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Summary. We formulate here a few technical (mathematical) open problems related to
the in vitro bio-chemical experiment planned in Technion for computing the Fibonacci
sequence in terms of P systems. So-called local-loop-free P systems are introduced and
their universality for various types of P systems as well as other issues are mentioned as
research questions.

1 Introduction

Although in the fall of this year membrane computing counts one decade since
its beginnings (since the paper [1] was circulated as a technical report of TUCS,
Finland), so far no attempt to implement P systems in a laboratory, using a bio-
chemical support, was reported. Recently, such an experiment was planned, in the
Chemical Faculty of Technion Institute, Haifa. This will be an in vitro experiment,
using test tubes as membranes and DNA molecules as objects, evolving under the
control of enzymes. The computation to implement was chosen to be the generation
of a bunch of numbers in the famous Fibonacci sequence.

As expected, such an attempt raised a series of difficulties related to the type
of P system which is possible to simulate/implement. After briefly mentioning
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these difficulties, we introduce the type of P systems which seem to avoid them.
The basic issue is to have no loops in the evolution of objects/substances present
in a membrane/compartment, because this would lead to cycles which cannot be
“read” from outside in a useful way, to equilibrium states which are not “useful”
for the computation.

Local-loop-free (in short, LL-free) P systems are introduced and the power of
this restriction is a natural issue to investigate from a mathematical and compu-
tational point of view. We only show here that LL-free tissue-like P systems with
cooperative rules are universal, but the question remains open for other classes
of P systems, in particular, for the catalytic ones. A few related questions are
mentioned.

2 Difficulties and (Hopefully) Solutions Related to
Implementing P Systems

The basic features of membrane computing are (1) compartmentalization, by means
of cell-like membranes, (2) multisets (sets with multiplicity associated with their el-
ements, which means counting the objects present in membranes), (3) bio-inspired
evolution rules, which are reaction-like (for processing multisets), communication
rules (e.g., symport and antiport rules), membrane handling rules, etc., (4) syn-
chronization of compartment evolution, for instance, using the rules in a maximally
parallel manner, (5) communication between compartments; we can also mention
(6) defining the result of a computation mainly for halting computations, but this
is not specific to membrane computing (and can also be avoided).

In order to implement a P system in a laboratory, all or most of these features
should be implemented. Compartments can be obtained by using standard test
tubes or similar labware, multisets are usual in bio-chemistry, but... without a
precise counting. Still, by defining carefully some “moles” of substances, one can
count in terms of such ad-hoc moles. Anyway, full synchronization and parallelism
cannot be guaranteed by bio-chemical reactions, hence a certain degree of non-
determinism/approximation should be allowed in the experiment. In particular, a
good degree of synchronization can be obtained by “waiting enough”, such that all
reactions that can take place in a test tube actually take place – and this raises an
important issue: these reactions should not cycle, the process should be finite in
each compartment of the system. Counting is also needed when reading the result
of a computation.

In the experiment planned in Technion, the above mentioned difficulties are
solved as follows: (1) test tubes for membranes (compartments), (2) multisets
of pre-defined “moles” of DNA molecules, (3) enzyme driven operations with the
DNA molecules, with the precaution not to have any cycle in any compartment, (4)
waiting enough for reactions to take place and then (5) moving all relevant objects
to the next tube in a mechanical way, with (6) the result read by spectrophotometry
(certain molecules are marked and their number is estimated).
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These lab solutions request finding a suitable problem or class of problems
for which no cycle of substances is possible in any compartment and the solution
allows a degree of approximation. We said nothing above about halting, because in
the experiment this feature is not taken into consideration: a sequence of numbers
(the famous Fibonacci one) are computed, hence several outputs, at precise time
moments, are produced.

3 Local-loop-free P Systems

From a theoretical point of view, the central issue is that of finding a non-trivial
class of P systems such that the reactions from each compartment are completed
in a finite (better: small) number of steps. Otherwise stated, no compartment can
contain a cycle of objects which can run forever.

This intuitive goal can be reached in various formal ways. For instance, we can
request that no local transition graph contains a cycle (the catalysts are ignored).
Specifically, for each region i of a P system with the set of objects O and set Ri

of rules in region i, the transition graph γi = (O,E) associated with region i has
the set of edges defined as follows: for each a, b ∈ O,

(a, b) ∈ E iff there is u → v ∈ Ri such that |u|a ≥ 1, |v|b ≥ 1.

(For a string x and a symbol a we denote by |x|a the number of occurrences of a
in x.)
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A stronger condition is to impose that no object produced in a compartment
can evolve in the same compartment. In the case of non-cooperative systems, this
means that the local transition graph contains no paths of length longer than
or equal to two. (For cooperative systems this assertion is not true: having the
rules a → b, bc → cc, the local transition graph contains the path (a, b, c), but it is
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possible not to actually have two reactions in a row, because without c, the product
b of the first reaction cannot evolve.) This latter condition is similar to the way
the P systems with immediate communication are defined (see [2]): each product
of a reaction is immediately communicated to one of the neighboring membranes.

Thus, formally, we can define several properties which ensure the local-loop-
freeness. Defining such properties and investigating the P systems obeying them
is one of the research topics we want to point out here.
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In what follows, we briefly discuss the P systems which are local-loop-free (in
short, LL-free) in the sense of the previous definition: no cycle exists in any local
transition graph.

4 Some Examples

We start by considering three (non-semilinear) sets of numbers which can be com-
puted by P systems of a rather similar form. Figures 1, 2, and 3 present non-
cooperative P systems (denoted by Π1,Π2,Π3) generating, respectively, the fol-
lowing sets of numbers:

N(Π1) = {2n | n ≥ 1},
N(Π2) = {n2 | n ≥ 1},
N(Π3) = {1, 2, 3, 5, 8, 13, ...}.
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The third sequence is the Fibonacci one (each element is the sum of the previous
two; here we start with 1 and 2 as the initial numbers), and this system Π3 is
planned to be implemented.

