the minimum
has to stop recirculating spikes before the output neuron holding the maximum.
The idea of a global clock holding a number of spikes proportional to the number
of times the identical blocks have to be applied is not enough.

Table 1. Comparison between the model proposed in [11] (Model 1), the direct simulation
of the bitonic sorting network with a SN P system (Model 2), and the simulation of a
generalized bitonic sorting network with n-comparators (Model 3). The models sort N
numbers, M being the maximum.

Measure Model 1 [11] Model 2 Model 3

Number of neurons 3N N + N log N(log N + 1) N + N log N(log N+1)
log n

Number of synapses 3N2+N
2

7
2
N log N(log N+1)

2
3n+1

2
N log N(log N+1)

2 log n

Number of rules N2 + N 3N log N(log N+1)
2

N(n + 1) log N(log N+1)
2 log n

Maximal length of rules N + 1 3 n + 1

Time complexity O(M) O(M + log2 N) = O(M) O(M + log2 N
log n

) = O(M)
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Summary. We introduce a new class of membrane systems called simple P systems, and
study its computational complexity using the classical theory. We start by presenting the
knapsack problem and analyzing its space and time complexities. Then we study the
computational complexity of simple P systems by considering the static allocation of
resources enabling the parallel application of the rules. We show that the problem of
allocating resources for simple P systems is NP-complete by reducing it to the knapsack
problem. Thus we express the computational complexity of this class of P systems in
terms of classical complexity theory.

1 Introduction

We describe the computational complexity of the simple P systems in classical
complexity theory, extending the short note presented initially in [5]. Membrane
computing is a rather young field of natural computing which has been developing
very fast in the last decade. It combines the power of distributed parallel rewriting
systems with the power and context evolution to achieve computational universal-
ity. We use a subclass of transition P systems, simple P systems, where the left
side of the rules can contain only a single object with different multiplicity. We use
a classical combinatorial NP-complete problem, the knapsack problem, to show
that the static allocation of rules for this class is NP-complete.

The structure of this paper is as follows. In Section 2 we present a pseudo-
polynomial algorithm for the knapsack problem and study its complexity. Then
we give a short presentation of transition P systems, and introduce the simple P
systems in Section 3. Then we show that static allocation of the available resources
to rules is NP-complete. In Section 5 we present a new approach to study the
complexity of simple P systems. Conclusion and references end the paper.
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2 Knapsack Problem

The knapsack problem, a classical combinatorial optimization problem, refers to
finding a maximum total value given a set of objects values and weights, and a
weight limit. The discrete version refers to the fact that we can only include an ob-
ject as a whole, not just a part of it. Mathematically, the discrete knapsack problem
can be formulated as follows: given a bag of capacity c and n objects, labelled from
1, . . . , n, each having value pi and weight wi, maximize

∑n
i=1 pixi, xi ∈ {0, 1}, sub-

ject to
∑n

1 wixi ≤ c, where xi = 1 means that we take object i. This problem is
known to be an NP-complete problem. However, there exists a pseudo-polynomial
time algorithm using dynamic programming with running time of O(n · c). An al-
gorithm is said to run in pseudo-polynomial time if its running time is polynomial
in the numeric value of the input (however this can be exponential with respect
to the length). Formally, we say that a function f is pseudo-polynomial if f(n)
is no greater than a polynomial function of the problem size n and an additional
property of the input k(n). Note that pseudo-polynomial time becomes polynomial
time if the values are encoded in unary base.

The knapsack problem can be expressed as a optimization problem: as follows:

• Objective function

max
n∑

i=1

pixi

• Restrictions
– xi ∈ {0, 1};
–

∑n
1 wixi ≤ c.

To solve this problem using dynamic programming we need to define the notion of
a state and the transition between two states. For this problem a state is defined
by the number of objects we take into consideration. Thus we start with an initial
state where we do not have any object to choose from, and we make transitions to
the next state until we reach a final state. A transition is represented by the choice
between inserting the object in the bag or not. We denote by fi(X) the function
which answers the question “What is the optimal value obtained by using only i
objects and X weight?”. Thus a state i is defined by the function fi. The function
fi can be computed as follows:

fi(X) =





−∞ , X < 0
0 , i = 0 ∧ X ≥ 0
max{fi−1(X), fi−1(X − wi) + pi} , otherwise

(1)

The answer to the knapsack problem is given by the value of fn(c). The functions
fi can be stored as a table, and can be computed starting from the initial state
to the last state. Note that the current state depends only on the previous state,
thus we can store only the last two lines in the table. We use the example given
in Table 1 where we consider c = 10.
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i 1 2 3

wi 3 5 6
pi 10 30 20

Table 1. Knapsack instance

X 0 1 2 3 4 5 6 7 8 9 10

f0 0 0 0 0 0 0 0 0 0 0 0
f1 0 0 0 10 10 10 10 10 10 10 10
f2 0 0 0 10 10 30 30 30 40 40 40
f3 0 0 0 10 10 30 30 30 40 40 40

Table 2. Values for f corresponding to instance defined in Table 1

We obtain Table 2 corresponding to the recurrence defined by f Note that function
fi has many repeating values. To solve the problem of space, we need to store only
the different values for fi. A possible solution is to associate with each different
value of fi a 3-uple (k,Wi,k, Ti,k) with the following meaning: k represents the
profit, Wi,k represents the sum of the objects weight which we can use to achieve
profit k, and Ti,k represents the objects which are used to achieve that profit.

By using this approach, we need to keep a list of 3-uples instead of the full
table. We now show an example of how we use this list to solve the problem. We
start with the list containing only {(0, 0, ∅)}. At each iteration we construct a new
list Ai that contains the 3-uples with the valid profits that we could obtain by
using the current object. The new list is obtain by merging the previous list with
the new constructed list: Li+1 = µ(Li, Ai), where µ(A,B) is the merging of two
list of 3-uples. For the instance previously presented we have:

L0 = {(0, 0, ∅)}
A0 = {(10, 3, {1})}
L1 = {(0, 0, ∅), (10, 3, {1})}
A1 = {(30, 5, {2}), (40, 8, {1, 2})}
L2 = {(0, 0, ∅), (10, 3, {1}), (30, 5, {2}), (40, 8, {1, 2})}
A2 = {(20, 6, {3}), (30, 9, {1, 3})})
L3 = {(0, 0, ∅), (10, 3, {1}), (20, 6, {3}), (30, 5, {2}), (40, 8, {1, 2})}

The solution to the problem is given by the last element of L3. In our example
it is given by (40, 8, {1, 2}), which means we can obtain a profit of 40 by taking
items 1 and 3 that weight 8.

The Algorithm 1 solves the knapsack problem using this approach. We now ex-
press the time and space complexity of Algorithm 1. We know that |Li+1| ≤ 2 · |Li|
because |Ai| ≤ |Li|. The computation of Li+1 from Li and Ai is done in
O(|Li| + |Ai|) = O(|Li|) time. We know that the 3-uples from Li satisfy the
relation:
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Algorithm 1 Knapsack(n,w,p,M)
1: L0 ← {(0, 0, ∅)}
2: for i← 1 to n do
3: Ai−1 ← ∅
4: for all (k, Wa,k, Ta,k) in Li−1 do
5: if Wa,k + wi ≤M then
6: Ai−1 ← Ai−1 ∪ {(k + pi, Wa,k + wi, Ta,k ∪ {i})}
7: end if
8: end for
9: Li ←Merge(Li−1, Ai−1)

10: end for
11: return last(Ln)

0 ≤ |Li| ≤ k ≤
i∑

j=1

pj ≤ n ·max{p1, . . . , pn}

It follows that |Li| ≤ n ·max{p1, . . . , pn}. In conclusion Algorithm 1 has the time
complexity:

O(
n∑

i=1

|Li|) = O(n2 ·max{p1, . . . , pn})

Note that this complexity is pseudo-polynomial, and if max{p1, . . . , pn} > 2n then
this algorithm runs in exponential time w.r.t the size of its input.
The space complexity is:

O(
n∑

i=1

|Li|) = O(
n∑

i=1

2i) = O(2n)

In the Merge procedure presented as Algorithm 2, when we have two items
with the same profit we choose the one with the lowest weight. This assures that
for each possible profit we have the minimum weight.

3 Simple P Systems

Membrane computing represents an unconventional paradigm of computing which
combines the power of distributed parallel rewriting systems with the power and
context evolution. Local rules and the evolution contexts are biological metaphors:
the rules are developmental rules in cells, and contexts denote division mechanisms
of cells and active/mobile membranes. There are several ingredients in membrane
systems which are meaningful from the point of view of biological media. The basic
model and many variants are described in [7], and some applications are presented
in [4]. Membrane computing is used both to model cells or biological systems and
to study the computability and complexity of a new and unconventional computing
device.
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Algorithm 2 Merge(A,B)
1: S ← ∅, i← 1, j ← 1
2: n← min(|A|, |B|)
3: while i ≤ n && j ≤ n do
4: (k1, Wa,k1 , Ta,k1)← A[i], (k2, Wb,k2 , Tb,k2)← B[j]
5: if k1 < k2 then
6: S ← S ∪ {(k1, Wa,k1 , Ta,k1)}, i← i + 1
7: else if k1 > k2 then
8: S ← S ∪ {(k2, Wb,k2 , Tb,k2)}, j ← j + 1
9: else if k1 = k2 then

10: if Wa,k1 < Wb,k2 then // chose the one with minimum weight
11: S ← S ∪ {(k1, Wa,k1 , Ta,k1)}
12: else
13: S ← S ∪ {(k2, Wb,k2 , Tb,k2)}
14: end if
15: i← i + 1, j ← j + 1
16: end if
17: end while
18: if i ≤ n then
19: for j ← i to |A| do
20: S ← S ∪A[j]
21: end for
22: else
23: for i← j to |B| do
24: S ← S ∪B[i]
25: end for
26: end if
27: return S

The transition P system is represented by regions delimited by a membrane
structure that contains multisets of objects that evolve according to associated
rules. A computation consists of a number of transition between system config-
urations and the result is represented either by the objects present in the final
configuration in a specific membrane or by the objects which leave the outermost
membrane of the system (the skin membrane) during the computation.

Definition 1. A transition P system of degree n, n ≥ 1, is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . , Rn) ,

where

1. O is an alphabet of objects;
2. T ⊆ O (the output alphabet);
3. µ is a membrane structure of degree n;
4. wi, 1 ≤ i ≤ n, strings that represent multisets over V associated with the

regions of µ;
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5. Ri represents the rules from region µi of µ; an evolution rule is a pair (u, v)
written as u → v, where u is a string over O and v = v′ or v = v′δ, where v′

is a string over {ahere, aout, ainj |a ∈ O, 1 ≤ j ≤ n}, and δ is a special symbol
not in O; the length of u is called the radius of rule u → v. Ri, 1 ≤ i ≤ n, are
finite sets of evolution rules over O.

Definition 2. A simple P system is a transition P system where the left side of
a rule can contain a single object with an arbitrary multiplicity. Formally, a rule
u → v ∈ Ri has u = k · a, where k ∈ N and a ∈ O.

The membrane structure is a tree structure, where each node represents a mem-
brane. The relation between a child node and a parent node symbolizes that the
parent membrane contains the child membrane. To define the membrane structure
we consider the language MS over the alphabet {[, ]} recursively defined as follows:

1. [ ] ∈ MS;
2. if µ1, . . . , µn ∈ MS, n ≥ 1 then [µ1 . . . µn] ∈ MS;
3. nothing else is in MS.

We define a binary relation ∼ over the elements of MS: x ∼ y if and only if we
can write x = µ1µ2µ3µ4, y = µ1µ3µ2µ4, for µ1µ4 ∈ MS and µ2, µ3 ∈ MS. We
denote by ∼ the reflexive and transitive closure of ∼ (note that ∼ is an equivalence
relation). We denote by MS the set of equivalence classes of MS with respect to
∼. A membrane structure is an element of MS, where each pair of matching
parentheses [, ] is a membrane. The degree of a membrane structure is defined
as the number of membranes it contains. A natural way to represent membrane
structure is by a Venn diagram because this emphasizes the topological structure
between computing compartments.

A configuration of the system is given by the membrane structure and the contents
of each region. The initial configuration is a (n + 1)-tuple (µ,w1, . . . , wn). Having
the possibility to dissolve a membrane, we can obtain a configuration which has
only some of the initial membranes. Thus we define a configuration of Π as any
sequence (µ′, w′i1 , . . . , w

′
ik

), with µ′ a membrane structure obtained by dissolving
from µ all membranes different from i1, . . . , ik, with wij strings over O, 1 ≤ j ≤ k,
and {i1, . . . , ik} ⊆ {1, . . . , n}.
For two configurations C1 = (µ′, w′i1 , . . . , w

′
ik

), C2 = (µ′′, w′′j1 , . . . , w
′′
jk

) of Π we
write C1 ⇒ C2, and we say that we have a transition from C1 to C2 if we can
pass from C1 to C2 by using the evolution rules from Ri1 , . . . , Rik

. A sequence
of transitions between configurations of a given P system, Π is called a compu-
tation with respect to Π. A computation halts if there is no rule applicable to
the objects from the last configuration. The result of a computation is ΨT (w),
where w describes the multiset of output objects sent out by the system during
the computation. ΨT (w) is the Parikh mapping associated with T ; it is defined by
ΨT (w) = (|w|a1 , . . . , |w|an), where T = {a1, . . . , an}, w ∈ T ∗, and |w|ai denotes
the number of occurrences of ai in w. The set of such vectors ΨT (w) is denoted by
Ps(Π), and we say it is generated by Π.
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4 Complexity of the Parallel Application of Rules by Static
Allocation of Resources

We now study the computational power of simple P systems coming from the
maximal parallel and nondeterministic application of the rules. To express this in
terms of computational complexity, we envision a device capable of solving this
problem and we express its complexity. We call this device a resource allocator,
and abbreviate it by RA. Two operational semantics of membrane systems were
defined in [1] and [2]. They differ only in the way the maximal parallel application
of rules is described, and reflect the fact that resource allocation to rules can be
done either statically or dynamically. A dynamic resource allocation is based on
applying rules one by one in a nondeterministic manner until there is no applicable
rule left [1].

An alternative is given by static allocation [2], where the existing resources
are distributed in a nondeterministic and maximal way to the rules which then
are applied in parallel. The equivalence between static and dynamic allocation
semantics is proved in [2].

Therefore the purpose of the resource allocator is to allocate multisets of ob-
jects to rules such that the evolution is then done in a maximal parallel and
nondeterministic way. Given this setup, the maximal parallel application of rules
depends on RA being able to solve an instance of the discrete knapsack problem.
The nondeterminism comes from the fact that we can choose different multisets of
rules that correspond to the solution of the knapsack problem given the contents
of RA and we choose one in a nondeterministic way. We can associate a resource
allocator with every membrane of a simple P system. Given the parallel evolution
of membranes, we note that every resource allocator resolves a particular instance
associated with its membrane, and each one operates independent of the others.
We represent multisets as a string over their support alphabet. A resource alloca-
tor can be formally defined as a mapping RA : O∗ → (O∗)|R|+1, where O is the
alphabet of objects, w ∈ O∗ and R is the set of rules associated with a membrane:

RA(w) = {(w1, w2, . . . , w|R|, w′) | wi * w′, i = 1, |R| ∧
|R|∑

i=1

wi + w′ = w} (2)

The resource mapping problem can be formulated as follows: given a resource
allocator RA of a simple P system, decide which of the rules are applied such
that the system evolves in a maximal parallel and nondeterministic way. Formally,
given (µ,w,R, RA) where

• µ is a membrane structure of a P system,
• w is the multiset of objects associated with µ,
• R is the set of rules associated with µ,
• RA is the resource allocator associated with µ,
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maximize |∑|R|
i=1 wi|, where (w1, w2, . . . , w|R|, w′) ∈ RA(w) and ∃ u1, . . . , u|R|

such that ui → vi ∈ R ∧ ui 6= uj ,∀i 6= j ∧ ∃ ki ∈ N wi = ki · ui, ∀i = 1, |R| and
∀u → v ∈ R we have that u * w′.

Note that the maximal parallel rewriting comes from the fact that the RA
chooses nondeterministically which multiset of rules to apply (by assigning re-
sources w1, w2, . . . , w|R| to each rule), and the set is maximal because we cannot
apply another rule using the remaining resources w′. When we have multiple so-
lutions to the problem, we chose one nondeterministically.

To clarify the definition we give the following example: suppose that the re-
source allocator RA has to distribute the multiset 10a to the rules 4a → b, 3a → c
and 2a → d. We can now distribute the resources according to our definition in
multiple ways. We show only a few:

10a ⇒ 2 · 4a + 0 · 3a + 1 · 2a (no remaining a)
10a ⇒ 0 · 4a + 3 · 3a + 0 · 2a (remaining 1 a)
10a ⇒ 1 · 4a + 1 · 3a + 1 · 2a (remaining 1 a)

Note that it is not possible to use the remaining resources to apply another rule,
i.e. in our example we cannot have more than one remaining a because that means
that we can apply another rule.

We show that the problem of resource mapping in simple P systems (shortly
RMP) can be reduced to the discrete knapsack problem (shortly KNAP). In
order to prove this, we first make a Karp reduction from KNAP to RMP.

Definition 3. Let A,B be two decision problems over the alphabet Σ. We say
that A can be Karp (or polynomial) reduced to B, and write A ≤m B if ∃f :
Σ∗ → Σ∗, where f can be computed in deterministic polynomial time such that
x ∈ A ⇔ f(x) ∈ B, ∀x ∈ Σ∗.

Lemma 1. KNAP ≤m RMP.

Proof. We consider only the decision version of RMP and KNAP, because ev-
ery optimization problem can be reduced to a decision one. We consider that
the value of each object is equal with its weight, thus the knapsack problem be-
comes the subset sum problem (subset sum is also a NP-complete problem). We
use the name KNAP because we are mainly interested in an implementation of
the resource allocator. We transform in polynomial time an instance of KNAP
into an instance of RMP. We denote the transformation by f(c, n,W,P ), and
we show that KNAP(c, n,W,P ) = yes implies RMP(f(c, n,W,P )) = yes, and
KNAP (c, n, W,P ) = no implies RMP(f(c, n, W,P )) = no. The transfor-
mation f has to create an instance of the RMP problem. We need to define a
membrane structure µ, the set R of rules, a multiset w of objects in µ, and the
resource allocator RA.
We use the same notations as above:
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µ is an arbitrary membrane structure,
w = ac, a ∈ O,

R = {awi → b | b ∈ O, wi ∈ W, ∀i = 1, n},
RA is a resource allocator defined as in equation (2). (3)

The transformation f is defined by the equations presented in (3). The membrane
structure of µ can be chosen arbitrary because it is not involved in the distribution
of object to rules. To express the capacity c of the knapsack, we define the contents
of the membrane structure µ as a multiset composed of a single object a with
multiplicity c. For every object we define a rule, such that if the object is used in
the knapsack problem, then it will be used by RA only once. The transformation
can be done in polynomial time with respect to the number of objects.

For the first part of the implication we start from KNAP(c, n,W,P ) =
yes, and we need to show that RMP(f(c, n, W,P )) = yes. Let us assume
that RMP(f(c, n, W,P )) = no. This implies that there exists a better solu-
tion to the instance f(c, n,W,P ). Let the solution be |∑|R|

i=1 w̄i| ≤ |w|, where
(w̄1, w̄2, . . . , w̄|R|, w′) ∈ RA(w). We know that |∑|R|

i=1 w̄i| > |∑|R|
i=1 wi| because we

assumed we have a better solution. Using this solution we construct a solution to
KNAP(c, n, W,P ) as follows:

x′i =

{
1 , if 0 < |w̄i|
0 , otherwise

(4)

Note that if we have |w̄i|, then rule ri has been used. We then have:
∑n

i=1 pix
′
i =∑n

i=1 |w̄i|x′i = |∑n
i=1 w̄i| > |∑n

i=1 wi| =
∑n

i=1 pixi, because we assumed that
we have a better solution. Thus we have KNAP (c, n, W,P ) = no, which is a
contradiction.

Now we prove that

KNAP(c, n, W,P ) = no implies RMP(f(c, n,W,P )) = no

We consider that the decision problem was for the optimal value of T . Let us
assume that we have RMP (f(c, n, W,P )) = yes, and the solution of this in-
stance is formed by the following allocation: (w̄1, w̄2, . . . , w̄|R|, w′) ∈ RA(w) and
|∑|R|

i=1 w̄i| = T . Like in the first implication, we construct an instance of KNAP
such that KNAP(c, n,W,P ) = yes. We construct this instance of KNAP as
follows:

x′i =

{
1 , if 0 < |w̄i|
0 , otherwise

(5)

We have
∑n

i=1 pix
′
i = T . This is a contradiction, because we have KNAP

(c, n, W,P ) = no.
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Theorem 1. RMP is NP-complete.

Proof. We have

• KNAP ≤m RMP, by Lemma 1,
• KNAP is NP-complete,
• NP is closed under ≤m.

Therefore RMP is NP-complete.

5 Complexity of Simple P Systems

We now present a way to use classic complexity theory classes to study the com-
plexity of simple P systems. To use such an approach we need to take into account
the distribution of objects to rules, rather than the number of steps performed
in a computation because parallel evolution can consume more resources than
sequential evolution w.r.t the number of steps.

We now extend the approach from [5], where the authors show that a P system
can evolve using an NP oracle that solves the resource allocation problem for
each of the membranes from the system. We avoid the oracle by using the resource
allocator described in Section 4 which ensures the maximal parallelism and a
nondeterministic evolution. Thus the parallel evolution of simple P systems can
be viewed as a sequence of independent steps. Maximal parallel evolution means
that we cannot apply another rule with the contents left in the membrane after
the application of the selected rules. The maximal parallel application of rules
depends on RA being able to solve an instance of the discrete knapsack problem
and retrieve the solutions within a profit range that corresponds to this kind of
evolution.

Each step is composed of three stages: the first consists of the assignment
of objects to rules according to the resource allocator, the second represents the
distribution of the results obtained from applying the selected rules, and finally
the dissolution of certain membranes.

The first stage ensures a maximal parallel application of rules and consists of
the creation of an instance of the discrete knapsack problem based on the multiset
from the membrane, followed by solving the instance and obtaining the results.
The second stage moves the objects obtained from the previous stage according to
their tags. In the third stage we dissolve all membranes that contain the special
symbol δ by transferring their resources to their parents (as an exception we do
not transfer the δ symbols).

For the first stage of the process we present a function that transforms an instance
of the resource allocation problem into an knapsack instance such that we can
obtain the solution to the RMP instance by solving the transformed instance.

Given a membrane we define: the capacity c of the knapsack, the number n of
objects, the weight wi and value pi for each object i:
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c = |w|;
n = |{wik

| wik
defined object}| ;

wik
= k · |ui|, where R = {r1, . . . , rm}, ri = ui → vi, ui ∈ O∗ ∧
k = 1, p where p = max{j ∈ N | w′ ⊆ w ∧ w′ = j · ui}; i = 1, |R|;

pik
= wik

(6)

The transformation f is defined by the equations (6). Note that we do not need
to use all the contents of the membrane. We denote by w the contents of the
membrane, and by v the multiset which we intend to consume. We now have
w = v + v′ which links w and v, where ∀u → v ∈ R we have that u * v′. This
restriction assures us that we cannot apply a rule with the remaining contents of
the membrane. In the knapsack problem an item can be used only once, but in
membrane systems, because of maximal parallelism, a rule can be applied several
times to all objects which it can process. Thus we need to define for every rule
a “class” of items which represent all the possible ways in which a rule could be
used. We denote by W the set of items defined; thus we have |W | ≤ c · |R|. The
profit of an object is defined as the number of symbols it consumes – because we
are interested in consuming as many symbols as possible. The transformation f
can be computed in polynomial time with respect to |w|.

In the first stage we transform an instance of the resource allocation problem
to an instance of the knapsack problem by using the function f . Then we solve the
created instance, and obtain the rules which can be applied in parallel, together
with the multiplicity of each rule. We can now express the computational com-
plexity of each stage with respect to the input, represented by the multiset of the
membrane.

For the first stage we need to express a relation between the number of objects
created and the size of the multiset. From equations (6) we have that each ui → vi

rule can introduces a maximum of |w|
|ui| objects. Summing these relations for each

rule we have that:

n ≤
|R|∑

i=1

|w|
|ui| = |w|

|R|∑

i=1

1
|ui|

Note that
∑|R|

i=1
1
|ui| is a constant associated with the membrane, because the

rules of a membrane do not change in the process of evolution. We denote this
constant with S, and have that n ≤ |w| · S. Thus the complexity of this stage is
O(n) = O(|w| · S).

For the second stage we use a pseudo-polynomial algorithm for knapsack with a
complexity of O(n · c), where n is the number of objects, and c is the capacity of
the knapsack. By using the relations (from the first stage) between the number
of objects and the capacity, we have that the second stage has a complexity of
O(|w| · S · |w|) = O(|w|2 · S).
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The third stage consists of applying the rules according to the solution from
the knapsack problem. Note that a maximal parallel evolution does not imply
a maximum profit. According to this, we chose nondeterministically a solution
that corresponds to such a behaviour. Using the knapsack algorithm we compute
all valid profits, so we need to chose only the ones which correspond to such an
evolution. To achieve this, we define for each symbol a minimum allowed profit
expressed as the difference between the multiplicity of the symbol from the input
multiset and the minimum multiplicity of a rule that uses the symbol. Formally,
pmin

a = w(a) − minu→v∈R{u(a)|u(a) > 0} + 1. We introduce a lower bound in
terms of profit, defined by summing the minimum allowed profit for each sym-
bol. This assures that no rule can be applied using the remaining multiset. We
know that for the pseudo-polynomial algorithm for knapsack we can retrieve the
selected objects in O(n), thus the complexity of this step is O(|w| ·S). During this
backtracking process we nondeterministically choose a rule that corresponds to
the object chosen. Thus we obtain a multiset of rules that corresponds to maximal
parallel evolution because no rule can be applied with the remaining contents and
the evolution is nondeterministic because of the way the rules were chosen.

Using the example in Section 4, we show how we can distribute 10a as 3 ·
3a(remaining 1a). Using equations (6) we obtain the items in Table 3. By applying
the knapsack algorithm we get the results in Table 4. In this case, the value of
pmin

a = 10 − 2 + 1 = 9. Using the recurrence relation defined in equation (1) we
obtain the items used of the solution. At each step i = 1, n we test whether the
item n− i+1 was included in the knapsack or not. According to pmin

a the starting
value can be 9 or 10. Suppose we start with the value 9. To test if object 7 was
used we find the maximum of f6(9) = 9 and f6(9−10)+10 = −∞. The maximum
is f6(9). We continue until we reach the f0 line.

i 1 2 3 4 5 6 7

wi 2 3 4 6 8 9 10
pi 2 3 4 6 8 9 10

Table 3. Items obtained using the transformation for the example in Section 4

This process is illustrated in Table 5, where X represents the remaining weight
in the knapsack, fi−1(X) and fi−1(X−wi)+pi represent the alternatives between
including or not the object and max represent the chosen value. The recurrence is
also illustrated in Table 6, where the value chosen at step i is highlighted with a
box and a subscript indicating the step. The solution is given by object 6 which has
weight 9 and profit 9. This object corresponds to the multiset of rules composed
of three times the rule with 3a as left-hand side. In conclusion, the algorithm tells
us we can apply the rule with 3a three times and process only 9a out of 10a.

Thus a complexity of a single evolution step for a membrane is

O(|w| · S) + O(|w|2 · S) + O(|w| · S).



Computational Complexity of Simple P Systems 119

X 0 1 2 3 4 5 6 7 8 9 10

f0 0 0 0 0 0 0 0 0 0 0 0
f1 0 0 2 2 2 2 2 2 2 2 2
f2 0 0 2 3 3 5 5 5 5 5 5
f3 0 0 2 3 4 5 6 7 7 9 9
f4 0 0 2 3 4 5 6 7 8 9 10
f5 0 0 2 3 4 5 6 7 8 9 10
f6 0 0 2 3 4 5 6 7 8 9 10
f7 0 0 2 3 4 5 6 7 8 9 10

Table 4. Solution to the knapsack instance in Table 3

i 7 6 5 4 3 2 1

X 9 9 0 0 0 0 0

fi−1(X) 9 9 0 0 0 0 0

fi−1(X − wi) + pi −∞ 9 −∞ −∞ −∞ −∞ −∞
max f6(9) f5(0) f4(0) f3(0) f2(0) f1(0) f0(0)

Table 5. The backtracking process

X 0 1 2 3 4 5 6 7 8 9 10

f0 0
7

0 0 0 0 0 0 0 0 0 0

f1 0
6

0 2 2 2 2 2 2 2 2 2

f2 0
5

0 2 3 3 5 5 5 5 5 5

f3 0
4

0 2 3 4 5 6 7 7 9 9

f4 0
3

0 2 3 4 5 6 7 8 9 10

f5 0
2

0 2 3 4 5 6 7 8 9 10

f6 0 0 2 3 4 5 6 7 8 9
1

10

f7 0 0 2 3 4 5 6 7 8 9
0

10

Table 6. Finding the solution to the knapsack instance in Table 3

After all membranes have evolved through these three stages, we need to dis-
tribute the resources produced by them to show how the multiset of each mem-
brane evolves. Thus we seek to find a relation between the contents of two con-
secutive configurations. Formally for two configurations C1 = (µ,wi1 , . . . , wik

),
C2 = (µ′, w′j1 , . . . , w

′
jl

), where C1 ⇒ C2 we need to express the relation between
w′jp

p = 1, l and wiqq ∈ 1, k. The contents of a membrane change from the applica-
tion of rules. Following the definition of a rule, we see that we have four different
situations for a new produced symbol: the symbol remains in the membrane, the
symbol goes to the parent membrane, the symbol goes to a specific membrane, and
the membrane dissolves passing all its contents to the parent. We know that µ′ is
obtained from µ by dissolving some of the membranes, thus l ≤ k. We introduce a
function t : 1, k → 1, l where t(p) = 1 if the membrane with label p from µ is not
dissolved and t(p) = 0 otherwise. We introduce the following notations:
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• walloc
i the multiset allocated by the resource allocator for membrane i;

• selected : N2 → N, selected(i, j) = k, where k ∈ {k ·uj | ∃uj → vj ∈ Ri ∧ wj =
k ·uj ∧ wj has been allocated to rule j} representing the number of times rule
uj → vj ∈ Ri has been selected by the resource allocator;

• where
i =

⋃{k · vj(ahere) · a | ∃uj → vj ∈ Ri ∧ k = selected(i, j)} representing
the multiset of objects produced by the selected rules which remain in i;

• win
i =

⋃{k · s · a | ∃uj → vj ∈ Rl ∧ k = selected(l, j) ∧ s = vj(aini
) +

vj(aout), i is the parent of l}} representing the multiset of objects which have
been produced by other membranes and have been transported to membrane
i;

• wdis
i =

⋃{w | ∃uj → vjδ ∈ Rl ∧ selected(l, j) > 0 ∧ w the contents of
l ∧ i is the parent of l} representing the multiset of objects produced by rules
which dissolve a membrane.

Thus we have the following relations:

w′jp
=

{
wjp

− walloc
jp

+ where
jp

+ win
jp

+ wdis
jp

, t(jp) = 1
0 , otherwise

(7)

This means that the local symbols are first transported, followed by the sym-
bols from other membranes, and finally the symbols produced by dissolving a
membrane. We do this in order to ensure that the produced symbols reach their
destination membrane. If we do not consider dissolution as the last operation, the
symbols that were supposed to reach other membranes would pass on to the parent
of the dissolving membrane.

6 Conclusion

In this paper we describe the computational complexity of the simple P system in
classical complexity theory, extending the approach shortly presented in [5]. We
show that the complexity of certain membrane systems called simple P systems can
be studied using the classical complexity theory. The evolution of such a system is
studied by using a resource allocator which solves the resource allocation problem
using a well-known combinatorial problem.

The allocation of the resources to the rules is an important step in the non-
deterministic and maximally parallel evolution of a simple P system. We consider
the static allocation of resources towards the parallel application of the rules, and
study the computational complexity of a subclass of P systems by reducing the
resource allocation problem to the knapsack problem.

Trading space for time (as many models of natural computing), one can show
that PMC = PSPACE, where PMC is the class of problems which can be solved
in polynomial time by P systems of a given type [8, 9]. Membrane computing brings
PSPACE to polynomial time in the sense that given a problem X ∈ PSPACE
there exists a deterministic Turing machine that constructs in polynomial time ΠX ,



Computational Complexity of Simple P Systems 121

a P system that solves X in polynomial time. Computing PSPACE in polynomial
time means that we have a family of membrane systems for a given PSPACE
problem such that the n-th membrane system solves the problem in polynomial
time for inputs of size less than or equal to n. Recently, Sosik and Rodriguez-Paton
provide a characterization of PSPACE by showing that confluent P systems with
active membranes solve in polynomial time exactly the class of problems PSPACE
[10].
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4. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Application of Membrane Computing,

Springer, 2006.
5. G. Ciobanu, M. Gontineac. Mealy Membrane Automata and P Systems Complexity.
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Summary. Tissue-like P systems with cell division is a computing model in the frame-
work of Membrane Computing that shares with the spiking neural P system model a
similar biological inspiration. Namely, both models are based on the intercellular com-
munication and cooperation between neurons, respectively. Due to this fact, in both
models the devices have the same structure: a network of elementary units (cells in a
tissue and interconnected neurons, respectively). Nonetheless, the two models are quite
different. One of the differences is the ability of tissue-like P systems with cell division
for increasing the number of cells during the computation. In this paper we exploit this
ability and present a polynomial-time solution for the (NP-complete) Partition problem
via a uniform family of such P systems.

1 Introduction

Tissue-like P systems with cell division [13] is a computing model in the framework
of membrane computing based on inter-cellular communication and cooperation
between neurons. It shares some common features with another emerging mem-
brane computing model based on spiking neurons, the spiking neural P systems
[15]. Their main common feature is that in the computational devices of both
models we have certain processor units (called cells or neurons, respectively) that
process in parallel some pieces of information and send signals to other processor
units along links that connect some of them. Such links do not follow any scheme,
and this is one of the features which distinguishes these models from the initial
model in membrane computing, the cell-like model, where membranes are hierar-
chically arranged in a tree-like structure (see [10]). The biological inspiration for
this cell-like model is the morphology of cell, where small vesicles are surrounded
by larger ones.

In spiking neural P systems and in tissue-like P systems with cell division the
membrane structure is tissue-like and the links between cells form a general graph
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(directed graph for spiking neural P systems and undirected graph for tissue-like
P systems). Nonetheless there are important differences between both models. For
instance, in spiking neural P systems only one type of object (called spike) is
used to encode the information in the cells. Specific rules are used for evolving
populations of spikes and the time is used as a support of information1.

As we said above, in tissue-like P systems we can picture the cells as nodes of a
general undirected graph. The edges of such graph are not given explicitly, but they
are deduced from the set of rules, as it will be explained later. The communication
among cells is based on symport/antiport rules in P systems2. Symport rules move
objects across a membrane together in one direction, whereas antiport rules move
objects across a membrane in opposite directions.

From the seminal definition of tissue P systems [7, 8], several research lines have
been developed and other variants have arisen (see, for example, [1, 2, 3, 4, 6, 14]).
One of the most interesting variants of tissue P systems was presented in [13].
In that paper, tissue P systems are endowed with the ability of getting new cells
based on the mitosis or cellular division, yielding tissue-like P systems with cell
division, and the underlying graph is implicitly described by the rules.

This cellular division is other of the main differences between the model fol-
lowed in this paper and spiking neural P systems. The ability of cell division allows
us to obtain an exponential amount of cells in linear time and to design cellular
solutions to NP-complete problems in polynomial time. Nonetheless, the solu-
tions to NP-complete problems in the spiking neural P systems literature need an
exponential amount of pre-computed devices (see [5]).

In this paper we present a solution to the Partition problem via a family of
recognizing tissue-like P systems with cell division. In the literature we can find
uniform solutions to this problem in the cell-like model of P systems with active
membranes, but this is the first solution to Partition in the framework of tissue-like
P systems with cell division.

The paper is organized as follows: first we recall some preliminaries and the
definition of tissue-like P systems with cell division. Next, recognizing tissue-like P
systems with cell division are briefly described in section 3. A linear–time solution
to the Partition problem is presented in the section 4, including a short overview
of the computation and of the necessary resources. Finally, some conclusions and
new open research lines are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is
the length of the string, and it is denoted by |u|. As usual, the empty string (with

1 A detailed description can be found in [16] and the references therein.
2 This way of communication for P systems was introduced in [12].
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length 0) will be denoted by λ. The set of strings of length n built with symbols
from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is
a subset from Σ∗.

