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Summary. This paper introduces an evolutionary algorithm which uses the con-
cepts and principles of the quantum-inspired evolutionary approach and the hierar-
chical arrangement of the compartments of a P system. The P system framework is
also used to formally specify this evolutionary algorithm. Extensive experiments are
conducted on a well-known combinatorial optimization problem, the knapsack prob-
lem, to test the effectiveness of the approach. These experimental results show that
this evolutionary algorithm performs better than quantum-inspired evolutionary al-
gorithms, for certain arrangements of the compartments of the P system structure
utilized.

1 Introduction

Evolutionary algorithms (EAs) are practical and robust optimization and
search methods inspired by evolutionary processes occurring in natural selec-
tion and molecular genetics. The main features of EAs are the representation
and evaluation of individuals, population dynamics, evolutionary operators
such as selection, crossover and mutation [18, 4]. As compared to conventional
optimization methods, EAs are more suitable for solving complex optimiza-
tion problems as they exhibit an intrinsic parallelism derived from dealing
with multiple individuals, show remarkable adaptability and flexibility to ap-
plication problems, good search capability and robust results [1].

As a new distributed-parallel computing model, membrane computing,
also known as P system, has been introduced in [13] as an unconventional,
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nature-inspired computational paradigm employing various features specific to
the structure and functionality of the living cell. A P system consists of mem-
branes delimiting compartments organized in a hierarchical structure. Objects
are scattered across this structure and organized as multisets; specific rules
are applied in parallel to these objects in every compartment [13, 15]. The
hierarchical structure of membranes, type of rules (transformation, communi-
cation etc), intrinsic parallelism, are all very effective from a computational
point of view and attractive for modelling various problems.

P systems and EAs are different with respect to the objects and rules used,
computational strategies employed, but both are nature-inspired models and
applied to solve complex problems, e.g., NP complete problems [9, 14]. P sys-
tems represent a suitable formal framework for parallel-distributed computa-
tion [2, 20] and EAs are very effective for implementing different algorithms to
solve numerous problems [1]. Thus, the possible interaction between P systems
and EAs, also mentioned by the list of twenty-six open problems in membrane
computing [16], represents a fertile research field. In [9, 10, 11] it is proposed
a membrane-based evolutionary algorithm combining a membrane structure
where each membrane, but the deepest one, contains one membrane and a
local search method. This membrane-based algorithm was also employed to
solve the min storage problem [7]. In [5, 6] a hybrid algorithm combining P
systems and genetic algorithms was presented to solve single-objective and
multi-objective numerical optimization problems. In [20], the similarities be-
tween distributed EAs and P systems were analyzed and new variants of
distributed EAs are suggested and applied for some continuous optimization
problems.

This paper proposes a novel EA, called quantum-inspired evolutionary al-
gorithm based on P systems (QEPS), which uses the concepts and principles of
quantum-inspired evolutionary algorithms (QIEAs) within a P system frame-
work. A quantum-inspired bit (Q-bit) representation and quantum-inspired
gate (Q-gate) evolutionary rules together with a hierarchical membrane struc-
ture and transformation/communication-like rules are employed. To demon-
strate the effectiveness and applicability scope of this approach, a large num-
ber of experiments are carried out for the knapsack problem, a well-known
combinatorial optimization problem. The results obtained show that QEPS
with a specific membrane structure performs better than known QIEAs.

The knapsack problem has been frequently analysed by both P systems and
evolutionary algorithms communities as test-benches for various approaches.
Recognizer P systems with active membranes were constructed to solve one-
dimensional [17] and multi-dimensional [12] knapsack problems in linear time.
Also, extensively convincing experiments show that QIEA is far better than
conventional genetic algorithms [3, 4] in solving the same problem.

This paper is organized as follows. Section 2 introduces briefly QIEA and P
systems, and then describes QEPS in detail. Section 3 presents an application
example comparing QEPS and QIEAs for knapsack problems and summarizes
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the experimental results. Section 4 discusses the parameter setting in QEPS
and different membrane structures. Concluding remarks follow in Section 5.

