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The problem of computing a representation of the stabbing lines of a set S of segments
in the plane was solved by Edelsbrunner et al. We provide efficient algorithms for the
following problems: computing the stabbing wedges for S , finding a stabbing wedge for
a set of parallel segments with equal length, and computing other stabbers for S such as
a double-wedge and a zigzag. The time and space complexities of the algorithms depend
on the number of combinatorially different extreme lines, critical lines, and the number of
different slopes that appear in S .

1. Introduction

Let S = {s1, . . . , sn} be a set of n not necessarily disjoint line segments (or segments) in the plane. If p and q are the
endpoints of a segment, for convenience, we require that p �= q and neither of them are at the infinity; consequently, lines,
rays, and points are not considered to be segments, not even degenerate ones. In order to avoid tedious case analysis, we
assume that the set of endpoints of the segments is a point set in the plane in general position, i.e., no three endpoints
are collinear. Since we are interesting on stabbing the segments of S , we can assume that three segments can meet, or
one segment can be contained into another, or more generally, two segments can have a (non-input) segment as their
intersection (the two segments are reduced to the intersection segment).

A line is a transversal of (or stabs) S if it intersects each segment of S even when it meets the segment only at an
endpoint, and even when it contains the segment. Edelsbrunner et al. [10] presented a Θ(n log n) time and O (n) space
algorithm for solving the problem of constructing a representation of all transversal lines or stabbing lines of S . See Edels-
brunner [8] for an analysis of this problem from both a combinatorial and computational point of view. The lower bound
from Edelsbrunner et al. [10] does not apply to the decision problem: determining if there exists a line stabber for S . Avis et
al. [2] presented an Ω(n log n) time lower bound in the fixed order algebraic decision tree model to determine the existence
of a line stabber for S . For a set of n vertical segments, a stabbing line can be computed in Θ(n) time.

A stabbing line � for S classifies the endpoints of the segments in two classes: endpoints above �, say red points; and
endpoints below �, say blue points. The endpoint on � is classified according to the other endpoint. Thus, we can see the
problem of stabbing S as a problem of classifying the endpoints of the segments into disjoint monochromatic red and blue
regions defined by the stabber, i.e., as a separability problem. Following this line of research, in this paper we deal with the
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Fig. 1. Stabbers from (a) to (d): line, wedge, double-wedge, zigzag.

problem of finding stabbers for S satisfying the condition that there is no segment stabbed by more than one element of
the stabber (Fig. 1). We call this condition the separability condition. So we look for stabbers for S such that we can assign
red and blue colors to the endpoints of the segments and split the plane into disjoint monochromatic regions. Hurtado et
al. [14] classified red and blue points with separators which are similar to our stabbers.

If there is no stabbing line for S it is natural to ask for a stabbing wedge (two rays with a common endpoint) because
it can be a good approximation to a stabbing line if its aperture angle is close to π . Thus, we consider the problem of
computing the stabbing wedges for S . As a particular problem, we study the problem of finding a stabbing wedge for a set
of parallel segments with equal length. We also look for other stabbers for S such as: a double-wedge stabber formed by
two intersecting lines, and a zigzag stabber formed by two non-intersecting rays and a segment joining the origins of the
rays. Fig. 1 illustrates the kind of stabbers we will consider in this paper. The general goal is to design efficient algorithms
for computing these stabbers for S depending on whether they satisfy the separability condition above, i.e., we ask for
stabbers with the separability condition or stabbers without the separability condition. The time and space complexities of the
algorithms are sensitive to some parameters of S , more concretely, they depend on the number of combinatorially different
extreme lines, critical lines, and the number of different slopes that appear in S .

Outline of the paper. In Section 2 we study the problem of computing a representation of the set of extreme lines of S .
The extreme lines are a key tool for solving the problem of computing the set of stabbing wedges for S in Section 3. The
problem of finding a stabbing wedge for a set of parallel segments with equal length is considered in Section 4. Finally, in
Section 5 we show efficient algorithms for the problem of computing a stabbing double-wedge for S and for the problem
of finding a stabbing zigzag for S .3