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, then it will be denoted by

m = a
f(a1)
1 a

f(a2)
2 · · · af(ak)

k , where supp(m) = {a1, . . . , ak}, and for each element
ai, f(ai) is called the multiplicity of ai.

A undirected graph G is a pair G = (V, E) where V is the set of vertices and E
is the set of edges, each one of which is a (unordered) pair of (different) vertices.
If {u, v} ∈ E, we say that u is adjacent to v (and also v is adjacent to u). The
degree of v ∈ V is the number of adjacent vertices to v.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [11].

3 Tissue-like P Systems with Cell Division

In the first definition of the model of tissue P systems [7, 8] the membrane structure
did not change along the computation. Based on the cell-like model of P systems
with active membranes, Gh. Păun et al. presented in [13] a new model of tissue P
systems with cell division. The biological inspiration is clear: alive tissues are not
static network of cells, since cells are duplicated via mitosis in a natural way.

The main features of this model, from the computational point of view, are
that cells have not polarizations (the contrary holds in the cell-like model of P
systems with active membranes, see [11]); the cells obtained by division have the
same labels as the original cell and if a cell is divided, its interaction with other
cells or with the environment is blocked during the mitosis process. In some sense,
this means that while a cell is dividing it closes the communication channels with
other cells and with the environment.

Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , w1, . . . , wq,R, i0),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration.
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .
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5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of
q cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q.
We shall use 0 to refer to the label of the environment, and i0 denotes the output
region (which can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges indicated if it is possible for pairs of cells to communicate
directly. This is a dynamical graph, because of new nodes can appear produced by
the application of division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of this rule
means that the objects of the multisets represented by u and v are interchanged
between the two cells.

The division rule [a]i → [b]i[c]i is applied over a cell i containing object a. The
application of this rule divides this cell into two new cells with the same label. All
the objects in the original cell are replicated and copied in each of the new cells,
with the exception of the object a, which is replaced by the object b in the first
one and by c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule
is the only one which is applied for that cell in that step; the objects inside that
cell do not evolve in that step.

3.1 Recognizing Tissue-like P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency for solving NP-complete decision
problems, a special class of tissue P systems with cell division is introduced in [13]:
recognizing tissue P systems. The key idea of such recognizing systems is the same
one as from recognizing P systems with cell-like structure.

Recognizing cell-like P systems were introduced in [9] and they are the natural
framework to study and solve decision problems within Membrane Computing,
since deciding whether an instance of a given problem has an affirmative or negative
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answer is equivalent to deciding if a string belongs or not to the language associated
with the problem.

In the literature, recognizing cell-like P systems are associated with P systems
with input in a natural way. The data encoding to an instance of the decision
problem has to be provided to the P system in order to compute the appropriate
answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation (yes or no) is sent to the environment,
and in the last step of the computation. In this way, cell-like P systems with input
and external output are devices which can be seen as black boxes, in the sense that
the user provides the data before the computation starts, and then waits outside
the P system until it sends to the environment the output in the last step of the
computation.

A recognizing tissue-like P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, i0)

where

• (Γ, E , w1, . . . , wq,R, i0) is a tissue-like P system with cell division of degree
q ≥ 1 (as defined in the previous section), i0 = env and w1, . . . , wq strings over
Γ \Σ.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configura-
tion of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset
w to the contents of the input cell iin. We say that the multiset w is recognized by
Π if and only if the object yes is sent to the environment, in the last step of the
corresponding computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
environment associated to the corresponding halting configuration of C.
Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizing tissue-like P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:
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− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input multiset
must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizing tissue-like P systems with cell division in polynomial time.
This class is closed under polynomial reduction and under complement.

4 A solution for the Partition Problem

Let us recall that a partition of a set V is a family of non-empty pairwise disjoint
subsets of V such that the union of the subsets of the family is equal to V .

The Partition Problem (PART) can be settled as follows: Let V be a finite set and
let w be a weight function on V , w : V → N (that is, an additive function). Decide
whether or not there exists a partition {V1, V2} of V such that w(V1) = w(V2).

Next, we shall prove that the Partition problem can be solved in a linear time
(in {n, lg k} where k = ω1 + · · · + ωn) by a family of recognizing tissue-like P
systems with cell division (in the sense of Definition 1).

Given an instance u = (V,w) of the Partition Problem, we will denote V =
{v1, v2, . . . , vn}. Such instance will be represented by u = (n, (w1, . . . , wn)), where
wi = w(vi), for each i (1 ≤ i ≤ n).

Next, we present a family of recognizing tissue-like P systems with cell division
where at the initial configuration each system of the family has two cells (labelled
by 1 and 2). We shall address the resolution via a brute force algorithm, which
consists in the following stages:

• Generation Stage: All the possible subsets of V are generated by the application
of cell division rules.

• Pre–checking Stage: In this stage, the weight of each of the subsets of V is
calculated.

• Checking Stage: We compare for each subset if its weight and the weight of its
complementary set are equal.
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• Answer Stage: According to the previous stage, an affirmative or negative re-
sponse is obtained.

For each n, k ∈ N we will consider the recognizing tissue-like P system with
cell division and symport/antiport rules

Π(< n, k >) = (Γ, Σ, E , w1, w2, R, iin)

defined as follows

• Γ = {Ai, Ai, B
′
i, Bi : 1 ≤ i ≤ n} ∪

{ai : 1 ≤ i ≤ dlg ne+ dlg ke+ 14} ∪ {ci, vi : 1 ≤ i ≤ n} ∪
{di, gi : 1 ≤ i ≤ dlg ne+ 1} ∪ {ei : 1 ≤ i ≤ dlg ne+ dlg ke+ 5} ∪
{Aij , Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ dlg ke+ 1} ∪
{b, D, D1, p, q, E1, F1, F2, T, S, N, yes, no}

• Σ = {v1, . . . , vn}
• E = Γ \ {a1, b, c1, yes, no, D,A1, ..., An, A1, . . . , An}.
• w1 = a1 b c1 yes no and w2 = D A1 ... An, A1 . . . , An.

Also, we consider that in the environment there are infinitely many copies of
each object from E , and no copies of any element in Γ \ E .

• R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2, for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, ai/ai+1, 0), for i = 1, . . . , n + dlg ne+ dlg ke+ 11
r3,i ≡ (1, ci/c2

i+1, 0), for i = 1 . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/D1g1, 0)
r6,i ≡ (2, gi/g2

i+1, 0), for i = 1, . . . , dlg ne
r7 ≡ (2, D1/d1e2, 0)
r8,i ≡ (2, di/d2

i+1, 0), for i = 1, . . . , dlg ne
r9 ≡ (2, ddlg ne/ddlg ne+1, 0)
r10,i ≡ (2, ei/ei+1, 0), for i = 1, . . . , dlg ne+ dlg ke+ 4
r11,i ≡ (2, gdlg ne+1Bi/B′

i, 0), for i = 1, . . . , n

r12,i ≡ (2, B′
iAi/Bi1, 0), for i = 1, . . . , n

r13,i ≡ (2, ddlg ne+2Ai/Ai1, 0), for i = 1, . . . , n
r14,ij ≡ (2, Bij/B2

ij+1, 0), for i = 1, . . . , n and j = 1, . . . , dlg ke
r15,ij ≡ (2, Aij/A

2
ij+1, 0), for i = 1, . . . , n and j = 1, . . . , dlg ke

r16,i ≡ (2, Bi,dlg ke+1vi/p, 0), for i = 1, . . . , n
r17,i ≡ (2, Ai,dlg ke+1vi/q, 0), for i = 1, . . . , n
r18 ≡ (2, pq/λ, 0)
r19 ≡ (2, edlg ne+dlg ke+5/E1F1, 0)
r20 ≡ (2, E1p/λ, 0)
r21 ≡ (2, E1q/λ, 0)
r22 ≡ (2, F1/F2, 0)
r23 ≡ (2, E1F2/T, 0)
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r24 ≡ (2, T/λ, 1)
r25 ≡ (1, bT/S, 0)
r26 ≡ (1, Syes/λ, 0)
r27 ≡ (1, an+dlg ne+dlg ke+12b/N, 0)
r28 ≡ (1, noN/λ, 0)

• iin = 2, is the label of the input cell.

This family of recognizing tissue-like P systems with cell division and sym-
port/antiport rules consists of non–deterministic systems, since several division
rules can be applied in the cells labelled by 2. Nonetheless, if a division rule has
not been applied yet to a cell labelled by 2, then it will be applied in the next steps
since in the initial configuration, the unique cell labelled by 2 contains the objects
A1, A2, . . . , An, i.e., with respect to the division rules, the systems are confluent.

In order to justify that the family Π = (Π(t))t∈N defined above provides a
linear solution to the Partition problem we need a polynomial encoding (cod, s) of
the set of instances of such a problem in the family Π.

We will consider a polynomial enconding (cod, s) defined as follows: for each
instance u = (n, (w1, . . . , wn)) we define s(u) =< n, w1 + · · ·+ wn > and cod(u) =
vw1
1 , . . . , vwn

n .
In this way, the instance u = (n, (w1, . . . , wn)) ∈ IPART will be processed

by the tissue-like P system Π(s(u)) with the multiset cod(u) provided in the
corresponding input cell.

Next, we will provide an informal description of the computations of the system
Π(s(u)) with input cod(u) for a generic instance u of the Partition problem, and
we justify that the family defined above is polynomially uniform by deterministic
Turing machines.

4.1 An overview of the computation

We informally describe here how the recognizing tissue-like P system with cell
division Π(s(u)) with input cod(u) works.

Let us start with the generation stage. In this stage we have two parallel pro-
cesses.

• On the one hand, in the cell labelled by 1 we have two counters: ai, which will
be used in the output stage, and ci, which will be multiplied until step n, where
2n copies of cn+1 are obtained.

• On the other hand, in the cell labelled by 2, the division rules are applied. For
each object Ai we produce two cells labelled by 2, one of them containing a
new object Bi and the other one not.
After the appropriate divisions, in the step n we obtain exactly 2n cells with
label 2, and each of them encode a different subset of V .

The pre–checking stage starts at the step (n + 1), where each cell labelled by
2 trades the object D against the counter cn+1 from the cell 1 (by applying in
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parallel the rule r4). From that moment on, only the evolution of the counter ai

will be performed in cell 1, till the step n + dlg ne+ dlg ke+ 13, via the rules r1,i

(n + 2 ≤ i ≤ n + dlg ne+ dlg ke+ 12).
Note that in the next step, the objects cn+1 in the cells labelled by 2 will trigger

the rules r5 and r7 in the next two steps, thus bringing in the counter gi in the
step n + 2, and the counters di and ei in the step n + 3.

From the step n + 3 to the step n + dlg ne+ 3 the counter gi duplicates itself
(with the rules r6,i) until producing at least n copies of the object gdlg ne+1, and
in a further step, it yields the trading of the objects Bi in each cell with label 2
against the objects B′

i from the environment (by the application of the rules r11,i).
In the step n + dlg ne+ 5, each pair of objects B′

i and Ai that appear in a cell
labelled by 2 are traded against an object Bi1 by applying the rules r12,i.

In parallel, from the step n+4 to the step n+dlg ne+dlg ke+8 the counter ei

is evolving until reaching the object edlg ne+dlg ke+5 (by applying the rules r10,i)).
Moreover, from the step n + 4 to the step n + dlg ne+ 4 the counter di duplicates
itself (by the rules r8,i) until getting at least n copies of the object ddlg ne+1. In the
next step, the rule r9 trades the objects ddlg ne+1 in the cells with label 2 against
the objects ddlg ne+2. The arrival of these objects to a cell with label 2 produces
the trading of the objects Ai (which remain in the cell after the application of the
rules r12,i) against objects Ai1 in the step n + dlg ne + 6 (by applying the rules
r13,i).

In this way, we have in each cell with label 2 a pair of complementary subsets,
encoded by the objects Bi1 and Ai1, respectively.

From the step n + dlg ne+ 7 to the step n + dlg ne+ dlg ke+ 7 the number of
objects Bi1 and Ai1 are multiplied by 2 (by application of the rules r14,ij and r15,ij ,
respectively) to reach, at least, k copies of the objects Bi,dlg ke+1 and Ai,dlg ke+1

(1 ≤ i ≤ n). Recall that k = w1 + · · ·+wn represents the total weight of the initial
set.

In order to obtain the weight of each one of the subsets, we take each pair of
objects Bi,dlg ke+1 and vi (respectively, Ai,dlg ke+1 and vi) that appear in a cell
with label 2, and they are traded against an object p (respectively, against an
object q) according to the rules r16,i (respectively, r17,i).

The checking stage starts in the step n+dlg ne+dlg ke+8 with the application
of the rule r18 which removes from the cells labelled by 2 as many pairs of objects
p and q as possible. Therefore, if a cell 2 encodes a pair of subsets of weight k,
then all the objects p and q will be deleted in this cell. Otherwise, at least one
object p or q will remain in this cell.

The answer stage starts in the step n + dlg ne + dlg ke + 9. In the cells with
label 2, the object edlg ne+dlg ke+5 is traded against the objects E1 and F1 by the
rule r19. From this step on, there are two possible situations:

• Let us suppose that there exists a couple of complementary subsets of V with
weight k. In this case, there will exist a cell 2 such that it does not contain any
object p or q after the step n + dlg ne+ dlg ke+ 9. Therefore, in the next step,
neither rule r20 nor r21 can be applied in such cell. However, rule r22 is applied,
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allowing the evolution of the counter F1 to F2. This object together with the
object E1 produces the object T that, in the step n + dlg ne+ dlg ke+ 12 goes
to the cell labelled by 1.
In the next step, the objects T and b that initially were in the cell 1 produce
the object S. This object allows to send an object yes to the environment in
the step n + dlg ne+ dlg ke+ 14, which ends the computation. In this case, we
have an accepting computation.

• Let us suppose now that there does not exist a pair of complementary subsets
of V such that its weights are both equal to k. In this case, all the cells labelled
by 2 contain either objects p or q (but not both of them simultaneously). Then,
in the step n + dlg ne+ dlg ke+ 10, the object E1 is removed from these cells
labelled by 2 together with a copy of p or q (by application of the rules r20

or r21). In the meantime, the object F1 evolves to F2 (by the rule r22). In
this way, after the step n + dlg ne + dlg ke + 13 the object b remains in the
cell 1. This object together with the object an+dlg ne+dlg ke+14 produces an
object N , which is sent to the environment together with an object no in the
step n + dlg ne+ dlg ke+ 15. This step ends the computation with a negative
answer.

Polynomial Uniformity of the Family

In order to stablish that the family Π = (Π(t))t∈N is polynomially uniform by
deterministic Turing machines firstly we note that the set of rules associated with
the system Π(< n, k >) is described in a recursive way. Hence, we only need to
justify that the amount of necessary resources for defining the system is polyno-
mial in max{n, dlg ke}. The necessary resources for building Π(< n, k >) are the
following:

• Size of the alphabet: 2n · dlg ke+ 7n + 2dlg ke+ 3dlg ne+ 36 ∈ θ(n · dlg ke),
• Initial number of cells: 2 ∈ θ(1),
• Initial number of objects: 2n + 6 ∈ θ(n),
• Number of rules: 2n · dlg ke+ 6n + 2dlg ke+ 5dlg ne+ 33 ∈ θ(n · dlg ke),
• Upper bound for the length of the rules: 3 ∈ θ(1).

Then, we have the following result:

Theorem 1. PART∈ PMCTD.

Taking into account that PART is an NP-complete problem, we can deduce the
following result.

Corollary 1. NP ⊆ PMCTD.
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5 Conclusion and Future Work

Tissue-like P systems with cell division is a computing model in the framework
of Membrane Computing that shares with the spiking neural P system model
the tissue-like structure of cells and the biological inspiration, since both models
are based on the intercellular communication and cooperation between neurons.
Nonetheless, both models are quite different. One of the main differences is the
treatment of the information and how the flow of information between rules is
handled. The second main difference is the ability of tissue-like P systems with
cell division for increasing the number of cells during the computation. In a similar
way to other P system models, this ability can be used for trading space against
time and obtaining polynomial-time solutions for NP problems by obtaining an
exponential amount of new cells during the computation.

One of the main drawbacks of spiking neural P systems in order to design
solutions for NP problems is that the cell structure cannot change along the
computation, so in order to get solutions of hard problems, the design needs to
use precomputed resources. An open research line for the future is to study if some
of the features of tissue-like P systems can be adapted to spiking neural P systems
in order to get new applications to these new systems.
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Summary. Software development for cellular computing has already been addressed,
yielding a first generation of applications. In this paper, we develop a new programming
language: P-Lingua. Furthermore, we present a simulator for the class of recognizing P
systems with active membranes. We illustrate it by giving a solution to the SAT problem
as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [4]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Since the model was presented, many software applications have been produced
(see [2], [10]). The common purpose of all of these software applications is to
simulate P systems devices (cellular machines), and hence the designers have faced
similar difficulties. However, these systems were usually focused on, and adapted
for, particular cases, making it difficult to work on generalizations.

In order to give the first steps towards a next generation of applications, it
is convenient to agree on some standards (specifications that regulate the perfor-
mance of specific processes in order to guarantee their interoperability) and to
implement the necessary tools and libraries.

When designing software for membrane computing, one has to describe pre-
cisely the P systems specification that is to be used. This task is hard if we need
to handle families of P systems where the set of rules, the alphabet, the initial
contents and even the membrane structure depend on the value assigned to some
initial parameters. In existing software, several options have been implemented:
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plain text files with a determined format, XML documents, graphical user inter-
faces, etc. As mentioned above, most of these solutions are adapted to specific
models or to the specific purpose of the software.

In this paper we propose a programming language, called P-Lingua, whose
programs define families of P systems in a parametric and modular way. After
assigning values to the initial parameters, the compilation tool generates an XML
document associated with the corresponding P system from the family, and fur-
thermore it checks possible programming errors (both lexical/syntactical and se-
mantical). Such documents can be integrated into other applications, thus guar-
anteeing interoperability. More precisely, in the simulators framework, the XML
specification of a P system can be translated into an executable representation.

We present a practical application of P-Lingua in this paper. We give a simula-
tor for recognizing P systems with active membranes that accepts as input an XML
document generated by the compiler and that allows us to simulate a computation
of the P system, obtaining the answer that the system outputs to its environment,
plus a text file with a detailed step-by-step report of the computation.

The paper is structured as follows. In Section 2 several definitions and con-
cepts are given for the sake of completeness of the paper. Section 3 introduces the
P-Lingua programming language, and the syntax for P systems with active mem-
branes is specified. In Section 4 we implement a solution to the SAT problem using
P-Lingua. In Section 5 the compilation tool for the language is presented. Finally,
Section 6 presents a simulator for recognizing P systems with active membranes.
The paper ends with some conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
produced by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes (new workspace) in polynomial
time. Basically, there are two ways of producing new membranes in living cells:
mitosis (membrane division) and autopoiesis (membrane creation). Both ways of
generating new membranes have given rise to different variants of P systems: P sys-
tems with active membranes, where the new workspace is generated by membrane
division, and P systems with membrane creation, where the new membranes are
created from objects. Both models were proved to be computationally universal.

In this paper, we use the first variant mentioned above. Recall that a P system
with active membranes is a construct of the form Π = (O, H, µ, ω1, . . . , ωm, R),
where m ≥ 1 is the initial degree of the system; O is the alphabet of objects, and
H is a finite set of labels for membranes; µ is a membrane structure, consisting of
m membranes injectively labelled with elements of H, and ω1, . . . , ωm are strings
over O, describing the multisets of objects placed in the m regions of µ; R is a
finite set of rules, where each rule is of one of the following forms:
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(a) [a → v]αh where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is
a string over O describing a multiset of objects associated with membranes
and depending on the label and the charge of the membranes (object evolution
rules).

(b) a [ ]αh → [b]βh where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → [ ]βhb where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the
initial charge α is changed to β.

(d) [a]αh → b where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh where h ∈ H, α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules).
A membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• Rules from (a) to (e) are used as is usual in the framework of membrane com-
puting, i.e. in a maximal parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen), but any object
which can evolve by a rule must do it (with the restrictions indicated below).

• If a membrane is divided each object a in a membrane labelled with h and with
charge α is divided into two membranes with label h, and one membrane has
charge β and the second membrane has charge γ. The objects are replicated,
but a can be modified in each membrane.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, irre-
spective of whether the membrane is an initial one or whether it was created.

• Rules (b) to (e) can not be applied simultaneously in a membrane in one com-
putation step.

Recognizing P systems were introduced in [5], and are the natural framework
to study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizing P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has
to be provided to the P system in order for it to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input membrane.
The output of the computation, yes or no, is sent to the environment.



138 D. Dı́az–Pernil et al.

A P system with input is a tuple (Π, Σ, i
Π

), where: (a) Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
ω1, . . . , ωp associated with them; (b) Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ \Σ; and (c) i

Π
is the label of a distinguished

(input) membrane.
Let m be a multiset over Σ. The initial configuration of (Π, Σ, i

Π
) with input

m is (µ, ω1, . . . , ωi
Π

+ m, . . . , ωp).
A recognizing P system is a P system with input, (Π, Σ, iΠ ), and with external

output such that:

(a) The working alphabet contains two distinguished elements, yes and no.
(b) The system always halts.
(c) If C is a computation of Π, then either some object yes or some object no

(but no both) must be released into the environment, and only in the last step
of the computation.

We say that C is an accepting computation (respectively, rejecting computation)
if the object yes (respectively, no) appears in the external environment associated
with the corresponding halting configuration of C.

In this paper, we present a programming language to define P systems with
active membranes. A programming language is an artificial language that can be
used to control the behavior of a machine, particularly a computer, but it can be
used also to define a model of a machine that can be translated into an executable
representation by a simulation tool. The act of simulating something generally
entails representing certain key characteristics or behaviours of some physical, or
abstract, system. Do not confuse a simulation tool with an emulation tool: the
second one duplicates the functions of one system by using a different system, so
that the second system behaves like (and appears to be) the first system. With
the actual technology, we can not emulate the functionality of a cellular machine
by using a conventional computer to resolve NP problems in polynomial time,
but we can simulate these cellular machines, not necessarily in polynomial time,
in order to aid researchers.

Programming languages, like natural languages, are defined by syntactic and
semantic rules which describe their structure and meaning respectively. Usually,
they are asociated with compilation tools that are computer programs that trans-
lates text written in a programming language into another language. The original
sequence is usually called the source code whereas the output called the object
code. Commonly the output has a form suitable for being processed by other pro-
grams or for being executed by the computer, but it may be a human-readable
text file. In this paper, we use an XML language-like object code. The Extensible
Markup Language (XML) is a general-purpose specification for creating custom
markup languages. It is classified as an extensible metalanguage because it allows
its users to define their own elements. Its primary purpose is to facilitate the shar-
ing of structured data across different information systems. The files written by
using a specific XML language are called XML documents.
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The P system computations are massively parallel. One of the most common
programming methods to simulate real parallelism in a conventional computer with
a single processor is to use multithreading. A thread in this sense is a thread of
execution. Threads are a way for a program to fork (or split) itself into two or more
simultaneously (or pseudo-simultaneously) running tasks. Multiple threads can be
executed in parallel on a single computer. This multithreading generally occurs by
time-division multiplexing where the processor switches between different threads.
This context switching can happen so fast as to give the illusion of parallelism to
an end-user. On a multiprocessor or multi-core system, threading can be achieved
via multiprocessing, wherein different threads can literally run simultaneously on
different processors or cores.

3 The P-Lingua programming language

3.1 Syntax for P systems with active membranes

What follows is the syntax of the language for P systems with active membranes
(whose description can be found in [6] and [1] among others.)

Valid identifiers

We say that a sequence of characters forms a valid identifier if it does not
begin with a numeric character and it is composed by characters from the following:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels and alphabet objects.

The following text strings are reserved words in the language: def, call,
@mu, @ms, main, -->, # and they cannot be used as valid identifiers.

Identifiers for electrical charges

In P-Lingua, we can consider electrical charges by using the + and - symbols for
positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

Data types

Two data types exist in P-Lingua:

• Integer numbers: We use 32 bits (signed) to store integer values, this allows
a range from -2,147,483,648 to 2,147,483,647 for indexes and parameters.

• Text strings: These are valid identifiers that are used to define the alphabet
objects and the membrane labels of a P system.



140 D. Dı́az–Pernil et al.

Variables

Two kind of variables are permitted in P-Lingua:

• indexes

• Parameters

Variables are used to store numeric values and their names are valid identifiers.

Numeric expressions

Numeric expressions can be written by using the * (multiplication), / (division),
% (module), + (addition), - (subtraction) operators with integer numbers or vari-
ables, along with the use of parentheses.

Objects

The objects of the alphabet of a P system are written using valid identifiers, and
the inclusion of sub-indexes is permitted. For example, xi,2n+1 and Y es are written
as x{i,2*n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-
ample, x2n+1

i is written as x{i}*(2*n+1).

Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [3]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(param1,..., paramN)
{

sentence0;
sentence1;
...
sentenceM;

}

The name of a module, module name, must be a valid and unique identifier.The
parameters must be valid identifiers and cannot appear repeated. It is possible to
define a module without parameters. Parameters have a numerical value that is
assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the XML file.
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In P-Lingua there are sentences to define the membranes configuration of a P
system, to specify multisets, to define rules and to make calls to other modules.
Next, let us see how such sentences are written.

Module calls

In P-Lingua, modules are executed by using calls. The format of an sentence that
calls a module for some concrete values of its parameters is given next:

call module name(value1, ..., valueN);

where valuei is an integer number or a variable.

Definition of the initial membrane structure of a P system

In order to define the initial membrane structure of a P system, the following
sentence must be written:

@mu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:

1. [[ ]02]
0
1 ≡ @mu = [[]’2]’1

2. [[ ]0b [ ]
−
c ]+a ≡ @mu = +[[]’b, -[]’c]’a

Definition of multisets

Next sentence defines the initial multiset associated to the membrane labelled by
label.

@ms(label) = list of objects;

where label is a valid identifier or a natural number that represents a label of
the structure of membranes and list of objects is a comma-separated list of
objects. The character # is used to represent the empty multiset.

Union of multisets

P-Lingua allows to define the union of two multisets (recall that the input multiset
is “added” to the initial multiset of the input membrane) by using an sentence with
the following format.

@ms(label) += list of objects;
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Definition of rules

1. The format to define evolution rules of type [a → v]αh is given next:

α[a --> v]’h

2. The format to define send-in communication rules of type a [ ]αh → [b]βh is given
next:

aα[]’h -->β[b]

3. The format to define send-out communication rules of type [a]αh → b[ ]βh is
given next:

α[a]’h --> β[]b

4. The format to define division rules of type [a ]αh → [b]βh[c]γh is given next:

α[a]’h -->β[b]γ[c]

5. The format to define dissolution rules of type [a]αh → b is given next:

α[a]’h --> b

where:

• α, β and γ are identifiers for electrical charges.
• a, b and c are objects of the alphabet.
• v is a comma-separated list of objects that represents a multiset.
• h is a label.

Some examples:

• [xi,1 → r4
i,1]

+
2 ≡ +[x{i,1} --> r{i,1}*4]’2

• dk[ ]02 → [dk+1]02 ≡ d{k}[]’2 --> [d{k+1}]
• [dk]+2 → []02dk ≡ +[d{k}]’2 --> []d{k}
• [dk]02 → [dk]+2 [dk]−2 ≡ [d{k}]’2 --> +[d{k}]-[d{k}]
• [a]−2 → b ≡ -[a]’2 --> b

Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the next format:

sentence : range1, ..., rangeN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and range1, ..., rangeN is a comma-separated list of ranges with the for-
mat:

min value <= index <= max value
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where min value and max value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

The sentence will be repeated for each possible values of each index.
Some examples of parametric sentences:

1. [dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n ≡
[d{k}]’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi,j → xi,j−1]+2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n ≡
+[x{i,j} --> x{i,j-1}]’2 : 1<=i<=m,2<=j<=n;

Inclusion of comments

The programs in P-Lingua can be commented by writing phrases into the text
strings /* and */.

4 Implementation of a solution to SAT problem

SAT problem is the following: Given a boolean formula in conjunctive normal
form (CNF), to determine whether or not it is satisfiable, that is, whether there
exists an assignment to its variables on which it evaluates to true.

4.1 A solution to SAT

In this section, we present a solution to the SAT problem using recognizing P
systems with active membranes, given by M.J. Pérez–Jiménez et al. [6].

For each (m,n) ∈ N2, we consider the P system

(Π(〈m, n〉), Σ(m,n), i(m,n))

where

• Σ(m,n) = {xi,j , x̄i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
• i(m,n) = 2
• Π(〈m,n〉) = (Γ (m,n), {1, 2}, [[ ]2]1, w1, w2, R), is defined as follows:

– Γ (m,n) = Σ(m,n) ∪ {ck : 1 ≤ k ≤ m + 2} ∪
{dk : 1 ≤ k ≤ 3n + 2m + 3} ∪
{ri,k : 0 ≤ i ≤ m, 1 ≤ k ≤ m + 2} ∪ {e, t} ∪ {Y es, No}

– w1 = ∅
– w2 = {d1}
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– The set of rules, R, is given by:

{[dk]02 → [dk]+2 [dk]−2 : 1 ≤ k ≤ n}
{[xi,1 → ri,1]+2 , [x̄i,1 → ri,1]−2 : 1 ≤ i ≤ m}
{[xi,1 → λ]−2 , [x̄i,1 → λ]+2 : 1 ≤ i ≤ m}
{[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}
{[x̄i,j → x̄i,j−1]+2 , [x̄i,j → x̄i,j−1]−2 : 1 ≤ i ≤ m, 2 ≤ j ≤ n}
{[dk]+2 → [ ]02dk, [dk]−2 → [ ]02dk : 1 ≤ k ≤ n}
{dk[ ]02 → [dk+1]02 : 1 ≤ k ≤ n− 1}
{[ri,k → ri,k+1]02 : 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1}
{[dk → dk+1]01 : n ≤ k ≤ 3n− 3}; [d3n−2 → d3n−1e]01
e[ ]02 → [c1]+2 ; [d3n−1 → d3n]01
{[dk → dk+1]01 : 3n ≤ k ≤ 3n + 2m + 2}
[r1,2n]+2 → [ ]−2 r1,2n ; {[ri,2n → ri−1,2n]−2 : 1 ≤ i ≤ m}
r1,2n[ ]−2 → [r0,2n]+2
{[ck → ck+1]−2 : 1 ≤ k ≤ m}
[cm+1]+2 → [ ]+2 cm+1 ; [cm+1 → cm+2t]01
[t]01 → [ ]+1 t ; [cm+2]+1 → [ ]−1 Y es ; [d3n+2m+3]01 → [ ]+1 No

4.2 Implementation

The following is the code of the program written in P-Lingua that encodes a
solution to the SAT problem.

Objects of the form x̄i,j are written as nx{i,j}.
/* Module that defines a family of recognizing P systems

to solve the SAT problem */
def Sat(m,n)
{
/* Initial configuration */
@mu = [[]’2]’1;

/* Initial multisets */
@ms(2) = d{1};

/* Set of rules */
[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;



P-Lingua: A Programming Language for Membrane Computing 145

{
+[x{i,1} --> r{i,1}]’2;
-[nx{i,1} --> r{i,1}]’2;
-[x{i,1} --> #]’2;
+[nx{i,1} --> #]’2;

} : 1 <= i <= m;

{
+[x{i,j} --> x{i,j-1}]’2;
-[x{i,j} --> x{i,j-1}]’2;
+[nx{i,j} --> nx{i,j-1}]’2;
-[nx{i,j} --> nx{i,j-1}]’2;

} : 1<=i<=m, 2<=j<=n;

{
+[d{k}]’2 --> []d{k};
-[d{k}]’2 --> []d{k};

} : 1<=k<=n;

d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;
[r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2*n-1;
[d{k} --> d{k+1}]’1 : n <= k<= 3*n-3;
[d{3*n-2} --> d{3*n-1},e]’1;
e[]’2 --> +[c{1}];
[d{3*n-1} --> d{3*n}]’1;
[d{k} --> d{k+1}]’1 : 3*n <= k <= 3*n+2*m+2;
+[r{1,2*n}]’2 --> -[]r{1,2*n};
-[r{i,2*n} --> r{i-1,2*n}]’2 : 1<= i <= m;
r{1,2*n}-[]’2 --> +[r{0,2*n}];
-[c{k} --> c{k+1}]’2 : 1<=k<=m;
+[c{m+1}]’2 --> +[]c{m+1};
[c{m+1} --> c{m+2},t]’1;
[t]’1 --> +[]t;
+[c{m+2}]’1 --> -[]Yes;
[d{3*n+2*m+3}]’1 --> +[]No;

} /* End of Sat module */

/* Main module */
def main()
{
/* Call to Sat module for m=4 and n=6 */
call Sat(4,6);
/* Expansion of the input multiset */
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@ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},
nx{2,4}, x{3,5}, nx{4,6};

} /* End of main module */

The module main is instantiated with the formula

ϕ ≡ (x1 + x2)(x2 + x3 + x4) x5 x6

where n = 6, m = 4 and the input multiset: x1,1, x1,2, x2,2, x2,3, x2,4, x3,5, x4,6.

5 The P-Lingua compiler

A compiler is a program that translates code written in some computer language to
another language. We have developed a compiler that is able to translate programs
written in P-Lingua into XML documents, after having assigned values to some
initial parameters. Recall that a P-Lingua program can, in a flexible way, encode
a family of P systems (with the help of some parameters), whereas the XML
document generated by the compiler specifies only a single P system of the family.
In this way, the applications do not need to process parametric systems, and hence
their implementation is much easier.

The choice of the metalanguage XML is due to the fact that it is a broadly
known standard, that has the following advantages:

• It is extensible. After having an XML specification designed, one can extend it
by adding new labels, allowing in this way compatibility with earlier versions.

• The analyzer is a generic component, it is not necessary to create a new one
for each XML specification. This avoids errors and speeds up the development
of applications.

• The structure of the language is easy to understand and to process, facilitating
compatibility with earlier versions.

5.1 An XML language for P systems with active membranes

The structure of the XML documents generated by the P-Lingua compiler for P
systems with active membranes is as follows:

<?xml version="1.0"?>
<active_membrane_psystem version="1.0">

<init_config>
...
</init_config>
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<multisets>
...
</multisets>

<rules>
...
</rules>

</active_membrane_psystem>

The main element is named active membrane psystem, and it has an attribute
indicating the version of the specification. There are three internal elements:

• init config: defines the membrane structure of the initial configuration.

• multisets: defines the initial multisets.

• rules: defines the set of rules.

Definition of the membrane structure of the initial configuration

Next, we describe the element init config corresponding to the membrane struc-
ture [[ ]+e [ ]−r ]0s .

<init_config>
<membrane label="s" charge="0">
<membrane label="e" charge="+1"/>
<membrane label="r" charge="-1"/>

</membrane>
</init_config>

init config allows a recursive representation of a membrane structure. The
element membrane has two attributes: label, which indicates the label of the mem-
brane, and charge, which can take values 0, +1 or -1 and indicates the membrane
polarization.

Definition of initial multisets

Multisets of objects present in membranes are defined through the element
multisets. Let us consider the following example: we = e0, g1, ws = z3

1 and
wr = h0, b0 .

<multisets>
<multiset label="e">
<object name="e{0}" multiplicity="1"/>
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<object name="g{1}" multiplicity="1"/>
</multiset>
<multiset label="s">
<object name="z{1}" multiplicity="3"/>

</multiset>
<multiset label="r">
<object name="h{0}" multiplicity="1"/>
<object name="b{0}" multiplicity="1"/>

</multiset>
</multisets>

As it can be seen in the example, the element multisets is composed of several
elements of type multiset, each of them having an attribute label indicating
the label of the membrane where the multiset is contained. The objects present
in the multiset are represented by elements of type object with two attributes:
name indicates the symbol naming the object, and multiplicity indicates the
multiplicity of the object in the multiset.

Definition of the set of rules

Let us consider the following set of rules:

• [c9 → c10t]01
• [r1,16]+2 → [ ]−2 r1,16

• r1,16[ ]−2 → [r0,16]+2
• [d0]02 → [d0]+2 [d0]−2
• [a]0e → b

The element rules is described as follows:

<rules>
<evolution_rule label=1" charge="0">
<left_hand_rule object="c{9}"/>
<right_hand_rule object="c{10}" multiplicity="1"/>
<right_hand_rule object="t" multiplicity="1"/>

</evolution_rule>
<send_out_rule label="2" charge="+1">
<left_hand_rule object="r{1,16}"/>
<right_hand_rule object="r{1,16}" charge="-1"/>

</send_out_rule>
<send_in_rule label="2" charge="-1">
<left_hand_rule object="r{1,16}"/>
<right_hand_rule object="r{0,16}" charge="+1"/>
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</send_in_rule>
<division_rule label="2" charge="0">
<left_hand_rule object="d{0}"/>
<right_hand_rule object="d{0}" charge="+1"/>
<right_hand_rule object="d{0}" charge="-1"/>

</division_rule>
<dissolution_rule label="e" charge="0">
<left_hand_rule object="a"/>
<right_hand_rule object="b"/>

</dissolution_rule>
</rules>

Within the element rules we can find five different types of ele-
ments: evolution rule, send in rule, send out rule, division rule and
dissolution rule. All of them contain two attributes: label and charge, in-
dicating the label and polarization of the membranes to which the rule can be
applied.