2 QEPS – Basic Concepts

This section starts with brief introductions about QIEA and P systems goes
then into presenting a P systems-like framework of QIEA, called QEPS.

2.1 QIEA

Inspired by concepts of quantum computing such as quantum bits and quan-
tum gate, QIEA is a new evolutionary algorithm for a classical computer
instead of a quantum algorithm. QIEA was first introduced by Narayanan
and Moore in [8] and its practical form was proposed by Han and Kim in
[3]. Various variants of QIEA can be categorized into two groups: real ob-
servation QIEA for numerical optimization [22] and binary observation QIEA
(bQIEA) for combinatorial optimization. The latter, referred in this paper, can
be sub-classified into four groups: original bQIEA (bQIEAo) [3], bQIEA with
migration operator (bQIEAm) [4], bQIEA with a combination of crossover,
mutation and selection operators (bQIEAcms) [19], and bQIEA with a novel
update method for Q-gates (bQIEAn) [21]. QIEA approach is characterized
by a Q-bit representation for individuals and a Q-gate as a variation operator
to obtain better fitted individuals. In QIEA, a Q-bit is defined by a pair of
numbers (α, β) as [

α
β

]
, (1)

where |α|2 and |β|2 are the probabilities that the observation of a Q-bit will
render a ‘0’ or ‘1’ state [4]. Normalization requires that |α|2 + |β|2 = 1. Note
that QIEA just needs real numbers for probability amplitudes. Besides ‘0’ and
‘1’ states, a Q-bit can also be in a superposition of the two states. A Q-bit
individual is represented as a string of l Q-bits

[
α1|α2| · · · |αl

β1|β2| · · · |βl

]
, (2)

where |αi|2 + |βi|2 = 1 (i = 1, 2, · · · , l). A Q-gate in QIEA is defined as a
variation operator for updating the Q-bit individuals such as to guarantee
that they also satisfy the normalization condition |α|2 + |β|2 = 1 [4]. To date,
QIEA principally adopts quantum rotation gate as a Q-gate, as it is shown in
Eq. (4).

The basic pseudocode algorithm for bQIEA is shown in Fig. 1. Each step
in Fig. 1 is described as follows.
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Begin 

1t

(i) Initialize Q(t)

While (not termination condition) do

(ii) Make P(t) by observing the states of Q(t)

(iii) Evaluate P(t)

(iv) Update Q(t) using Q-gates 

(v) Store the best solutions among P(t)

1t t

End

End

Fig. 1. Pseudocode algorithm for bQIEA [17]

(i) In the “initialize Q(t)” step, a population Q(t) with n Q-bit indi-
viduals is generated, Q(t)={qt

1, q
t
2, · · · , qt

n}, at generation t, where qt
i

(i = 1, 2, · · · , n) is an arbitrary individual in Q(t) and qt
i is represented

as

qt
i =

[
αt

i,1|αt
i,2| · · · |αt

i,l

βt
i,1|βt

i,2| · · · |βt
i,l

]
, (3)

where l is the number of Q-bits, i.e., the string length of the Q-bit indi-
vidual. αt

i,j = βt
i,j = 1/

√
2 (j = 1, 2, · · · , l). This means that all possible

states are superposed with the same probability at the beginning.
(ii) By observing the states Q(t), binary solutions in P (t), where P (t)={xt

1,
xt

2, · · · , xt
n}, are generated at step t. According to the current prob-

ability, either |αt
i|2 or |βt

i |2 of qt
i (i = 1, 2, · · · , l), a binary bit 0 or 1

is generated. Thus, a binary solution xt
j (j = 1, 2, · · · , n) consists of l

binary bits.
(iii) The fitness value for each binary solution xt

j (j = 1, 2, · · · , n) is calcu-
lated by using an evaluation function.

(iv) In this step, the Q-bit individuals in Q(t) are updated by applying the
current Q-gate. In bQIEA, the quantum rotation gate is used as a Q-
gate; this is given by

G(t) =
[
cos θ − sin θ
sin θ cos θ

]
, (4)

where θ is the Q-gate rotation angle.
(v) The best solutions among P (t) are selected and stored.