Related works. Stabbing problems have since been widely investigated and arise in many diverse problems in computa-
tional geometry. Claverol [6] as a part of her PhD thesis initiated the study here developed. In this paper we improve the
complexities she obtained and some other stabbing problems are also considered. Atallah and Bajaj [1] presented an algo-
rithm for line stabbing simple objects in the plane, where a simple object is an object which has constant store description.
Edelsbrunner, Guibas and Sharir [11] showed how to construct a representation of the line stabbers of convex polygons.
O’Rourke [19] presented an algorithm for finding a stabbing line of vertical line segments. Goodrich and Snoeyink [12] pre-
sented a natural variant considering another type of stabbers different from the lines by solving the problem of computing
a transversal convex polygon for a set of parallel segments. Bhattacharya et al. [4] worked on the problem of computing
the shortest transversal segment for a set of lines in the plane and also for a set of convex polygons. Lyons et al. [15]
studied the problem of computing the minimum perimeter convex polygon which stabs a set of isothetic line segments.
Rappaport [20] considered the problem of computing a simple polygon with minimum perimeter which stabs or contains a
set of line segments. Mukhopadhyay et al. [16–18] considered the problem of computing the minimum area convex polygon
which stabs a set of parallel line segments.

2. Extreme lines

This section is devoted to the study of the set of extreme lines for S from a computational and from a combinatorial point
of view, since we shall design algorithms for determining stabbers for S whose complexities depend on the computation of
this set of lines. We also introduce some terminology that shall be used throughout this paper.

A line � is an extreme line for S if � stabs a subset of segments S1 ⊆ S with S1 �= ∅, and the remaining segments
S2 = S \ S1 lie in only one of the open half-planes defined by �. Otherwise, � is a non-extreme line for S . We denote by �+
(�−) the left (right) open half-plane defined by a directed line �. If the segments of S2 lie in �− (�+), we say that � is a
left-extreme (right-extreme) line for S . Thus, � is an extreme line for S if and only if � is either left-extreme or right-extreme
for S . There are two types of non-extreme lines � for S: either � does not intersect the convex hull of S , denoted by CH(S),
or the line � intersects CH(S), and both half-planes �+ and �− contain at least one segment of S .

2.1. Properties of extreme lines

Next we show some properties about extreme lines. All omitted proofs are straightforward.

3 A preliminary version of this paper was presented in EuroCG’09 [7].
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Fig. 2. Extreme lines and non-extreme lines with the same slope.

Lemma 1. There always exist extreme lines for S with a given slope. Sweeping with a line of a given slope, the two types of non-extreme
lines for S can appear. An endpoint of a segment or the segment itself determines the change from extreme to non-extreme line.

Fig. 2 illustrates an instance of extreme lines and non-extreme lines with the same slope just sweeping with a line
parallel to �1 or to �5.

Lemma 2. Every extreme line for S intersects at least one segment of S with an endpoint in CH(S), but the converse is not true.
Moreover, for every segment s ∈ S with at least one endpoint in CH(S) there exists an extreme line that only intersects s.

Proof. Suppose on the contrary that � is an extreme line for S which intersects a subset of segments of S , but none of the
endpoints of those segments are located in CH(S). Then the segments stabbed by � belong to the interior of CH(S), which
implies that there is at least one segment of S located in each of the half-planes, �+ and �− , with an endpoint in CH(S).
Hence � is a non-extreme line, which leads to a contradiction. The line �3 in Fig. 2 proves that the converse is not true.

Consider a segment s ∈ S with an endpoint q in CH(S). To prove that there exists an extreme line that only intersects s,
it suffices to consider the supporting line of CH(S) passing through q. �
Lemma 3. A line � is a stabbing line for S if and only if � is both a left-extreme and a right-extreme line for S.

A key consequence of Lemma 3 is the following. Suppose that S is not stabbed by a line, and consider a directed line
� with any orientation. Sweeping S with �, it is not possible to go from a left-extreme to a right-extreme line. Necessarily,
a non-extreme line for S is obtained between the two types of lines.

Definition 1. An endpoint q of a segment of S is a critical point of S for a given orientation m, if any sweeping directed line
� with orientation m is either left-extreme or right-extreme and becomes non-extreme once it crosses q.

Note that Lemma 1 implies that there is a critical point for each orientation. Extreme lines �2 and �4 in Fig. 2 define
critical points.

Definition 2. An extreme line � is a critical line for S if � passes through a critical point.

Critical lines and critical points play an important role in the design of our algorithms. The following rotating process
allow us to visualize the sequences of critical points and critical lines for S (Fig. 3). Consider a directed critical line �

which rotates clockwise anchored at critical points of S . The first critical point corresponds to the vertical-upwards directed
critical line. When � bumps a new critical point, then � changes the anchored point to the new critical point, and both
critical points are consecutive in the sequence of critical points. Denote by q the critical point in which � is anchored at
some moment of the process. Let �r

q and �l
q be the right and left ray, respectively, from q contained in � according to the

orientation of �. The following result is straightforward.