Besides, there exists an internal element called left hand rule with an at-
tribute called object containing the name of the object that triggers the rule.

For the case of evolution rules, the compiler generates one or more ele-
ments of type right hand rule, each of them having two attributes object and
multiplicity expressing the name of the object produced by the rule, and the
number of copies obtained.

Communication rules have only one element right hand rule with the name
of the resulting object and the polarization that the membrane gets after applying
the rule.

For division rules, there are two elements right hand rule, indicating the
objects obtained in the two resulting membranes, as well as their respective po-
larizations.

Finally, for dissolution rules, only one element right hand rule showing the
name of the object that is obtained.

5.2 The compilation tool

The P-Lingua compiler (version 1.0) and its source code can be freely downloaded
from the software section in the website of the Research Group on Natural Com-
puting [11]. The compiler is under GPL license [7] and is written in Java [8] using
the lexical and syntactical analyzers provided by JavaCC [9]. The minimum sys-
tem requirements are having a Java virtual machine (JVM) version 1.6.0 running
in a Pentium III computer.

The compilation tool is a program that may be exectuted from the command
line as follows:

plingua input file -xml output file [-v verbosity level] [-h]
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The text file input file contains the program (written in P-Lingua) that we want
to be compiled, and output file is the name of the XML file that is generated.
Optional arguments are in brackets: verbosity level is a number between 0 and 5
indicating the level of detail of the messages shown during the compilation process,
and the option -h displays some help information.

6 A simulator for recognizing P systems with active
membranes

As a first practical application of the P-Lingua programming language, we have
implemented a simulator for recognizing P systems with active membranes that
takes as input an XML document generated by the P-Lingua compiler and runs
one of the possible computations that the P system may follow, obtaining the
answer that the system outputs to its environment, plus a text file with a detailed
step-by-step report of the computation.

This simulator is again a Java program under GPL license that can be freely
downloaded from the software section in the web of the Research Group on Natural
Computing [11]. The system requirements are the same as in the case of the P-
Lingua compiler.

The simulator is launched from the command line as follows:

plingua sim input xml [-o output file]

where input xml is an XML document formatted as discussed in this paper, and
output file is the name of the file where the report about the simulated compu-
tation will be saved.

6.1 Simulation of a solution to SAT problem

We now show an execution of the simulator running on the XML document ob-
tained after compiling the P-Lingua program described in Section 4.2. The results
have been obtained on an AMD Sempron machine, at 2.8 Ghz and with 512Mb of
RAM memory.

The command used to execute the simulation is:

plingua sim sat.xml -o info.txt

The simulation ends when no more rules can be applied, and then the following
information is displayed:

Environment: t, Yes
Steps: 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be executed
in the next step)



P-Lingua: A Programming Language for Membrane Computing 151

Thus, the computation of the P system lasted 41 transition steps, and it took
1,971 seconds to simulate it until reaching a halting configuration (recall that we
are simulating a parallel device on a sequential computer).

The file info.txt keeps detailed information about each configuration of the
simulated computation. More precisely, the multisets and polarizations of all the
membranes are listed, as well as the rules selected for execution at each transition
step. The configurations are numbered (starting at 0), to keep track of the step of
the computation that is being simulated. Some information about the CPU time
is shown for each step, and the number of rules of each type that is executed. As
an example, we give the information generated for the first two configurations.

### MEMBRANE ID: 1, Label: 2, Charge: 0
Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},

nx{4, 6}, x{2, 3}, x{1, 1}
Parent Membrane ID: 0
Rules Selected:
1*DIVISION RULE: [d{1}]’2 --> +[d{1}] -[d{1}]

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 1

Configuration: 0
Time: 0.0 s.
1 division rule(s) selected to be executed in the step 1
************************************************
### MEMBRANE ID: 1, Label: 2, Charge: +

Multiset: nx{1, 2}, d{1}, x{3, 5}, nx{2, 4}, nx{2, 2},
nx{4, 6}, x{2, 3}, x{1, 1}

Parent Membrane ID: 0
Rules Selected:
1*EVOLUTION RULE: +[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: +[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: +[x{3, 5} --> x{3, 4}]’2
1*EVOLUTION RULE: +[x{1, 1} --> r{1, 1}]’2
1*EVOLUTION RULE: +[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: +[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: +[x{2, 3} --> x{2, 2}]’2
1*SEND-OUT RULE: +[d{1}]’2 --> []d{1}

### MEMBRANE ID: 2, Label: 2, Charge: -
Multiset: nx{1, 2}, d{1}, nx{2, 4}, x{3, 5}, nx{2, 2},

x{2, 3}, nx{4, 6}, x{1, 1}
Parent Membrane ID: 0
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Rules Selected:
1*EVOLUTION RULE: -[nx{2, 4} --> nx{2, 3}]’2
1*EVOLUTION RULE: -[nx{2, 2} --> nx{2, 1}]’2
1*EVOLUTION RULE: -[nx{4, 6} --> nx{4, 5}]’2
1*EVOLUTION RULE: -[x{1, 1} --> #]’2
1*EVOLUTION RULE: -[x{2, 3} --> x{2, 2}]’2
1*EVOLUTION RULE: -[nx{1, 2} --> nx{1, 1}]’2
1*EVOLUTION RULE: -[x{3, 5} --> x{3, 4}]’2
1*SEND-OUT RULE: -[d{1}]’2 --> []d{1}

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: 0
Multiset: #
Internal membranes count: 2

Configuration: 1
Time: 0.025 s.
14 evolution rule(s) selected to be executed in the step 2
2 send-out rule(s) selected to be executed in the step 2
************************************************

After simulating 41 transition steps, the halting configuration is described as
follows:

### MEMBRANE ID: 1, Label: 2, Charge: +
Multiset: r{0, 12}*3, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 2, Label: 2, Charge: +
Multiset: c{1}, r{2, 12}, r{3, 12}
Parent Membrane ID: 0

### MEMBRANE ID: 3, Label: 2, Charge: +
Multiset: r{0, 12}*5, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 4, Label: 2, Charge: +
Multiset: r{0, 12}*4, c{4}
Parent Membrane ID: 0

### MEMBRANE ID: 5, Label: 2, Charge: +
Multiset: r{0, 12}, r{2, 12}, c{2}
Parent Membrane ID: 0

### MEMBRANE ID: 6, Label: 2, Charge: +
Multiset: c{1}, r{3, 12}
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Parent Membrane ID: 0

### MEMBRANE ID: 7, Label: 2, Charge: +
Multiset: r{0, 12}*4, c{4}
Parent Membrane ID: 0

...