Compared to local search methods [9, 10, 11, 7] and conventional genetic
algorithms [20, 5, 6], QIEA has several special characteristics. Firstly, the Q-
bit encoding can represent probabilistically a linear superposition of states in
the search space, which makes QIEA rather good with respect to population
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diversity. Secondly, with a small number of individuals, even with one indi-
vidual, QIEA can exploit the search space for a global solution within a short
span of time. Thirdly, the evolutionary rules are very simple, instead of selec-
tion, crossover and mutation operators, QIEA uses only a Q-gate operation,
which is related to the current best Q-bit individual in the population.

2.2 P Systems

The membrane structure of a P system, shown in Fig. 2, is a hierarchical
arrangement of membranes, embedded in the skin membrane, the one which
separates the system from its environment [15]. A membrane without any
membrane inside is called an elementary one. Each membrane defines a region.
Each region constitutes a different compartment of the membrane structure
and contains a multiset of objects and a set of transformation and communi-
cation rules.

membrane 

skin 

elementary membrane region 

environment 
environment 

elementary region 

membrane 

Fig. 2. A membrane structure [2]

The multisets associated to regions form a configuration of a P system.
The system will go from one configuration to a new one by applying the rules
associated to regions in a non-deterministic and maximally parallel manner,
i.e., all the objects that may be transformed or communicated must be pro-
cessed. The system will halt when no more rules are available to be applied. A
computation is a sequence of configurations obtained as it is described above,
where the initial configuration consists of the initial multisets associated to
regions and the final one is generated when the system halts. The result of a
computation is obtained in the region defined by the output membrane.

In what follows a basic P system with an output set of objects and using
transformation and communication rules is formally defined. Let us consider
a construct [13, 15]
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Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where

(i) V is an alphabet; its elements are called objects;
(ii) T ⊆ V (the output alphabet);
(iii) µ is a membrane structure consisting of m membranes, with the mem-

branes and the regions labelled in a one-to-one manner with elements of
a given set Λ – usually the set {1, . . . , m}; m is called the degree of Π;

(iv) wi, 1 ≤ i ≤ m, are strings which represents multisets over V associated
with the regions 1, 2, · · · ,m of µ;

(v) Ri, 1 ≤ i ≤ m, are sets of rules associated to the regions 1, 2, · · · ,m of
µ;

(vi) i0 is a number between 1 and m which specifies the output membrane
of Π.

The rules of Ri, 1 ≤ i ≤ m, have the form a → v, where a ∈ V and
v ∈ (V × {here, out, in})∗. The multiset v consists of pairs (b, t), b ∈ V and
t ∈ {here, out, in}, where here means that b will stay in the region where the
rules are applied; out is used to show that b exits the region and in means
that b will be communicated to one of the membranes contained in the current
region which is chosen in a non-deterministic way.

A P system provides a suitable framework for distributed parallel compu-
tation that develops in steps. Indeed, any computation starts by processing
the initial multisets, wi, 1 ≤ i ≤ m, and then in each step the rules associ-
ated to each region are applied in a non-deterministic and maximally parallel
manner. The computation, a multiset of simple objects, is obtained in region
i0. For more details about P systems definition see [15]. We notice that the
rules presented above combine both transformation and communication, but
these operations may be separated and then the transformation rules are re-
sponsible for evolving the objects and the communication rules will transfer
objects among regions according to some targets. The initial multisets of sim-
ple objects may be replaced by strings or multisets of strings, the multiset
rewriting by string rewriting and in the output region obtain a set or multiset
of strings.

2.3 QEPS

This section will introduce a P systems-like framework that will help present-
ing the QEPS algorithm. This framework will use some of the elements of a P
system, but others will be used in a rather metaphoric way. A specific mem-
brane structure will be initially introduced, but this will be later on changed.
The objects employed will be organized in multisets of special strings built
either over the set of Q-bits or {0, 1}. The rules will be responsible to evolve
the system and select the best fit Q-bit individuals.