These systems can be represented in a more intuitive way (in what concerns
the reactions taking place in compartments and the objects communicated) as
tissue-like P systems with immediate communication. For systems Π1 and Π3 this
is done in Figures 4 and 5, respectively; the case of Π2 is left to the reader. On the
arrows are indicated the objects which are communicated between the respective
membranes.
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In all cases, of both cell-like and tissue-like systems, the result is collected in
the form of the number of copies of a special object e in a designated membrane
which has no other role in the system. We call it a output membrane; it contains
no rule, hence no objects can evolve in it. In all cases, the environment can be
used instead of this membrane, but it is ”more practical” to work with a output
membrane.
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During the discussions in Technion in search of a suitable problem to imple-
ment, when we have arrived at the construction of the system in Figure 3, a
generalized glee was expressed by the young members of the team, who exclaimed:
“this is doable!” The idea was summarized at various stages in nice graphical forms
– one of them is given in Figure 6 (the output membrane is here the inner one
and one additional external membrane is considered as an infinite supplier of “raw
materials”) – and then a group photo was taken, to celebrate the moment (see
Figure 7). Well, whether or not this moment deserves also to be celebrated with
champagne it remains to be seen after trying the experiment. . .

Fig. 6.
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Fig. 7.

5 And Now Start the Problems

We list here only some of the most natural ones:

• Prove universality for LL-free P systems. Of course, in this case we need to
consider as successful only halting computations. For tissue-like cooperative
systems we give a proof of universality in the next section, but for other classes
of P systems, in particular, for catalytic P systems (with two or more cata-
lysts, or with one catalyst and various controls on using the rules) the problem
remains open.

• What about considering systems with a membrane structure like those in Fig-
ures 1–3, i.e., with only two membranes for computing and one additional
membrane for collecting the result of a computation? Are also such LL-free
systems universal? Note that even the system in the next section, using coop-
erative rules, has three “computing” membranes.

• Find other examples of systems (of interest) with the LL-freeness property or
with the membrane structure of the form in Figures 1–3.

• Note that the systems considered above are of a generative form, they start
from an initial configuration and generate infinite sequences of numbers. Devise
input-output systems, computing a function (of some interest).
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• Is any chance to solve NP-complete problems in this framework?
• What about sorting, ranking, or other computer science applications of P sys-

tems (as reported in the literature), based on LL-free P systems?

6 Universality of Cooperative LL-free Systems

We denote by tNOP llf
m (coo) the family of sets of numbers N(Π) generated by LL-

free tissue-like P systems with cooperative rules having at most m ≥ 1 membranes,
with immediate communication and with the result collected in a special output
membrane which has only this role (no object evolve in this membrane, it has
no rule inside). If the result is collected in the environment, then this output
membrane can be saved, but here we choose to consider it.

In this framework, we can immediately prove the following result (as usual,
NRE denotes the family of recursively enumerable sets of natural numbers):

Theorem 1. tNOP llf
m (coo) = NRE for all m ≥ 4.

The proof is based on simulating a register machine M = (m,H, l0, lh, I) (num-
ber of registers, set of labels, initial label, halting label, set of instructions) by a P
system Π constructed as suggested in Figure 8. Without any loss of the generality,
we may assume that when halting, M has all registers different from register 1
empty.

All labels in H, primed versions of them (for each l ∈ H we consider
l′, l′′, l′′′, liv, l̄, l̂, too), as well as objects ar, 1 ≤ r ≤ m, associated with the registers
of M are objects in Π. We start with only one object in the system, namely l0,
present in membrane 1.

For each ADD instruction li : (ADD(r), lj , lk) in I we introduce the rules

li → ar l̄i in membrane 1,

l̄i → l̂i in membrane 2,

l̂i → lj and

l̂i → lk in membrane 3.

The simulation of the ADD instruction is obvious: the increment of register r is
done in membrane 1 and the non-deterministic choice of the next instruction to
apply is done in membrane 3.

For each SUB instruction li : (SUB(r), lj , lk) in I we introduce the rules

li → l′il
′′
i in membrane 1,

l′iar → l′′′i and
l′′i → livi in membrane 2,

livi l′′′i → lj and
livl′i → lk in membrane 3.
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The simulation of the SUB instruction is done in three steps (a complete cycle
through membranes 1, 2 and 3). In membrane 1 one introduces the objects l′i, l

′′
i

which are moved, together with all objects ar to membrane 2. Here, l′i tries to
subtract one from the value of register r. If this is possible, then the object l′′′i

is introduced, otherwise l′i remains unchanged. Simultaneously, l′′i introduces the
object livi . This object behaves as a checker in membrane 4: if it mets here l′′′i

(hence the subtraction was possible), then one introduces the object lj , otherwise
one introduces the object lk. In both cases the continuation is as necessary in the
register machine M .

We also consider the rules

lha1 → l̄he in membrane 1,

l̄h → l̂h in membrane 2,

l̂h → lh in membrane 3.

In the end of the computation with respect to M , the object lh transforms all
objects a1 (hence the contents of the first register of M) into objects e, which are
moved to membrane 4. Thus, the computation ends with a number of copies of
e in membrane 4 equal to the number generated in the first register of M . Thus,
N(M) = N(Π) and we have the inclusion NRE ⊆ tNOP llf

4 (coo).
The converse inclusion can be proved in a straightforward way or we can invoke

for it the Turing-Church thesis. 2
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