@@@ SKIN MEMBRANE ID: 0, Label: 1, Charge: -
Multiset: t*10, d{29}*64, c{6}*10
Internal membranes count: 64

~~~ENVIRONMENT: t, Yes

Configuration 41
Time: 1.971 s.
Halting configuration (No rule can be selected to be
executed in the next step)

************************************************

Note that there are 64 different membranes labelled by 2 in this configuration,
although for the sake of simplicity we show only seven of them.

7 Conclusions and future work

In this paper we have presented the first programming language for membrane
computing, P-Lingua, together with a compiler that generates XML documents,
and a simulator for a class of P systems called recognizing P systems with active
membranes.

Using a programming language to define cellular machines is a new concept
in the development of applications for membrane computing that leads to a stan-
dardization with the following advantages:

• Users (researchers) can define cellular machines in a modular and parametric
way by using an easy-to-learn programming language.

• It is possible to define libraries of modules that can be shared among researchers
to facilitate the design of new programs.

• This method to define P systems is decoupled from its applications and the
same P-Lingua programs can be used in different software enviroments.

• By using compiling tools, the P-Lingua programs are translated to other file
formats that can be interpreted by a large number of different applications.

The first version of P-Lingua is presented for P systems with active membranes.
In forthcoming versions we intend to generalize the language so that other types of
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cellular devices can be also specified, for instance transition P systems and tissue
P systems.

Currently, the compiler is an application that is executed from the command
line, but the possibility of a graphical programming environment remains open.

We have chosen an XML language as the output format because of the reasons
exposed above. However, we are aware that for some applications it is not the
most suitable format, due to the fact that XML does not include any method for
compressing data, and therefore the text files can eventually become too large,
which is a clear disadvantage for applications running on networks of processors.
It would be convenient to modify the compiler so that it generates a larger variety
of output formats, of special interest are compressed binary files or executable
code (either in C or Java).

It is important to recall that the simulator presented here is designed to run
in a conventional computer, having limited resources (RAM, CPU), and this leads
to a bound on the size of the instances of NP-complete problems whose solutions
can be successfully simulated. Moreover, conventional computers are not massively
parallel devices, and therefore it seems that the inherent parallelism of P systems
must be simulated by means of multithreading techniques.

These shortcomings lead us to the possibility of implementing a distributed
simulator running on a network or cluster of processors, where the need of resources
arising during the computation could be solved by adding further nodes to the
network, thus moving towards massive parallelism.
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guage in cellular computing. Electronic Notes in Theoretical Computer Science, El-
sevier B.V., 123 (2005), pp. 93–110.



P-Lingua: A Programming Language for Membrane Computing 155

4. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), pp. 108–143.
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Summary. Starting from proofs of results about the computing power of conformon-
P systems, we infer several results about the power of certain classes of tissue-like P
systems with (cooperative) rewriting rules used in an asynchronous way, without cycles
in compartments. This last feature is related to an important restriction appearing when
dealing with lab implementations of P systems, that of avoiding local evolution loops of
objects.

1 Introduction

This note addresses a technical issue which appeared in the framework of the
recent attempt to implement a P system in biochemical terms, at Technion in-
stitute, Haifa, Israel, namely of avoiding cyclical evolution of chemicals in any
compartment of the system – see a more precise description of the problem in
[9]. Here we consider a class of tissue-like P systems, namely as introduced in
[16], with rewriting rules present in membranes, and with target indications of
the forms here, go associated with the “products of reactions”: rules of the form
u → v, where u and v are multisets of objects and the objects in v have asso-
ciated target indications here, go (actually, here is omitted) indicating that the
respective object remains in the same compartment or it has to go to any of the
adjacent compartments, non-deterministically choosing the destination. We also
consider an evolution-communication (EC) version of these systems, following the
ideas of [1], i.e., using evolution rules without target indications and using sepa-
rate communication rules (of the form (a, go), with the obvious meaning: object
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a is communicated to any of the adjacent membranes). In order to transfer in a
direct way to these systems results from conformon-P systems area, we add to the
definition in [16] several “non-standard” ingredients: we work asynchronously (in
any step, in any compartment, a rule may be used or not), maybe with a prior-
ity relation among rules, of a global type (in each compartment, evolution rules
have priority over communication rules: if an object can evolve and, at the same
time, communicated, an evolution rule is applied first), an acknowledging mem-
brane (the computation stops when any object is sent to this membrane, which is
empty in the beginning of the computation). The number of membranes we use
is arbitrary (rather high, if we take into account the number of membranes used
in conformon-P systems simulating register machines), but, on the good side, the
evolution rules we need to simulate a conformon-P system are of a very restrictive
form: each of the multisets u, v from a rule u → v has exactly two objects.

Although, for the sake of readability, we recall here the definitions of conformon-
P systems and of P systems with a graph structure, we do not enter into details,
and we assume the reader to be familiar with basic elements of membrane comput-
ing. However, we indicate a series of papers related to conformons. This concept
was introduced independently in [10] and [17]. Following the definition given in
[10] conformons and conformon-like entities have been classified into 10 families ac-
cording to their biological functions [12]. To know more about the Bhopalator refer
to [11, 13]. The term conformon was adopted in [14, 15] where the authors started
to develop a quantum mechanical theory based on this concept. Conformon-P
systems have been introduced in [3] and later studied, among others, in [4, 6].
Conformon-P systems have also been successfully used as a platform to model
biological process. The interested reader can refer to [8, 2, 7].

2 Basic Definitions

Let V be an alphabet (a finite set of abstract symbols), and N be the set of natural
numbers, including 0. A multiset over V is a function M : V −→ N ∪ {+∞}. The
support of M (the set of elements a ∈ V for which M(a) > 0) is denoted by
supp(M) and the cardinality of M (the sum of multiplicities of all elements in
supp(M)) is denoted by |M |.

2.1 Conformon-P Systems

In what follows, a conformon is an element of V × N, denoted by [a, n]. We refer
to a as the name of the conformon [a, n] and to n as its value.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form a

e→ b, where a, b ∈ V and e ∈ N, and it says that a conformon
with name a can give e from its value to the value of a conformon having name
b. If, for instance, there are conformons [a, 5] and [b, 9] and the rule a

3→ b, one
application this rule leads to [a, 2] and [b, 12]. As here we consider that the value
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of a conformon cannot be a negative number, the rule a
3→ b cannot be applied to

[a, 2].
Each membrane present in a conformon-P system has associated a label,

different from the labels of other membranes. These membranes are placed in
the nodes of a directed graph, hence they are connected in a unidirectionally
way. Each connection has associated a predicate, which is an element of the set
pred(N) = {≥ n,≤ n | n ∈ N}. If, for instance, there are two compartments (with
labels) m1 and m2 and there is an connection from m1 to m2 having predicate
≥ 4, then conformons having value greater than or equal to 4 can pass from m1

to m2.

A conformon-P system is a construct

Π = (V, µ, ωz, ack, L1, . . . , Lm, R1, . . . , Rm),

where:

V is a finite alphabet;
µ = (Q,E) is a directed labelled graph underlying Π, where

Q = {1, . . . , m} is the set of membranes (we also say compartments) of Π;
E ⊆ Q ×Q × pred(N) defines directed labelled edges between vertices, indi-

cated by (i, j, pred), i, j ∈ Q, i 6= j, where pred ∈ pred(N) is a predicate;
ωz with ω ∈ {in, out} and z ∈ Q indicates whether Π is an accepting (ω = in) or

generating (ω = out) device; the compartment z contains the input or output,
respectively;

ack ∈ Q indicates the acknowledging compartment;
Li : (V ×N) → N∪{+∞}, i ∈ Q, are multisets of conformons initially associated

with the vertices in Q;
Ri, i ∈ Q, are finite sets of interaction rules associated with the vertices in Q,

with supp(Lack) = ∅.
Let Mi and Ri be the multiset of conformons and the set of rules, respectively,

associated with the compartment i ∈ Q. Two conformons present in compartment
i can interact according to a rule in Ri such that the multiset of conformons Mi

changes into M ′
i . If, for instance, [a, p], [b, q] ∈ Mi, a

e→ b ∈ Ri and p ≥ e, then
M ′

i = (Mi − {[a, p], [b, q]}) ∪ {[a, p− e], [b, q + e]}.
A conformon [a, p] present in compartment i can pass to compartment j if

(i, j, pred) ∈ E and pred(p) holds. This passage changes the multisets of confor-
mons Mi and Mj into M ′

i and M ′
j , respectively, such that M ′

i = Mi −{[a, p]} and
M ′

j = Mj ∪ {[a, p]}.
At the moment we do not assume any requirement (such as maximal paral-

lelism, priorities, etc.) on the application of operations. If a conformon can pass to
another compartment or interact with another conformon according to an interac-
tion rule, then one of the two operations or none of them is non-deterministically
chosen.
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The possibility to carry out one of the two allowed operations in a compart-
ment or none of them lets conformon-P systems to be non-deterministic. Non-
determinism can also arise from the configurations of a conformon-P system if in
a compartment a conformon can interact with more than one conformon and also
from the graph underlying Π if a compartment has edges with the same predicate
going to different compartments.

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over V ×N. The
m-tuple (L1, . . . , Lm), is called initial configuration (remember that supp(Lack) =
∅, so in the initial configuration the acknowledging compartment does not contain
any conformon) while any configuration having supp(Mack) 6= ∅ is called final
configuration. In a final configuration no operation is performed even if it could.

For two configurations (M1, . . . , Mm), (M ′
1, . . . ,M

′
m) of Π we write

(M1, . . . , Mm) ⇒ (M ′
1, . . . , M

′
m) indicating a transition from (M1, . . . ,Mm) to

(M ′
1, . . . , M

′
m), that is, the application of one operation to at least one confor-

mon. In other words, in any configuration in which supp(Lack) = ∅ any conformon
present in a compartment can either interact with another conformon present in
the same compartment or pass to another compartment or remain in the same com-
partment unchanged. If no operation is applied to a multiset Mi, then M ′

i = Mi.
The reflexive and transitive closure of ⇒ is indicated by ⇒∗.

A computation is a finite sequence of transitions between configurations of a
system Π starting from (L1, . . . , Lm).

In case Π is an accepting device (ω = in), then the input is given by the
number of conformons (counted with their multiplicity) present in Lz. The input
is accepted by Π if it reaches a configuration in which any conformon is present
in ack, halting in this way the computation.

Formally:

N(Π) = {|Lz| | (L1, . . . , Lm) ⇒∗ (M ′
1, . . . , M

′
m) ⇒ (M1, . . . ,Mm),

supp(M ′
ack) = ∅, supp(Mack) 6= ∅}.

In case Π is a generating device (ω = out), then supp(Lz) = ∅. The result of
a computation is given by Mz when any conformon is present in ack. When this
happens the computation is halted and the number of conformons (counted with
their multiplicity) present in Mz defines the number generated by Π.

Formally:

N(Π) = {|Mz| | (L1, . . . , Lm) ⇒∗ (M ′
1, . . . ,M

′
m) ⇒ (M1, . . . ,Mm),

supp(M ′
ack) = ∅, supp(Mack) 6= ∅}.

In the conformon-P systems area, in general one uses graphical representations
instead of formal definitions in order to specify systems appearing in examples or
proofs. We recall now some conventions used in these representations – details can
be found in the papers mentioned in the end of Introduction.

Membranes/compartments are represented by labelled ovals, having inside the
associated conformons and interaction rules. Conformons present in the initial
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configuration of a system are written in bold inside a membrane while the ones
written in normal font are present in that compartment in one of the possible
configurations of the system. A slash (/) between values in a conformon indicates
that a conformon can have any of the indicated values. The multiplicity is indicated
only for conformons which appear in more than one copy. Directed edges between
compartments are represented as arrows with their predicate indicated close to
them. Several edges connecting two compartments are depicted as just one edge
with different predicates separated by a slash (/). For instance, Figure 1 presents a
conformon-P system which accepts any positive even number (the input membrane
is the one with label 1 and the acknowledging one is membrane 11).
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≥ 1

≥ 2

≥ 3

≥ 5

≥ 6

≤ 2

≤ 5

≤ 1

≤ 0

≥ 7

≥ 7

≤ 0

≥ 7

≥ 8

≤ 3
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≥ 14
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[B, 3/14]

[C, 11]

2
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15
[B, 7]
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[B, 14] [C, 0]
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B
11→ C

[A, 8]

9

[B, 1] [A, 6]
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A
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[C, 5] [A, 2]
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A
2→ C

[B, 7] [C, 7]

13

C
7→ B

7

6

5

4

3

[B, 3] B
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[C, 11] C
6→ A

([A, 0], p)

1

[B, 1/3] [A, 2/6/8] [C, 5/11]

[A, 6/8] [C, 11]

[A, 6/8] [C, 5/11]

[B, 3] [A, 6/8] [C, 5/11]

[B, 3] [A, 2/6/8] [C, 5/11]

[A, 8] [C, 11]≥ 11

8

≥ 3

Fig. 1. A conformon-P system accepting even numbers.

In proofs there appear large conformon-P systems, that is why it is useful to
consider modules which are sort of shortcuts of graphical representations. Such
modules are explained in detail in several papers, e.g., in [3].

The basic modules are the splitter (it selects conformons depending on their
values; specifically, when conformons of type [a, pi], 1 ≤ i ≤ h, are present in a
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given compartment, they can pass to specific different compartments depending
on values pi) and the separator (it selects conformons depending on their name;
specifically, when conformons of type [ai, p], 1 ≤ i ≤ h, are present in a compart-
ment, they can pass to specific different compartments depending on ai).

In the pictorial representations of conformon-P systems the modules are indi-
cated by tick ovals, linked by arrows marked with predicates, which are of the form
= ni in the case of splitters and of the form [a, pi] in the case of separators; usual
membranes and arrows marked with predicates can be interleaved with modules.
For instance, in Figure 2 we give a version of the system represented in Figure 1
where a splitter is also involved.

≤ 11

≤ 0

≥ 7

≥ 7

≤ 0

≥ 7

≥ 14

≤ 0/ ≥ 14

= 8 = 1/
= 6

≥ 1= 3/
= 11

= 2/ = 5

spl

[B, 3/14]

[C, 11]

2

([A, 0], q)

15
[B, 7]

11

[B, 14] [C, 0]

14

B
11→ C

[A, 8]

9

[B, 1] [A, 6]

10

A
6→ B

[C, 5] [A, 2]

12

A
2→ C

[B, 7] [C, 7]

13

C
7→ B

[B, 3] B
2→ A

[C, 11] C
6→ A

([A, 0], p)

1
≥ 3

[B, 1/3] [A, 2/6/8] [C, 5/11]

Fig. 2. The conformon-P system with a splitter associated to the system in Figure 1.

2.2 Asynchronous Tissue-like P Systems

We introduce the P systems of the form we have described in the Introduction,
with a series of ingredients as presented before for conformon-P systems. Because
we work only with asynchronous systems, from now on we omit mentioning this
feature.

An EC tissue-like P system of degree m is a tuple
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Π = (V, µ, ωz, ack, L1, . . . , Lm, R1, . . . , Rm, P1, . . . , Pm),

where:

V is a finite alphabet whose elements are called objects;
µ = (Q,E) is a graph indicating the underlying compartment structure of Π,

where
Q = {1, . . . , m} is the set of membranes/compartments;
E ⊆ Q×Q is the set of directed edges between compartments;

ωz with ω ∈ {in, out} and z ∈ Q indicates if Π is an accepting (ω = in) or
generating (ω = out) device; the compartment z contains the input or output,
respectively;

ack ∈ Q indicates the acknowledging compartment;
Li : V → N∪{+∞}, 1 ≤ i ≤ m, are multisets of objects in V , with supp(Lack) =
∅;

Ri, 1 ≤ i ≤ m, are sets of evolution rules of the form ab → cd with a, b, c, d ∈ V ;
Pi, 1 ≤ i ≤ m, are sets of communication rules of the form (a, go) with a ∈ V .

A tissue-like P system is cycle-free if ab → cd ∈ Ri implies that cd → ab does
not belong to Ri (with some abuse of notation we represent multisets by strings
and all their permutations).

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over V . The m-
tuple (L1, . . . , Lm), is called initial configuration (in the initial configuration the
acknowledge compartment does not contain any object) while any configuration
having supp(Mack) 6= ∅ is called final configuration. In a final configuration no
operation is performed even if it could.

For two configurations (M1, . . . , Mm), (M ′
1, . . . ,M

′
m) of Π we write

(M1, . . . , Mm) ⇒ (M ′
1, . . . , M

′
m) indicating a transition from (M1, . . . ,Mm) to

(M ′
1, . . . , M

′
m), that is, the application of one rule in a compartment according

to the following. If a, b ∈ Mi and ab → cd ∈ Ri, then M ′
i = Mi − {a, b} ∪ {c, d}.

If a ∈ Mi and (a, go) ∈ Pi, then M ′
i = Mi − {a}, M ′

j = Mj ∪ {a} if (i, j) ∈ E. If
no rule is applied to a multiset Mi, then M ′

i = M ′
i . The reflexive and transitive

closure of ⇒ is indicated by ⇒∗. If in a configuration a symbol can be subject to
more than one rule, then one of them is non-deterministically applied.

A computation is a finite sequence of transitions between configurations of the
system Π starting from (L1, . . . , Lm).

In case Π is an accepting device (ω = in), then the input is given by the
number of symbols (counted with their multiplicity) present in Lz. The input is
accepted by Π if it reaches a configuration in which any conformon is present in
ack, halting in this was the computation.

Formally,

N(Π) = {|Lz| | (L1, . . . , Lm) ⇒∗ (M ′
1, . . . , M

′
m) ⇒ (M1, . . . ,Mm),

supp(M ′
ack) = ∅, supp(Mack) 6= ∅}.

In case Π is a generating device (ω = out), then supp(Lz) = ∅. The result
of a computation is given by Mz when any symbol is present in ack. When this
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happens the computation is halted and the number of symbols (counted with their
multiplicity) present in Mz defines the number generated by Π.

Formally,

N(Π) = {|Mz| | (L1, . . . , Lm) ⇒∗ (M ′
1, . . . ,M

′
m) ⇒ (M1, . . . ,Mm),

supp(M ′
ack) = ∅, supp(Mack) 6= ∅}.

As usual in P systems (i.e., without separating evolution from communica-
tion), we avoid rules of the form (a, go) and associate target indication directly to
evolution rules: an object which has to be communicated will appear in the right
hand side of a rule paired with go (the objects without such a pair remain in the
same membrane). Note the important detail that this time the communication of
an object c appearing in the form (c, go) in a rule must be done immediately, this
does not mean application of a rule, but it is just part of using the evolution rule.
This is a difference with respect to conformon-P systems and to EC tissue-like
P systems, but in the proofs below we will not have to take care of this aspect:
communication will be done by evolution rules of the form a → (a, go) which are
directly associated with communication rules of the form (a, go).

3 Computing with Conformon-P Systems

We recall now some results concerning the computing power of conformon-P sys-
tems. Proofs can be found, e.g., in [3].

A conformon-P systems is called value-restricted (in short, VR) if in its initial
configuration all conformons present in an unbounded number of copies have value
0. In this way, the total value of conformons present in the system at any step of
a computation is finite.

Theorem 1. The family of sets of numbers generated by VR conformon-P systems
coincides with the family of sets of numbers generated by partially blind register
machines.

The conformon-P system which can simulate a partially blind register machine
is based on the construction indicated in Figure 3. We recall it because later we
will point out some basic features of this construction useful in inferring results
about (asynchronous) tissue-like P systems.

From Theorem 2 in [5] we know that if in the conformon-P system described
in the previous theorem either priorities, maximal concurrency, or maximal paral-
lelism are added, then the resulting systems are computationally complete.

Theorem 2. The family of sets of numbers generated by VR conformon-P systems
where evolution has priority on communication (if a conformon can be subject of
an interaction rule and it can also pass to another membrane, then the interaction
should be done) coincides with the family of sets of numbers generated by register
machines (hence with the family of Turing computable sets of numbers).
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Fig. 3. The conformon-P system related to Theorem 1.

Also for this case we recall – in Figure 4 – the construction used in proving
that a conformon-P system with priority as above can simulate a register machine.

4 From Conformon- to Tissue-like P Systems

First, let us point out a direct passage from conformon-P systems to EC tissue-like
P systems.

Theorem 3. Given any VR conformon-P system Π = (V, µ, ωz, ack, L1,
. . . , Lm, R1, . . . , Rm), we can construct an EC tissue-like P system Π ′ =
(V ′, µ′, ωz, ack, L′1, . . . , L

′
m, R′1, . . . , R

′
m, P ′1, . . . , P

′
m) such that N(Π ′) = N(Π).

Proof. Consider a conformon-P system Π as above, with µ = (Q, E); denote by
S the sum of the values of the conformons in Π. We construct the tissue-like P
system Π ′ with:

V ′ = {ap | a ∈ V, 0 ≤ p ≤ S};
µ′ = (Q,E′) with (i, j) ∈ E′ for each (i, j, pred) ∈ E;
L′i(ap) = k if Li([a, p]) = k for 1 ≤ i ≤ m;
apbq → ap−ebq+e ∈ R′i if a

e→ b ∈ Ri, 0 ≤ p, q ≤ S, p ≥ e;
(ap, go) ∈ P ′i if (i, j,≥ r) ∈ E for r ≤ p ≤ S or (i, j,≤ r) ∈ E for 0 ≤ p ≤ r.
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Fig. 4. The conformon-P system with priorities related to Theorem 2.

As V is by definition a finite alphabet and Π has finite total value, then the
cardinality of V ′ is finite and equivalent to S|V |. Similarly, also the cardinality of
the sets of rules is finite. It should be clear that the rules in the sets R′i simulate
the interaction between conformons, while the rules in the sets P ′i simulate the
communication of conformons.

The initial configuration of Π is closely related to the one of Π ′: if n copies of
the conformon [a, p] are present in compartment i in Π, then n copies of the object
ap are present in compartment i of Π ′. The system Π ′ simulates Π faithfully either
if ω = in or ω = out. An object will be present in the compartment ack of Π ′ if
and only if a conformon can be present in the compartment ack of Π.

We conclude that N(Π ′) = N(Π). ut
The transcription-P system Π ′ constructed as in the proof of the previous

theorem from a conformon-P system Π is cycle-free as soon as none of the com-
partments in Π contains rules of the form a

e→ b and b
e→ a for a and b conformons

and e ∈ N, and this is indeed the case for the systems constructed in the proofs of
Theorems 1 and 2. Consequently, we have:
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Corollary 1. The family of sets of numbers generated by cycle-fee EC tissue-like
P systems coincides with the family of sets of numbers generated by partially blind
register machines.

Like in the case of conformon-P systems, we can consider that also in tissue-like
P systems the evolution rules have priority on communication rules. Then, from
Theorem 2 we have:

Corollary 2. The family of sets of numbers generated by cycle-free EC tissue-like
P system with priorities coincides with the family of sets of numbers generated by
register machines (hence with the family of Turing computable sets of numbers).

The communication rules of tissue-like P systems can be avoided by adding
targets to objects produced by evolution rules. In systems constructed as above,
starting from conformon-P systems, we will get rules of the following forms:
ab → (c, tar1)(d, tar2), with a, b, c, d symbols of the alphabet of Π and tar1, tar2 ∈
{here, in}, with the mentioning that here is omitted when specifying the rules.

Theorem 4. Given any VR conformon-P system Π, we can construct a tissue-like
P system Π ′ such that N(Π ′) = N(Π).

Proof. Given Π = (V, µ, ωz, ack, L1, . . . , Lm, R1, . . . , Rm), we construct Π ′ =
(V ′, µ′, ωz, ack, L′1, . . . , L

′
m, U ′

1, . . . , U
′
m) such that N(Π ′) = N(Π) as follows. Let

as assume that µ = (Q,E) and S is the sum of the values of the conformons in Π.
Then:

V ′ = {ap | a ∈ V, 0 ≤ p ≤ S};
µ′ = (Q,E′) with (i, j) ∈ E′ for each (i, j, pred) ∈ E;
L′i(ap) = k if Li([a, p]) = k for 1 ≤ i ≤ m;
apbq → ap−ebq+e ∈ U ′

i if a
e→ b ∈ Ri, 0 ≤ p, q ≤ S, p ≥ e;

ap → (ap, go) ∈ U ′
x if (i, j,≥ r) ∈ E for r ≤ p ≤ S or (i, j ≤ r) ∈ E for 0 ≤ p ≤ r.

The system Π ′ simulates Π in a very similar way to the simulation described
in the proof of Theorem 3. In the present proof, rules having here as both target
indicators are equivalent to the interaction rules present in the proof of Theorem
3, and the remaining rules are equivalent to the communication rules present in
the proof of Theorem 3.

Consequently, we obtain N(Π ′) = N(Π). ut
Similarly as before we have:

Corollary 3. The family of sets of numbers generated by cycle-fee tissue-like P
system coincides with the family of sets of numbers generated by partially blind
register machines.

If we assume that evolution rules having here as both target indicators have
priority on the remaining rules, then we have:

Corollary 4. The family of sets of numbers generated by cycle-fee tissue-like P
system with priorities coincides with the family of sets of numbers generated by
register machines (hence with the family of Turing computable sets of numbers).
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5 Concluding Remarks

Starting from some simple observations about the conformon-P systems which
simulate (partially blind or arbitrary) register machines, we have inferred a series
of results about the computing power of asynchronous tissue-like P systems, of the
“standard” form (with targets associated with reaction products) and of the EC
(evolution separated from communication) form. Cycle-free systems are obtained,
which is an important feature for implementing P systems in a biochemical frame-
work.

Some open problems remains to be considered. For instance, the tissue-like
P systems deriving from the four corollaries we stated in the previous section
have the same underlying graph (compartment structure) as the conformon-P
systems depicted in Figure 3 and Figure 4, which, in turn, depend on the number
of instructions of the register machines simulated by the respective conformon-
P systems. Can the number of membranes be bounded (by a small number)? It
is also worth trying to find interesting sets of numbers which can be computed
(generated or accepted) by cycle-free systems as above.
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Salomaa, C. Zandron, eds., Membrane Computing, International Workshop, WMC-
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Summary. Brownian motion refers to erratic movements of small particles of solid mat-
ter suspended in a fluid and it is the basis of the development of many fractals found
in Nature. In this paper we use the Membrane Computing model of P systems with
membrane creation and the software tool JPLANT [15] in order to check the Einstein’s
theory on the Mean Square Displacement of Brownian motion.

1 Introduction

In [5], a first study was presented by showing the relation between fractals and
P systems. On the one hand, a fractal is a shape made of parts similar to the
whole in some way. This self-similarity occurs over an infinite range of scales in
pure mathematical structures but over a finite range in many natural objects such
as clouds, coastlines or snowflakes. In many plants and also organs of animals,
this has led to fractal branching structures. For example, in a tree the branching
structure allows the capture of a maximum amount of sun light by the leaves; the
blood vessel system in a lung is similarly branched so that the maximum amount
of oxygen can be assimilated (see [11]).

On the other hand, as pointed out in [5], cell-like P systems have several prop-
erties which make them suitable for the study of fractals:

• P systems can be considered as a structure of nested processors placed in a
tree-structure, i.e., we can consider computations on many scales.

• If we consider P systems where membranes can be dissolved, divided or cre-
ated, we usually obtain a geometrical shape too irregular to be described in
traditional geometrical language, both locally and globally.
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Fig. 1. First steps for the middle third Cantor set

• Computations in P systems are obtained by the application of a fixed (often
only a few) set of rules. The application of these rules allows to obtain a
configuration Cn+1 from Cn.

• The computation of a P system is discrete, i.e., it is a process performed step
by step.

In that paper a pair of examples were provided based on the cell-like model
of P systems with membrane creation: the middle third Cantor set [2] (see Fig.
1) and the Koch curve [7, 8]. If we put together three Koch curves we have the
fractal known as Koch Snowflake (see Fig. 2).

Self-similar fractals as Koch curve differs from natural fractals in one signifi-
cant aspect. They are exactly self similar, and they cannot be considered as realistic
models of natural fractals. In [5], statistically self-similar objects were also con-
sidered. The property that objects can look statistically similar while at the same
time different in detail at different length scales, is the central feature of fractals
in Nature. Randomizing a deterministic classical fractal is the first approach gen-
erating a realistic natural shape. Figure 3 shows a random Koch snowflake. Note
that this fractal represents a realistic shape of a fractal from Nature.

In this paper we follow this research line and we present a study on the Brown-
ian motion. Brownian motion refers to the erratic movements of small particles of
solid matter suspended in a fluid and it is the basis of many random fractals found
in Nature. The study of fractals and P systems needs, in the same way that other
studies with P systems that involve a large number of configurations, the appro-
priate software in order to do the corresponding simulations. Our study considers
a large amount of branches in the computational tree of a P system and for that
we have used JPLANT, which is a software tool1 that computes the first config-
urations of a computation and draws the corresponding graphical representation.
This graphical representation provides the necessary information for carrying out
our experiments.

The paper is organized as follows. First we recall the stochastic restricted P
system model, its graphical representation and the software tool JPLANT used
for its representation. In section 3, a brief introduction to the Brownian motion
1 A detailed description of JPLANT can be found in [15].
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Fig. 2. First steps for the Koch Snowflake

together with our experiments are presented. Some conclusions and lines for future
research are given in the last section.

2 P Systems with Membrane Creation

In this paper we will consider stochastic restricted P systems with membrane
creation. This P system model has already been used for the study of graphics with
P systems (see [16]). This model follows a research line in Membrane Computing
that incorporates randomness into membrane systems (see [1, 10, 13] and the
references therein). In this model, to pass from a configuration of the system to
the next one we apply to every object present in the configuration a rule chosen
at random, according to given probabilities, among all the rules whose left–hand
side coincides with the object2. The second ingredient in this model is membrane
creation, which was first introduced in [6, 9]. However, our needs are far simpler
than the models found in the literature. In this restricted model we only consider
object-evolution rules and creation rules.

The non-determinism is one of the main features of P systems and the possi-
bility of reaching different configurations leads us to consider different graphical
representations in the evolution of a P system.

A restricted P system with membrane creation is a tuple Π = (O, µ,
w1, . . . , wm, R) where:

1. O is the alphabet of objects. There exist two distinguished objects, F and W
that always belong to the alphabet.

2. µ is the initial membrane structure, consisting of a hierarchical structure of m
membranes (all of them with the same label; for the sake of simplicity we omit
the label).

3. w1, . . . , wm are the multisets of objects initially placed in the m regions de-
limited by the membranes of µ.

4. R is a finite set of evolution rules associated with every membrane, which can
be of the two following kinds:
a) a

p−→ v, where a ∈ O, v is a multiset over O, and 0 ≤ p ≤ 1 is a real number
representing the probability of the rule. This rule replaces an object a
present in a membrane of µ by the multiset of objects v.

2 This idea was also presented in [16].
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Fig. 3. Random Koch Snowflake

b) a
p−→ [v], where a ∈ O, v is a multiset over O, and 0 ≤ p ≤ 1 is a real number

representing the probability of the rule. This rule replaces an object a
present in a membrane of µ by a new membrane with the same label and
containing the multiset of objects v.

The addition of the probabilities of the rules with the same left-hand side must
be one. If there is only one rule for a given left-hand side, then its probability must
be one and, for the sake of simplicity, we omit it.

A membrane structure (extending the membrane structure µ) together with
the objects contained in the regions defined by its membranes constitute a config-
uration of the system. A computation step is performed applying to a configuration
the evolution rules of the system in a non-deterministic maximally parallel way.

A rule in a region is applied if and only if the object occurring in its left–
hand side is available in that region; this object is then consumed and the objects
indicated in the right–hand side of the rule are created inside the membrane. The
rules are applied in all the membranes simultaneously, and all the objects in them
that can trigger a rule must do it. When there are several possibilities to choose
the evolution rules to apply, non-determinism takes place.

2.1 Graphical Representation

In this section we show how to use, through a suitable graphical representation,
restricted P systems with membrane creation to model branching structures. The
key point of the representation relies on the fact that a membrane structure is
a rooted tree of membranes, whose root is the skin membrane and whose leaves
are the elementary membranes. It seems therefore a perfect frame to encode the
branching structure.

Let us suppose that the alphabet O of objects contains the objects F and W
and let us fix the lengths l and w.
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A simple model to graphically represent a membrane structure is to make a
depth-first search of it, drawing, for each membrane containing the object F , a
segment of length m× l, where m is the multiplicity of F . If the number of copies
of F in a membrane increases along the computation, the graphical interpretation
is that the corresponding segment is lengthening. Analogously, the multiplicity of
the symbol W specify the width of the segments to be drawn as follows: if the
number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n× w.

Each segment is drawn rotated with respect to the segment corresponding to
its parent membrane. In order to determine the rotation angle we need to fix a
third parameter δ. Such angle δ together with the length l and the width w will
determine the picture of the P system.

In order to compute the rotation angle of a segment with respect to its parent
membrane we consider two new objects that can appear in the alphabet: + and −.
The rotation angle will be n× δ, where n is the multiplicity of objects “+” minus
the multiplicity of objects “−” in the membrane. That is, each object “+” means
that the rotation angle is increased by δ whereas each object “−” means that it is
decreased by δ.

Inside the membranes other objects can appear that do not have geometrical
interpretation. They are related to the development of the graph in time.

For example, let us consider Π2 the following restricted P system with mem-
brane creation:

• The alphabet of objects is O = {F, W,Bl, Bs, Br, L, L1, E}.
• The initial membrane structure together with the initial multiset of objects is

[F 2 W Bl Bs L1 E].
• The rules are:

Bl
1/2−−→ [+ F W Bl Bs LE] L → LF

Bl
1/2−−→ [−F W Bl Bs LE] L1 → L1 F 2

Br
1/2−−→ [+ F W Bl Bs LE] E → E W

Br
1/2−−→ [−F W Bl Bs LE] Bs → [F W Bl Br L1 E]

There exist two rules for the evolution of the object Bl and two possibilities
for the evolution of the object Br. The probability for each choice is 1/2. Notice
that we do not make explicit the probability of the rule when this is one.

Figure 4 shows four different configurations after the second step of this P
system with the angle δ = 15.

2.2 Software

As usual, the hand-made simulation of the evolution of a P system is a heavy
task. In this paper we use a new software tool called JPLANT3. It computes
3 A detailed description with examples can be found in [15].
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Fig. 4. Four configurations after the second step

the first configurations of a computation of a stochastic restricted P system with
membrane creation and draws the corresponding graphical representation of the
configurations of such computation.

The program has been written in Java and it has a nice intuitive user-friendly
graphical interface. The output is a picture with a set of connected segments drawn
according to the rules described in Section 2. For each new configuration, a new
picture is drawn, so the output of this tool is a sequence of pictures which can be
saved in several computer graphic formats.

The graphical representation of one configuration is not unique. It depends on
the parameters l, w and δ which determine the length and width of the segments
as well as the rotation angle with respect to the segment corresponding to the
parent membrane. These parameters must be also provided by the user and with
the initial configuration and the rules, they are the input of the tool.

3 Brownian motion

Brownian motion refers to erratic movements of small particles of solid matter
suspended in a liquid. These movements can only be seen under microscope. Af-
ter the discovery of such movement of pollen it was believed that the cause of
the motion was biological in nature. However, about 1828, the botanist Robert
Brown realized that a physical explanation, rather than the biological one, was
correct. The effect is due to the influence of very light collisions with the sur-
rounding molecules. The standard theory of Brownian motion due to Einstein,
Smoluchowski, Langevin, Fokker and Planck is based on the model where a parti-
cle moves in a dense medium which generates friction and random collisions.
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In 1905 Einstein published a mathematical study of this motion, which even-
tually led to Perrin’s Nobel prize-winning calculation of Avogadro’s number. A
rigorous probabilistic model of Brownian motion was proposed by Wiener in [18].
He constructed a process which exhibits random behavior very similar to that of
Brownian motion. The theoretical problems connected with Brownian motion have
many interesting applications in different fields, such as in the theory of sound [14],
in physical chemistry [4] and biophysics [17].

In this paper we will consider the special case in which the particle moves a
constant distance in each time unit (constant speed) and after each time unit the
particle randomly chooses a new direction. The question is to know if we can make
any prediction about the total displacement after n steps.

Instead of asking for the total expected displacement, i.e., the displacement
of a particle averaged over many samples, the specialized literature focuses on
the average of the square of the displacements, the mean square displacement.
In 1905, Einstein showed that the mean square displacement is proportional to
time4. The factor of proportionality depends on the speed, the step length and
the dimension of the space. This is the fundamental property of Brownian motion,
verified experimentally in 1908 by the French physicist Jean Perrin (see [12]).

Next, we shows the result of our experiments in order to check the fundamental
property of the Brownian motion. We use the probabilistic P system

Initial configuration: [F W H]

Rules: H
1/24−−−→ [−F W H]

H
1/24−−−→ [−2 F W H]

H
1/24−−−→ [−3 F W H]

. . .

H
1/24−−−→ [−23 F W H]

H
1/24−−−→ [F W H]

where all the segments have the same length and each new step can a deviation of
n× 15 degrees, where n is non-deterministically chosen in {0, 1, 2, . . . , 23}.

Since JPLANT is able to simulate discrete Brownian trajectories, we can try
to link classical applications of such movements with this new modeling software.

3.1 The experiment

A particle dropped into a fluid describes a Brownian trajectory. Because of the
impacts along its path with other particles, several different routes can be traced
for this single traveler. For each impact, the trajectory of this moving particle
changes its direction. If we assume that no energy is lost due to the impacts,
4 See [3] for details.
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Fig. 5. Snapshot from JPLANT showing a Brownian trajectory.

the set of possible trajectories can be modeled by JPLANT, just by giving some
interpretation to the parameters.

This model of trajectory is quite common in physical and biological systems;
from solid state electronics to cell membrane dynamics, even in stochastic signal
processes there are many examples of Brownian motions describing several noisy
behaviors.

When not only one particle but many of them (a gas cloud, for example) are
moving into a fluid, this is called a diffusion process. Depending on the conditions
and materials, these processes have different behaviors. The same happens when
a black ink drop falls into a glass of liquid; depending on the densities, the shapes
of the molecules, the viscosities, the temperature, etc., the black cloud will spread
faster or slower. In this way, a diffusion process is the result of an overlapping of
many Brownian motions evolving in a parallel way.

Albert Einstein studied Brownian motions and extracted some essential math-
ematical properties from them. For example, he showed that the mean square of
the distance traveled by a particle is proportional to the elapsed time. Using the
square of the distances instead of the distances themselves is a key point. The
mean of the distances does not give any information because of the uniform dis-
tribution of the possible orientations for each step in the path. If we consider a
one-dimensional Brownian motion, the expected value for the position is the origin
(50% for positive step and 50% for negative step). Nonetheless we have a positive
magnitude for each step with squared distances, which admits some parameter
definitions. Einstein proposed the following expected value for the Mean Square
displacement (MSD, for short):
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Fig. 6. When N increases, the fitting gets better.

MSD =< s2 >= kDt + C (1)

This expression can be calculated from a set of Brownian particles which are
diffusing into a fluid. When the MSD data fits into a linear function, the slope is a
measurement of how fast the particles are expanding into the fluid. The parameter
k is a constant which depends on how many dimensions are considered (for three-
dimensional diffusions k = 6, for two-dimensional diffusions k = 4). The parameter
C is just an offset adjustment needed for the regression and D is the diffusion rate.

After a statistical analysis of the data provided by JPLANT, it is possible to
model problems involving such diffusion processes. We propose two tasks to be
accomplished by Brownian data from JPLANT:

• Check the Einstein’s formula and its convergence. Einstein claimed that if the
number of experiments grows, the linearity gets stronger, so the absolute error
between raw data and the linear regression must tend to zero.

• If the probability of collision increases, that means that for a fixed time of diffu-
sion, the ability to diffuse must decrease. As far as the diffusion rate measures
this, the coefficient should get lower as probability increases.

Einstein’s relation for the Mean Square Displacement claims that it is directly
proportional to the elapsed time. Thus, if the number of observed trajectories
under same conditions increases, the linear relation gets stronger, so the relation
(1) fits into the data in a better way.

In order to check Einstein’s claim we designed the following experiment:
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• We use JPLANT in order to get the data corresponding to one hundred bidi-
mensional trajectories of Brownian particles.

• For each N with 1 ≤ N ≤ 100, we calculate the MSD of the corresponding
trajectories and its linear regression.

• In order to consider how the MSD fits to the regression line we calculate the
Mean Squared Error.

• The experiments show that when the number of trajectories N considered
increases, then the Mean Squared Error tends to zero as Einstein predicted.

Figure 6 illustrates the results of the experiment. In the first frame, only two
trajectories are considered. It is easy to check that the points do not fit into the
regression line. In the second frame, 10 trajectories are considered and the MSD fits
better into the regression line. The following four frames shows the adjustment to
the regression line for 25, 50, 75 and 100 trajectories so the data cloud gets tighter
to the line as N gets higher.

Figure 7 shows the relation between the number of experiments and the Mean
Squared Error. It is clear that when the number of trajectories increases, the MSE
tends to zero.

4 Conclusions and Future Work.

In this paper we have used JPLANT as a Brownian simulation tool, testing some
Einstein’s results and generating new possible paths of study, starting from the
idea of a partial recreation of a real experiment. The same methodology, extended
appropriately, could be applied to other biological processes or electronic models.
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This way, we provide a new application for membrane computing, being useful to
model and, maybe, extend classical ways of simulation for such problems.

As a goal for future simulations, we propose the modeling of real experiments
maybe by extending the P system model with new types of rules that capture
the dynamics of the real experiments: division, cooperation, dissolution, . . . In the
same way, a deeper study of the use of probabilities in Membrane Computing
can be useful in order to model experiments from the real world. Thermic noise or
biological membranes are good candidates to be simulated in the immediate future
because of the extensive bibliography and the practical use of these concepts.
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Summary. We formulate here a few technical (mathematical) open problems related to
the in vitro bio-chemical experiment planned in Technion for computing the Fibonacci
sequence in terms of P systems. So-called local-loop-free P systems are introduced and
their universality for various types of P systems as well as other issues are mentioned as