More precisely the P system-like framework will consist of:
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(i) a membrane structure [1[2]2, [3]3, · · · , [m+1]m+1]1 with m regions con-
tained in the skin membrane, denoted by 1;

(ii) a vocabulary that consists of all the Q-bits and the set {0, 1};
(iii) a set of terminal symbols, T , consisting of all the Q-bits;
(iv) initial multisets w1 = λ,

w2 = q1q2 · · · qn1 , n1 ≤ n,
w3 = qn1+1qn1+2 · · · qn2 , n1 + n2 ≤ n,
· · · · · ·

wm+1 = qn(m−1)+1qn(m−1)+2 · · · qnm
, n1 + n2 + · · ·nm ≤ n, where

qi, 1 ≤ i ≤ n, is a Q-bit individual;
(v) rules which are classified as

(a) evolution rules in each of the compartments 2 to m + 1; these are
transformation-like rules which update a Q-bit individual according
to the current Q-gate (see (iv) of the QIEA presentation);

(b) mapping rules which make binary solutions from Q-bit individuals
(see (ii) of the QIEA presentation and algorithm in Fig. 3);

(c) communication rules which send the best fit individual binary rep-
resentation from each of the m regions into the skin membrane and
then the overall best binary representation from the skin back to
each region.

In QEPS the initial population of Q-bit individuals is scattered across
the membrane structure. The initial population will consist of the multisets
w2, · · · , wm+1. In any step the current generation is assessed compartment
by compartment to select the best fit individual (applying rules of type (b)).
The best solution is used to adjust the Q-gate which is then employed to
produce the next generation by applying evolution rules. Every gi(1 ≤ i ≤ m)
generations for each compartment, the communication rule is performed once.
The process will stop when the best fit solution will remain unchanged for
several generations.

Begin

1j

While ( )j l  do

If
2

[0,1)
t

ij
random

Then 1
j
x

Else 0
j
x

End

End

Fig. 3. Pseudocode algorithm for the mapping rule [4]
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3 Application Example

In this section, the QEPS algorithm for the knapsack problem is presented
in detail. The knapsack problem is applied to show the effectiveness of QEPS
to a combinatorial optimization problem. To make a comparison, three types
of QEPS and four types of QIEA are considered. The knapsack problem can
be described as selecting from among various items those that are the most
profitable, given that the knapsack has a limited capacity [4]. The knapsack
problem requires to select a subset of a given set of items so as to maximize
a profit function

f(x) =
k∑

i=1

pixi (5)

Subject to
k∑

i=1

rixi ≤ Ca (6)

where k is the number of items; pi is the profit of the ith item; ri is the weight
of the ith item; Ca is the capacity of the given knapsack; and xi is 0 or 1.

Table 1. Lookup table of θ, where f(.) is the fitness, s(α, β) is the sign of θ, and
b and x are certain bits of the current best solution b and the binary solution x,
respectively [3]

s(α, β)

x b f(x ≥ f(b) ∆θ αβ > 0 αβ < 0 α = 0 β = 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False 0 0 0 0 0

0 1 True 0.05π -1 +1 ±1 0

1 0 False 0.01π -1 +1 ±1 0

1 0 True 0.025π +1 -1 0 ±1

1 1 False π +1 -1 0 ±1

1 1 True π +1 -1 0 ±1

3.1 QEPS for the Knapsack Problem

In this paper, we consider three types of QEPS based on various QIEA ap-
proaches. Consequently, we have QEPS with different Q-gate update meth-
ods, namely used by bQIEAo (QEPSo), bQIEAm (QEPSm), and bQIEAn
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(QEPSn). The three variants of QEPS use different methods for deriving the
rotation angle θ in G(t), where θ is defined as θ = s(α, β)∆θ, where s(α, β)
and ∆θ are the sign and the value of θ, respectively. s(α, β) and ∆θ can be
obtained by using Table 1 for QEPSo, Table 2 for QEPSm and Table 3 for
QEPSn, respectively.