Lemma 4. The directed critical line � only can become non-extreme line for S after the ray �r
q passes through an endpoint p of a

segment s ∈ S strictly contained in �+ . In this case, p becomes the next critical point for S. If p is the endpoint of the segment pq ∈ S
and the ray �l

q passes through p, then p becomes the next critical point for S.

Consider the sequence F1 of critical points obtained when a directed critical line follows the rotating process above-
described, starting from a vertical-upwards directed critical line to a vertical-downwards directed critical line. A sequence
F2 is obtained by interchanging the roles of vertical-upwards and vertical-downwards. Denote by D1 and D2 the respective
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Fig. 3. Critical points ( f i ) and directed critical lines (�) of S .

Fig. 4. (Left) Upper envelope of the lower rays, (right) lower envelope of the upper rays of the segment set in Fig. 3.

sequences of directed critical lines passing through two consecutive critical points. In order to compute D1 and D2 we first
recall the following tool.

A standard geometric tool which will be used throughout this work is duality [10]: the geometric transform denoted
by D which maps a point into a non-vertical line and vice versa. Thus, the dual transform D maps a point p = (a,b)

to the non-vertical line D(p) : y = 2ax − b and vice versa, that is, it maps a non-vertical line � : y = cx + d to the point
D(�) = (c/2,−d). A segment si ∈ S is determined by its endpoints. The endpoints are transformed by D into two lines. If
si is not vertical, D(si) is a double-wedge which does not contain a vertical line in its interior. Thus, the double-wedge
is formed by two upper rays and two lower rays. If si is a vertical segment, D(si) is a strip. The set of endpoints of the
segments in S is transformed by D into an arrangement of 2n lines denoted by A(S).

The transform D satisfies the following properties: (i) D maintains the relative position (above/below) of points and
lines; (ii) a line � intersects a segment si if and only if the point D(�) lies in the double-wedge D(si); (iii) the stabbing
lines of S stand in one-to-one correspondence with the intersection points of their double-wedges, i.e.,

⋂
si∈S D(si).

Rappaport [20] used duality to design an O (n log n) time algorithm for computing D1 and D2, although his goal was
to use these sequences for a different problem. His algorithm is essentially based on the following lemma for which it is
assumed, without loss of generality, that S contains no vertical segments. Thus for every s ∈ S , the double-wedge D(s)
determines two upper rays and two lower rays. This result is also the key tool used by Edelsbrunner et al. [10] to design an
algorithm for computing a representation of the stabbing lines of S .

Lemma 5. (See [10,20].) The sequence D1 (D2) corresponds in A(S) to the sequence of vertices of the lower (upper) envelope of the
set of upper (lower) rays of D(s). Both sequences D1 and D2 have linear complexity.

The lower (upper) envelope of the upper (lower) rays of D(s), forms a (not necessarily convex) x-monotone polygonal
chain P1 (P2) with a linear number of edges (see Fig. 4 for an example). Using Lemma 5, Rappaport [20] and Edelsbrunner
et al. [10] presented a divide and conquer algorithm to obtain the following result.

Theorem 1. (See [10,20].) The sequences D1 and D2 , and the polygonal chains P1 and P2 can be computed in O (n log n) time and
O (n) space.

Since a stabbing line for S is both left-extreme and right-extreme, Edelsbrunner et al. [10] computed the intersection of
both polygonal chains P1 and P2 to obtain the cells in A(S) which define the locus of stabbing lines for S . Thus if S is not
stabbed by a line, then the polygonal chains P1 and P2 do not intersect.
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Fig. 5. (Left) Segment set S and sequences (F1 and F2) of critical points, (right) the shaded regions are the locus L of extreme lines for S . Both endpoints
of segments 1 and 2 are critical points. Segment 6 is in CH(S) and so its endpoints become critical points. The polygonal chain P1 is not convex since part
of the double-wedge containing segments 1 and 6 belongs to P1. Analogously for P2 due to segment 2.

2.2. Computing a representation of extreme lines

Two lines, �1 and �2, are said to be combinatorially different with respect to S if either the subsets S1 and S2 of segments
stabbed by �1 and �2, respectively, are different; or if S1 = S2 then the subsets of endpoints of segments above (left of) �1
and �2 are different.