research questions.

1 Introduction

Although in the fall of this year membrane computing counts one decade since
its beginnings (since the paper [1] was circulated as a technical report of TUCS,
Finland), so far no attempt to implement P systems in a laboratory, using a bio-
chemical support, was reported. Recently, such an experiment was planned, in the
Chemical Faculty of Technion Institute, Haifa. This will be an in vitro experiment,
using test tubes as membranes and DNA molecules as objects, evolving under the
control of enzymes. The computation to implement was chosen to be the generation
of a bunch of numbers in the famous Fibonacci sequence.

As expected, such an attempt raised a series of difficulties related to the type
of P system which is possible to simulate/implement. After briefly mentioning
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these difficulties, we introduce the type of P systems which seem to avoid them.
The basic issue is to have no loops in the evolution of objects/substances present
in a membrane/compartment, because this would lead to cycles which cannot be
“read” from outside in a useful way, to equilibrium states which are not “useful”
for the computation.

Local-loop-free (in short, LL-free) P systems are introduced and the power of
this restriction is a natural issue to investigate from a mathematical and compu-
tational point of view. We only show here that LL-free tissue-like P systems with
cooperative rules are universal, but the question remains open for other classes
of P systems, in particular, for the catalytic ones. A few related questions are
mentioned.

2 Difficulties and (Hopefully) Solutions Related to
Implementing P Systems

The basic features of membrane computing are (1) compartmentalization, by means
of cell-like membranes, (2) multisets (sets with multiplicity associated with their el-
ements, which means counting the objects present in membranes), (3) bio-inspired
evolution rules, which are reaction-like (for processing multisets), communication
rules (e.g., symport and antiport rules), membrane handling rules, etc., (4) syn-
chronization of compartment evolution, for instance, using the rules in a maximally
parallel manner, (5) communication between compartments; we can also mention
(6) defining the result of a computation mainly for halting computations, but this
is not specific to membrane computing (and can also be avoided).

In order to implement a P system in a laboratory, all or most of these features
should be implemented. Compartments can be obtained by using standard test
tubes or similar labware, multisets are usual in bio-chemistry, but... without a
precise counting. Still, by defining carefully some “moles” of substances, one can
count in terms of such ad-hoc moles. Anyway, full synchronization and parallelism
cannot be guaranteed by bio-chemical reactions, hence a certain degree of non-
determinism/approximation should be allowed in the experiment. In particular, a
good degree of synchronization can be obtained by “waiting enough”, such that all
reactions that can take place in a test tube actually take place – and this raises an
important issue: these reactions should not cycle, the process should be finite in
each compartment of the system. Counting is also needed when reading the result
of a computation.

In the experiment planned in Technion, the above mentioned difficulties are
solved as follows: (1) test tubes for membranes (compartments), (2) multisets
of pre-defined “moles” of DNA molecules, (3) enzyme driven operations with the
DNA molecules, with the precaution not to have any cycle in any compartment, (4)
waiting enough for reactions to take place and then (5) moving all relevant objects
to the next tube in a mechanical way, with (6) the result read by spectrophotometry
(certain molecules are marked and their number is estimated).
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These lab solutions request finding a suitable problem or class of problems
for which no cycle of substances is possible in any compartment and the solution
allows a degree of approximation. We said nothing above about halting, because in
the experiment this feature is not taken into consideration: a sequence of numbers
(the famous Fibonacci one) are computed, hence several outputs, at precise time
moments, are produced.

3 Local-loop-free P Systems

From a theoretical point of view, the central issue is that of finding a non-trivial
class of P systems such that the reactions from each compartment are completed
in a finite (better: small) number of steps. Otherwise stated, no compartment can
contain a cycle of objects which can run forever.

This intuitive goal can be reached in various formal ways. For instance, we can
request that no local transition graph contains a cycle (the catalysts are ignored).
Specifically, for each region i of a P system with the set of objects O and set Ri

of rules in region i, the transition graph γi = (O,E) associated with region i has
the set of edges defined as follows: for each a, b ∈ O,

(a, b) ∈ E iff there is u → v ∈ Ri such that |u|a ≥ 1, |v|b ≥ 1.

(For a string x and a symbol a we denote by |x|a the number of occurrences of a
in x.)
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A stronger condition is to impose that no object produced in a compartment
can evolve in the same compartment. In the case of non-cooperative systems, this
means that the local transition graph contains no paths of length longer than
or equal to two. (For cooperative systems this assertion is not true: having the
rules a → b, bc → cc, the local transition graph contains the path (a, b, c), but it is
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possible not to actually have two reactions in a row, because without c, the product
b of the first reaction cannot evolve.) This latter condition is similar to the way
the P systems with immediate communication are defined (see [2]): each product
of a reaction is immediately communicated to one of the neighboring membranes.

Thus, formally, we can define several properties which ensure the local-loop-
freeness. Defining such properties and investigating the P systems obeying them
is one of the research topics we want to point out here.

'

&

$

%

'

&

$

%

'

&

$

%

0

1

2

e

g → eout

b → aineouteout

f → aindin

a, d

a → bout

d → foutgout

Fig. 2.

In what follows, we briefly discuss the P systems which are local-loop-free (in
short, LL-free) in the sense of the previous definition: no cycle exists in any local
transition graph.

4 Some Examples

We start by considering three (non-semilinear) sets of numbers which can be com-
puted by P systems of a rather similar form. Figures 1, 2, and 3 present non-
cooperative P systems (denoted by Π1,Π2,Π3) generating, respectively, the fol-
lowing sets of numbers:

N(Π1) = {2n | n ≥ 1},
N(Π2) = {n2 | n ≥ 1},
N(Π3) = {1, 2, 3, 5, 8, 13, ...}.
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The third sequence is the Fibonacci one (each element is the sum of the previous
two; here we start with 1 and 2 as the initial numbers), and this system Π3 is
planned to be implemented.

These systems can be represented in a more intuitive way (in what concerns
the reactions taking place in compartments and the objects communicated) as
tissue-like P systems with immediate communication. For systems Π1 and Π3 this
is done in Figures 4 and 5, respectively; the case of Π2 is left to the reader. On the
arrows are indicated the objects which are communicated between the respective
membranes.
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In all cases, of both cell-like and tissue-like systems, the result is collected in
the form of the number of copies of a special object e in a designated membrane
which has no other role in the system. We call it a output membrane; it contains
no rule, hence no objects can evolve in it. In all cases, the environment can be
used instead of this membrane, but it is ”more practical” to work with a output
membrane.
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During the discussions in Technion in search of a suitable problem to imple-
ment, when we have arrived at the construction of the system in Figure 3, a
generalized glee was expressed by the young members of the team, who exclaimed:
“this is doable!” The idea was summarized at various stages in nice graphical forms
– one of them is given in Figure 6 (the output membrane is here the inner one
and one additional external membrane is considered as an infinite supplier of “raw
materials”) – and then a group photo was taken, to celebrate the moment (see
Figure 7). Well, whether or not this moment deserves also to be celebrated with
champagne it remains to be seen after trying the experiment. . .

Fig. 6.
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Fig. 7.

5 And Now Start the Problems

We list here only some of the most natural ones:

• Prove universality for LL-free P systems. Of course, in this case we need to
consider as successful only halting computations. For tissue-like cooperative
systems we give a proof of universality in the next section, but for other classes
of P systems, in particular, for catalytic P systems (with two or more cata-
lysts, or with one catalyst and various controls on using the rules) the problem
remains open.

• What about considering systems with a membrane structure like those in Fig-
ures 1–3, i.e., with only two membranes for computing and one additional
membrane for collecting the result of a computation? Are also such LL-free
systems universal? Note that even the system in the next section, using coop-
erative rules, has three “computing” membranes.

• Find other examples of systems (of interest) with the LL-freeness property or
with the membrane structure of the form in Figures 1–3.

• Note that the systems considered above are of a generative form, they start
from an initial configuration and generate infinite sequences of numbers. Devise
input-output systems, computing a function (of some interest).
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• Is any chance to solve NP-complete problems in this framework?
• What about sorting, ranking, or other computer science applications of P sys-

tems (as reported in the literature), based on LL-free P systems?

6 Universality of Cooperative LL-free Systems

We denote by tNOP llf
m (coo) the family of sets of numbers N(Π) generated by LL-

free tissue-like P systems with cooperative rules having at most m ≥ 1 membranes,
with immediate communication and with the result collected in a special output
membrane which has only this role (no object evolve in this membrane, it has
no rule inside). If the result is collected in the environment, then this output
membrane can be saved, but here we choose to consider it.

In this framework, we can immediately prove the following result (as usual,
NRE denotes the family of recursively enumerable sets of natural numbers):

Theorem 1. tNOP llf
m (coo) = NRE for all m ≥ 4.

The proof is based on simulating a register machine M = (m,H, l0, lh, I) (num-
ber of registers, set of labels, initial label, halting label, set of instructions) by a P
system Π constructed as suggested in Figure 8. Without any loss of the generality,
we may assume that when halting, M has all registers different from register 1
empty.

All labels in H, primed versions of them (for each l ∈ H we consider
l′, l′′, l′′′, liv, l̄, l̂, too), as well as objects ar, 1 ≤ r ≤ m, associated with the registers
of M are objects in Π. We start with only one object in the system, namely l0,
present in membrane 1.

For each ADD instruction li : (ADD(r), lj , lk) in I we introduce the rules

li → ar l̄i in membrane 1,

l̄i → l̂i in membrane 2,

l̂i → lj and

l̂i → lk in membrane 3.

The simulation of the ADD instruction is obvious: the increment of register r is
done in membrane 1 and the non-deterministic choice of the next instruction to
apply is done in membrane 3.

For each SUB instruction li : (SUB(r), lj , lk) in I we introduce the rules

li → l′il
′′
i in membrane 1,

l′iar → l′′′i and
l′′i → livi in membrane 2,

livi l′′′i → lj and
livl′i → lk in membrane 3.
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livi l′′′i → lj
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Fig. 8.

The simulation of the SUB instruction is done in three steps (a complete cycle
through membranes 1, 2 and 3). In membrane 1 one introduces the objects l′i, l

′′
i

which are moved, together with all objects ar to membrane 2. Here, l′i tries to
subtract one from the value of register r. If this is possible, then the object l′′′i

is introduced, otherwise l′i remains unchanged. Simultaneously, l′′i introduces the
object livi . This object behaves as a checker in membrane 4: if it mets here l′′′i

(hence the subtraction was possible), then one introduces the object lj , otherwise
one introduces the object lk. In both cases the continuation is as necessary in the
register machine M .

We also consider the rules

lha1 → l̄he in membrane 1,

l̄h → l̂h in membrane 2,

l̂h → lh in membrane 3.

In the end of the computation with respect to M , the object lh transforms all
objects a1 (hence the contents of the first register of M) into objects e, which are
moved to membrane 4. Thus, the computation ends with a number of copies of
e in membrane 4 equal to the number generated in the first register of M . Thus,
N(M) = N(Π) and we have the inclusion NRE ⊆ tNOP llf

4 (coo).
The converse inclusion can be proved in a straightforward way or we can invoke

for it the Turing-Church thesis. 2
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Summary. Recently we have considered the possibility of using spiking neural P systems
for solving computationally hard problems, under the assumption that some (possibly ex-
ponentially large) pre-computed resources are given in advance. In this paper we continue
this research line, and we investigate the possibility of solving numerical NP-complete
problems such as Subset Sum. In particular, we first propose a semi–uniform family of
spiking neural P systems in which every system solves a specified instance of Subset
Sum. Then, we exploit a technique used to calculate Iterated Addition with boolean
circuits to obtain a uniform family of spiking neural P systems in which every system
is able to solve all the instances of Subset Sum of a fixed size. All the systems here
considered are deterministic, but their size generally grows exponentially with respect to
the instance size.

1 Introduction

Spiking neural P systems (SN P systems, for short) have been introduced in [11] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems can also be viewed as an evolution of P systems
[24, 25, 27, 28] (the latest information can be found in [34]) corresponding to a
shift from cell-like to neural-like architectures. We recall that this biological back-
ground has already led to several models in the area of neural computation, e.g.,
see [19, 20, 8].



194 M.A. Gutiérez-Naranjo, A. Leporati

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one of such
rules must be used. If two or more rules could be applied, then only one of them
is nondeterministically chosen. Thus, the rules are used in the sequential manner
in each neuron, but neurons function in parallel with each other. Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.
When a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

Formally, a spiking neural membrane system (SN P system, for short) of degree
m ≥ 1, as defined in [10] in the computing version (i.e., able to take an input and
provide and output), is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) firing (also spiking) rules E/ac → a; d, where E is a regular expression
over a, and c ≥ 1, d ≥ 0 are integer numbers; if E = ac, then it is
usually written in the following simplified form: ac → a; d;

(2) forgetting rules as → λ, for s ≥ 1, with the restriction that for each
rule E/ac → a; d of type (1) from Ri, we have as 6∈ L(E) (the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

A firing rule E/ac → a; d ∈ Ri can be applied in neuron σi if it contains k ≥ c
spikes, and ak ∈ L(E). The execution of this rule removes c spikes from σi (thus
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leaving k − c spikes), and prepares one spike to be delivered to all the neurons σj

such that (i, j) ∈ syn. If d = 0 then the spike is immediately emitted, otherwise it
is emitted after d computation steps of the system. As stated above, during these
d computation steps the neuron is closed, and it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost), and cannot fire (and even select) rules. A forgetting
rule as → λ can be applied in neuron σi if it contains exactly s spikes, and no firing
rules are applicable. The execution of this rule simply removes all the s spikes from
σi.

The initial configuration of the system is described by the numbers n1, n2,
. . . , nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the contents of each neuron
and its state, which can be expressed as the number of steps to wait until it
becomes open (zero if the neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the
configuration where neuron σi contains ri ≥ 0 spikes and it will be open after
ti ≥ 0 steps, for i = 1, 2, . . . , m; with this notation, the initial configuration of the
system is C0 = 〈n1/0, . . . , nm/0〉.

A computation starts in the initial configuration. In order to compute a function
f : N→ N (functions of the kind f : Nα → Nβ , for any fixed pair of integers α ≥ 1
and β ≥ 1, can also be computed by using appropriate bijections from Nα and Nβ

to N), a positive integer number is given in input to a specified input neuron. In
the original model, as well as in some early variants, the number is encoded as the
interval of time steps elapsed between the insertion of two spikes into the neuron.
To pass from a configuration to another one, for each neuron a rule is chosen
among the set of applicable rules, and is executed. Generally, a computation may
not halt. However, in any case the output of the system is considered to be the
time elapsed between the arrival of two spikes in a designated output cell. Other
possibilities exist to encode input and output numbers, as discussed in [10]: as the
number of spikes contained in a given neuron at the beginning (resp., the end) of
the computation, as the number of spikes fired in a given interval of time, etc.

A useful extension to the standard model defined above, already considered in
[15, 16, 17, 12], is to use several input neurons, so that the introduction of the
encoding of an instance of the problem to be solved can be done in a faster way,
introducing parts of the code in parallel in various input neurons. Formally, we
can define an SN P system of degree (m, `), with m ≥ 1 and 0 ≤ ` ≤ m, just like
a standard SN P system of degree m, the only difference being that now there
are ` input neurons denoted by in1, . . . , in`. A valid input for an SN P system of
degree (m, `) is a set of ` binary sequences, that collectively encode an instance of
a problem.

The previous definitions cover many types of systems/behaviors. By neglecting
the output neuron we can define accepting SN P systems, in which the natural
number (or the vector of natural numbers, in the case of systems having ` > 1 input
neurons) given in input is accepted if the computation halts. On the other hand, by
ignoring the input neuron (and thus starting from a predefined input configuration)
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we can define generative SN P systems. In [11] it was shown that generative SN
P systems are universal, that is, can generate any recursively enumerable set of
natural numbers. Moreover, a characterization of semilinear sets was obtained by
spiking neural P systems with a bounded number of spikes in the neurons. These
results can be obtained also for some restricted forms of SN P systems: [9] shows
that one of the following features can be avoided while keeping universality: time
delay greater than 0, forgetting rules, outdegree of the synapse graph greater than
2, and regular expressions of complex form. In [6] it is shown that universality is
kept even if we remove some combinations of two of the above features. Finally, in
[29] the behavior of SN P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [3] SN P systems were studied
as language generators (over the binary alphabet {0, 1}).

Spiking neural P systems can also be used to solve decision problems, both in
a semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q we build an SN P system ΠQ,I ,
whose structure and initial configuration depend upon I, that halts (or emits a
specified number of spikes in a given interval of time) if and only if I is a positive
instance of Q. On the other hand, a uniform solution of Q consists in a family
{ΠQ(n)}n∈N of SN P systems such that, when having an instance I ∈ Q of size
n, we introduce a polynomial (in n) number of spikes in a designated (set of)
input neuron(s) of ΠQ(n) and the computation halts (or, alternatively, a specified
number of spikes is emitted in a given interval of time) if and only if I is a positive
instance. The preference for uniform solutions over semi–uniform ones is given
by the fact that they are more strictly related to the structure of the problem,
rather than to specific instances. If the instances of a problem Q depend upon two
parameters (as is the case of Subset Sum, where n + 1 is the number of integer
values contained into the generic instance (V = {v1, v2, . . . , vn}, S), and k is the
number of bits needed to represent each of these values), then we will denote the
family of SN P systems that solves Q by {ΠQ(〈n, k〉)}n,k∈N, where 〈n, k〉 indicates
the positive integer number obtained by applying an appropriate bijection (for
example, Cantor’s pairing) from N2 to N.

The present paper considers SN P systems for solving decision problems, contin-
uing the papers [17], [16] and [15], where we dealt with the NP-complete decision
problems Subset Sum, sat and 3-sat. For all these problems, constant time and
polynomial time solutions were provided by using SN P systems constructed both
in the semi-uniform and in the uniform setting, working in a non-deterministic
way, and also using a series of ingredients added to SN P systems of the standard
form: rules that produce several spikes at a time, the possibility to have a choice
between spiking rules and forgetting rules, forgetting rules controlled by regular
expressions, rules applied in the maximal parallel way, etc. Here we consider a
different situation: we assume that a pre-computed (standard) SN P system is
given in advance, possibly having an exponential size with respect to the size of
the instances of the problem we want to solve, and we provide a semi–uniform
and a uniform constructions that solve Subset Sum in a polynomial time. All the
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systems we will propose work in a deterministic way. Note that this setting was
already considered in [12], where polynomial time uniform solutions to sat and
3-sat were provided.

An important observation is that we will not specify how our pre-computed
systems could be built. However, we require that such systems have a regular
structure, and that they do not contain neither “hidden information” that sim-
plify the solution of specific instances, nor an encoding of all possible solutions
(that is, an exponential amount of information that allows to cheat while solving
the instances of the problem). These requirements were inspired by open prob-
lem Q27 in [27]. Let us note in passing that the regularity of the structure of
the system is related to the concept of uniformity, that in some sense measures
the difficulty of constructing the system. For example, when considering families
{C(n)}n∈N of boolean circuits, or other computing devices whose number of inputs
depends upon an integer parameter n ≥ 1, it is required that for each n ∈ N a
“reasonable” description (see [2] for further discussion on the meaning of the term
“reasonable” in this context) of C(n), the circuit of the family which has n inputs,
can be produced in polynomial time and logarithmic space (with respect to n) by
a deterministic Turing machine whose input is 1n, the unary representation of n.
In this paper we will not delve further into the details concerning uniformity; we
just rely on reader’s intuition, by stating that it should be possible to build the
entire structure of the system using only a polynomial amount of information and
a controlled replication mechanism, as it already happens in P systems with cell
division.

The paper is organized as follows. In section 2 we recall the definition of the
Subset Sum problem, as well as a classical solution algorithm based on the dy-
namic programming paradigm. In section 3 we elaborate such an algorithm to
obtain a family of SN P systems that solves Subset Sum in a semi–uniform way.
In section 4 we propose a completely different construction, that allows to uni-
formly solve all the instances of Subset Sum of any specified size; the instances
are provided in input to the systems of the family by specifying their values in
binary form. Finally, section 5 contains the conclusions and some directions for
further research.

2 The Subset Sum Problem

Subset Sum is one of the most known NP-complete decision problems. We can
state it as follows, in a form which is equivalent to the one given in [7, p. 223].

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S.

• Question: is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?



198 M.A. Gutiérez-Naranjo, A. Leporati

The following well known algorithm [5] solves Subset Sum by using the Dy-
namic Programming technique. In particular, the algorithm returns 1 on positive
instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)
for j ← 0 to S

do M [1, j]← 0
M [1, 0]←M [1, v1]← 1
for i← 2 to n

do for j ← 0 to S
do M [i, j]←M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j]←M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S +1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm may work in exponential time and space. This behavior is usually
referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n log K), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(log K). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the
integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.
Indeed, Subset Sum is not NP-complete in the strong sense, meaning that it does
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not remain NP-complete when we represent its instances in unary form [7]. Stated
otherwise, strongly NP-complete problems remain NP-complete even when the
numbers contained into their instances are small.

As a consequence of these observations, the SN P systems that we will consider
in section 4 will take in input the instances of Subset Sum as n + 1 strings
encoded in binary form, where the length of each string will be k = log K. Before
presenting the uniform solution of section 4, in the next section we first elaborate
the above dynamic programming algorithm to provide a semi–uniform family of
SN P systems that solves the Subset Sum problem.

3 A Semi–uniform Solution to Subset Sum

Let SS(n, k) denote the set of instances of Subset Sum which can be built by using
n + 1 positive k-bit integer numbers. In this section we present a semi–uniform
family {Π(I)}I∈SS(n,k) of SN P systems such that for every I ∈ SS(n, k) the
system Π(I) determines whether I = ({v1, v2, . . . , vn}, S) is a positive instance of
Subset Sum. The size of Π(I) will be Θ(nS), hence exponential with respect to
the instance size. However, the computation time of Π(I) will be linear in n and
independent of k.

System Π(I) is depicted in Figure 1 in a schematic way. The system is com-
posed by n layers, horizontally arranged, one for each iteration of the dynamic
programming algorithm illustrated in the previous section. The computation starts
in the first (the uppermost) layer, and proceeds downwards until the lowest (i.e.,
the n-th) layer has been reached. The neurons of the first layer contain the firing
rule a→ a; 0, that propagates the spikes eventually contained in these neurons to
the appropriate neurons of the second layer. All the other neurons, from layer 2
down to layer n, contain two firing rules:

a→ a; 0 and a2 → a; 0

that make the neurons operate like or boolean gates.
The connections among the neurons depend upon the instance I = ({v1, v2,

. . . , vn}, S) of Subset Sum to be solved. Precisely, to determine the value of
M [i, j] in the above algorithm we need to compute the maximum between the
values M [i− 1, j] and M [i− 1, j − vi], provided that j − vi ≥ 0, otherwise we put
M [i, j] equal to M [i− 1, j]. The rationale behind these formulas is the following:
as stated above, M [i, j] has to be set to 1 if and only if there exists a subset of
{v1, v2, . . . , vi} such that the sum of its elements is equal to j. Thus we have two
possibilities: either the subset contains vi, or not. In the former case, there must
be a subset of {v1, v2, . . . , vi−1} such that the sum of its elements is equal to j−vi

(that is, M [i − 1, j − vi] must be 1); in the latter case, there must be a subset of
{v1, v2, . . . , vi−1} whose elements sum up to j (that is, M [i− 1, j] = 1). If j < vi

then clearly vi cannot be in any subset of {v1, v2, . . . , vi} whose sum is equal to
j, and thus in this case we only check the value of M [i− 1, j]. If i = 1 then these
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Fig. 1. A schematic view of the system Π(I) used to solve a specified instance I =
({v1, v2, . . . , vn}, S) of Subset Sum, where each of the values v1, v2, . . . , vn, S is a k-bit
positive integer number
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formulas cannot clearly be applied. However, we note that the only two subsets of
{v1} we can build are the empty set ∅ and {v1} itself, hence M [1, 0] = M [1, v1] = 1
whereas M [1, j] = 0 for all j 6∈ {0, v1}. Since the admissible values of M [i−1, j] and
of M [i− 1, j− vi] are 0 and 1, computing the maximum is the same as computing
a logical or. In the system depicted in Figure 1, the j-th neuron from the left,
0 ≤ j ≤ S, corresponds to M [i, j]. We denote 1 (resp., 0) by the presence (resp.,
absence) of a spike. Such a neuron, for 1 ≤ i ≤ n, has a synapse going to the

Fig. 2. The two cases to be considered to compute the value of M [i, j]

neuron that corresponds to M [i + 1, j], and possibly (if vi+1 + j ≤ S) another
synapse going to the neuron that corresponds to M [i + 1, j + vi+1] (see Figure 2).
In the last layer, only the neuron that corresponds to M [n, S] has a synapse going
to a neuron named out, which is the output neuron and does not contain any rule.

In the initial configuration of the system, one spike is put in the neurons that
correspond to M [1, 0] and M [1, v1]; all the other neurons are empty. During the
i-th computation step, with 1 ≤ i ≤ n − 1, the neurons in the i-th layer perform
their computation, and send the corresponding result to the appropriate neurons
of the next layer. At the n-th computation step, all the neurons in the last layer
send the spikes produced by them to the environment (where they are lost) but
the rightmost neuron, that sends the result of its computation (0 or 1 spikes) to
neuron out. Hence, the instance I of Subset Sum represented by the structure
and the initial configuration of Π(I) is positive if and only if one spike arrives in
neuron out during the n-th computation step. After the result of the computation
(0 or 1 spikes in neuron out) has been produced, the computation halts and the
spike eventually contained in neuron out remains there. The computation time of
Π(I) is linear in n, independent of the values v1, v2, . . . , vn and S contained in I,
but the number of neurons in the system is n(S +1)+1, which is exponential with
respect to the instance size. This last fact would be considered unacceptable in
traditional complexity theory, but recall that in this paper (as well as in [12]) we
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are assuming that exponential size resources — encoded in exponential size SN P
systems of regular structure — are admitted.

The structure of Π(I) is indeed very regular: all the instances composed by
n integer values plus a required sum equal to S produce systems having n layers,
each composed by S + 1 neurons. The values v1, v2, . . . , vn determine some of the
connections between the neurons (all the other connections go from every neuron
in each layer to the neuron that occurs in the same position in the next layer);
precisely, for all i ∈ {1, 2, . . . , n − 1} the value vi determines the presencce of a
synapse from every j-th neuron in layer i, such that j+vi+1 ≤ S, to the (j+vi+1)-
th neuron of layer i+1. Value v1 also determines the neuron in the first layer (apart
from the leftmost) that will receive one spike in the initial configuration. An open
question, that we will not address in this paper, is: what kind of operations are
needed to augment the power of deterministic Turing machines so that, given any
instance I of Subset Sum, the new machine is able to produce a “reasonable”
description of Π(I) in a polynomial time? Note that in this case we should also
recast the meaning of the term “reasonable”, since in [7] this notion concerns only
polynomial size constructions.

4 A Uniform Solution to Subset Sum

Let us present now a uniform family {Π(〈n, k〉)}n,k∈N of SN P systems that solves
the Subset Sum problem in a uniform way. Precisely, for all n, k ∈ N the system
Π(〈n, k〉) will solve all the instances I ∈ SS(n, k) which are composed by n + 1
positive k-bit integer numbers. Such instances are provided in input in binary
form, as a sequence of (n + 1)k bits that are fed to the system in parallel (which
means that each bit is inserted into an appropriate input neuron).

Figure 3 depicts the system Π(〈n, k〉) in a schematic way. The instance I ∈
SS(n, k) is inserted into the leftmost neurons, which are labelled with a name
that indicates the bit which has to be inserted. These neurons simply propagate
their spikes to subsystems Sum1, Sum2, . . ., Sum2n−1 by using a firing rule of
type a → a; 0. The Sum subsystems are bijectively associated to every possible
non-empty subset of {v1, v2, . . . , vn}. As the name indicates, every Sum subsystem
computes the sum of the elements of the corresponding subset of {v1, v2, . . . , vn},
and thus the synapses outgoing from the leftmost neurons reflect this situation;
that is, a synapse leaving from neuron vi,j , 1 ≤ i ≤ n and 1 ≤ j ≤ k, reaches
the subsystem Sum` if and only if value vi is involved in the sum computed by
Sum`. The sums are computed in binary (we will return later on this point) and
hence every Sum subsystem produces a bit vector as a result. This vector is then
compared with the sequence of bits that compose the value S; the comparison is
performed by the Compare subsystems, that produce a 1 (that is, a spike) if and
only if the two sequences given in input are equal. Recall that two integer numbers
expressed in binary form are equal if and only if their binary expansions are equal;
the comparison thus amounts to compute the following boolean function:
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Fig. 3. A schematic view of the system Π(〈n, k〉) used to solve all the instances of Subset
Sum which are composed by n + 1 positive k-bit integer numbers

Compare(x0, . . . , xk−1, y0, . . . , yk−1) =
k−1∧

i=0

(¬(xi ⊕ yi)
)

= ¬
(

k−1∨

i=0

(xi ⊕ yi)

)

where x =
∑k−1

i=0 xi2i and y =
∑k−1

i=0 yi2i are the numbers to be compared, and
∨,∧,¬,⊕ denote the or, and, not and xor (also Parity) logical connectives,
respectively. Figure 4 shows an SN P (sub)system which can be used to compute
this function. This subsystem works as follows. Bits xi and yi are xored by the
neurons depicted on the left of the figure. The neuron labelled with ∨ computes
the logical or of its inputs: precisely, it emits one spike if and only if at least one
spike enters into the neuron. Neuron res receives the output produced by ∨ and
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Fig. 4. The subsystem of Π(〈n, k〉) that compares two k-bit natural numbers

computes its logical negation (not). In order to be able to produce one spike if no
spikes come from res, we use one auxiliary neuron that sends to res one spike after
two computation steps. Indeed, the delay of the rule contained in neuron 1 (whose
contents will be initialized with one spike at the beginning of the computation)
should be set in order to make neuron 1 fire exactly when the results computed
by the Sum subsystems reach the Compare subsystems (plus two steps).

Observe that S is a k-bit number, just like v1, v2, . . . , vn, and thus if we sum a
subset of these latter values we could easily end up with a result that needs more
than k bits to be expressed in binary form, thus complicating a little bit the com-
parison with S. However, recall that k = log K where K = max{v1, v2, . . . , vn, S},
and thus for reasonable values it is very likely that a large portion of the most
significant bits of v1, v2, . . . , vn is equal to zero. Anyway, just to be cautious, since
the Compare subsystems perform a k-bit comparison, we should avoid the situ-
ation in which a Sum subsystem produces an m-bit sequence, with m > k, such
that its k less significant bits coincide with the bits that compose S. Fortunately
it is easy to check whether we are in this situation: we just design each of the Sum
subsystems so that it produces an m-bit sequence, where m = k + dlog2 ne (in
facts the maximum integer number that we can represent using k bits is 2k − 1,
so if we sum n of such numbers we obtain a result which is less than n2k, that
requires k + dlog2 ne bits to be represented in binary form), and we check that the
m − k most significant bits of this sequence are all zero. This is easily done by
sending these bits (that is, the corresponding spikes) to a neuron whose contents
(the presence of at least one spike) signals to the user of the system that the above
situation occured.
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The core of the system is composed by the Sum subsystems. In a generic Sum
subsystem, r values from the set {v1, v2, . . . , vn} have to be summed together,
and this sum has to be performed in polynomial time. If r = 2 then we can use
either a traditional or a carry look-ahead adder [32, p. 6]. Let x =

∑k−1
i=0 xi2i

and y =
∑k−1

i=0 yi2i be the two k-bit binary numbers to be summed. We denote
by s0, s1, . . . , sk the bits of the sum, and by c0, c1, . . . , ck the carries generated
during the addition. The traditional addition algorithm (which can be trivially
implemented using a boolean circuit) puts s0 = x0 ⊕ y0, c0 = 0, and then defines
inductively ci = (xi−1 ∧ yi−1)∨ (xi−1 ∧ ci−1)∨ (yi−1 ∧ ci−1) (that is, ci = 1 if and
only if at least two of xi−1, yi−1, ci−1 is 1), si = xi ⊕ yi ⊕ ci for 1 ≤ i < k, and
sk = ck. Such an algorithm sums the two k-bit integer numbers in O(k) steps.

A carry look-ahead adder operates by computing the values of the carries ci in a
finite number of steps, indepedent of k, starting from the values of x0, x1, . . . , xk−1

and y0, y1, . . . , yk−1. The crucial observation is that a carry is generated at position
i if and only if both input bits xi and yi are 1, and a carry is eliminated at position
i if and only if both input bits xi and yi are 0. This observation yields to the
following definitions: for 0 ≤ i < k, let:

gi = xi ∧ yi (position i generates a carry)
pi = xi ∨ yi (position i propagates a carry)

Now, a carry ripples into position i if and only if there exists a position j < i
where a carry is generated, and all positions in between propagate it. Formally:

ci =
i−1∨

j=0


gj ∧

i−1∧

k=j+1

pk


 for 1 ≤ i ≤ k (1)

Once we have computed the carries, the bits of the sum are computed as before:
s0 = x0 ⊕ y0, si = xi ⊕ yi ⊕ ci for 1 ≤ i < k, and sk = ck. It is easily seen that
the above formulas allow to compute all the ci in parallel, since they only depend
on the input bits x0, x1, . . . , xk−1 and y0, y1, . . . , yk−1, in constant time: all gi and
pi are computed in one step, and two more steps are needed to compute the ands
and the ors that appear in (1). By using xor (⊕) gates, all the bits of the sum
are computed in one more step.

The boolean circuit that implements a carry look-ahead adder can be easily
simulated by an SN P system, simply substituting every logical gate with an
appropriate neuron. Figure 5 shows this mapping from and, or and xor gates to
neurons. When needed, for example when the output value of a gate has to skip one
or more layers and go directly to one of the subsequent layers, for synchronization
purposes we can also use delay neurons, that contain the rule a → a; d for an
appropriate value of d. It is clear that the size of the SN P system thus obtained
is polynomially related with the size of the simulated boolean circuit, and that if
the simulated circuit performs its computations in constant time then also the SN
P system performs its computations in constant time.
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Fig. 5. Simulation of n-input and, or and xor gates by means of single–neuron SN P
systems

If we need to compute the sum of r > 2 binary numbers of length k, then a
slightly more complicated construction is needed. As shown in [32, p. 13], while
designing a boolean circuit that computes the Iterated Addition (that is, the
sum of n natural numbers, each of n bits), the addition of three k-bit binary
numbers a =

∑k−1
i=0 ai2i, b =

∑k−1
i=0 bi2i and c =

∑k−1
i=0 ci2i can be reduced to the

addition of two (k + 1)-bit numbers e and d, by defining:

e0 = 0
ei = (ai−1 ∧ bi−1) ∨ (ai−1 ∧ ci−1) ∨ (bi−1 ∧ ci−1) for all 1 ≤ i ≤ k

di = ai ⊕ bi ⊕ ci for 0 ≤ i < k

dk = 0

The rationale behind these formulas is the following. If we look at a single position
i, then we have to add ai, bi and ci. The result is given by the two bit number
ei+1di; bit ei+1 is 1 if and only if at least two of the bits ai, bi and ci are 1, and
di = 1 if and only if an odd number of ai, bi and ci is 1. We can thus conclude
that a + b + c = d + e.
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If we are given r > 2 binary numbers of length k, we can group them into three
elements sets (plus one set with only one or two numbers, if r is not a multiple
of 3), and then compute for each set as just explained two numbers whose sum
is equal to the sum of all the three numbers from the set. In this way we end up
with r′ numbers of k + 1 bits each, where:

r′ =





2
3 r if r ≡ 0 mod 3
2
3 (r − 1) + 1 if r ≡ 1 mod 3
2
3 (r − 2) + 2 if r ≡ 2 mod 3

In any case, if r > 2 then r′ ≤ 4
5 r. Thus, given r numbers of k bits each, by

iterating this reduction procedure O(log r) times we end up with two numbers
of k + O(log r) bits each. These two numbers can then be added using a carry
look-ahead adder, as explained above. In the worst case, we have to add all the
numbers from {v1, v2, . . . , vn}. The reduction process can thus be implemented by
a O(log n) depth boolean circuit, since each reduction involves a constant depth
(and bounded fan-in) circuit. At the end of the reduction process we have to add
two (k + O(log n))-bit numbers, which can be done by a boolean circuit of poly-
nomial (quadratic in k + O(log n)) size and constant depth. The fan-in of such
a circuit is unbounded, and thus also the in-degree of the neurons of the SN P
system that simulates it is unbounded. However, any unbounded fan-in and or or
gate can be simulated by a polynomial size logarithmic depth circuit composed
by bounded fan-in and and or gates, and thus we can conclude that the Sum
subsystems can be implemented by polynomial size SN P systems which are com-
posed by a logarithmic number of layers and whose in-degree is bounded (that is,
constant). The same argumentation holds for the Compare subsystems: they can
be implemented as polynomial size logarithmic depth or/xor circuits of bouded
fan-in, and hence as polynomial size SN P systems composed by a logarithmic
number of layers, each composed by constant in-degree neurons. Finally, the large
or that provides the output to the environment has 2n − 1 inputs, and thus it
can be realized as an exponential size polynomial depth tree of bounded fan-in or
gates.

The system Π(〈n, k〉) thus obtained is able to solve all the instances I ∈
SS(n, k) of Subset Sum which can be expressed as sequences of n + 1 natural
numbers, each of k bits. The family {Π(〈n, k〉)}n,k∈N thus constitutes a uniform
solution to the Subset Sum problem. The size of Π(〈n, k〉) is exponential with re-
spect to the instance size, but the computation time it takes to determine whether
the instance I ∈ SS(n, k) is positive or not is polynomial with respect to n and
k. The fact that I is a positive instance is signalled by the emission of a spike
from neuron out; in any case, after computing the solution the system halts. An
important observation is that the system Π(〈n, k〉) has a very regular structure,
and hence also in this case we can assume that it can be built in a polynomial
time by a deterministic Turing machine whose computational power has been aug-
mented by adding some controlled duplication instruction. Just like in the case of
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the semi–uniform solution illustrated in the previous section, it is an open problem
to determine how precisely this controlled duplication instruction should work.

5 Conclusions and Directions for Future Research

We have proposed two families of spiking neural P systems that solve Subset
Sum, the well known NP-complete decision problem. The peculiarity and impor-
tance of Subset Sum, while trying to assess the computational power of a new
computational device, is that it is a numerical NP-complete problem, and the
difficulty of solving it depends upon the magnitude of the integer numbers that
appear in its instances. To be precise it is not NP-complete in the strong sense,
and hence the problem becomes easy to solve (through a well known algorithm
which is based on the dynamic programming paradigm) when the numbers con-
tained into the instances are small; equivalently, we can say that it becomes easy
to solve when its instances are expressed in unary form.

For this reason, after showing in section 3 how for any instance of Subset
Sum an SN P system that solves it can be built (thus working in the so called
semi–uniform setting), in section 4 we have illustrated a uniform solution. Pre-
cisely, we have defined a family {Π(〈n, k〉)}n,k∈N of SN P systems such that for
all n, k ∈ N the system Π(〈n, k〉) solves all the instances I ∈ SS(n, k) which are
composed by n+1 positive k-bit integer numbers. The system Π(〈n, k〉) performs
its computations in a time which is polynomial in n and k, but its size generally
grows exponentially with respect to these parameters. However the structure of
Π(〈n, k〉) is so regular that we can assume that the system may be built in a
polynomial time by a deterministic Turing machine whose computational power
has been augmented by adding to its set of instructions some form of controlled
duplication, that replicates (possibly substituting some pieces of the structure)
part of the output it has built up to that moment.

It is important to note that, as proved in [16], an SN P system of polyno-
mial size cannot solve in a deterministic way and in a polynomial time an NP-
complete problem (unless P = NP), hence efficient solutions to NP-complete
problems cannot be obtained without introducing features which enhance the effi-
ciency (pre-computed resources, ways to exponentially grow the workspace during
the computation, non-determinism, and so on). A more careful examination of
such features – in particular, possible relations with the well known notions of
uniformity traditionally studied in the theory of circuit complexity – is a research
direction of a clear interest.
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A. Riscos–Núñez, F.J. Romero–Campero (eds.), Fourth Brainstorming Week on
Membrane Computing, RGCN Report 02/2006, Sevilla University, Fénix Editora,
Vol. I, 169–194.

4. H. Chen, M. Ionescu, T.-O. Ishdorj. On the efficiency of spiking neural P systems.
Proc. 8th Intern. Conf. on Electronics, Information, and Communication, Ulanbator,
Mongolia, June 2006, 49–52.

5. T.H. Cormen, C.H. Leiserson, R.L. Rivest, Introduction to Algorithms. MIT Press,
Boston, 1990.
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A. Riscos-Núñez (eds.), Fifth Brainstorming Week on Membrane Computing, RGCN
Report 01/2007, Sevilla University, Fénix Editora, 157–178.

7. M.R. Garey, D.S. Johnson. Computers and Intractability. A Guide to the Theory on
NP–Completeness. W.H. Freeman and Company, 1979.

8. W. Gerstner, W. Kistler. Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.
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tions to SAT and Subset Sum by Spiking Neural P Systems. Submitted for publica-
tion, 2008.

16. A. Leporati, C. Zandron, C. Ferretti, G. Mauri. On the computational power of
spiking neural P systems, Intern. J. Unconventional Computing, 2007, in press.

17. A. Leporati, C. Zandron, C. Ferretti, G. Mauri. Solving Numerical NP-complete
Problems with Spiking Neural P Systems. In G. Eleftherakis, P. Kefalas, Gh. Păun,
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Summary. Spiking neural P systems and artificial neural networks are computational
devices which share a biological inspiration based on the transmission of information
among neurons. In this paper we present a first model for Hebbian learning in the frame-
work of Spiking Neural P systems by using concepts borrowed from neuroscience and
artificial neural network theory.

1 Introduction

When an axon of cell A is near enough to excite cell B or repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one