Table 2. Lookup table of θ, where f(.) is the fitness, s(α, β) is the sign of θ, and
b and x are certain bits of the current best solution b and the binary solution x,
respectively [4]

x b f(x ≥ f(b) ∆θ s(α, β)

0 0 False 0 ±1

0 0 True 0 ±1

0 1 False 0.01π +1

0 1 True 0 ±1

1 0 False 0.01π -1

1 0 True 0 ±1

1 1 False 0 ±1

1 1 True 0 ±1

Table 3. Look-up table of θ, where d1 = α1β1, ξ1 = arctan(β1/α1), α1, β1

are the probability amplitudes of the current best solution, and d2 = α2β2,
ξ2 = arctan(β2/α2), α2, β2 are the probability amplitudes of the current solution,
and e = 0.5π||α1| − |α2||

f(α, β)

d1 > 0 d2 > 0 ∆θ |ξ1| ≥ |ξ2| |ξ1| < |ξ2|
True Ture e +1 -1

True False e -1 +1

False True e -1 +1

False False e +1 -1

3.2 QIEA for the Knapsack Problem

Any QIEA for the knapsack problem consists of a basic structure (see Fig.
1) and a repair process to match the capacity constraint, illustrated by Eq.
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6. The pseudocode algorithm for the repair process is shown in Fig. 4. Four
types of QIEA are described and tested for the knapsack problem: bQIEAo [3],
bQIEAm [4], bQIEAcms [19] and bQIEAn [21]. The four algorithms can be
regarded as special kinds of QEPS with a skin membrane and one elementary
membrane. The pseudocode algorithm for bQIEAo is illustrated in Fig. 1;
bQIEAo uses Table 1 as a look-up table for determining the rotation angle of
the Q-gate. bQIEAm is an improved version of the bQIEAo algorithm that
uses inserting migration operation in the bQIEAo algorithm; this uses Table
2 to decide the rotation angle of the Q-gate. A modified algorithm obtained
by adding selection, quantum crossover and quantum mutation operators to
bQIEAo, and using the same method for determining the rotation angle of
the Q-gate as bQIEAo is represented by the bQIEAcms algorithm. Lastly the
bQIEAn algorithm appears as a modified version of the bQIEAo algorithm by
introducing a modified update method for the Q-gate, whose rotation angle
is changed through the look up Table 3. Extensively convincing comparisons
between bQIEAm and conventional genetic algorithms show the advantages
of bQIEAm. In this paper we will start from these results.

3.3 Experimental Results

In the following experiments, strongly correlated sets of unsorted data are
used

ri=uniformly random [1, 10]
pi=ri+5

and the average knapsack capacity

Ca = 1
2

∑k
i=1 ri .

Three knapsack problems with 200, 400, and 600 items are considered. Be-
cause ri is a random value, the experimental results in [4] and [3] cannot be
referenced directly in this paper.

For the seven algorithms, the population size is set to 20. The parameters
gi, 1 ≤ i ≤ m, of QEPSo, QEPSm, and QEPSn are set to be uniformly random
integers ranging from 1 to 10. The parameters m and ni, 1 ≤ i ≤ m, are 20 and
1, respectively. The parameter setting for QEPS will be discussed in detail in
the next section. To guarantee the seven algorithms have identical stopping
criteria, the executions of QEPSo, QEPSm, and QEPSn are stopped when
the best profit cannot be further improved in successive 20 iterations, and
the executions of bQIEAo, bQIEAm, bQIEAcms and bQIEAn are stopped
when the best profit cannot further increase in successive 100 iterations. The
performances of the seven algorithms are evaluated by using the criteria: the
best solution and the worst solution over 30 runs, the mean best solution over
30 runs, the standard deviation and the elapsed time. Experimental results
for the three cases of 200, 400, and 600 items are shown in Table 4. All the
experiments are performed on a MATLAB platform and on one machine. If the
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Begin

Knapsack_overfilled false

If 
1

k

j jj ar x C

Then Knapsack_overfilled true 

While (Knapsack_overfilled) do

Select a jth item from the knapsack 

0
j
x

If 
1

k

j jj ar x C

Then Knapsack_overfilled false

End 

While (not Knapsack_overfilled) do

Select a jth item from the knapsack 

1
j
x

If 
1

k

j jj ax Cr

Then Knapsack_overfilled true 

End 

0
j
x

End

Fig. 4. Pseudocode algorithm for repair process [4]

experiments are conducted in a parallel-distributed way on several machines,
the elapsed time can be greatly reduced.