Denote by hS and gS the numbers of combinatorially different extreme lines and non-extreme-lines, respectively, for S .
Observe that two extreme (or non-extreme) lines for S , �1 and �2, are combinatorially different with respect to S if and
only if the points D(�1) and D(�2) lie in different cells of A(S). Thus, we shall present an algorithm which computes a
representation of all the extreme lines for S in A(S). This representation is the locus L of points in the plane (union of
cells in A(S)) which correspond in the primal to extreme lines for S . The number of cells in L is exactly equal to hS . Our
algorithm shall compute the boundary of L and the cells inside L. Because there is no stabbing line for S , the locus L is
formed by two disjoint regions. We call the top and bottom boundaries of the union of cells in L the exterior boundary of L,
and the two boundaries (polygonal chains) which separate the two disjoint regions of the union of cells in L, the interior
boundary of L (see Fig. 5).

Let L1 and L2 be the sequences of edges of the exterior boundary and the interior boundary of L, respectively. By
Lemmas 1, 2, 3, and 4 we have the following result.

Lemma 6. The dual of the directed supporting lines of CH(S) forms the exterior boundary L1 . Analogously, the dual of the directed
critical lines of S forms the interior boundary L2 .

The sequence L1 is formed by the upper and lower envelopes of A(S), the edges of L2 come from the dual of the
sequence of critical points of S , and L2 is the boundary of the set of cells of non-extreme lines for S . Moreover, since L2 is
formed by P1 and P2 the following result is a straightforward consequence of Lemmas 5 and 6 and Theorem 1.

Lemma 7. The boundary L2 of L can be computed in O (n log n) time and O (n) space.

If there is no stabbing line for S , i.e., P1 and P2 do not intersect, then L is the union of two disjoint regions in A(S): the
upper region Ru delimited by P1, and the lower region Rl delimited by P2 (Fig. 5). If P1 and P2 intersect, the representation
in A(S) of the set of stabbing lines for S is Ru ∩ Rl . Next we show how to construct Ru and Rl .

Construction of Ru and Rl . (a) Properties: Since Ru is bounded by P1 (the upper envelope of the lower rays), the apices of
the double-wedges (dual to segments of S) are all below or on P1 (analogously they are all above or on P2 because P2 is
the lower envelope of the upper rays). For each ray of a double-wedge, we record each side with + or − depending on
which side of the double-wedge lies on (later we will used it to determine the segments of S stabbed by extreme lines).
Recall that P1 and P2 are x-monotone polygonal chains, starting and ending with rays. We focus on the construction of Ru
(the construction of Rl is analogous). Let m1 be the complexity of P1 which is linear in n.

(b) Preprocess: The 2n upper rays of the double-wedges contribute to the cells of Ru if and only if they intersect P1.
The origin of each upper ray is below or on P1. We form from P1 two bounded simple polygons, by intersecting it with a
large bounding box enclosing all of its vertices; one polygon lies below P1 and one above. Now, we use the ray-shooting
algorithm from Hershberger and Suri [13], which can preprocess the two polygons in O (m1) time to support O (log m1)-
time ray-shooting queries. Now, for every upper ray, we repeatedly use the data structure to identify all of its intersections
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Fig. 6. Constructing Ru .

Fig. 7. (a) hS = O (n2), (b) hS = 6, (c) non-intersecting segments.

with P1, at the cost of O (log m1) per intersection. If the upper ray has more that one intersection point we compute the
segments (with endpoints on P1) contained inside Ru formed by consecutive intersection points. All those segments will
contribute to the arrangement of cells in Ru . Let m2 (m3) be the number of rays (segments) obtained in this way. These
sets of rays and segments can be computed in O ((m2 + m3) log m1) time. Note that m1 and m2 are linear in n, but m3 can
be quadratic since an upper ray can intersects P1 many times (see Fig. 6).

(c) Computation: The arrangement of cells in Ru is simple, that is, no three lines pass through the same point (which
is true by the assumption that the endpoints of the segments in S are in general position) and no two lines are parallel
(assuming that no two endpoints of segments in S share the same vertical line: in O (n log n) time we can rotate the
coordinate system to achieve this). From the set of m1 + m2 + m3 rays and segments we can compute the arrangement of
the hS cells in Ru using topological sweep [9] (see also Balaban’s algorithm [3]) in O ((m1 + m2 + m3) log(m1 + m2 + m3) +
hS) time and O (hS + n) space. The time complexity is slightly better than O (hS log hS) as hS is between m1 + m2 + m3
and Θ((m1 + m2 + m3)

2). The cells in Rl are constructed similarly. We now describe the algorithm which computes a
representation of all the extreme lines for S .