of the cells firing B, is increased.

D. O. Hebb (1949) [13]

Neuroscience has been a fruitful research area since the pioneering work of
Ramón y Cajal in 1909 [22] and after a century full of results on the man and the
mind, many interesting questions are today open problems. Two of such problems
of current neuroscience are the understanding of neural plasticity and the neural
coding.

The first one, the understanding of neural plasticity, is related to the changes in
the amplitude of the postsynaptic response to an incoming action potential. Elec-
trophysiological experiments show that the response amplitude is not fixed over
time. Since the 1970’s a large body of experimental results on synaptic plasticity
has been accumulated. Many of these experiments are inspired by Hebb’s postu-
lated (see above). In the integrate-and-fire formal spiking neuron model [9] and
also in artificial neural networks [12] is usual to consider a factor w as a measure
of the efficacy of the synapse from neuron to another.
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The second one, the neural coding, is related to the way in which one neuron
sends information to other ones. It is interested on the information contained in
the spatio-temporal pattern of pulses and on the code used by the neurons to
transmit information. This research area wonders how other neurons decode the
signal or if the code can be read by external observers and understand the message.
At present, a definite answer to these questions is not known.

The elementary processing units in the central nervous system are neurons
which are connected to each other in an intricate pattern. Cortical neurons and
their connections are packed into a dense network with more than 104 cell bodies
per cubic millimeter. A single neuron in a vertebrate cortex often connects to more
than 104 postsynaptic neurons.

The neuronal signals consist of short electrical pulses (also called action po-
tentials or spikes) and can be observed by placing a fine electrode close to the
soma or axon of a neuron. The junction between two neurons is a synapse and it is
common to refer to the sending neuron as a presynaptic cell and to the receiving
neuron as the postsynaptic cell.

Since all spikes of a given neuron look alike, the form of the action potential
does not carry any information. Rather, it is the number and the timing of spikes
which matter. Traditionally, it has been thought that most, if not all, of the relevant
information was contained in the mean firing rate of the neuron. The concept
of mean firing rates has been successfully applied during the last 80 years (see,
e.g., [18] or [14]) from the pioneering work of Adrian [1, 2]. Nonetheless, more
and more experimental evidence has been accumulated during recent years which
suggests that a straightforward firing rate concept based on temporal averaging
may be too simplistic to describe brain activity. One of the main arguments is
that reaction times in behavioral experiment are often too short to allow long
temporal averages. Humans can recognize and respond to visual scenes in less
than 400ms [24]. Recognition and reaction involve several processing steps from
the retinal input to the finger movement at the output. If at each processing
steps, neurons had to wait and perform a temporal average in order to read the
message of the presynaptic neurons, the reaction time would be much longer.
Many other studies show the evidence of precise temporal correlations between
pulses of different neurons and stimulus-dependent synchronization of the activity
in populations of neurons (see, for example, [5, 11, 10, 6, 23]). Most of these data
are inconsistent with a concept of coding by mean firing rates where the exact
timing of spikes should play no role.

Instead of considering mean firing rates, we consider the realistic situation in
which a neuron abruptly receives an input and for each neuron the timing of the
first spike after the reference signal contains all the information about the new
stimulus.

Spiking neural P systems (SN P systems, for short) were introduced in [15] with
the aim of incorporating in membrane computing1 ideas specific to spike-based
1 The foundations of membrane computing can be found in [20] and updated bibliogra-

phy at [25].
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neuron models. The intuitive goal was to have a directed graph were the nodes
represent the neurons and the edges represent de synaptic connections among
the neurons. The flow of information is carried on the action potentials, which
are encoded by objects of the same type, the spikes, which is placed inside the
neurons and can be sent from presynaptic to postsynaptic neurons according to
specific rules and making use of the time as a support of information.

This paper is a first answer to the question proposed by Gh. Păun in [21] related
to link the study of SN P systems with neural computing and as he suggests, the
starting point has been not only neural computing, but also recent discoveries in
neurology.

The paper is organized as follows: first we discuss about SN P systems with
input and delay and a new computational device called Hebbian SN P system unit
is presented. In section 3 we present our model of learning with SN P systems based
on Hebb’s postulate. An illustrative experiment carried out with the corresponding
software is shown in section 4. Finally, some conclusions and further discussion on
some topics of the paper are given in the last section.

2 SN P Systems with Input and Decay

An SN P system consists of a set of neurons placed in the nodes of a directed graph
and sending signals (called spikes) along the arcs of the graph (called synapses).
The objects evolve according to a set of rules (called spiking rules). The idea is
that a neuron containing a certain amount of spikes can consume some of them
and produce other ones. The produced spikes are sent (maybe with a delay of some
steps) to all neurons to which a synapse exists outgoing from the neuron where
the rule was applied. A global clock is assumed and in each time unit each neuron
which can use a rule should do it, but only (at most) one rule is used in each
neuron. One of the neurons is considered to be the output neuron, and its spikes
are also sent to the environment (a detailed description of SN P systems can be
found in [21] and the references therein).

In this section we introduce the Hebbian SN P system unit which is an SN P
system with m + 1 neurons (m presynaptic neurons linked to one postsynaptic
neuron) endowed with input and decay. At the starting point all the neurons are
inactive. At rest, the membrane of biological neurons has a negative polarization of
about −65mV , but we will consider the inactivity by considering the the number
of spikes inside the neuron is zero. The dynamics of a Hebbian SN P system
unit is quite natural. At the starting point, all neurons are at rest and in a certain
moment the presynaptic neurons receive spikes enough to activate some rules. The
instant of the arrival of the spikes can be different for each presynaptic neuron.
These spikes activate one rule inside the neurons and the presynaptic neurons send
spikes to the postsynaptic neuron. In the postsynaptic neuron a new rule can be
triggered or not, depending on the arrival of spikes and it may send a spike to the
environment.
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2.1 The Input

The basic idea in SN P systems taken from biological spiking neuron models is
the codification of the information in time. The information in a Hebbian SN P
system unit is also encoded in the time in which the spikes arrive to the neuron
and the time in which the new spikes are emitted. The input will be also encoded
in time. The idea behind this codification is that the presynaptic neurons may
not be activated at the same moment. If we consider a Hebbian SN P system
unit as part of a wide neural network, it is quite natural to think that the spikes
will not arrive to the presynaptic neurons (and consequently, their rules are not
activated) at the same time. In this way, if we consider a Hebbian SN P system
unit with m presynaptic neurons {u1, . . . , um}, an input will consist of a vector
~x = {x1, . . . , xm} of non-negative integers where xi represents the time unit of the
global clock in which the neuron ui is activated2.

2.2 The Decay

The effect of a spike on the postsynaptic neuron can be recorded with an intra-
cellular electrode which measures the potential difference between the interior of
the cell and its surroundings. Without any spike input, the neuron is at rest cor-
responding to a constant membrane potential. After the arrival of the spike, the
potential changes and finally decays back to the resting potential. The spikes, have
an amplitude of about 100mV and typically a duration of 1-2 ms. This means that
if the total change of the potential due to the arrival of spikes is not enough to
activate the postsynaptic neuron, it decays after some milliseconds and the neuron
comes back to its resting potential (see Fig. 1).

This biological fact is not implemented in current SN P systems, where the
spikes can be inside the neuron for a long time if they are not consumed by any
rule. In the Hebbian SN P system unit, we introduce the decay in the action
potential of the neurons. When the impulse sent by a presynaptic neuron arrives
to the postsynaptic neuron, if it is not consumed for triggering any rule in the
postsynaptic neuron it decays and its contribution to the total change of potential
in the postsynaptic neuron decreases with time. This decayed potential is still able
to contribute to the activation of the postsynaptic rule if other spikes arrive to
the neuron and the addition of all the spikes trigger any rule. If this one does not
occur, the potential decays and after a short time the neuron reaches the potential
at rest. Figure 2 shows a scheme in which two presynaptic neurons send two spikes
each of them at different moments to a postsynaptic neuron. Figure 3 shows the
changes of potential in the postsynaptic neuron till reaching the threshold for firing
a response.

In order to formalize the idea of decay in the framework of SN P systems we
introduce a new type of extended rules: the rules with decay. They are rules of the
form
2 In Section 5 we discuss about other codings for the input.
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Fig. 1. Dynamics of one spike

Fig. 2. Two presynaptic and one postsynaptic neuron

E/ak → (ap, S); d

where, E is a regular expression over {a}, k and p are natural numbers with
k ≥ p ≥ 0, d ≥ 0 and S = (s1, s2, . . . , sr) is a finite non-increasing sequence of
natural numbers called the decaying sequence where s1 = k and sr = 0 . If E = ak,
we will write ak → (ap, S); d instead of ak/ak → (ap, S); d.

The intuition behind the decaying sequence is the following. When the rule
E/ak → (ap, S); d is triggered at t0 we look in S = (s1, . . . , sr) for the greatest
l such that p ≥ sl. Such sl spikes are sent to the postsynaptic neurons according
with the delay d in the usual way. Notice that sl can be equal to p, so at this point
this new type of rule is a generalization of the usual extended rules.

At t0+d+1, the sl spikes arrive to the postsynaptic neurons. The decay of such
spikes is determined by the decaying sequence. If the spikes are not consumed by
the triggering of a rule in the postsynaptic neuron, they decay and at time t0+d+2
we will consider that sl−sl+1 spikes have disappeared and we only have sl+1 spikes
in the postsynaptic neuron. If the spikes are not consumed in the following steps
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by the triggering of a postsynaptic rule, at t0 + d + 1 + r− l the number of spikes
will be decreased to sr = 0 and the spikes are lost.

This definition of decay3 can be seen as a generalization of the decaying spikes
presented in [7]. In that paper a decaying spike a is written in the form (a, e),
where e ≥ 1 is the period. From the moment a spike (a, e) arrives in a neuron,
e is decremented by one in each step of computation. As soon as e = 0, the
corresponding spike is lost and cannot be used anymore.

In this way, a rule E/ak → ap; d (k > p) where ap are p decaying spikes (a, e)
can be seen with our notation as E/ak → (ap, S); d with S = (s1, . . . , se+2), s1 = k,
s2 = · · · = se+1 = p and se+2 = 0.

2.3 Hebbian SN P System Units

Hebbian SN P system units are SN P systems with a fixed topology endowed with
input and decay. They have the following common features:

• The initial number of the spikes inside the neurons is always zero in all Hebbian
SN P system units, so we do not refer to them in the description of the unit.

• All the presynaptic neurons are linked to the postsynaptic neuron and these are
all the synapses in the SN P system, so they are not provided in the description.

• The output neuron is the postsynaptic one.

Bearing in mind these features, we describe a Hebbian SN P system unit in the
following way.
3 Further discussion about the decay can be found in Section 5.

Fig. 3. The potential at the postsynaptic neuron
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Definition 1. A Hebbian SN P system unit of degree m is a construct

HΠ = (O, u1, . . . , um, v),

where:

• O = {a} is the alphabet (the object a is called spike);
• u1, . . . , um are the presynaptic neurons. Each presynaptic neuron ui has asso-

ciated a set of rules Ri = {Ri1, . . . , Rili} where for each i ∈ {1, . . . ,m} and
j ∈ {1, . . . , li}, Rij is a decaying rule of the form:

ak → (anij , S); dij

We will call nij the presynaptic potential of the rule and dij is the delay of
the rule. Note that all rules are triggered by k spikes. The decaying sequence S
will be discussed below.

• v is the postsynaptic neuron which contains only one postsynaptic rule E∗
p/ap →

a; 0 where E∗
p is the set4 of regular expressions {n ∈ N |n ≥ p}. We will call p

the threshold of the postsynaptic potential of the Hebbian SN P system unit.

By considering the decaying sequences we can distinguish among three types
of Hebbian SN P system units:

• Hebbian SN P system units with uniform decay. In this case the decaying
sequence S is the same for all the rules in the m presynaptic neurons.

• Hebbian SN P system units with locally uniform decay. In this case the decaying
sequence S is the same for all the rules in each presynaptic neuron.

• Hebbian SN P system units with non-uniform decay. In this case each rule has
associated a decaying sequence.

A Hebbian SN P system unit is an abstract machine where a global clock is
assumed (the system is synchronized). It takes an input and can provide an output
or not, depending if the potential in the postsynaptic neuron reaches or not its
threshold. The concept of input of a Hebbian SN P system unit is defined as
follows:

Definition 2. An input for a Hebbian SN P system unit of degree m is a vector
~x = (x1, . . . , xm) of m non-negative integers xi.

A Hebbian SN P system unit with input is a pair (HΠ,~x) where HΠ is Hebbian
SN P system unit and ~x is an input for it.

The intuitive idea behind the input is encoding the information in time. Each
xi represent the moment, according to the global clock, in which one spike is
provided to each presynaptic neuron.
4 This rule is an adaptation of the concept of a rule from an extended spiking neural P

system with thresholds taken from [7].
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2.4 How it works

In this subsection we provide a description of the semantics of a Hebbian SN P
system unit. As we saw before, each xi in the input ~x = (x1, . . . , xm) represents
the time in which k spikes are provided to the neuron ui. At the moment xi in
which the spike arrives to the neuron ui one rule (ak → (anij , S); dij) is chosen in
a non-deterministic way among all the rules of the neuron.

Applying it means that k spikes are consumed and we look in S = (s1, . . . , sr)
for the greatest l such that nij ≥ sl. Such sl spikes are sent to the postsynaptic
neurons according to the delay dij in the usual way, i.e., sl spike arrive to the
postsynaptic neuron at the moment xi + dij + 1. The decay of such spikes is
determined by the decaying sequence. As we saw above, if the spikes are not
consumed by the triggering of a rule in the postsynaptic neuron, they decay and
at time xi + dij +2 we will consider that sl− sl+1 spikes have disappeared and we
only have sl+1 spikes in the postsynaptic neuron. If the spikes are not consumed
in the following steps by the triggering of a postsynaptic rule, at x0 +dij +1+r− l
the number of spikes will be decreased to sr = 0 and the spikes are lost.

The potential on the postsynaptic neuron depends on the contributions of the
chosen rules in the presynaptic neurons. Such rules send spikes that arrive to the
postsynaptic neuron at different moments which depend on the input (the moment
in which the presynaptic neuron is activated) and the delay of the chosen rule. The
contribution of each rule to the postsynaptic neuron also changes along the time
due to the decay.

Formally, the potential of the postsynaptic neuron is a natural number calcu-
lated as a function R∗ which depends on the time t, on the input ~x and on the
rules chosen in each neuron R∗(R1i1 , . . . , Rmim , ~x, t) ∈ N. Such a natural number
represents the number of the spikes at the moment t in the postsynaptic neurons
and it is the result of adding the contributions of the rules R1i1 , . . . , Rmim .

The Hebbian SN P system unit produces an output if the rule of the postsy-
naptic neuron v, E∗

p/ap → a is triggered, i.e., if at any moment t the amount of
spikes in the postsynaptic neuron is greater than or equal to the threshold p, then
the rule is activated and triggered. If there does not exist such t, then the Hebbian
SN P system unit does not send any spike to the environment.

Bearing in mind the decay of the spikes in the postsynaptic neuron, if any
spike has been sent out by the postsynaptic neuron after an appropriate number
of steps, any spike will be sent to the environment. From a practical point of view
we have a bound for the number of steps in which the spike can be expelled, so we
have a decision method to determine if the input ~x provided to the Hebbian SN
P system unit produces or not an output.

Example 1. Let us consider the following Hebbian SN P system unit

HΠ = (O, u1, u2, v)

with non-uniform decay, where:
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• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a3 → (a2, (3, 2, 0)); 0 R21 ≡ a3 → (a2, (3, 2, 0)); 1
R12 ≡ a3 → (a, (3, 1, 0)); 1 R22 ≡ a3 → (a, (3, 1, 0)); 0
R13 ≡ a3 → (a3, (3, 0)); 0

• v is the postsynaptic neuron which contains only one postsynaptic rule
E∗

2/a2 → a; 0.

Notice that in this example, the rules send all the presynaptic potential to the
postsynaptic neuron but it only lasts one time unit before being lost. If they are
not consumed immediately, they disappear.

Case 1: Let us consider the input ~x = (0, 0), i.e., at t = 0 three spikes are
placed in each presynaptic neuron. We represent the contribution of each rule for
~x = (0, 0) in the following table. Notice that for t ≥ 3 the contribution is zero for
all the rules.

R11 R12 R13 R21 R22

t = 1 2 0 3 0 1
t = 2 0 1 0 2 0

Considering the different contributions of the rules and bearing in mind that
in each neuron only one rule is non-deterministically chosen, the changes in the
postsynaptic potential for ~x = (0, 0) are described in the following table.

R11 R21 R12 R21 R13 R21 R11 R22 R12 R22 R13 R22

t = 1 2 0 3 3 1 4
t = 2 2 3 2 0 1 0

Notice that with the input ~x = (0, 0), the postsynaptic neuron activates the
rule at t = 1 if the chosen rules are R11 R21, R13 R21, R11 R22 or R13 R22. If the
chosen rules are R12 R21, then the rule is activated at t = 2 and if the chosen rules
are R12 R22 then the postsynaptic rule is not activated.

Case 2: Let us consider now the input ~x = (1, 0), i.e., at t = 0 three spikes are
placed in the presynaptic neuron u2 and in t = 1 other three spikes are placed in
u1. As above, we represent the contribution for ~x = (1, 0) in the following table.

R11 R12 R13 R21 R22

t = 1 0 0 0 0 1
t = 2 2 0 3 2 0
t = 3 0 1 0 0 0

The changes of the potential R∗ in the postsynaptic potential for ~x = (1, 0)
are described in the following table.
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R11 R21 R12 R21 R13 R21 R11 R22 R12 R22 R13 R22

t = 1 0 0 0 1 1 1
t = 2 4 2 5 2 0 3
t = 3 0 1 0 0 1 0

In this case, with the input ~x = (1, 0), the postsynaptic neuron triggers its rule
at t = 2 but if the chosen rules are R12 R22.

3 Learning

If we look at the Hebbian SN P system units as computational devices where the
target is the transmission of information, we can consider that the device successes
if a spike is sent to the environment and it fails if the spike is not sent. In this
way, the lack of determinism in the choice of rules is a crucial point in the success
of the devices because as we have seen above, if we provide several times the same
input, the system can succeed or not.

In order to improve the design of these computational devices and in a narrow
analogy with the Hebbian principle, we introduce the concept of efficacy in the
Hebbian SN P system units. Such efficacy is quantified by endowing each rule with
a weight that changes along the time, by depending on the contribution of the rule
to the success of the device.

According to [8], in Hebbian learning, a synaptic weight is changed by a small
amount if presynaptic spike arrival and postsynaptic firing coincides. This simul-
taneity constraint is implemented by considering a parameter sij which is the
difference between the arrival of the contribution of the rule Rij and the postsy-
naptic firing. Thus, the efficacy of the synapses such that its contributions arrive
repeatedly shortly before a postsynaptic spike occurs is increased (see [13] and [3]).
The weights of synapses such that their contributions arrive to the postsynaptic
neuron after the postsynaptic spike is expelled are decreased (see [4] and [16]).
This is basically the learning mechanism suggested in [17].

3.1 The Model

In order to implement a learning algorithm in our Hebbian SN P system units, we
need to extend it with a set of weights that measure the efficacy of the synapses.
The meaning of the weights is quite natural and it fits into the the theory of arti-
ficial neural networks [12]: The amount of spikes that arrives to the postsynaptic
neuron due to the rule Rij depends on the contribution of each rule and also on
the efficacy of the synapse wij . As usual in artificial neural networks, the final
contribution will be the contribution sent by the rule multiplied by the efficacy
wij .

We fix these concepts in the following definition.
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Definition 3. An extended Hebbian SN P system unit of degree m is a construct

EHΠ = (HΠ,w11, . . . , wmlm),

where:

• HΠ is a Hebbian SN P system unit of degree m and the rules of the presynaptic
neuron ui are Ri = {Ri1, . . . , Rili} with i ∈ {1, . . . , m}.

• For each rule Rij with i ∈ {1, . . . , m} and j ∈ {1, . . . , li}, wij is a real number
which denotes the initial weight of the rule Rij.

Associating a weight to each rule means to consider an individual synapse for
each rule instead of a synapse associated to the whole neuron. The idea of consid-
ering several synapses between two neurons is not new in computational neuron
models. For example, in [19] the authors present a model for spatial and temporal
pattern analysis via spiking neurons where several synapses are considered. The
same idea had previously appeared in [8]. Considering several rules in a neuron and
one synapse associated to each rule allows us to design an algorithm for changing
the weight (the efficacy) of the synapse according to the result of the different
inputs.

The concept of input of a extended Hebbian SN P system unit is similar to the
previous one. The information is encoded in time and the input of each neuron
denotes the moment in which the neuron is excited.

Definition 4. An input for an extended Hebbian SN P system unit of degree m
is a vector ~x = (x1, . . . , xm) of m non-negative integers xi.

An extended Hebbian SN P system unit with input is a pair (EHΠ,~x) where
HΠ is an extended Hebbian SN P system unit and ~x is an input for it.

The semantics

As we saw before, each xi in the input ~x = (x1, . . . , xm) represents the time in
which the presynaptic neuron ui is activated. The formalization of the activation
of the neuron in this case differs from the Hebbian SN P system units. The idea
behind the formalization is still the same: the postsynaptic neuron receives a little
amount of electrical impulse according to the excitation time of the presynaptic
neuron and the efficacy of the synapsis. The main difference is that we consider that
there exist several synapses between one presynaptic neuron and the postsynaptic
one (one synapse for each rule in the neuron) and the potential is transmitted
along all these synapses according to their efficacy.

Extending the Hebbian SN P system units with efficacy in the synapses and
considering that there are electrical flow along all of them can be seen as a general-
isation of the Hebbian SN P system units. In Hebbian SN P system units only one
rule Rij is chosen in the presynaptic neuron ui and the contribution emitted by
Rij arrives to the postsynaptic neuron according to the decaying sequence. Since
the weight wij multiplies the contribution in order to compute the potential that
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arrives to the postsynaptic neuron, we can consider the Hebbian SN P system unit
as an extended Hebbian SN P system unit with the weight of the chosen rule Rij

equals to one and the weight of the remaining rules equals to zero.
At the moment xi in the presynaptic neuron ui we will consider that all

rules (ak → (anij , S); dij) are activated. The potential on the postsynaptic neu-
ron depends on the contributions of the rules in the presynaptic neurons and
the efficacy of the respective synapses. Let us consider that at time xi the rule
(ak → (anij , S); dij) is activated and the efficacy of its synapse is represented by
the weight wij . When the rule (ak → (anij , S); dij) is triggered at t0 we look in
S = (s1, . . . , sr) for the greatest l such that p × wij ≥ sl. Then sl spikes are sent
to the postsynaptic neurons according with the delay d in the usual way.

At t0+d+1, the sl spikes arrive to the postsynaptic neurons. The decay of such
spikes is determined by the decaying sequence. If the spikes are not consumed by
the triggering of a rule in the postsynaptic neuron, they decay and at time t0+d+2
we will consider that sl−sl+1 spikes have disappeared and we only have sl+1 spikes
in the postsynaptic neuron. If the spikes are not consumed in the following steps
by the triggering of a postsynaptic rule, at step t0 + d + 1 + r − l the number of
spikes will be decreased to sr = 0 and the spikes are lost. The extended Hebbian
SN P system unit produces an output if the rule of the postsynaptic neuron v,
E∗

p/ap → a is triggered.
Bearing in mind the decay of the spikes in the postsynaptic neuron, if the

output has not been produced after an appropriate number of steps, no spike will
be sent to the environment. From a practical point of view we have a bound for the
number of steps in which the spike can be expelled, so we have a decision method
to determine if the input ~x provided to the extended Hebbian SN P system unit
produces or not an output.

Example 2. Let us consider the extended Hebbian SN P system unit of degree m
with uniform decay:

HΠ = (O, u1, u2, v, w11, w12, w13, w21, w22),

where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have asso-

ciated sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a100 → (a40, S); 0 R21 ≡ a100 → (a80, S); 1
R12 ≡ a100 → (a70, S); 1 R22 ≡ a100 → (a40, S); 0
R13 ≡ a100 → (a30, S); 0

The decaying sequence is the same for all the rules, S = (100, 80, 70, 30, 15, 0)
• v is the postsynaptic neuron, and it contains only one postsynaptic rule

E∗
70/a70 → a; 0.
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• The initial weights are w11 = 0.9, w12 = 1.2, w13 = 0.5, w21 = 0 and w22 = 1

In order to compute the function of the postsynaptic potential we need an
input. Let us consider ~x = (1, 0). Let us focus on the first rule R11 ≡ a100 →
(a40, S); 0. At t = 1 the rule is activated. According to its efficacy, 30 spikes will
be placed in the postsynaptic neuron at t = 2, since 70 > 40 × 0.9 = 36 ≥ 30.
At t = 3 the contribution of this rule is 15 due to the decay and for t ≥ 4 the
contribution is zero. The second rule R12 ≡ a100 → (a70, S); 1 is also activated
at t = 1. Due to the delay d12 = 1, the spikes sent by this rule will be placed
at the postsynaptic neuron at t = 3. The number of emitted spikes will be 80
since 100 > 70× 1.2 = 84 ≥ 80. These spikes will decay in the following steps. We
summarize the contributions in the following table. The last column represents the
final contribution in the postsynaptic neuron by adding the partial contribution
of all the rules.

R11 R12 R13 R21 R22

∑
t = 1 0 0 0 0 30 30
t = 2 30 0 15 0 15 60
t = 3 15 80 0 0 0 95
t = 4 0 70 0 0 0 70
t = 5 0 30 0 0 0 30
t = 6 0 15 0 0 0 15

At time t = 3 the postsynaptic potential reaches the value 95 and it is the fist
time that it is grater than the threshold, so the postsynaptic rule E∗

70/a70 → a; 0
is activated and in the next step one spike is sent to the environment.

3.2 The Learning Problem

Let us come back to the Hebbian SN P system units. In such units, provided an
input ~x, success can be reached or not (i.e., the postsynaptic rule is triggered or
not) depending on the non-deterministically rules chosen. In this way, the choice
of some rules is better than the choice of other ones, by considering that a rule is
better than another if the choice of the former leads us to the success with a higher
probability than the choice of the latter. Our target is to learn which are the best
rules according to this criterion.

Formally, a learning problem is a 4-uple (EHΠ,X, L, ε), where:

• EHΠ is an extended Hebbian SN P system unit
• X = { ~x1, . . . ~xn} is a finite set of inputs of EHΠ.
• L : Z→ Z is a function from the set of integer numbers onto the set of integer

numbers. It is called the learning function.
• ε is a positive constant called the rate of learning.

The output of a learning problem is an extended Hebbian SN P system unit.
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Informal description of the algorithm

Let us consider an extended Hebbian SN P system EHΠ, a learning function
L : Z → Z and a rate of learning ε.. Let us consider an input ~x and we will
denote by t~x the moment when the postsynaptic neuron reaches the potential for
the trigger of the postsynaptic neuron. If such potential is not reached (and the
postsynaptic neuron is not triggered) then t~x = ∞.

On the other hand, for each rule Rij ≡ ak → (anij , S); dij of a presynaptic
neuron we can compute the moment t~xij in which its contribution to the postsy-
naptic potential arrives to the postsynaptic neuron. It depends on the input ~x and
the delay dij of the rule

t~xij = ~xi + dij + 1

where ~xi is the i-th component of ~x.
We are interested in the influence of the rule Rij on the triggering of the

postsynaptic neuron. For that we need to know the difference between the arrival
of the contribution t~xij and the moment t~x in which the postsynaptic neuron is
activated.

For each rule Rij and each input ~x, such a difference is

s~x
ij = t~x − t~xij

• If s~x
ij = 0, then the postsynaptic neuron reaches the activation exactly in the

instant in which the contribution of the rule Rij arrives to the postsynaptic
neuron. This fact leads us to consider that the contribution of Rij to the post-
synaptic potential has had a big influence on the activation of the postsynaptic
neuron.

• If s~x
ij > 0 and it is small, then the postsynaptic neuron reaches the activation a

bit later than the arrival of the contribution of the rule Rij to the postsynaptic
neuron. This fact leads us to consider that the contribution of Rij to the
postsynaptic potential has influenced on the activation of the postsynaptic
neuron due to the decay, but it is not so important as in the previous case.

• If s~x
ij < 0 or s~x

ij > 0 and it is not small, then the contribution of Rij has no
influence on the activation of the postsynaptic neuron.

The different interpretations of small or big influence are determined by the
different learning functions L : Z → Z. For each rule Rij and each input ~x,
L(s~x

ij) ∈ Z measures de degree of influence of the contribution of Rij to the
activation of the postsynaptic neuron produced by the input ~x.

According to the principle of Hebbian learning, the efficacy of the synapses
such that their contributions influence on the activation of the postsynaptic neuron
must be increased. The weights of synapses such that their contributions have no
influence on the activation of the postsynaptic neuron are decreased.

Formally, given an extended Hebbian SN P system HΠ, a learning function
L : Z → Z, a rate of learning ε and an input ~x of HΠ, the learning algorithm
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outputs a new extended Hebbian SN P system HΠ ′ which is equal to HΠ, but
the weights: each wij has been replaced by a new w′ij

w′ij = wij + εL(s~x
ij)

Depending on the sign of L(s~x
ij), the rule Rij will increase or decrease its

efficacy. Note that L(s~x
ij) is multiplied by the rate of learning ε. This rate of

learning is usual in learning process in artificial neural networks. It is usually a
small number which guarantees that the changes on the efficacy are not abrupt.

Finally, given a learning problem (HΠ, X, L, ε), the learning algorithm takes
~x ∈ X and outputs HΠ ′. In the second step, the learning problem (HΠ ′, X −
{~x}, L) is considered and we get a new HΠ ′. The process finishes when all the
inputs has been consumed and the algorithm outputs the last extended SN P
system unit.

Example 3. Let us consider the extended Hebbian SN P system unit of degree m
with uniform decay:

HΠ = (O, u1, u2, v, w11, w12, w13, w21, w22),

where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a100 → (a40, S); 0 R21 ≡ a100 → (a80, S); 1
R12 ≡ a100 → (a70, S); 1 R22 ≡ a100 → (a40, S); 0
R13 ≡ a100 → (a30, S); 0

The decaying sequence is the same for all the rules, S = (100, 80, 70, 30, 15, 0)
• v is the postsynaptic neuron which contains only one postsynaptic rule

E∗
70/a70 → a; 0.

• The initial weights are w11 = 1.0, w12 = 1.0, w13 = 1.0, w21 = 1.0 and
w22 = 1.0

Let us consider the learning problem (EHΠ,X, L, ε), where

• EHΠ is the extended Hebbian SN P system unit described above.
• X = { ~x1, ~x2} with ~x1 = (0, 2) and ~x2 = (0, 0).
• L is the learning function L : Z→ Z

L(s) =





4 if s = 0
2 if s = 1
1 if s = 2
−1 otherwise
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• The rate of learning ε = 0.1

Step 1: Let us consider the input ~x = (0, 2). The contribution can be sum-
marised in the following table:

R11 R12 R13 R21 R22

∑
t = 1 30 0 30 0 0 60
t = 2 15 70 15 0 0 100
t = 3 0 30 0 0 30 60
t = 4 0 15 0 80 15 110
t = 5 0 0 0 70 0 70
t = 6 0 0 0 30 0 30
t = 7 0 0 0 15 0 15

Therefore, at time t = 2 the potential of the postsynaptic neuron reaches a
value greater than the threshold 70, then t(0,2) = 2. We can compute now the
values t

(0,2)
ij = xi + dij + 1, s

(0,2)
ij = t(0,2) − t

(0,2)
ij and L(s(0,2)

ij ) for every rule Rij .

After computing the values L(s(0,2)
ij ) for every rule Rij , the new weights are

calculated as

w′ij = wij + ε L(s(0,2)
ij )

These values are summarised in the following table

t
(0,2)
ij s

(0,2)
ij L(s(0,2)

ij ) wij w′ij
R11 1 1 2 1 1.2
R12 2 0 4 1 1.4
R13 1 1 2 1 1.2
R21 4 −2 −1 1 0.9
R22 3 −1 −1 1 0.9

Therefore, after this fist step the new weights are w′11 = 1.2, w′12 = 1.4, w′13 =
1.2, w′21 = 0.9 and w′22 = 0.9.

Step 2: Let us consider the new extended Hebbian SN P system unit built by
replacing the initial weights by the new w′ij and let us consider the second input
~x2 = (0, 0). The contribution can be summarized in the following table.

R11 R12 R13 R21 R22

∑
t = 1 30 0 30 0 30 90
t = 2 15 80 15 70 15 195
t = 3 0 70 0 30 0 100
t = 4 0 30 0 15 0 45
t = 5 0 15 0 0 0 15

Therefore, at time t = 1 the potential of the postsynaptic neuron reaches a
value greater than the threshold 70, then t(0,0) = 1. We can compute now the
values t

(0,0)
ij = xi + dij + 1, s

(0,0)
ij = t(0,0) − t

(0,0)
ij and L(s(0,0)

ij ) for every rule Rij .
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After computing the values L(s(0,0)
ij ) for every rule Rij , the new weights are

calculated as

w′′ij = w′ij + ε L(s(0,0)
ij )

These values are summarized in the following table

t
(0,2)
ij s

(0,2)
ij L(s(0,2)

ij ) w′ij w′′ij
R11 1 0 4 1.2 1.6
R12 2 −1 −1 1.4 1.3
R13 1 0 4 1.2 1.6
R21 2 −1 −1 0.9 0.8
R22 1 0 4 0.9 1.3

Therefore, after this fist step the new weights are w′11 = 1.6, w′12 = 1.3, w′13 =
1.6, w′21 = 0.8 and w′22 = 1.3.

The use of weights needs more discussion. The weights are defined as real
numbers and membrane computing devices are discrete. If we want to deal with
discrete computation in all the steps of the learning process we have to choose the
parameters carefully. The following result gives a sufficient constraint for having
an integer number of spikes at any moment.

Theorem 1. Let a be the greatest non-negative integer such that for all presynaptic
potential nij there exists an integer zij such that nij = xij × 10a.

Let b be the smallest non-negative integer such that for all initial weight wij and
for the rate of learning ε there exist the integers kij and k such that wij = kij×10b

and ε = k × 10b.
If a−b ≥ 0, then for all presynaptic potential nij and all the weights w obtained

along the learning process, nij × w is an integer number.

In other words, if there exists a and b such that all the presynaptic potentials
nij can be expressed as nij = xij × 10a for an appropriate integer xij and the
initial weights wij and rate of learning ε can be expressed as wij = kij × 10b

and ε = k × 10b for appropriate integer numbers kij , k and a − b ≥ 0 then for
all presynaptic potential nij and all the weights w obtained along the learning
process, nij × w is an integer number.

Proof. It suffices to consider the recursive generation of new weights wn+1 = wn +
εL(sn) and therefore

wn+1 = w0 + ε(L(s0) + · · ·+ L(sn)).

If we develop nij × wn+1 according to the statement of the theorem, we have

nij × wn+1 = xij × 10a × [k0 × 10−b + (k × 10−b(L(s0) + · · ·+ L(sn)))]
= 10a−b × xij × [k0 + k(L(s0) + · · ·+ L(sn))]

Since xij × [k0 + k(L(s0) + · · · + L(sn))] is an integer number, if a − b ≥ 0 then
nij × wn+1 is an integer number.
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4 An Experiment

Let us consider the Hebbian SN P system

HΠ = (O, u1, u2, v)

with uniform decay, where:

• O = {a} is the alphabet;
• u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have associ-

ated the sets of rules R1 = {R11, R12, R13} and R2 = {R21, R22}, respectively,
with

R11 ≡ a3000 → (a3000, S); 0 R21 ≡ a3000 → a1000; 0
R12 ≡ a3000 → (a2000, S); 1 R22 ≡ a3000 → a3000; 3
R13 ≡ a3000 → (a2000, S); 7

• The decaying sequence is S = (3000, 2800, 1000, 500, 0).
• v is the postsynaptic neuron which contains only one postsynaptic rule

E∗
1200/a1200 → a; 0.

Let EHΠ be the Hebbian SN P system unit HΠ extended with the initial
weights w11 = 0.5, w12 = 0.5, w13 = 0.5, w21 = 0.5 and w22 = 0.5.

Let us consider the learning problem (EHΠ,X, L, ε) where

• EHΠ is the extended Hebbian SN P system unit described above,
• X is a set of 200 random inputs (x1

i , x
2
i ) with 1 ≤ 1 ≤ 200 and x1

i , x
2
i ∈

{0, 1, . . . , 5}
• L is the learning function L : Z→ Z

L(s) =





3 if s = 0
1 if s = 1
−1 otherwise

• The rate of learning is ε = 0.001

We have programmed an appropriate software for dealing with this learning
problems. After applying the learning algorithm, we obtain a new extended Heb-
bian SN P system unit similar to EHΠ but with the weights

w11 = 0.754, w12 = 0.992, w13 = 0.3, w21 = 0.454, w22 = 0.460

Fig 4 shows the evolution of the weights of the synapses.
The learning process shows clearly the differences among the rules.

• The worst rule is R13. In a debugging process of the design of an SN P System
network that rule should be removed. The value of the weight has decreased
along all the learning process. This fact means that the rule has never con-
tributed to the success of the unit and then it can be removed. The reason is
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Fig. 4. The evolution of the weights

clear. The rule emits four spikes and the postsynaptic rule is activated with
two spikes. Even with the decay, the potential provided by the rule is too much
for triggering the rule.

• On the other extreme, the best rules are R11 and R21. In most of the cases,
(not all) these rules have been involved in the success of the unit.

• The other two rules R21 and R22 have eventually contributed to the success of
the unit but not so clearly as R11 and R21. We can also guess the reasons. For
R11, the presynaptic potential, 1000, has little influence in the postsynaptic
potential and for R22, the presynaptic potential is larger than the threshold,
but it has a large delay, so the arrival of its potential to the postsynaptic neuron
is often later than the activation of the postsynaptic rule.
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5 Conclusions and Future Work

The integration in an unique model of concepts from neuroscience, artificial neural
networks and spiking neural P systems is not an easy task. Each of the three fields
have its own concepts, languages and features. The work of integration consists
on choosing ingredients from each field and trying to compose a computational
device with the different parts. This means that some of the ingredients used in
the devices presented in this paper are not usual in the SN P systems framework.
Although the authors have tried to be as close to the SN P system spirit as possible
some remarks should be considered.

In the paper, the input of the device is provided as a vector (t1, . . . , tm) of
non-negative integers, where ti represents the moment in which one rule (non-
deterministically chosen) of the neuron ui is activated. Obviously, this is not the
usual way to provide the input to an SN P system. Nonetheless, the information
encoded in the vector (t1, . . . , tm) can be provided to the input neurons by m spike
trains were all the elements are 0’s and there is only one 1 in the position ti. In
this way, the input is encoded by m spike trains, which is closer to the standard
inputs in SN P systems.

The idea of providing the input with a spike train of 0’s and only one 1 in
the position ti carries out new problems. In the literature of SN P systems, in the
instant ti only one spike is supplied to the neuron ui. In our device we want that
a rule of type ar → ap; d is activated with r > 1. At this point we can consider
several choices. The first one is to consider that at time ti the spike train provides
r spikes, but this choice lead us far from the SN P system theory. A second option
is to consider that the spike trains have r consecutive 1’s and each of them provide
one spike. The remaining elements in the train are zeros. In this way the moment
ti will be the instant in which the r spikes have been provided to the neuron. A
drawback for this proposal can be that r can be a big number and this increase
the number of steps of the device. A third choice is to consider amplifier modules
as in Figure 5. The leftmost neuron receives a spike train where all the elements
are 0’s but the ti − th which is 1. At the moment ti only one spike is supplied to
the neuron. At ti + 1, one spike arrives to the r postsynaptic neurons, and each of
them sends one spike to the rightmost neuron, so at ti + 2 exactly r spikes arrive
simultaneously to the last neuron.

These three solutions can be an alternative to the use of the vector (t1, . . . , tm)
and deserve to be considered for further research in this topic.

Another main concept in this paper is the delay. It has strong biological intu-
ition, but it is difficult to insert into the SN P systems theory. The main reason
is that if we consider the spike as the information unit it does not make sense to
talk about a half of a spike or a third of a spike. In that sense, the approach to
decay from [7] is full of sense since one spike exists or it is lost, but its potential it
is not decreasing in time.

The key point for the decay in this paper is taken from the definition of extended
SN P systems. In such devices, a neuron can send a different amount of spikes
depending on the chosen rule. So, in such devices the information is not only
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Fig. 5. Amplifier module

encoded in the time between two consecutive spikes, but on the number of spikes.
This lead us to define the decay as a decrement in the number of spikes. In this
way, we can consider that a pulse between two neurons is composed by a certain
number of spikes which can be partially lost depending on the time.

In this paper, such a decay has been implemented by extending the rules with
a finite decreasing sequence which can be uniform, locally-uniform or non uniform
for the set of rules. Other implementations are also possible. Probably, the decay
can also be implemented with an extra neuron as in Figure 6 which sends to the
final neuron a decaying sequence of spikes.
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Input neuron

Decay neuron Postsynaptic neuron

Fig. 6. Including a decay neuron

The use of weights also deserves to be discussed. In Theorem 1 we provide
sufficient conditions for handling at every moment an integer number of spikes. In
this way, the presented devices keep the principle of discrete computation of SN
P systems. Nonetheless, further questions should be considered. For example, the
use of negative weights or weights greater than one. Should we consider negative
weights and/or a negative contribution to the postsynaptic potential? On the other
hand, the use weights greater than one leads us to consider that the contribution of
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one rule to the postsynaptic potential is greater than its own presynaptic potential.
Can the efficiency of the synapses amplify the potential beyond the number of
emitted spikes?

More technical questions are related to the rate of learning and to the algo-
rithm of learning. Both concepts have been directly borrowed from artificial neural
networks and need deeper study in order to adapt them to the specific features of
SN P systems.

As a final remark, we consider that this paper opens a promising line research
bridging SN P systems and artificial neural networks without forgetting the bio-
logical inspiration and also opens a door to applications of SN P systems.
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19. T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking neurons.

Network: Comp. Neural Syst., 9(3), 319-338, 1998.
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Summary. A comparison of ordinary membrane machines, understood as certain recur-
sive families of deterministic P systems, with some other mathematical models of systems
realizing massively parallel computations is discussed. These mathematical models are
those which respect recursiveness of computational tasks of systems, i.e., the functions to
be computed are recursive functions and the decision problems correspond to recursive
sets. The comparison together with open problems is summarized in the enclosed tables,
where open problems are indicated by question mark “?”.

1 Introduction

We present and discuss a comparison of ordinary membrane machines, understood
as certain recursive families of deterministic P systems (for P systems see [23]),
with some other mathematical models of systems realizing massively parallel com-
putations. These mathematical models are those which respect recursiveness of
computational tasks of systems, i.e., the functions to be computed are recursive
functions and the decision problems correspond to recursive sets.

The comparison is discussed with regard to those (comparative) features of
the mathematical models which one can treat as advantageous features from the
logical or complexity theoretical point of view, or by means that they provide
natural extensions of the (classes of) models for application of other approaches
to computing than the discrete time approach or deterministic approach. The
mathematical models are chosen in such a way that for every comparative feature
there is provided at least one representative or typical example of a model of this
feature.

2 Compared Models and Their Features

We discuss the following mathematical models of systems realizing massively par-
allel computations.
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1: ordinary membrane machines defined to be recursive families Π = (Πi : i ∈
INP) of deterministic P systems Πi for recursive sets INP of input data, where
P systems Πi are constructs understood as in [23] and their determinism is
understood as in e.g. [16]. For more explanations see Remark 1 below;

2: Parallel Random Access Machines (PRAMs), cf. [9], [14], [20];
3: neural net models due to H. T. Siegelmann and E. D. Sontag, cf. [27];
4: R. Gandy’s machines, cf. [10] and [26], the parallelism of their computations

was pointed out in [7];
5: parallel Abstract State Machines and intra-step interacting Abstract State

Machines due to Y. Gurevich, cf. [2];
6: Connection Machines due to W. D. Hillis, cf. [12].