As shown in Table 4, the three types of QEPS perform significantly better
than the four types of QIEA in terms of profit results. QEPSm achieves the
higher profit values than any other algorithm. Also, QEPSm, QEPSo and
QEPSn outperform better than bQIEAm, bQIEAo and bQIEAn, respectively,
with respect to profits. QEPSm and QEPSo are superior to bQIEAm and
bQIEAo, respectively, with respect to the elapsed time.

The bQIEAm algorithm is the best out of the four types of QIEA and
QEPSm is the best out of the seven algorithms. The profits increase at about
1.8% for 200 items, 2.6% for 400 items and 3.0% for 600 items with respect
to MBS, which indicates that the increment is bigger as the number of items
goes up.
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Table 4. Experimental results of the knapsack problem: the number of items 200,
400 and 600, the number of runs 30. BS, MBS, WS, STD and ET represent best
solution, mean best solution, worst solution, standard deviation and elapsed time
(in seconds), respectively. IT and CRI are abbreviations for items and criteria, re-
spectively

IT CRI QEPSm QEPSo QEPSn bQIEAm bQIEAo bQIEAn bQIEAcms

BS 1188.31 1089.90 1099.96 1178.33 1078.01 1088.27 1078.14

MBS 1179.65 1056.24 1080.21 1159.27 1050.47 1064.90 1056.69

200 WS 1168.33 1041.38 1057.85 1138.16 1032.56 1046.28 1032.90

STD 5.07 10.82 9.81 9.26 10.91 11.56 12.43

ET 2093.22 847.64 1076.95 2468.33 872.75 936.45 1014.00

BS 2406.43 2168.68 2215.23 2371.42 2150.47 2162.89 2170.44

MBS 2380.60 2133.95 2177.03 2319.48 2130.82 2135.95 2132.92

400 WS 2361.43 2101.38 2145.47 2281.34 2109.57 2110.97 2110.63

STD 8.91 14.76 15.54 21.13 12.19 12.84 14.70

ET 6988.12 1495.03 2129.05 7106.36 1574.77 1828.38 1757.16

BS 3557.69 3183.18 3262.69 3492.68 3172.15 3175.50 3177.64

MBS 3524.35 3145.81 3202.06 3421.55 3143.61 3143.98 3177.64

600 WS 3492.68 3116.26 3151.57 3362.53 3119.98 3115.38 3115.22

STD 14.81 16.82 21.77 39.44 15.46 14.91 13.83

ET 13231.31 2216.11 3557.66 13597.50 2525.98 2807.94 2372.56

4 Discussion and Analysis

In this section we will discuss different values regarding the number m of
elementary membranes, the number ni, 1 ≤ i ≤ m, of objects inside the ith
elementary membrane, and the evolutionary generation gi, 1 ≤ i ≤ m, for
the ith elementary membrane; finally different membrane structures will be
considered and analyzed.

4.1 Parameters m and ni

To investigate the effects of the parameters m and ni, 1 ≤ i ≤ m, on the
performances of QEPS, experiments of QEPSm on the knapsack problems
with 200, 400 and 600 items are tried. The population size is set to 20. For all
experiments, when the best profit cannot be further improved in successive 20
iterations, the execution of the algorithm is stopped. The parameter m varies
from 2 to 20. The parameter ni, 1 ≤ i ≤ m, is set to a uniformly random
integers ranged from 1 to 20 on condition that the sum of n1, n2, · · · , nm is 20.
Also, the parameter gi, 1 ≤ i ≤ m, is set to a uniformly random integer ranged
from 1 to 10. The mean best profits over 30 runs and the elapsed time per run
for the three cases of 200, 400, and 600 items are shown in Fig. 5, Fig. 6 and
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Fig. 7, respectively. From these experimental results, the parameters m could
be assigned as 20, i.e., the number of elementary membranes is identical with
the number of individuals in the population, which also means that ni = 1,
where i = 1, 2, · · · ,m. Fig. 5, Fig. 6 and Fig. 7 also illustrate that the elapsed
time stays a steady level when the number of membranes increases from 2 to
20.
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Fig. 5. Experimental results of 200 items with different membranes
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Fig. 6. Experimental results of 400 items with different membranes