Algorithm 1. Representation-extreme-lines

Input: Set S of n segments in the plane.
Output: L1, L2, and the set of cells in L.

1. In O (n log n) time, compute L1 as the upper and lower envelopes of A(S).
2. Use Theorem 1 to compute L2 in O (n log n) time. L2 is formed by P1 and P2. If P1 and P2 do not intersect, then L is

formed by the regions Ru and Rl . The complexities of P1, P2, and L2 are O (n).
3. In O (hS log hS ) time and O (hS ) space, compute the set of hS cells in Ru and Rl which forms L, i.e., the set of all the

combinatorially different extreme lines for S .

Theorem 2. A representation of the combinatorially different extreme lines for S can be computed in O (hS log hS + n log n) time and
O (hS + n) space.

Notice that when hS is constant (as in Fig. 7(b)) or linear, the complexities of Algorithm 1 are O (n log n) time and O (n)

space.

2.3. Bounds for hS and gS

Clearly, |CH(S)| � hS and the number hS is at most O (n2). A nice instance, showing that the upper bound is tight, is
the segment set proposed by Claverol [6] (Fig. 7(a)). On the other hand, there are at least two combinatorially different
non-extreme lines for S , the line � which does not intersect CH(S) and CH(S) is either above or below �. Thus, 2 � gS .
Consider now the intersection graph G = (V , E) whose vertex set is V = S , and two segments s1 and s2 are adjacent if and
only if s1 ∩ s2 �= ∅. Let Gc = (V , Ec) be the complementary graph of G . If S is formed by pairwise non-intersecting segments,
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Fig. 8. (a) Classifying the endpoints of a segment with respect to �, (b) and (c) the two possible classifications of a given segment set where � is parallel to
segments s1, s2 and s3.

then every pair of segments gives rise to at least one non-extreme line (Fig. 7(c)) and hence gS � |Ec| = ( n
2

) = O (n2). Thus,

2 � gS � O (n2) and the bounds are tight.

2.4. Computing a representation of critical lines

As mentioned earlier, among extreme lines, critical lines play an important role in our algorithms. These lines are points
in the cells of A(S), called critical cells, which have one edge in either P1 or P2. Our next aim is to compute a representation
of the combinatorially different critical lines.

All the critical cells in Ru have an edge in P1 (analogously, critical cells in Rl have an edge in P2), and two of them are
adjacent if they share a segment (or ray) with endpoint in P1. Since P1 is an x-monotone polygonal chain, then we can walk
on P1 from one critical cell to an adjacent critical cell with the unique change of the shared edge according to the labels
of the edge: crossing from + to − or from − to +. To do that we need to compute the intersection points of the upper
rays above with P1 and to sort them by increasing x-coordinate (because P1 is x-monotone). Recall from above that there
are O (m2 + m3) intersection points, and they can be sorted in O ((m2 + m3) log(m2 + m3)) time and O (m2 + m3) space (see
Fig. 6). As initial stage we need to compute the leftmost critical cell, or in other words, the set of endpoints on the left of the
vertical-upwards directed critical line which is anchored in the first critical point. This can be done in O (n log n) time. Now,
walking from left to right along P1 we visit all critical cells (the dual graph of the critical cells is a tree and we can cross a
segment at most twice). Then computing a point from all the combinatorially different critical cells can be done in O ((m2 +
m3) log(m2 +m3)+n log n) time and O ((m2 +m3)+n) space. Note that m2 +m3 < cS because a ray or a segment contributes
to at least one critical cell. Thus, O ((m2 + m3) log(m2 + m3)) is slightly better than O (cS log cS), and a representation of all
the combinatorially different critical lines can be computed in O (cS log cS + n log n) time and O (cS + n) space.

Theorem 3. A representation of the combinatorially different critical lines for S can be computed in O (cS log cS + n log n) time and
O (cS + n) space.

Note that cS can be quadratic, one can constructs examples where many upper rays intersect P1 many times (see Fig. 6).