The above models are such that they respect recursiveness of computational
tasks understood as in Introduction.

The ordinary membrane machines require more explanations which are given
in the following remark.

Remark 1 A representative example of an ordinary membrane machine is dis-
cussed in [18], where input data in INP are propositional formulas Φ in conjunctive
normal form and the deterministic P systems ΠΦ—the elements of the family are
used to solve SAT problem in a polynomial time, like in [16]. More precisely, the
P system ΠΦ associated to a formula Φ generates that unique evolution process of
membrane systems which provides a decision in a polynomial time (with respect
to the number of clauses and the number of variables occurring in Φ) whether Φ
holds for some valuation of variables occurring in Φ. The above recursive family
of P systems was introduced in [18] to describe in a program-like uniform way the
P systems solving SAT problem in [16].

We use “membrane machines” to name the families in 1 because evolving
membrane systems are basic mechanisms of computations realized by P systems,
see [23]. The adjective “ordinary” is applied to distinguish the families in 1 from
other possible families of P systems, e.g. families of stochastic P systems or quan-
tum P systems.

Remark 2 An evolving membrane system or simply a membrane system S is
understood in the paper to be given by its underlying tree TS , i.e., finite non-
empty graph which is a tree, whose vertices, called membranes, are labeled by
multisets over the sets OS of objects of S. More precisely, there is given labeling
function MS : V (TS) → NOS of S defined on the set V (TS) of vertices of TS such
that the values MS(v) are functions f : OS → N valued in the set N of natural
numbers with 0. For an equivalence of the above treatment membrane systems with
the treatment of membrane systems understood as in [23] see Remark 2 in [19].

The comparison of the above models is discussed with regard to the following
features of them.

A: basic definitions of systems and computations realized by them are free from
concepts involving recursiveness, e.g., recursive families of programs, etc., and
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the number of defining axioms and principles is finite and minimal in the sense
that leaving one of them does not suffice to prove recursiveness of computa-
tional tasks understood as in Introduction;

B: definition of computational complexity measure of consumed space during
computation is explicit, natural, and simple;

C: the modeled computations comprise a wide scope of possibilities of paral-
lelism from computations realized by distributed systems, with every processor
equipped with an (access) independent memory unit from other processors, to
systems with processors sharing an access to common memory unit like in the
case of PRAMs in 2;

D: solutions of NP complete problems in a polynomial time with an exponential
space expense are provided;

E: immediate extensions to randomized or quantum counterparts are provided,
like in [15], [17];

F: immediate extensions to continuous time computations are provided like in
[27];

G: explicit treatment of communication (interaction) with environment during
computation, understood as in Y. Gurevich’s papers ([2], [8]), is provided;

H: the models have an immediate realization by really existing devices (comput-
ers) in silicon or biochemical one.

We complete the above listed features A–H by the following comments and
remarks containing explanatory, representative, or typical examples.

Ad A. The class of Gandy’s machines in 4 is a representative example of a class
having the feature A. These machines are defined in an abstract mathematical way
in [10] by four principles and [10] contains the result that whatever is computable
by the devices satisfying these principles is also computable by Turing machines.
The principles are minimal in the sense that no three of them suffice to prove the
mentioned result.

Ad B. The class of ordinary membrane machines in 1 is an example of a class
having the feature B. Let for an ordinary membrane machine Π = (Πi | i ∈ INP) a
unique evolution process generated by Πi be presented by the following sequence
of length ni

Si
0 ⇒ Si

1 ⇒ . . . ⇒ Si
ni

,

where Si
0,Si

1, . . . ,Si
ni

are membrane systems such that Si
0 is the initial membrane

system of the process, Si
j evolves into Si

j+1 for all j with 0 ≤ j < ni, and Si
ni

is the
final membrane system of the process. Then one defines the claimed in B space
complexity measure SPACE(i) by

SPACE(i) = max
0≤j≤ni

∑

v∈V (TSi
j
)

(
1 +

∑

a∈OSi
j

MSi
j
(v)(a)

)
,

where V (TSi
j
), OSi

j
, MSi

j
are the set of vertices of the underlying tree TSi

j
, the set

of objects, and labeling function of Si
j , respectively, see Remark 2.
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Ad C. Some ordinary membrane machines together with evolution processes
generated by them can be treated as distributed systems such that every their pro-
cessor has an independent memory unit, see representative example in Remark 1.
In this example a membrane v of an evolving membrane system S can be treated
as a processor equipped with a memory unit containing MS(v), see [16] and [18]
for more details.

Ad D. The ordinary membrane machine shown in Remark 1 provides a solution
of NP complete problem SAT in a polynomial time with an exponential space
expense. The construction of this machine was inspired by the pioneering paper
[22]. For other related constructions see e.g. [24].

Ad E. Randomized P systems in [17] and quantum P systems in [15] give rise to
the extensions of ordinary membrane machines as claimed in E. We point out that
one may claim the extensions to randomized counterparts which could provide
probabilistic approach to P/NP conjecture proposed in [1].

Ad F. The class of models in 3 is an example of a class of models having
feature F because inductive next state formula for neural nets can be simply con-
verted to a system of ordinary differential equations. We point out here that one
may claim the extensions to continuous, analog models of computations which
could include continuous approach to P/NP conjecture in [5], [6].

Ad G. The attempts to describe the interconnections of membrane systems
with environment through their skins are shown among others in [21].

Ad H. The connection machines in 6 have a physical realization. Namely, the
Connection Machine Models CM-1, CM-2, and CM-5 were made by Thinking
Machines Corporation in Boston, between 1986 and 1996.

3 Concluding Discussion and Open Problems

The comparison of the ordinary membrane machines and the mathematical models
with regard to the features described in Section 2 is summarized in the following
tables, where new open problems are indicated by question mark “?”.

Table of answers to the question:
does X hold for i?

A B C D E F G H ?
1 ? Yes Yes Yes Yes ? Yes? ?
2 ? Yes No? Yes? Yes ? No ?
3 ? ? Yes? Yes? Yes Yes ? ?
4 Yes ? Yes? ? ? ? ? ?
5 ? ? Yes? Yes? ? ? Yes ?
6 ? ? ? ? ? ? ? Yes
?
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For X ∈ {A, B, . . . , H}, 1 ≤ i ≤ 6, and open problems indicated by ‘?’, including
conjectures indicated by ‘Yes?’, ‘No?’, meant ‘rather Yes’ and ‘rather No’, respec-
tively, where the properties A, B, . . . , H correspond to the comparative features and
the numbers 1, 2, . . . , 6 correspond to the models as in the lists given in Section 2,
respectively.

Matrix-like table of answers to the question:
does i simulate j in polynomial slow-down?
(i—row, j—column)

1 2 3 4 5 6
1 Yes Yes ? ? ? Yes
2 No? Yes No? No? No? Yes
3 ? Yes Yes ? ? Yes
4 ? Yes Yes Yes Yes? Yes
5 ? Yes ? ? Yes Yes
6 No No No No No Yes

Open problems and conjectures are indicated by ‘?’, ‘Yes?’, ‘No?’ as in the first
table.

From the first table and its first row we conclude that despite the treatment of
natural computing as less important than e.g. multicore computing, cf. [25], or not
worth to mention, cf. [3], the bio-inspired membrane computing, a vital part of
natural computing, contains ordinary membrane machines which are computation
models of advantageous features from complexity theoretical point of view (see
features B, C, D) and open for extensions to new approaches to computing outlined
among others in [4].
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Summary. The hand-made graphical representation of the configuration of a P system
becomes a hard task when the number of membranes and objects increases. In this paper
we present a new software tool, called JPLANT, for computing and representing the
evolution of a P system model with membrane creation. We also present some experiments
performed with JPLANT and point out new lines for the research in computer graphics
with membrane systems.

1 Introduction

Since A.R. Smith [12] proposed the Lindenmayer systems (L-systems) [5] as a tool
for synthesizing realistic images of plants, many efforts have been done for bridging
the theory of formal languages and computer graphics.

In [2, 3], a first membrane-based device for computer graphics was presented.
It was a hybrid model between L-systems and membrane computing and it used
concepts very close to the L-systems model. Later, in [10], a new approach was
presented for representing the development of higher plants with P systems. It was
based on a type of P systems with membrane creation and it was entirely developed
with membrane computing techniques. The basic idea was to consider the growing
of the structure the membranes in a P system with membrane creation.

By definition, the structure of membranes in a cell-like P system is a tree.
In P systems with membrane creation, new membranes can be created inside the
existing membranes and this produces the expansion of the structure of membranes
by increasing the depth of the branches. With an appropriate interpretation of the
objects inside the membranes, the membrane structure can be represented as a
tree which evolves in time and the length and width of the branches can grow in
a similar way to real plants. In [11], the study started at [10] was completed by
adding stochastic rules to the P system. In this case, the non-deterministic choice
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of different rules produces different configurations of the P systems and hence,
different graphical representations.

The hand-made graphical representation of the configuration of a P system
becomes a hard task when the number of membranes and objects increases. For
going on with the study of the relation between P systems and computer graphics
it was necessary to develop a software able to deal with complex P systems and
represent graphically its evolution in time.

In this paper we present such a software, JPLANT, which computes the first
configurations of a computation and draws the corresponding graphical represen-
tation. This software is a very useful tool for the experimental research of the
graphical representation of P systems. We show several experiments and open new
research lines for exploring the possibilities of P systems.

The paper is organized as follows: Section 2 recall the restricted model of P
systems with membrane creation used for the graphical design. Section 3 gives a
brief presentation of the software JPLANT and the next section shows several ex-
periments. The paper finishes with some conclusions and lines for future research.

2 P Systems with Membrane Creation

Membrane computing is a branch of natural computing which abstracts from the
structure and the functioning of the living cell. In the basic model, membrane
systems (also frequently called P systems) are distributed parallel computing de-
vices, processing multisets of symbol-objects, synchronously, in the compartments
defined by a cell-like membrane structure1.

In this paper we will consider P systems which make use of membrane creation
rules, which was first introduced in [4, 6]. However, our needs are far simpler
than what the models found in the literature provide. This is the reason why we
introduce the new variant of restricted P systems with membrane creation.

A restricted P system with membrane creation is a tuple Π = (O, µ,
w1, . . . , wm, R) where:

1. O is the alphabet of objects. There exist two distinguished objects, F and W
that always belong to the alphabet of any P system considered below.

2. µ is the initial membrane structure, consisting of a hierarchical structure of m
membranes (all of them with the same label; for the sake of simplicity we omit
the label).

3. w1, . . . , wm are the multisets of objects initially placed in the m regions de-
limited by the membranes of µ.

4. R is a finite set of evolution rules associated with every membrane, which can
be of the two following kinds:
a) a → v, where a ∈ O and v is a multiset over O. This rule replaces an

object a present in a membrane of µ by the multiset of objects v.
1 A detailed description of P systems can be found in [9] and updated information in

[13].
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b) a → [v], where a ∈ O and v is a multiset over O. This rule replaces an
object a present in a membrane of µ by a new membrane with the same
label and containing the multiset of objects v.

A membrane structure together with the objects contained in the regions de-
fined by its membranes constitute a configuration of the system. A transition
step is performed applying to a configuration the evolution rules of the system in
the usual way within the framework of membrane computing, that is, in a non-
deterministic maximally parallel way; a rule in a region is applied if and only if the
object occurring in its left–hand side is available in that region; this object is then
consumed and the objects indicated in the right–hand side of the rule are created
inside the membrane. The rules are applied in all the membranes simultaneously,
and all the objects in them that can trigger a rule must do it. When there are
several possibilities to choose the evolution rules to apply, non-determinism takes
place.

2.1 Graphical Representation

In this section we show how to use, through a suitable graphical representation,
restricted P systems with membrane creation to model branching structures. The
key point of the representation relies on the fact that a membrane structure is
a rooted tree of membranes, whose root is the skin membrane and whose leaves
are the elementary membranes. Thus, this seems a suitable frame to encode the
branching structure.

Let us suppose that the alphabet O of objects contains the objects F and W ,
and let us fix the lengths l and w.

A simple model to graphically represent a membrane structure is to make a
depth-first search of it, drawing, for each membrane containing the object F , a
segment of length m× l, where m is the multiplicity of F . If the number of copies
of F in a membrane increases along the computation, the graphical interpretation
is that the corresponding segment is lengthening. Analogously, the multiplicity of
the symbol W specify the width of the segments to be drawn as follows: if the
number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n× w.

Each segment is drawn rotated with respect to the segment corresponding to
its parent membrane. In order to determine the rotation angle we need to fix a
third parameter δ. This angle δ together with the length l and the width w will
determine the picture of the P system.

In order to compute the rotation angle of a segment with respect to its parent
membrane we consider two new objects that can appear in the alphabet: + and −.
The rotation angle will be n× δ, where n is the multiplicity of objects “+” minus
the multiplicity of objects “−” in the membrane. That is, each object “+” means
that the rotation angle is increased by δ whereas each object “−” means that it is
decreased by δ.
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Inside the membranes other objects can appear that do not have geometrical
interpretation. They are related to the development of the graph in time.

For a better understanding let us consider the following example: let Π1 be the
restricted P system with membrane creation such that

Fig. 1. First four configurations

• The alphabet of objects is O = {F, W,Bl, Bs, Br, L, L1, E, +,−}.
• The initial membrane structure together with the initial multiset of objects is

[F 2 W Bl Bs L1 E].
• The rules are:

Bl → [+ F W Bl Bs LE] L → LF
Bs → [F W Bl Br L1 E] L1 → L1 F 2

Br → [−F W Bl Bs LE] E → E W

In this system, the object Bs represents the straight branches to be created,
whereas the objects Bl and Br represent branches to be created rotated to the
left and to the right, respectively. The objects F and W will determine the length
and the width of the corresponding branch. The objects L, L1 and E do not have
a graphical interpretation; they can be considered as seeds for growing the branch
in length and width.
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The initial configuration consists of one membrane which contains two copies of
F and one copy of W . If we consider the parameters l, w and δ, then the graphical
representation of this initial configuration is a single segment of length 2 × l and
width w. In the first step, the objects Bl and Bs create new membranes, so the
picture of this configuration consists on three segments. The new membrane cre-
ated by Bs does not contains objects + or − and then the corresponding segment
is not rotated with respect to the segment that represents the skin. On the other
hand, the membrane created by Bl contains one object +, so its segment will be
rotated an angle δ with respect to its parent membrane.

Notice also that the evolution of the objects L1 and E has modified the number
of objects F and W in the skin, so in this new picture, the segment corresponding
to the skin has length 4× l and width 2× w.

Figure 1 shows the graphical representation of the first four configurations
where we fix a bottom-up orientation and an angle δ of 15 degrees.

2.2 Stochastic Versus Non-deterministic P Systems

The non-determinism is one of the main features of P systems and the possibility
of reaching different configurations leads us to consider different graphical repre-
sentations in the evolution of a P system.

One possible way to formalize the probability of obtaining one or other config-
uration is via stochastic P systems. Several alternatives to incorporate randomness
into membrane systems can be found in the literature (see [1, 7, 8] and the ref-
erences therein). One of them is to associate each rule of the P system with a
probability. Thus, to pass from a configuration of the system to the next one we
apply to every object present in the configuration a rule chosen at random, ac-
cording to those probabilities, among all the rules whose left–hand side coincides
with the object2.

For example, let us consider Π2 the following restricted P system with mem-
brane creation:

• The alphabet of objects is O = {F, W,Bl, Bs, Br, L, L1, E}.
• The initial membrane structure together with the initial multiset of objects is

[F 2 W Bl Bs L1 E].
• The rules are:

Bl
1/2−−→ [+ F W Bl Bs LE] L → LF

Bl
1/2−−→ [−F W Bl Bs LE] L1 → L1 F 2

Br
1/2−−→ [+ F W Bl Bs LE] E → E W

Br
1/2−−→ [−F W Bl Bs LE] Bs → [F W Bl Br L1 E]

2 This idea was presented in [11].
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Fig. 2. Four configurations after the second step

There exist two rules for the evolution of the object Bl and two possibilities
for the evolution of the object Br. The probability for each choice is 1/2. Notice
that we do not make explicit the probability of the rule when this is one.

Figure 2 shows four different configurations after the second step of this P
system with the angle δ = 15.

3 JPLANT

In order to avoid the heavy hand-made computation for the graphical representa-
tion a new software tool has been designed. In this paper we present JPLANT 3,
which computes the first configurations of a computation of a restricted P system
with membrane creation and draws the corresponding graphical representation of
the configurations of such computation.

JPLANT has been written in Java and it has a nice intuitive user-friendly
graphical interface. The initial configuration and the set of rules are provided in
plain text mode. The right syntax of the initial configuration and the rules are
checked before starting the computation. The generation of a new configuration
is driven by the user which can choose between jumping to a configuration N or
generating (and drawing) at each time the next configuration.

The software tool is thought as a drawing tool so the computed new configu-
rations are not showed to the user in the text mode. The output is a picture with
a set of connected segments drawn according with the rules described in Section
3 The software is available from [13].
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2. For each new configuration, a new picture is drawn, so the output of this tool
is a sequence of pictures which can be saved in several computer graphic formats.

The graphical representation of one configuration is not unique. It depends on
the parameters l, w and δ which determine the length and width of the segments
as well as the rotation angle with respect to the segment corresponding to the
parent membrane. Such parameters are the input of the tool and they must be
also provided by the user with the initial configuration and the rules.

The current version of JPLANT includes the ability of load and save files
with the input data and save the generated pictures and also provide color to the
pictures.

The color is one of the basic tools in the graphical design. In the current version,
the color of the segment associated with each membrane is not associated with any
object inside the membrane. In this way, we cannot change the color of a membrane
by the analysis of the membrane structure of a computation. Nonetheless, JPLANT
provides the ability of giving color to the generated picture. It is an ability which is
not associated with the P system which generates the picture, but it is a powerful
tool in order to get realistic representations.

4 Applications

Next we illustrate the possibilities of JPLANT with some examples.

4.1 Polygons and Spirals

Polygons and spirals can be considered a very special case of branching struc-
tures. They consists of a connected set of segments where a vertex only connect
two segments. From a membrane computing point of view, this means that each
membrane in a configuration only contains one membrane.

Polygons

A first example of figures built with P systems are regular polygons. In such
polygons the length of the side is constant and the angle of deviation from the
previous side is also constant. A simple calculus shows us that a deviation of
δ = 360/n degrees allows us to built a regular polygon of n sides.

Figure 3 shows regular polygons of n = 10 and n = 12 sides obtained with δ =
36 and δ = 30 degrees. Obviously the number of steps are 10 and 12 respectively.
The P system is the following

Initial configuration: [F W H]

Rule: H → [−F W H]
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Fig. 3. 10-polygon and 12-polygon

Spirals

In mathematics, a spiral is a curve which emanates from a central point, getting
progressively farther away as it revolves around the point. The concise mathemat-
ical definition is the locus of a point moving at constant speed whose distance from
a fixed point increases at a specific rate.

An Archimedean spiral (a spiral named after the 3rd-century-BC Greek math-
ematician Archimedes) is the locus of points corresponding to the locations over
time of a point moving away from a fixed point with a constant speed along a line
which rotates with constant angular velocity. Equivalently, in polar coordinates
(ρ, ω) it can be described by the equation ρ = a + bω with real numbers a and b.
Archimedes described such a spiral in his book On Spirals. It can be represented
with the following P system:

Initial configuration: [FnWHL]

Rules: H → [−FnWLH]
L → LF

Figure 4 shows the representation of such Archimedes spiral for n = 5, length
of F = 0.01, width W = 1.0, angle δ = 15 and step 120.

The logarithmic spiral is a special kind of spiral curve which often appears in
nature. It was first described by Descartes and extensively investigated by Jakob
Bernoulli, who called it Spira mirabilis, “the marvelous spiral”. Its equation in
polar coordinates is ρ = cω. It can be approximated by the P system

Initial configuration: [FnWHL]

Rules: H → [−FnWLH]
L → LM1F
M1 → M2
. . .
Mi−1 → Mi

Mi → L
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Fig. 4. Archimedes’ spiral

Fig. 5. Logarithmic spiral

Figure 5 shows the representation of such logarithmic spiral for n = 10, i = 7,
length of F = 0.001, width W = 1.0 angle δ = 30 and step 40.

4.2 Friezes

Another application of JPLANT for the graphical representation of restricted P
systems with membrane creation is the design of friezes.

With the appropriate interpretation of the symbols, the following P system can
be represented as a frieze based on right angles which has a flavor of Greek friezes.
It can be extended horizontally in a non bounded way.
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Fig. 6. The first frieze

Initial configuration: [F 5 W H1]

Rules: H1 → [−F 5 W H2] H7 → [+ F W H8]
H2 → [−F 4 W H3] H8 → [+ F 2 W H9]
H3 → [−F 3 W H4] H9 → [+ F 3 W H10]
H4 → [−F 2 W H5] H10 → [+ F 4 W H11]
H5 → [−F W H6] H11 → [+ F 5 W H12]
H6 → [−F W H7] H12 → [+ F 5 W H1]

Figure 6 shows the representation of such frieze for length of F = 0.5, width W = 1
angle δ = 90 and step 60.

Figure 7 shows a horizontally bounded frieze based on the Archimedes spiral.

Fig. 7. The second frieze

Initial configuration: [F 300 W 40 H1 I1 D1]

Rules: H1 → [F 300 W 40 H2 I2 D2] I1 → I2

H2 → [F 300 W 40 H3 I3 D3] D1 → D2

H3 → [F 300 W 40] I2 → I3

L → LF D2 → D3

K → K W I3 → I4

I4 → [−11 F W L K D4] D3 → D4

D4 → [+F W L K D4]
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Figure 7 shows the representation of such frieze for length of F = 0.01, width
W = 0.1 angle δ = 15 and step 40.

4.3 Plants

Figure 8 shows the corresponding graphical representation of the ninth configura-
tion of the P system presented in Section 2.1, where we fix a bottom-up orientation
with a length F = 1, width W = 2 and an angle δ of 15 degrees.

Fig. 8. Tree

Figure 9 represents four different trees obtained with JPLANT from the P
system in Section 2.2.
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Fig. 9. Four configurations

5 Conclusions and Future Work

In this paper we have shown the suitability of P systems for modeling the growth
of branching structures. It is our opinion that using membrane computing for
this task could be an alternative to L-systems, the model most widely studied
nowadays, for several reasons: the process of growing is closer to reality, since for
example a plant does not grow by “rewriting” its branches, but by lengthening,
widening and ramifying them; the membrane structure of P systems supports
better and clearer the differentiation of the system into small units, easier to
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understand and possibly with different behaviors; the computational power of
membrane systems can provide tools to easily simulate more complex models of
growing, for example taking into account the flow of nutrients or hormones.

Nevertheless, it is still necessary a deeper study of several features of our pro-
posed framework as compared with that of Lindenmayer systems. Two aspects that
have to be investigated are the complexity of the models that can be constructed,
and the computational efficiency in order to generate their graphical representa-
tion. On one hand, the use of the ingredients of membrane computing can lead to
more intuitive models; on the other hand, we lose the linear sequence of graphical
commands that characterize the parsing algorithm of L-systems.

From a theoretical point of view, one of the main drawbacks of the model
is that it is extremely simple. Although the orientation of the paper belongs to
the framework of membrane computing, the exclusive use of rules of type a → v
and a → [v] miss the potential richness of expressiveness and computation of
P systems. The following steps on this line should be devoted to the study of
the graphical possibilities of P systems with more features, such as labels for the
membranes (they can help to distinguish between different parts of a plant), the
use of communication rules, allowing objects to cross the membranes of the system,
division and/or dissolution rules, rules with cooperation, etc.
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Summary. In this work, we propose a P system which carries out computing by carving.
Computing by carving was proposed by Gh. Păun as a technique to generate formal
languages which can even be non recursively enumerable. Hence, it can be considered
a hypercomputational technique. Here, we propose a first scheme based on P systems
in order to perform computing by carving any formal language. So, the paper shows
indirectly that these systems, under certain assumptions, can be considered a model for
hypercomputation.

1 Introduction

Computing by carving is a computational strategy to generate formal languages
proposed by Gh. Păun in 1999 [4]. This technique has been proved to generate
even non recursively enumerable languages, hence it can be considered a hyper-
computational technique. Furthermore, in the same work, Păun proved that it can
be a used as a solution to language approximation problems. Here, we will pro-
pose a membrane system architecture to perform computing by carving. Hence,
we indirectly prove that membrane systems can be considered hypercomputational
models.

Hypercomputational models have been proposed along the time that solve some
problems proved to be unsolvable by classical Turing machines. Most of these
models need some kind of infinite resources (infinite tape alphabets, sets of states,
etc.) as pointed out in [10]. Here, we will introduce infinite membrane regions and
objects as a source for hypercomputing with P systems.

The structure of this work is as follows: In the following section, we will in-
troduce basic concepts about formal language theory and membrane computing.
Then, we will introduce the basic aspects and results about computing by carv-
ing. In section 4, we will propose a P system to perform computing by carving.
? Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769
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We will discuss different approximations to make so by using membrane creation
and other ways to obtain potentially infinite resources. Finally, we will draw some
conclusions and we will point out new problems for future research.

2 Basic concepts on formal language theory and membrane
computing

We will introduce some basic concepts from formal language theory according to
[2, 7] and from membrane computing according to [5].

An alphabet Σ is a finite nonempty set of elements named symbols. A string
defined over Σ is a finite ordered sequence of symbols from Σ. The infinite set of
all the strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will
denote its length by |x|. The empty string will be denoted by λ and Σ+ will denote
Σ∗ − {λ}. A language L defined over Σ is a set of strings from Σ. The difference
between two languages L1 and L2 is defined by L1 − L2 = {x ∈ L1 : x /∈ L2}.

A generalized sequential machine can be defined by the tuple T =
(Σ, ∆, Q,R, q0, F ), where Σ and ∆ are aphabets, Q is a finite states set, R ⊆
Q × Σ∗ × ∆∗ × Q is a finite transition relation, q0 ∈ Q is the initial state, and
F ⊆ Q is a set of final (or acceptance) states. The machine takes an initial string
x ∈ Σ∗ and, after applying the transitions defined by T , it obtains an output string
y ∈ ∆∗ whenever it finishes in a final state. Then, we will say that T performs a
function g such that g(x) = y.

A general P system of degree m is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)
• T ⊆ V (the output alphabet)
• C ⊆ V , C ∩ T = ∅ (the catalysts)
• µ is a membrane structure consisting of m membranes
• wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i
• Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}
and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink | 1 ≤ k ≤ m}.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals ∞ the output is read outside the system).
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The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system arranged in the leaving order (if several objects leave the
system at the same time, then all permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denoted by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the modification of
membrane structures. There have been several works in which these variants have
been proposed (see, for example, [1, 3, 6]).

In the following, we enumerate some kinds of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′
2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g.,
exocytosis, endocytosis, etc.) has been widely studied in the previously mentioned
works and other papers.

3 Computing by carving

Păun introduced in [4] computing by carving as a technique to compute formal
languages inspired by the search of solutions by filtering conditions in DNA com-
puting. The main ingredients of computing by carving are the following:

1. A target language L
2. An initial couple of languages L0 and L1

3. An initial language M
4. A generalized sequential machine (gsm) g

The way of obtaining the target language L can be explained as follows: First,
select a broader (regular) language M and an initial couple of (regular) languages
L0 and L1 and calculate Li+1 = g(Li) for i ≥ 1. The ith iteration of g over L1

can be denoted by gi(L1) and g∗(L1) will denote the language
⋃

i≥0 gi(L1). Then
L can be calculated as L = M − (L0 ∪ g∗(L1). If the latter condition holds, then
L is said C-REG computable. Then, the triple (L0, L1, g) identifies the sequence
that allows the calculation of L. Observe that M can be assumed to be Σ∗.

The following results can be found in [4]

Theorem 1. Every recursively enumerable language L ⊆ T ∗ can be written in the
form L = g∗({a0}) ∩ T ∗) where g is a gsm, depending on L, and a0 is a fixed
symbol not in T .

Theorem 2. There are C-REG computable languages which are not recursively
enumerable.
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4 A P system for computing by carving

In this section, we propose a first approach to implement the components M , L0,
L1 and g in order to compute a language L by carving. In general, we will work
with sets of integers instead of languages of strings given that the connection of
languages to sets of integers are very common in P systems.

The general scheme that we will initially follow in the proposed P system is
shown in Fig. 1. First, the projections of the languages M , L0 and L1 can be
generated by using P systems ΠM , ΠL0 and ΠL1 . Observe that any recursively
enumerable language can be generated by a P system so they can be generated
too. Moreover, we can take L1 to be finite, even a singleton as shown in [4], so we
can define the set of initial objects in ΠL1 to be exactly L1. With respect to L0

we can fix it to be Σ∗ or the empty set. In both cases, it can be trivially generated
even in a lexicographic order.

Fig. 1. Initial scheme for the P system

Once, we have generated a string in ΠM , ΠL0 or ΠL1 it is sent to Πsubstract.
Observe that, if we generate L0 and L1 in lexicographic order then we can make
the difference in Πsubstract in lexicographic order too. The generalized sequential
machine g can be applied by using a P system Πg that receives objects from
Πsubstract. Once the generalized sequential machine has been applied in Πg two
different regions are created by using membrane division and membrane creation:
Πg2 and ΠL2 . Now, the new regions are used to calculate the second g iteration



Computing by Carving with P Systems 259

over L1 in Πg2 and the language L2 in ΠL2 . The second substraction over the set
M is performed again in Πsubstract.

This scheme can be generalized to obtain Lj . Observe that the P system struc-
ture in this case is shown in Figure 2.

Fig. 2. Calculating Lj through jth iteration for the generalized sequential machine g

Some remarks about the proposed architecture:

1. The region corresponding to Πsubstract always contains the updated approxi-
mation to L. That is, when the computation is in progress, some strings will be
sent from ΠM to Πsubstract and they will be deleted if the same string appears
in any ΠLi .

2. The whole process can be considered as an infinite time one, given that the
generation of every Li is infinite and so is for the updated approximation to
L.

3. Here, the resources needed to compute L are infinite. Think about the number
of regions and objects in every region. They will be unboundedly increased
over the time.
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5 Conclusions and future work

In this paper we have made a first approach to computing by carving with P
systems. Here, we have only sketched the general ideas behind the full definition.
So, we need to define the P systems carrying out the following tasks:

• The generation of any infinite (regular) language in lexicographic order.
• The application of the generalized sequential machine over strings and lan-

guages.
• The substraction between languages.

Every task referred before will be investigated in future works.
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Summary. Recognizer P systems with active membranes have proven to be very power-
ful computing devices, being able to solve NP-complete decision problems in a polynomial
time. However such solutions usually exploit many powerful features, such as electrical
charges (polarizations) associated to membranes, evolution rules, communication rules,
and strong or weak forms of division rules. In this paper we contribute to the study
of the computational power of polarizationless recognizer P systems with active mem-
branes. Precisely, we show that such systems are able to solve in polynomial time the
NP-complete decision problem 3-sat by using only dissolution rules and a form of strong
division for non–elementary membranes, working in the maximal parallel way.

1 Introduction

Membrane systems (also known as P systems) have been introduced in [11] as
a parallel, nondeterministic, synchronous and distributed model of computation
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain some objects (represented by symbols of an alphabet) and evolution
rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. Usually, the rules are applied in a nondeterministic and maximally
parallel way; moreover, all the objects that may evolve are forced to evolve. A
computation starts from an initial configuration of the system and terminates
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when no evolution rule can be applied. The result of a computation is the multiset
of objects contained into an output membrane, or emitted from the skin of the
system. An interesting subclass of membrane system is constituted by recognizer
P systems, in which: (1) all computations halt, (2) only two possible outputs
exist (usually named yes and no), and (3) the result produced by the system
depends only upon its input, and is not influenced by the particular sequence of
computation steps taken to produce it. For a systematic introduction on P systems
we refer the reader to [14], whereas the latest information can be found in [24].

Since the introduction of membrane systems, many investigations have been
performed on their computational properties: in particular, many variants have
been proposed in order to study the contribution of various ingredients (associ-
ated with the membranes and/or with the rules of the system) to the achievement
of the computational power of these systems. In this respect, it is known [19, 23, 5]
that the class of all decision problems which can be solved in polynomial time by
a family of recognizer P systems that use only basic rules, that is, evolution, com-
munication and rules involving membrane dissolution, coincides with the standard
complexity class P. Hence, in order to efficiently solve NP-complete problems by
means of P systems it seems necessary to be able to construct an exponential
workspace, expressed by the number of membranes, in polynomial time. In par-
ticular, two features have proven to be of paramount importance in establishing
whether a membrane system is able to solve NP-complete decision problems in
polynomial time: membrane division and dissolution. The former is inspired from
the biological process called mitosis: using division rules we can duplicate a given
membrane that contains one specified symbol, possibly rewriting this symbol in a
different way in each of the cells produced by the process. All the other symbols,
as well as the rules, which are contained in the original cell are copied unaltered
into each of the resulting cells. As for the membranes eventually contained in the
original cell, we can make the following distinctions. If no membrane occurs, the
we say that the division is elementary ; if at least one membrane occurs, then
the division is non elementary, and we have to specify how the membranes are
distributed to the resulting membranes. If all the membranes are copied to each
of the resulting membranes, then we have a weak (non-elementary) division; if,
on the other hand, we can choose what membranes are copied into each of the
resulting membranes, then we have strong (non-elementary) division. Membrane
dissolution is performed by rules that simply dissolve the surrounding membrane
when a specified symbol occurs.

Recognizer P systems with active membranes (using division rules and, even-
tually, polarizations associated to membranes) have thus been successfully used
to efficiently solve NP-complete problems. The first solutions were given in the
so called semi-uniform setting [13, 23, 7, 9], which means that we assume the
existence of a deterministic Turing machine that, for every instance of the prob-
lem, produces in polynomial time a description of the P system that solves such
an instance. The solution is computed in a confluent manner, meaning that the
instance given in input is positive if and only if every computation of the P system
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associated with it is an accepting computation. Another way to solve NP-complete
problems by means of P systems is by considering the uniform setting, in which all
the instances of the problem are given in input — encoded in an appropriate way
— to the same P system and then solved by it. Sometimes, a uniform solution to
a decision problem Q is provided by defining a family {ΠQ(n)}n∈N of P systems
such that for every n ∈ N the system ΠQ(n) reads in input an encoding of any pos-
sible instance of size n, and solves it. P systems with active membranes have thus
been successfully used to design uniform polynomial-time solutions to some well-
known NP-complete problems, such as sat [20], Subset Sum [17], Knapsack
[18], Partition [6] and the Common Algorithmic Problem [21].

All the papers mentioned above deal with P systems with three polarizations
that use only division rules for elementary membranes (in [22] also division for
non–elementary membranes is permitted, and in this way a semi–uniform solution
to the PSPACE-complete problem qsat is provided), and working in the maximal
parallel way. As shown in [1], the number of polarizations can be decreased to two
without loss of efficiency.

Since by using all these features (membrane division, dissolution and polariza-
tions) we can solve NP-complete problems, we have a model of computation which
is considered too powerful from the point of view of traditional complexity theory.
Hence a research direction of a clear interest is to selectively remove one or more of
these features and see whether the computation power changes, that is, investigat-
ing for what combinations of features we are still able to obtain polynomial time
solutions to computationally hard problems and what features, once removed, only
allow to obtain polynomial time solutions to tractable problems, in the classical
sense. In this direction, in [15] a conjecture was formulated by Gh. Păun about
the computational power of polarizationless P systems with active membranes and
working in the maximally parallel mode, stating that such systems can only solve
decision problems that are in P (by using only elementary division), and some par-
tial answers were given in [8]. Also, in [4] the computational power of recognizer
P systems with active membranes but without electrical charges and dissolution
rules was investigated, establishing that they characterize the complexity class P.

In this paper we continue this research line, showing that polarizationless P
systems with active membranes that use strong division for non–elementary mem-
branes and dissolution rules, working in the maximal parallel way, are able to solve
in polynomial time the NP-complete problem 3-sat. This result provides fur-
ther partial answers to Păun’s conjecture, establishing that neither evolution nor
communication rules, and no electrical charges are needed to solve NP-complete
problems, provided that we can use strong division rules for non–elementary mem-
branes (as well as dissolution rules, otherwise we would fall in the case considered
in [4]).

The paper is organized as follows. In Sections 2 and 3 we recall the definition of
polarizationless recognizer P systems with active membranes, thus establishing our
model of computation, and we recall the definition of the NP-complete decision
problem 3-sat. In Section 4 we show how the systems we are considering are able
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to solve the 3-sat problem. Finally, Section 5 contains the conclusions and some
directions for further research.

2 Polarizationless recognizer P systems with active
membranes

Usually, P systems with active membranes are defined in the literature with three
electrical charges (also called polarizations) associated with membranes (even
thought two charges suffice, as proved in [1]) to control the application of the
rules, which can be of the following types: evolution rules, by which single ob-
jects evolve to a multiset of objects, communication rules, by which an object is
introduced in or expelled from a membrane, and possibly changed to another ob-
ject while performing this operation, dissolution rules, by which a membrane is
dissolved under the influence of an object, that can also be modified during this
operation, and membrane division rules (both for elementary and non–elementary
membranes, or only for elementary membranes). However, in this paper we will
consider polarizationless P systems with active membranes, that is, P systems in
which no electrical charge is associated with any membrane.

Formally, a P system with polarizationless active membranes of the initial
degree n ≥ 1 is a tuple of the form Π = (Γ, H, µ,M1, . . . ,Mn, R, h0), where:

1. Γ is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. µ is a membrane structure, consisting of n membranes being labelled with

elements of H;
4. M1, . . . ,Mn are strings over Γ , describing the multisets of objects placed in

the n initial regions of µ;
5. R is a finite set of developmental rules, of the following forms:

(a) [ a → v ]h, for h ∈ H, a ∈ Γ , v ∈ Γ ∗ (object evolution rules);
(b) a[ ]h → [ b ]h, for h ∈ H, a, b ∈ Γ (in communication rules);
(c) [ a ]h → b[ ]h, for h ∈ H, a, b ∈ Γ (out communication rules);
(d) [ a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules);
(e) [ a ]h → [ b ]h[ c ]h, for h ∈ H, a, b, c ∈ Γ (weak division rules for elementary

or non–elementary membranes);
(f) h0 ∈ H or h0 = env indicates the output region (in the latter case, usually

h0 does not appear in the description of the system).

We can also consider rules of the form [ [ ]h1 [ ]h2 ]h3 → [ [ ]h1 ]h3 [ [ ]h2 ]h3 ,
where h1, h2, h3 are labels from H: if the membrane with label h3 contains other
membranes than those with labels h1, h2, these membranes and their contents are
duplicated and placed in both new copies of the membrane h3; all membranes and
objects placed inside membranes h1, h2, as well as the objects from membrane
h3 placed outside membranes h1 and h2, are reproduced in the new copies of
membrane h3. These rules are called strong division rules for non–elementary
membranes.



Recognizer P Systems with Strong Division and Dissolution 265

As usual, a computation starts in the initial configuration, which is given by
the membrane structure µ and the strings (multisets) M1, . . . ,Mn of objects
initially present in the n regions of µ. Using the maximally parallel manner, at each
computation step (a global clock is assumed) in each region of the system we apply
the rules in such a way that no further rule can be applied to the remaining objects
or membranes. In each step, each object and each membrane can be involved in
only one rule. The application of a maximal set of rules during a computation
step produces a new configuration of the system. A computation is a sequence
C0, C1, . . . of configurations such that C0 is the initial configuration described
above, and for all i ≥ 1 the configuration Ci is obtained from Ci−1 by applying a
maximal set of rules as described above. Note that a computation may be finite
or infinite; in the former case we require that the last element of the sequence is
an halting configuration, that is, a configuration in which no rule can be applied
anywhere in the system. A halting computation provides a result encoded by the
objects present in region h0 at the end of the computation; this is a region of the