288 G. Zhang et al.

2 4 6 8 10 12 14 16 18 20
3460

3470

3480

3490

3500

3510

3520

3530

Number of elementary membranes

M
e
a
n
 b

e
s
t 

p
ro

fi
ts

(a) Mean best profits

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

Number of elementary membranes 

E
la

ps
ed

 t
im

e 
pe

r 
ru

n

(b) The elapsed time per run (Sec.)

Fig. 7. Experimental results of 600 items with different membranes

Experiments are carried out with the knapsack problems for 200, 400 and
600 items to track the progress of the mean of best profits and the mean
of average profits of all individuals. The population size is set to 20. The
parameter ni, 1 ≤ i ≤ m, is assigned the value 1. The parameter gi, 1 ≤ i ≤ m,
is set to a uniformly random integer ranged from 1 to 10. The execution of
every algorithm is stopped when the best profit cannot be further improved
in successive 20 iterations. The number m of elementary membranes varies
from 2 to 20. Fig. 8 shows the progress of the mean of best profits and the
mean of average profits of the population over 30 runs for 200, 400 and 600
items.

The experimental results in Fig. 8 show that the mean of best profits
and the mean of average profits have steady increases with the number of
membranes going up. These results indicate that QEPS has better balance
between exploration and exploitation as the number of membranes rises from
2 to 20. The more the membranes are, the more directions toward the optimal
solution can be explored by the QEPS. Also, the results of the mean of average
profits of population show clearly the tendency of convergent rate.

4.2 Parameter gi

In this subsection, experiments of QEPSm for the knapsack problem with
200, 400 and 600 items are carried out to investigate the effect of the number
of evolutionary generations parameter, gi, 1 ≤ i ≤ m, on the performances
of this algorithm. Both the population size and the parameter m are set to
20. The parameter ni, 1 ≤ i ≤ m, is then becoming 1. For all experiments,
when the best profit cannot be further improved in successive 20 iterations,
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Fig. 8. Progress of solutions with different membranes
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the execution of the algorithm is stopped. The parameter gi, 1 ≤ i ≤ m,
varies between 1 and 10. In each of the above mentioned experiments, the
mean best profits over 30 runs and the elapsed time per run are shown in
Fig. 9, Fig. 10 and Fig. 11. The mean best profit values for m = 20 in Fig.
5, Fig. 6 and Fig. 7 are very close to the values shown in Fig. 9, Fig. 10 and
Fig. 11, for the parameter gi, 1 ≤ i ≤ m, arbitrarily chosen between 2 and
10. These experiments indicate that the values associated to the parameter
gi, 1 ≤ i ≤ m, do not influence the mean best profit when they are within the
range 2 to 10.
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Fig. 9. Mean best profits and elapsed time of 200 items

4.3 Membrane Structures

In the above experiments, the membrane structure consisted of a skin mem-
brane and m elementary membranes inside. This membrane structure, called
one level membrane structure (OLMS), is illustrated in Fig. 12, and consid-
ered in the context of QEPS. In the sequel another membrane structure will
be discussed, a nested membrane structure (NMS) shown in Fig. 13. Experi-
ments will be conducted with respect to the knapsack problem to assess the
use of NMS. This membrane structure, also called linear topology in [20], was
used in [9, 10, 11, 7] in combination with various evolutionary approaches.