system if h0 ∈ H (and in this case, for a computation to be successful, exactly one
membrane with label h0 should be present in the halting configuration), or it is
the environment if h0 = env. An infinite computation produces no result.

A recognizer P system with active membranes is obtained from the definition
given above by assuming that the system halts on every computation and pro-
duces one of two possible outputs, that are usually denoted by yes and no. A
further requirement is that the system is confluent, that is, for any given input
configuration, all the computations that can start with such a configuration end
by producing the same output. In this way, we can say that a recognizer P system
with active membranes recognizes the language which is composed by the strings
that encode the initial configurations that produce yes as a result. By considering
the trivial bijection existing between these languages and decision problems, we
can also say that a recognizer P system solves the decision problem whose positive
instances are associated with initial configurations of the system that produce the
output yes in h0.

We denote by AM0 the class of polarizationless recognizer P systems with
active membranes, and we denote by AM0(α, β, γ, δ), where α ∈ {−d, +d}, β ∈
{−ne, +new, +nes}, γ ∈ {−ev, +ev}, and δ ∈ {−comm, +comm} the class of
all recognizer P systems with polarizationless active membranes such that: (a) if
α = +d (resp., α = −d) then dissolution rules are permitted (resp., forbidden); (b)
if β ∈ {+new, +nes} (resp., β = −ne) then division rules for elementary and non–
elementary membranes, weak or strong (resp., only division rules for elementary
membranes) are permitted; (c) if γ = +ev (resp., γ = −ev) then evolution rules
are permitted (resp., forbidden); (d) if δ = +comm (resp., δ = −comm) then
communication rules are permitted (resp., forbidden).

The class of all decision problems which can be solved in uniform (resp., semi–
uniform) way, and in polynomial time by a family R of recognizer membrane
systems is denoted by PMCR (resp., PMC∗

R). The following inclusions directly
follow from these definitions.
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Proposition 1. For all α ∈ {−d, +d}, β ∈ {−ne,+new, +nes}, γ ∈ {−ev, +ev},
δ ∈ {−comm,+comm} and ε ∈ {∗, λ}:
1. PMCAM0(α,β,γ,δ) ⊆ PMC∗

AM0(α,β,γ,δ)

2. PMCε
AM0(−d,β,γ,δ) ⊆ PMCε

AM0(+d,β,γ,δ)

3. PMCε
AM0(α,−ne,γ,δ) ⊆ PMCε

AM0(α,+new,γ,δ)

4. PMCε
AM0(α,−ne,γ,δ) ⊆ PMCε

AM0(α,+nes,γ,δ)

5. PMCε
AM0(α,β,−ev,δ) ⊆ PMCε

AM0(α,β,+ev,δ)

6. PMCε
AM0(α,β,γ,−comm) ⊆ PMCε

AM0(α,β,γ,+comm)

where ε = ∗ (resp., ε = λ, the empty string) means that the complexity classes are
associated with semi–uniform (resp., uniform) solutions.

Also, using this notation, Păun’s conjecture (problem F in [15]) can be restated
as follows:

P = PMCAM0(+d,−ne,+ev,+comm) = PMC∗
AM0(+d,−ne,+ev,+comm)

As stated in the Introduction, results in [4] and [8] proved the following the-
orem, considering a reachability problem (is the state in which the symbol yes
is expelled to the environment reachable?) defined on the so called dependency
graph. We refer the reader to [4] and [8] for further details on the proofs.

Theorem 1. For all β ∈ {−ne,+new, +nes},
P = PMCAM0(−d,β,+ev,+comm) = PMC∗

AM0(−d,β,+ev,+comm)

This result holds for systems working in the maximal parallel manner; in [8] also
systems working with minimal parallelism were considered, but in this paper we
will not address them.

3 The 3-sat problem

Let us now consider the NP-complete decision problem 3-sat [3, p. 46]. The
instances of 3-sat depend upon two parameters: the number n of variables, and
the number m of 3-clauses. We recall that a clause is a disjunction of literals,
occurrences of xi or ¬xi, built on a given set X = {x1, x2, . . . , xn} of boolean
variables. A 3-clause is a clause that contains exactly three literals. In what follows
we will require that no repetitions of the same literal may occur in any clause.
Without loss of generality we can also avoid the clauses in which both the literals
xi and ¬xi, for any 1 ≤ i ≤ n, occur. An assignment of the variables x1, x2, . . . , xn

is a mapping a : X → {0, 1} that associates to each variable a truth value. The
number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a boolean formula) gives 1
(true) as a result.

We can now formally state the 3-sat problem as follows.
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Problem 1. Name: 3-sat.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables.

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

In what follows we will sometimes equivalently say that an instance of 3-sat
is a propositional formula γn,m = C1 ∧C2 ∧ · · · ∧Cm, expressed in the conjunctive
normal form as a conjunction of m clauses, where each clause is a disjunction of
three literals built using the boolean variables x1, x2, . . . , xn. With a little abuse of
notation, from now on we will denote by 3-sat(n,m) the set of instances of 3-sat
which have n variables and m clauses.

The reason for which we are here interested into 3-sat (rather that with the
more generic problem sat, see [3, p. 39], where we put no upper bound on the
number of literals that may appear in each clause) is that the number of possible 3-
clauses which can be built using n boolean variables is 2n·(2n−2)·(2n−4) ∈ Θ(n3),
a polynomial quantity with respect to n. This quantity is obtained by looking at a
3-clause as a triple, and observing that each component of the triple may contain
one of the 2n possible literals, with the constraints that we do not allow neither
the repetition of literals in the clauses, nor the use of the same variable two or
three times in a clause. On the other hand, an instance of sat may have a number
of clauses which is exponential in n, since for every i ∈ {1, 2, . . . , n} either variable
xi or its negation (or none of them) can appear in a clause, yielding to 3n possible
combinations.

4 Solving 3-sat with strong division and dissolution rules

In this section we propose a semi–uniform family {Π3SAT (γn,m)}γn,m∈3SAT (n,m)

of polarizationless recognizer P systems with active membranes that solves the
NP-complete decision problem 3-sat by using only membrane dissolution rules
and a form of strong division rules for non–elementary membranes. Precisely, for
every instance γn,m of 3-sat(n,m) we show how to build the system Π3SAT (γn,m)
that solves such an instance. Our result can be summarized by the statement of
the following theorem.

Theorem 2. 3-sat ∈ PMC∗
AM0(+d,+nes,−ev,−comm).

Proof. Let γn,m = C1∧C2∧ . . .∧Cm be an instance of 3-sat(n,m), built using the
boolean variables x1, x2, . . . , xn, and let Π3SAT (γn,m) be the recognizer P system
associated (in the semi–uniform framework) to γn,m, whose initial configuration
is illustrated in Figure 1. The system is composed by m outer membranes (not
counting the skin membrane) which are associated with the clauses of γn,m. Pre-
cisely, the membrane immediately contained in the skin is associated with clause
Cm and contains membrane Cm−1, which is associated with the namesake clause;
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Fig. 1. Initial configuration of the system Π3SAT (γn,m) that solves the instance γn,m of
3-sat(n, m)

on its turn, membrane Cm−1 contains a membrane labelled with Cm−2, and so
on, until we reach membrane C1 that contains a membrane labelled with A, that
will be used to generate all the possible assignments to x1, x2, . . . , xn. Membrane
A contains the object x1 (that represents the namesake variable) as well as n hier-
archies of nested membranes. As depicted in Figure 2, the notation xi

k
di

that we

Fig. 2. The hierarchies of nested membranes used in the system depicted in Figure 1 to
perform the correct sequence of membrane divisions

have adopted in Figure 1 indicates that symbol xi is surrounded by k membranes,
nested one into the other, all labelled by di. In this way, we can operate on mem-
brane A through a rule which is activated by x1 and, in the meanwhile, dissolve
one membrane in each of the subsystems contained in A. After m + 1 steps x2

emerges and activates another rule of A, and so on, until symbol s emerges and
starts another phase of computation.
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The computation of the system is composed by two phases: the generation
stage and the verification stage. During the generation stage, 2n copies of the
subsystem contained into the skin of the initial configuration depicted in Figure 1
are produced, where in each copy membrane A contains an encoding of one of the
possible assignments to x1, x2, . . . , xn. Such a phase is performed by the following
rules:

1. [ [ ]A[ ]A ]C1 → [ [ ]A ]C1 [ [ ]A ]C1

2. [ [ ]Ci−1 [ ]Ci−1 ]Ci
→ [ [ ]Ci−1 ]Ci

[ [ ]Ci−1 ]Ci
for all i = 2, 3, . . . , m

3. [ xj ]A → [ tj ]A [ fj ]A for all j = 1, 2, . . . , n
4. [ xj ]dj

→ xj for all j = 1, 2, . . . , n
5. [ s ]ds

→ s
6. [ s ]A → yes
7. [ tj ]Ci

→ tj if xj ∈ Ci, [ fj ]Ci
→ fj if ¬xj ∈ Ci, where 1 ≤ i ≤ m

Rules 1 and 2 are strong division rules for non–elementary membranes: whenever a
membrane Ci contains two membranes at their immediately inner level, it divides
and each of the resulting copies contains one of the previous inner membranes. Rule
3 is used to generate the assignments: when the symbol xj , for j ∈ {1, 2, . . . , n},
occurs in membrane A then A divides; in one of the resulting copies the symbol xj

is rewritten to tj , indicating the fact that we are assigning the value true to the
boolean variable xj . Similarly, in the other copy of A the symbol xj is rewritten to
fj , indicating that the boolean value false is assigned to xj . In order to control
the order of application of division rules during the generation phase, only one
symbol xj occurs in membrane A every m + 1 computation steps. In this way we
first divide membrane A, assigning the two boolean values true and false to xj

as described above; then, rule 1 can be applied, thus duplicating membrane C1.
In the subsequent m − 1 computation steps, membranes C2, C3, . . . , Cm are

duplicated exactly in this order thanks to rules 2. Figure 3 depicts the first steps
of this process for an instance containing n = 2 variables and m = 2 clauses (note
that this example is conceived only for illustrative purposes, since at least three
boolean variables are needed to build valid 3-clauses).

The rules are applied in the maximal parallel manner. In particular, at every
computation step one membrane labelled with dj , for each j ∈ {1, 2, . . . , n} such
that membrane dj still occurs in the system, is dissolved. In this way, a symbol xj

emerges in membrane A just after the assignment to xj−1 and all the subsequent
duplications of membranes C1, C2, . . . , Cm have been performed. By using the
same mechanism, symbol s emerges in membrane A after n(m + 1) steps, that is,
after all the assignments to x1, x2, . . . , xn and all the duplications of membranes
C1, C2, . . . , Cm have been performed. In practice, the construct composed by n(m+
1) nested membranes, all labelled with ds, together with the symbol s into the
innermost membrane and the dissolution rule [ s ]ds → s, implement a counter
whose initial value is nm and which is decremented each time the dissolution rule
is applied.

When the symbol s appears in A then n(m + 1) computation steps have been
performed, that is, the generation stage has ended and the verification stage can
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Fig. 3. First steps of the generation stage of a system designed to work on two clauses,
built using two boolean variables. For reasons of space, also in this figure we have used
the abbreviation depicted in Figure 2

start. All the copies of membrane A are dissolved by executing rule 6 (which
also changes s to yes), so that all the objects tj and fj that represent the truth
values of x1, x2, . . . , xn can reach the corresponding membrane C1 and activate its
rules. These rules, of type 7, depend upon the instance γn,m of 3-sat(n,m) we are
solving. For example, assume that the first clause of γn,m is C1 = x1 ∨ ¬x3 ∨ x4.
Then, membranes C1 will contain the following dissolution rules:
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[ t1 ]C1 → t1

[ f3 ]C1 → f3

[ t4 ]C1 → t4

In this way, a membrane labelled with C1 is dissolved if and only if at least one of
the objects tj and fj that encode the assignment satisfy the clause. If no object
satisfy the clause then the computation in that subsystem halts; on the contrary,
if the assignment under consideration satisfies C1 then by dissolving membrane
C1 the objects tj and fj that encode the assignments are released to membrane
C2. Then, the rules that correspond to clause C2 are executed; if the assignment
satisfies also C2 then the corresponding membrane is dissolved and the computa-
tion continues in membrane C3, otherwise membrane C2 is not dissolved and the
computation halts in that subsystem. If an assignment satisfies all the clauses of
γn,m then it will dissolve all the membranes C1, C2, . . . , Cm, and the objects that
represent the assignment will reach the skin membrane, that we consider as the
output membrane. Hence, the instance γn.m of 3-sat(n,m) solved by the system
is positive if and only if in the halting configuration (in which no rule can be
applied) at least one symbol occurs in the region enclosed by the skin membrane
(equivalently, if at least one copy of symbol yes occurs in such a region).

As stated above, we have focused our attention on the 3-sat problem because
the number m of clauses is O(n3). It is apparent that the number of computation
steps of the system Π3SAT (γn,m) we have just described is Θ(n(m + 1) + m) ⊆
O(n4). The number of membranes in the initial configuration of the system is:

n∑

i=1

i(m + 1) + m + 2 = (m + 1)
n(n + 1)

2
+ m + 2

∈ Θ(n2m) ⊆ O(n5)

a polynomial quantity in n. The total number of rules is 2n + m + 3 ∈ O(n3), and
the initial number of objects is n + 1 ∈ Θ(n).

For the sake of completeness, please note that we could enlarge this system so
to always produce exactly one output, being it either yes or no, just by adding an
object b, initially put in the leaf membrane of a series of n(m+1)+1 membranes, a
second outermost membrane (we can call it “external skin”) enclosing our system
and this new series of nested membranes, and finally adding a set of rules which
first let b move toward the external skin and eventually change it to no. Notice
that, in case of a positive answer, the object yes arrives to skin membrane one
step before the object b does.

5 Conclusions and directions for future research

For every possible instance γn,m of 3-sat(n,m), having m clauses built on the
boolean variables x1, x2, . . . , xn, we have shown how to build a polarizationless
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recognizer P system Π3SAT (γn,m) with active membranes that determines whether
γn,m is positive, that is, whether there exists an assignment to the variables
x1, x2, . . . , xn that satisfies all the clauses C1, C2, . . . , Cm of γn,m. The system
works in the maximal parallel manner and, besides using no electrical charges as-
sociated with the membranes, it does not use neither evolution nor communication
rules. However, it uses a form of strong division rules for non–elementary mem-
branes, that allow to divide the content of the membrane which is being duplicated
among the two resulting copies of the membrane. We can summarize the result
exposed in this paper by saying that 3-sat ∈ PMC∗

AM0(+d,+nes,−ev,−comm).
A first related question that comes to our mind is the following: is the

class PMC∗
AM0(+d,+nes,−ev,−comm) closed under polynomial reductions? If so,

any problem in NP could (at least, in principle) be transformed to 3-sat by
a polarizationless P system with active membranes that performs its compu-
tations without leaving this class. As a result, we could conclude that NP ⊆
PMC∗

AM0(+d,+nes,−ev,−comm). Another question of clear interest is: can we use
only weak division rules? Stated otherwise: is 3-sat (or some other NP-complete
problem) in PMC∗

AM0(+d,+new,−ev,−comm)?
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Summary. This paper introduces an evolutionary algorithm which uses the con-
cepts and principles of the quantum-inspired evolutionary approach and the hierar-
chical arrangement of the compartments of a P system. The P system framework is
also used to formally specify this evolutionary algorithm. Extensive experiments are
conducted on a well-known combinatorial optimization problem, the knapsack prob-
lem, to test the effectiveness of the approach. These experimental results show that
this evolutionary algorithm performs better than quantum-inspired evolutionary al-
gorithms, for certain arrangements of the compartments of the P system structure
utilized.

1 Introduction

Evolutionary algorithms (EAs) are practical and robust optimization and
search methods inspired by evolutionary processes occurring in natural selec-
tion and molecular genetics. The main features of EAs are the representation
and evaluation of individuals, population dynamics, evolutionary operators
such as selection, crossover and mutation [18, 4]. As compared to conventional
optimization methods, EAs are more suitable for solving complex optimiza-
tion problems as they exhibit an intrinsic parallelism derived from dealing
with multiple individuals, show remarkable adaptability and flexibility to ap-
plication problems, good search capability and robust results [1].

As a new distributed-parallel computing model, membrane computing,
also known as P system, has been introduced in [13] as an unconventional,
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nature-inspired computational paradigm employing various features specific to
the structure and functionality of the living cell. A P system consists of mem-
branes delimiting compartments organized in a hierarchical structure. Objects
are scattered across this structure and organized as multisets; specific rules
are applied in parallel to these objects in every compartment [13, 15]. The
hierarchical structure of membranes, type of rules (transformation, communi-
cation etc), intrinsic parallelism, are all very effective from a computational
point of view and attractive for modelling various problems.

P systems and EAs are different with respect to the objects and rules used,
computational strategies employed, but both are nature-inspired models and
applied to solve complex problems, e.g., NP complete problems [9, 14]. P sys-
tems represent a suitable formal framework for parallel-distributed computa-
tion [2, 20] and EAs are very effective for implementing different algorithms to
solve numerous problems [1]. Thus, the possible interaction between P systems
and EAs, also mentioned by the list of twenty-six open problems in membrane
computing [16], represents a fertile research field. In [9, 10, 11] it is proposed
a membrane-based evolutionary algorithm combining a membrane structure
where each membrane, but the deepest one, contains one membrane and a
local search method. This membrane-based algorithm was also employed to
solve the min storage problem [7]. In [5, 6] a hybrid algorithm combining P
systems and genetic algorithms was presented to solve single-objective and
multi-objective numerical optimization problems. In [20], the similarities be-
tween distributed EAs and P systems were analyzed and new variants of
distributed EAs are suggested and applied for some continuous optimization
problems.

This paper proposes a novel EA, called quantum-inspired evolutionary al-
gorithm based on P systems (QEPS), which uses the concepts and principles of
quantum-inspired evolutionary algorithms (QIEAs) within a P system frame-
work. A quantum-inspired bit (Q-bit) representation and quantum-inspired
gate (Q-gate) evolutionary rules together with a hierarchical membrane struc-
ture and transformation/communication-like rules are employed. To demon-
strate the effectiveness and applicability scope of this approach, a large num-
ber of experiments are carried out for the knapsack problem, a well-known
combinatorial optimization problem. The results obtained show that QEPS
with a specific membrane structure performs better than known QIEAs.

The knapsack problem has been frequently analysed by both P systems and
evolutionary algorithms communities as test-benches for various approaches.
Recognizer P systems with active membranes were constructed to solve one-
dimensional [17] and multi-dimensional [12] knapsack problems in linear time.
Also, extensively convincing experiments show that QIEA is far better than
conventional genetic algorithms [3, 4] in solving the same problem.

This paper is organized as follows. Section 2 introduces briefly QIEA and P
systems, and then describes QEPS in detail. Section 3 presents an application
example comparing QEPS and QIEAs for knapsack problems and summarizes
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the experimental results. Section 4 discusses the parameter setting in QEPS
and different membrane structures. Concluding remarks follow in Section 5.

2 QEPS – Basic Concepts

This section starts with brief introductions about QIEA and P systems goes
then into presenting a P systems-like framework of QIEA, called QEPS.

2.1 QIEA

Inspired by concepts of quantum computing such as quantum bits and quan-
tum gate, QIEA is a new evolutionary algorithm for a classical computer
instead of a quantum algorithm. QIEA was first introduced by Narayanan
and Moore in [8] and its practical form was proposed by Han and Kim in
[3]. Various variants of QIEA can be categorized into two groups: real ob-
servation QIEA for numerical optimization [22] and binary observation QIEA
(bQIEA) for combinatorial optimization. The latter, referred in this paper, can
be sub-classified into four groups: original bQIEA (bQIEAo) [3], bQIEA with
migration operator (bQIEAm) [4], bQIEA with a combination of crossover,
mutation and selection operators (bQIEAcms) [19], and bQIEA with a novel
update method for Q-gates (bQIEAn) [21]. QIEA approach is characterized
by a Q-bit representation for individuals and a Q-gate as a variation operator
to obtain better fitted individuals. In QIEA, a Q-bit is defined by a pair of
numbers (α, β) as [

α
β

]
, (1)

where |α|2 and |β|2 are the probabilities that the observation of a Q-bit will
render a ‘0’ or ‘1’ state [4]. Normalization requires that |α|2 + |β|2 = 1. Note
that QIEA just needs real numbers for probability amplitudes. Besides ‘0’ and
‘1’ states, a Q-bit can also be in a superposition of the two states. A Q-bit
individual is represented as a string of l Q-bits

[
α1|α2| · · · |αl

β1|β2| · · · |βl

]
, (2)

where |αi|2 + |βi|2 = 1 (i = 1, 2, · · · , l). A Q-gate in QIEA is defined as a
variation operator for updating the Q-bit individuals such as to guarantee
that they also satisfy the normalization condition |α|2 + |β|2 = 1 [4]. To date,
QIEA principally adopts quantum rotation gate as a Q-gate, as it is shown in
Eq. (4).

The basic pseudocode algorithm for bQIEA is shown in Fig. 1. Each step
in Fig. 1 is described as follows.
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Begin 

1t

(i) Initialize Q(t)

While (not termination condition) do

(ii) Make P(t) by observing the states of Q(t)

(iii) Evaluate P(t)

(iv) Update Q(t) using Q-gates 

(v) Store the best solutions among P(t)

1t t

End

End

Fig. 1. Pseudocode algorithm for bQIEA [17]

(i) In the “initialize Q(t)” step, a population Q(t) with n Q-bit indi-
viduals is generated, Q(t)={qt

1, q
t
2, · · · , qt

n}, at generation t, where qt
i

(i = 1, 2, · · · , n) is an arbitrary individual in Q(t) and qt
i is represented

as

qt
i =

[
αt

i,1|αt
i,2| · · · |αt

i,l

βt
i,1|βt

i,2| · · · |βt
i,l

]
, (3)

where l is the number of Q-bits, i.e., the string length of the Q-bit indi-
vidual. αt

i,j = βt
i,j = 1/

√
2 (j = 1, 2, · · · , l). This means that all possible

states are superposed with the same probability at the beginning.
(ii) By observing the states Q(t), binary solutions in P (t), where P (t)={xt

1,
xt

2, · · · , xt
n}, are generated at step t. According to the current prob-

ability, either |αt
i|2 or |βt

i |2 of qt
i (i = 1, 2, · · · , l), a binary bit 0 or 1

is generated. Thus, a binary solution xt
j (j = 1, 2, · · · , n) consists of l

binary bits.
(iii) The fitness value for each binary solution xt

j (j = 1, 2, · · · , n) is calcu-
lated by using an evaluation function.

(iv) In this step, the Q-bit individuals in Q(t) are updated by applying the
current Q-gate. In bQIEA, the quantum rotation gate is used as a Q-
gate; this is given by

G(t) =
[
cos θ − sin θ
sin θ cos θ

]
, (4)

where θ is the Q-gate rotation angle.
(v) The best solutions among P (t) are selected and stored.

Compared to local search methods [9, 10, 11, 7] and conventional genetic
algorithms [20, 5, 6], QIEA has several special characteristics. Firstly, the Q-
bit encoding can represent probabilistically a linear superposition of states in
the search space, which makes QIEA rather good with respect to population
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diversity. Secondly, with a small number of individuals, even with one indi-
vidual, QIEA can exploit the search space for a global solution within a short
span of time. Thirdly, the evolutionary rules are very simple, instead of selec-
tion, crossover and mutation operators, QIEA uses only a Q-gate operation,
which is related to the current best Q-bit individual in the population.

2.2 P Systems

The membrane structure of a P system, shown in Fig. 2, is a hierarchical
arrangement of membranes, embedded in the skin membrane, the one which
separates the system from its environment [15]. A membrane without any
membrane inside is called an elementary one. Each membrane defines a region.
Each region constitutes a different compartment of the membrane structure
and contains a multiset of objects and a set of transformation and communi-
cation rules.

membrane 

skin 

elementary membrane region 

environment 
environment 

elementary region 

membrane 

Fig. 2. A membrane structure [2]

The multisets associated to regions form a configuration of a P system.
The system will go from one configuration to a new one by applying the rules
associated to regions in a non-deterministic and maximally parallel manner,
i.e., all the objects that may be transformed or communicated must be pro-
cessed. The system will halt when no more rules are available to be applied. A
computation is a sequence of configurations obtained as it is described above,
where the initial configuration consists of the initial multisets associated to
regions and the final one is generated when the system halts. The result of a
computation is obtained in the region defined by the output membrane.

In what follows a basic P system with an output set of objects and using
transformation and communication rules is formally defined. Let us consider
a construct [13, 15]
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Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where

(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V (the output alphabet);
(iii) µ is a membrane structure consisting of m membranes, with the mem-

branes and the regions labelled in a one-to-one manner with elements of
a given set Λ – usually the set {1, . . . , m}; m is called the degree of Π;

(iv) wi, 1 ≤ i ≤ m, are strings which represents multisets over V associated
with the regions 1, 2, · · · ,m of µ;

(v) Ri, 1 ≤ i ≤ m, are sets of rules associated to the regions 1, 2, · · · ,m of
µ;

(vi) i0 is a number between 1 and m which specifies the output membrane
of Π.

The rules of Ri, 1 ≤ i ≤ m, have the form a → v, where a ∈ V and
v ∈ (V × {here, out, in})∗. The multiset v consists of pairs (b, t), b ∈ V and
t ∈ {here, out, in}, where here means that b will stay in the region where the
rules are applied; out is used to show that b exits the region and in means
that b will be communicated to one of the membranes contained in the current
region which is chosen in a non-deterministic way.

A P system provides a suitable framework for distributed parallel compu-
tation that develops in steps. Indeed, any computation starts by processing
the initial multisets, wi, 1 ≤ i ≤ m, and then in each step the rules associ-
ated to each region are applied in a non-deterministic and maximally parallel
manner. The computation, a multiset of simple objects, is obtained in region
i0. For more details about P systems definition see [15]. We notice that the
rules presented above combine both transformation and communication, but
these operations may be separated and then the transformation rules are re-
sponsible for evolving the objects and the communication rules will transfer
objects among regions according to some targets. The initial multisets of sim-
ple objects may be replaced by strings or multisets of strings, the multiset
rewriting by string rewriting and in the output region obtain a set or multiset
of strings.

2.3 QEPS

This section will introduce a P systems-like framework that will help present-
ing the QEPS algorithm. This framework will use some of the elements of a P
system, but others will be used in a rather metaphoric way. A specific mem-
brane structure will be initially introduced, but this will be later on changed.
The objects employed will be organized in multisets of special strings built
either over the set of Q-bits or {0, 1}. The rules will be responsible to evolve
the system and select the best fit Q-bit individuals.

More precisely the P system-like framework will consist of:
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(i) a membrane structure [1[2]2, [3]3, · · · , [m+1]m+1]1 with m regions con-
tained in the skin membrane, denoted by 1;

(ii) a vocabulary that consists of all the Q-bits and the set {0, 1};
(iii) a set of terminal symbols, T , consisting of all the Q-bits;
(iv) initial multisets w1 = λ,

w2 = q1q2 · · · qn1 , n1 ≤ n,
w3 = qn1+1qn1+2 · · · qn2 , n1 + n2 ≤ n,
· · · · · ·

wm+1 = qn(m−1)+1qn(m−1)+2 · · · qnm
, n1 + n2 + · · ·nm ≤ n, where

qi, 1 ≤ i ≤ n, is a Q-bit individual;
(v) rules which are classified as

(a) evolution rules in each of the compartments 2 to m + 1; these are
transformation-like rules which update a Q-bit individual according
to the current Q-gate (see (iv) of the QIEA presentation);

(b) mapping rules which make binary solutions from Q-bit individuals
(see (ii) of the QIEA presentation and algorithm in Fig. 3);

(c) communication rules which send the best fit individual binary rep-
resentation from each of the m regions into the skin membrane and
then the overall best binary representation from the skin back to
each region.

In QEPS the initial population of Q-bit individuals is scattered across
the membrane structure. The initial population will consist of the multisets
w2, · · · , wm+1. In any step the current generation is assessed compartment
by compartment to select the best fit individual (applying rules of type (b)).
The best solution is used to adjust the Q-gate which is then employed to
produce the next generation by applying evolution rules. Every gi(1 ≤ i ≤ m)
generations for each compartment, the communication rule is performed once.
The process will stop when the best fit solution will remain unchanged for
several generations.

Begin

1j

While ( )j l  do

If
2

[0,1)
t

ij
random

Then 1
j
x

Else 0
j
x

End

End

Fig. 3. Pseudocode algorithm for the mapping rule [4]
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3 Application Example

In this section, the QEPS algorithm for the knapsack problem is presented
in detail. The knapsack problem is applied to show the effectiveness of QEPS
to a combinatorial optimization problem. To make a comparison, three types
of QEPS and four types of QIEA are considered. The knapsack problem can
be described as selecting from among various items those that are the most
profitable, given that the knapsack has a limited capacity [4]. The knapsack
problem requires to select a subset of a given set of items so as to maximize
a profit function

f(x) =
k∑

i=1

pixi (5)

Subject to
k∑

i=1

rixi ≤ Ca (6)

where k is the number of items; pi is the profit of the ith item; ri is the weight
of the ith item; Ca is the capacity of the given knapsack; and xi is 0 or 1.

Table 1. Lookup table of θ, where f(.) is the fitness, s(α, β) is the sign of θ, and
b and x are certain bits of the current best solution b and the binary solution x,
respectively [3]

s(α, β)

x b f(x ≥ f(b) ∆θ αβ > 0 αβ < 0 α = 0 β = 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False 0 0 0 0 0

0 1 True 0.05π -1 +1 ±1 0

1 0 False 0.01π -1 +1 ±1 0

1 0 True 0.025π +1 -1 0 ±1

1 1 False π +1 -1 0 ±1

1 1 True π +1 -1 0 ±1

3.1 QEPS for the Knapsack Problem

In this paper, we consider three types of QEPS based on various QIEA ap-
proaches. Consequently, we have QEPS with different Q-gate update meth-
ods, namely used by bQIEAo (QEPSo), bQIEAm (QEPSm), and bQIEAn
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(QEPSn). The three variants of QEPS use different methods for deriving the
rotation angle θ in G(t), where θ is defined as θ = s(α, β)∆θ, where s(α, β)
and ∆θ are the sign and the value of θ, respectively. s(α, β) and ∆θ can be
obtained by using Table 1 for QEPSo, Table 2 for QEPSm and Table 3 for
QEPSn, respectively.

Table 2. Lookup table of θ, where f(.) is the fitness, s(α, β) is the sign of θ, and
b and x are certain bits of the current best solution b and the binary solution x,
respectively [4]

x b f(x ≥ f(b) ∆θ s(α, β)

0 0 False 0 ±1

0 0 True 0 ±1

0 1 False 0.01π +1

0 1 True 0 ±1

1 0 False 0.01π -1

1 0 True 0 ±1

1 1 False 0 ±1

1 1 True 0 ±1

Table 3. Look-up table of θ, where d1 = α1β1, ξ1 = arctan(β1/α1), α1, β1

are the probability amplitudes of the current best solution, and d2 = α2β2,
ξ2 = arctan(β2/α2), α2, β2 are the probability amplitudes of the current solution,
and e = 0.5π||α1| − |α2||

f(α, β)

d1 > 0 d2 > 0 ∆θ |ξ1| ≥ |ξ2| |ξ1| < |ξ2|
True Ture e +1 -1

True False e -1 +1

False True e -1 +1

False False e +1 -1

3.2 QIEA for the Knapsack Problem

Any QIEA for the knapsack problem consists of a basic structure (see Fig.
1) and a repair process to match the capacity constraint, illustrated by Eq.
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6. The pseudocode algorithm for the repair process is shown in Fig. 4. Four
types of QIEA are described and tested for the knapsack problem: bQIEAo [3],
bQIEAm [4], bQIEAcms [19] and bQIEAn [21]. The four algorithms can be
regarded as special kinds of QEPS with a skin membrane and one elementary
membrane. The pseudocode algorithm for bQIEAo is illustrated in Fig. 1;
bQIEAo uses Table 1 as a look-up table for determining the rotation angle of
the Q-gate. bQIEAm is an improved version of the bQIEAo algorithm that
uses inserting migration operation in the bQIEAo algorithm; this uses Table
2 to decide the rotation angle of the Q-gate. A modified algorithm obtained
by adding selection, quantum crossover and quantum mutation operators to
bQIEAo, and using the same method for determining the rotation angle of
the Q-gate as bQIEAo is represented by the bQIEAcms algorithm. Lastly the
bQIEAn algorithm appears as a modified version of the bQIEAo algorithm by
introducing a modified update method for the Q-gate, whose rotation angle
is changed through the look up Table 3. Extensively convincing comparisons
between bQIEAm and conventional genetic algorithms show the advantages
of bQIEAm. In this paper we will start from these results.

3.3 Experimental Results

In the following experiments, strongly correlated sets of unsorted data are
used

ri=uniformly random [1, 10]
pi=ri+5

and the average knapsack capacity

Ca = 1
2

∑k
i=1 ri .

Three knapsack problems with 200, 400, and 600 items are considered. Be-
cause ri is a random value, the experimental results in [4] and [3] cannot be
referenced directly in this paper.

For the seven algorithms, the population size is set to 20. The parameters
gi, 1 ≤ i ≤ m, of QEPSo, QEPSm, and QEPSn are set to be uniformly random
integers ranging from 1 to 10. The parameters m and ni, 1 ≤ i ≤ m, are 20 and
1, respectively. The parameter setting for QEPS will be discussed in detail in
the next section. To guarantee the seven algorithms have identical stopping
criteria, the executions of QEPSo, QEPSm, and QEPSn are stopped when
the best profit cannot be further improved in successive 20 iterations, and
the executions of bQIEAo, bQIEAm, bQIEAcms and bQIEAn are stopped
when the best profit cannot further increase in successive 100 iterations. The
performances of the seven algorithms are evaluated by using the criteria: the
best solution and the worst solution over 30 runs, the mean best solution over
30 runs, the standard deviation and the elapsed time. Experimental results
for the three cases of 200, 400, and 600 items are shown in Table 4. All the
experiments are performed on a MATLAB platform and on one machine. If the
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Begin

Knapsack_overfilled false

If 
1

k

j jj ar x C

Then Knapsack_overfilled true 

While (Knapsack_overfilled) do

Select a jth item from the knapsack 

0
j
x

If 
1

k

j jj ar x C

Then Knapsack_overfilled false

End 

While (not Knapsack_overfilled) do

Select a jth item from the knapsack 

1
j
x

If 
1

k

j jj ax Cr

Then Knapsack_overfilled true 

End 

0
j
x

End

Fig. 4. Pseudocode algorithm for repair process [4]

experiments are conducted in a parallel-distributed way on several machines,
the elapsed time can be greatly reduced.

As shown in Table 4, the three types of QEPS perform significantly better
than the four types of QIEA in terms of profit results. QEPSm achieves the
higher profit values than any other algorithm. Also, QEPSm, QEPSo and
QEPSn outperform better than bQIEAm, bQIEAo and bQIEAn, respectively,
with respect to profits. QEPSm and QEPSo are superior to bQIEAm and
bQIEAo, respectively, with respect to the elapsed time.

The bQIEAm algorithm is the best out of the four types of QIEA and
QEPSm is the best out of the seven algorithms. The profits increase at about
1.8% for 200 items, 2.6% for 400 items and 3.0% for 600 items with respect
to MBS, which indicates that the increment is bigger as the number of items
goes up.
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Table 4. Experimental results of the knapsack problem: the number of items 200,
400 and 600, the number of runs 30. BS, MBS, WS, STD and ET represent best
solution, mean best solution, worst solution, standard deviation and elapsed time
(in seconds), respectively. IT and CRI are abbreviations for items and criteria, re-
spectively

IT CRI QEPSm QEPSo QEPSn bQIEAm bQIEAo bQIEAn bQIEAcms

BS 1188.31 1089.90 1099.96 1178.33 1078.01 1088.27 1078.14

MBS 1179.65 1056.24 1080.21 1159.27 1050.47 1064.90 1056.69

200 WS 1168.33 1041.38 1057.85 1138.16 1032.56 1046.28 1032.90

STD 5.07 10.82 9.81 9.26 10.91 11.56 12.43

ET 2093.22 847.64 1076.95 2468.33 872.75 936.45 1014.00

BS 2406.43 2168.68 2215.23 2371.42 2150.47 2162.89 2170.44

MBS 2380.60 2133.95 2177.03 2319.48 2130.82 2135.95 2132.92

400 WS 2361.43 2101.38 2145.47 2281.34 2109.57 2110.97 2110.63

STD 8.91 14.76 15.54 21.13 12.19 12.84 14.70

ET 6988.12 1495.03 2129.05 7106.36 1574.77 1828.38 1757.16

BS 3557.69 3183.18 3262.69 3492.68 3172.15 3175.50 3177.64

MBS 3524.35 3145.81 3202.06 3421.55 3143.61 3143.98 3177.64

600 WS 3492.68 3116.26 3151.57 3362.53 3119.98 3115.38 3115.22

STD 14.81 16.82 21.77 39.44 15.46 14.91 13.83

ET 13231.31 2216.11 3557.66 13597.50 2525.98 2807.94 2372.56

4 Discussion and Analysis

In this section we will discuss different values regarding the number m of
elementary membranes, the number ni, 1 ≤ i ≤ m, of objects inside the ith
elementary membrane, and the evolutionary generation gi, 1 ≤ i ≤ m, for
the ith elementary membrane; finally different membrane structures will be
considered and analyzed.

4.1 Parameters m and ni

To investigate the effects of the parameters m and ni, 1 ≤ i ≤ m, on the
performances of QEPS, experiments of QEPSm on the knapsack problems
with 200, 400 and 600 items are tried. The population size is set to 20. For all
experiments, when the best profit cannot be further improved in successive 20
iterations, the execution of the algorithm is stopped. The parameter m varies
from 2 to 20. The parameter ni, 1 ≤ i ≤ m, is set to a uniformly random
integers ranged from 1 to 20 on condition that the sum of n1, n2, · · · , nm is 20.
Also, the parameter gi, 1 ≤ i ≤ m, is set to a uniformly random integer ranged
from 1 to 10. The mean best profits over 30 runs and the elapsed time per run
for the three cases of 200, 400, and 600 items are shown in Fig. 5, Fig. 6 and
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Fig. 7, respectively. From these experimental results, the parameters m could
be assigned as 20, i.e., the number of elementary membranes is identical with
the number of individuals in the population, which also means that ni = 1,
where i = 1, 2, · · · ,m. Fig. 5, Fig. 6 and Fig. 7 also illustrate that the elapsed
time stays a steady level when the number of membranes increases from 2 to
20.
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Fig. 5. Experimental results of 200 items with different membranes
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Fig. 6. Experimental results of 400 items with different membranes
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Fig. 7. Experimental results of 600 items with different membranes

Experiments are carried out with the knapsack problems for 200, 400 and
600 items to track the progress of the mean of best profits and the mean
of average profits of all individuals. The population size is set to 20. The
parameter ni, 1 ≤ i ≤ m, is assigned the value 1. The parameter gi, 1 ≤ i ≤ m,
is set to a uniformly random integer ranged from 1 to 10. The execution of
every algorithm is stopped when the best profit cannot be further improved
in successive 20 iterations. The number m of elementary membranes varies
from 2 to 20. Fig. 8 shows the progress of the mean of best profits and the
mean of average profits of the population over 30 runs for 200, 400 and 600
items.

The experimental results in Fig. 8 show that the mean of best profits
and the mean of average profits have steady increases with the number of
membranes going up. These results indicate that QEPS has better balance
between exploration and exploitation as the number of membranes rises from
2 to 20. The more the membranes are, the more directions toward the optimal
solution can be explored by the QEPS. Also, the results of the mean of average
profits of population show clearly the tendency of convergent rate.

4.2 Parameter gi

In this subsection, experiments of QEPSm for the knapsack problem with
200, 400 and 600 items are carried out to investigate the effect of the number
of evolutionary generations parameter, gi, 1 ≤ i ≤ m, on the performances
of this algorithm. Both the population size and the parameter m are set to
20. The parameter ni, 1 ≤ i ≤ m, is then becoming 1. For all experiments,
when the best profit cannot be further improved in successive 20 iterations,
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Fig. 8. Progress of solutions with different membranes
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the execution of the algorithm is stopped. The parameter gi, 1 ≤ i ≤ m,
varies between 1 and 10. In each of the above mentioned experiments, the
mean best profits over 30 runs and the elapsed time per run are shown in
Fig. 9, Fig. 10 and Fig. 11. The mean best profit values for m = 20 in Fig.
5, Fig. 6 and Fig. 7 are very close to the values shown in Fig. 9, Fig. 10 and
Fig. 11, for the parameter gi, 1 ≤ i ≤ m, arbitrarily chosen between 2 and
10. These experiments indicate that the values associated to the parameter
gi, 1 ≤ i ≤ m, do not influence the mean best profit when they are within the
range 2 to 10.
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Fig. 9. Mean best profits and elapsed time of 200 items

4.3 Membrane Structures

In the above experiments, the membrane structure consisted of a skin mem-
brane and m elementary membranes inside. This membrane structure, called
one level membrane structure (OLMS), is illustrated in Fig. 12, and consid-
ered in the context of QEPS. In the sequel another membrane structure will
be discussed, a nested membrane structure (NMS) shown in Fig. 13. Experi-
ments will be conducted with respect to the knapsack problem to assess the
use of NMS. This membrane structure, also called linear topology in [20], was
used in [9, 10, 11, 7] in combination with various evolutionary approaches.

In the case of the nested membrane structure we will run experiments
under the same conditions we have considered for OLMS. Consequently, the
number of individuals contained by each region is arbitrarily chosen between
1 and 20 under the condition that the overall sum equals the population size,
which is 20 and experiments are carried out with the knapsack problem for
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Fig. 10. Mean best profits and elapsed time of 400 items
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Fig. 11. Mean best profits and elapsed time of 600 items

200, 400 and 600 items. All the other parameters and the stopping criterion
are the same as those considered for OLMS. An important difference between
the two approaches is given by the way the communication rules defined by
the P system-like framework are applied. For the OLMS case we remember
that the best fit individual binary representation from each of the m regions is
sent into the skin membrane and then the overall best fit element is then sent
back in each compartment. In the NMS case, the better fit individual will be
selected between adjacent neighbours in compartments 2 to m+1 and the skin
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Fig. 12. A one level membrane structure

2 1�m+1

Fig. 13. A nested membrane structure

membrane, denoted by 1, does not play any role in this case. Subsequently, the
better fit individual between any two adjacent compartments, i and i+1, will
be pushed back into the lower compartment, i.e., i + 1. Through this process
the best fit individual will be popped up into the top compartment, i.e., 2.
Fig. 14, Fig. 15 and Fig. 16 show the comparative results of using these two
membrane structures. All the experimental results are averaged over 30 runs.
Table 5 shows the best and worst solutions as well as the mean best solution
over 30 runs; the standard deviations and the elapsed time for each of two
membrane structures, when the number of membranes varies between 3 and
20 are also shown. Obviously, NMS and OLMS with two membranes show the
same behaviour.

The experimental results shown in Fig. 14, Fig. 15 and Fig. 16, prove that,
irrespective of the number of membranes used, the profit values obtained in
the OLMS case are consistently better than those using NMS, but, on the
other hand, the OLMS case requires more computing time than NMS. It
is also worth pointing out that, when the number of membranes is above
15, the elapsed time for the QEPS algorithm using either OLMS or NMS is
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approximately the same. These results indicate that QEPS with OLMS has
better search capabilities than QEPS with NMS.

Table 4 and Table 5 show that QEPS with OLMS is better than QEPS
with NMS with respect to the best and worst solutions, the mean best solu-
tion, the standard deviations and the elapsed time. These results show that,
in the case of the knapsack problem, using the current best solution to con-
trol the production of the next generation of individuals (OLMS case) works
better than using the best solution between two neighbouring regions (NMS
case). Both these approaches produce, in general, better results than most of
the bQIEA strategies. More precisely, QEPS with NMS performs better than
QEPSo, QEPSn, bQIEAo, bQIEAn and bQIEAcms, but bQIEAm is between
QEPSm with OLMS and QEPSm with NMS, in terms of profits. These re-
sults show that the choice of the membrane structure for a QEPS algorithm
matters and the results might go either way with respect to bQIEA.
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Fig. 14. Comparisons of two structures with 200 items

5 Conclusions

This paper proposes the use of quantum-inspired evolutionary algorithms
within the parallel-distributed framework of the membrane computing. The
algorithms defined in this respect are characterized by a certain membrane
structure, string-like objects encoding for Q-bit individuals, and evolution
rules usually defined for QIEA approaches. The knapsack problem is con-
sidered as an application example to investigate the performances of these
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Fig. 15. Comparisons of two structures with 400 items
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Fig. 16. Comparisons of two structures with 600 items

evolutionary algorithms. Experimental results show that QEPS algorithms
perform in general better than their QIEA counterparts and they can be used
to produce effective and efficient solutions to hard combinatorial optimization
problems.
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Table 5. Experimental results of two structures: the number of items 200, 400 and
600, the number of runs 30. BS, MBS, WS, STD and ET represent best solution,
mean best solution, worst solution, standard deviation and elapsed time (in seconds),
respectively

Items Criterions OLMS NMS

BS 1188.31 1153.25

MBS 1179.65 1129.18

200 WS 1168.33 1052.51

STD 5.07 19.53

ET 2093.22 2261.94

BS 2406.43 2296.32

MBS 2380.60 2268.46

400 WS 2361.43 2236.28

STD 8.91 16.66

ET 6988.12 6420.31

BS 3557.69 3392.53

MBS 3524.35 3348.84

600 WS 3492.68 3142.04

STD 14.81 45.52

ET 13231.31 13349.63
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