In the case of the nested membrane structure we will run experiments
under the same conditions we have considered for OLMS. Consequently, the
number of individuals contained by each region is arbitrarily chosen between
1 and 20 under the condition that the overall sum equals the population size,
which is 20 and experiments are carried out with the knapsack problem for
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Fig. 10. Mean best profits and elapsed time of 400 items
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Fig. 11. Mean best profits and elapsed time of 600 items

200, 400 and 600 items. All the other parameters and the stopping criterion
are the same as those considered for OLMS. An important difference between
the two approaches is given by the way the communication rules defined by
the P system-like framework are applied. For the OLMS case we remember
that the best fit individual binary representation from each of the m regions is
sent into the skin membrane and then the overall best fit element is then sent
back in each compartment. In the NMS case, the better fit individual will be
selected between adjacent neighbours in compartments 2 to m+1 and the skin
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Fig. 12. A one level membrane structure

2 1�m+1

Fig. 13. A nested membrane structure

membrane, denoted by 1, does not play any role in this case. Subsequently, the
better fit individual between any two adjacent compartments, i and i+1, will
be pushed back into the lower compartment, i.e., i + 1. Through this process
the best fit individual will be popped up into the top compartment, i.e., 2.
Fig. 14, Fig. 15 and Fig. 16 show the comparative results of using these two
membrane structures. All the experimental results are averaged over 30 runs.
Table 5 shows the best and worst solutions as well as the mean best solution
over 30 runs; the standard deviations and the elapsed time for each of two
membrane structures, when the number of membranes varies between 3 and
20 are also shown. Obviously, NMS and OLMS with two membranes show the
same behaviour.

The experimental results shown in Fig. 14, Fig. 15 and Fig. 16, prove that,
irrespective of the number of membranes used, the profit values obtained in
the OLMS case are consistently better than those using NMS, but, on the
other hand, the OLMS case requires more computing time than NMS. It
is also worth pointing out that, when the number of membranes is above
15, the elapsed time for the QEPS algorithm using either OLMS or NMS is
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approximately the same. These results indicate that QEPS with OLMS has
better search capabilities than QEPS with NMS.

Table 4 and Table 5 show that QEPS with OLMS is better than QEPS
with NMS with respect to the best and worst solutions, the mean best solu-
tion, the standard deviations and the elapsed time. These results show that,
in the case of the knapsack problem, using the current best solution to con-
trol the production of the next generation of individuals (OLMS case) works
better than using the best solution between two neighbouring regions (NMS
case). Both these approaches produce, in general, better results than most of
the bQIEA strategies. More precisely, QEPS with NMS performs better than
QEPSo, QEPSn, bQIEAo, bQIEAn and bQIEAcms, but bQIEAm is between
QEPSm with OLMS and QEPSm with NMS, in terms of profits. These re-
sults show that the choice of the membrane structure for a QEPS algorithm
matters and the results might go either way with respect to bQIEA.
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Fig. 14. Comparisons of two structures with 200 items

5 Conclusions

This paper proposes the use of quantum-inspired evolutionary algorithms
within the parallel-distributed framework of the membrane computing. The
algorithms defined in this respect are characterized by a certain membrane
structure, string-like objects encoding for Q-bit individuals, and evolution
rules usually defined for QIEA approaches. The knapsack problem is con-
sidered as an application example to investigate the performances of these
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Fig. 15. Comparisons of two structures with 400 items
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Fig. 16. Comparisons of two structures with 600 items

evolutionary algorithms. Experimental results show that QEPS algorithms
perform in general better than their QIEA counterparts and they can be used
to produce effective and efficient solutions to hard combinatorial optimization
problems.
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Table 5. Experimental results of two structures: the number of items 200, 400 and
600, the number of runs 30. BS, MBS, WS, STD and ET represent best solution,
mean best solution, worst solution, standard deviation and elapsed time (in seconds),
respectively

Items Criterions OLMS NMS

BS 1188.31 1153.25

MBS 1179.65 1129.18

200 WS 1168.33 1052.51

STD 5.07 19.53

ET 2093.22 2261.94

BS 2406.43 2296.32

MBS 2380.60 2268.46

400 WS 2361.43 2236.28

STD 8.91 16.66

ET 6988.12 6420.31

BS 3557.69 3392.53

MBS 3524.35 3348.84

600 WS 3492.68 3142.04

STD 14.81 45.52

ET 13231.31 13349.63
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