3. Stabbing wedge

Let W = {�1, �2} be a stabbing wedge for S , where �1 and �2 are the two rays of W . The line containing �i is denoted
by �′

i for i = 1,2. The half-planes defined by �′
i are written as �′

i
+ and �′

i
− . We can assume that S is not stabbed by a line

what implies that �1 stabs a subset of segments S1 � S with S1 �= ∅, and the set S2 = S \ S1 is stabbed by �2. The aim of
this section is to study the problem of computing stabbing wedges for S with or without the separability condition.

Denote by mi the slope of (the line containing) the segment si ∈ S , and by kS the number of different slopes of the
segments of S . Given a line � and a segment s, we can classify the endpoints of s with respect to � whenever � and the line
containing s are not parallel. It suffices to do a parallel sweeping by a line � until it crosses s, leaving one endpoint in �+ ,
and the other one in �− . These endpoints are denoted by e+ and e− , respectively (see Fig. 8(a)). If � and the line containing
s are parallel, the endpoints of s cannot be classified. Indeed, there are two possible classifications of the endpoints of those
segments: the endpoint with bigger y-coordinate of each segment is classified into e+ and the other one into e− , or vice
versa (Figs. 8(b) and 8(c)).

Lemma 8. Any parallel sweeping by a line � with a fixed slope gives rise to at most 2 classifications of the endpoints of the segments
of S.

Proof. Consider a line � with slope m. If m �= mi for i = 1, . . . ,kS , then the endpoints of each segment can be classified into
e+ and e− giving rise to exactly one classification. Assume now that m = mi and that there are some segments of S with
slope mi . Since these segments are parallel to �, there are two possible classifications of the endpoints of those segments
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Fig. 9. A stabbing wedge for S and the point sets S+
1 , S−

1 , S+
2 , and S−

2 .

as we said above. For horizontal segments, consider the endpoint with bigger x-coordinate in order to distinguish the two
possible assignments. �
3.1. Stabbing wedges with the separability condition

Let W = {�1, �2} be a stabbing wedge for S with the separability condition, i.e., no segment can be stabbed by both rays.
Let S+

i (S−
i ) for i = 1,2, be the set of endpoints of the segments of Si classified as e+ (e−) with respect to �′

i . Thus, S−
1 and

S+
2 are contained inside the wedge W , and S+

1 and S−
2 are located outside the wedge W (Fig. 9). These assignments {+,−}

depend on the relative position of the lines �′
1 and �′

2. We shall mainly concentrate on a general wedge as the one shown
in Fig. 9. The following lemma is straightforward.

Lemma 9. If W = {�1, �2} is a stabbing wedge for S, then �′
1 and �′

2 are extreme lines for S, and at least half of the segments of S are
stabbed by either �1 or �2 .

The next two results use the following notation. The line �′
1 is an extreme line for S . The set S1 � S with S1 �= ∅, is the

segment subset stabbed by �′
1, and S2 = S \ S1. Denote by S+

1 and S−
1 the classification of the endpoints of the segments

of S1 given by �′
1 according to Lemma 8. The sets S+

2 and S−
2 are the classification of the endpoints of the segments of S2

obtained by sweeping with a line, say �′
2, with fixed slope m according to Lemma 8.

Lemma 10. There exists a stabbing wedge W = {�1, �2} for S with �1 contained in �′
1 if and only if S−

2 is line separable from S−
1 ∪ S+

2
by the line �′

2 .

Proof. Given a stabbing wedge W = {�1, �2} for S with �1 stabbing S1 and �2 stabbing S2 = S \ S1, the line �′
2 separates

S−
2 from S−

1 ∪ S+
2 (see Fig. 9). Denote by m the slope of the sweeping line �′

2 according to Lemma 8. Since �′
1 is an extreme

line, we can assume that S2 is contained in �′
1
− . Observe that S−

1 ∪ S+
2 is contained in both half-planes �′

2
+ and �′

1
− . Thus,

the segments of S are all stabbed by �′
1 and by �′

2. The intersection point p of �′
1 and �′

2 is the apex of a stabbing wedge
W = {�1, �2} for S such that �′

i contains the half-line �i for i = 1,2. Moreover, since S−
1 ∪ S+

2 ⊂ �′
2
+ ∩ �′

1
− then no segment

of S is stabbed by the two rays �1 and �2. �
Lemma 11. The locus of apices of stabbing wedges W for S with respect to the classification of endpoints into S+

i and S−
i for i = 1,2,

can be computed in O (n log n) time. The four interior supporting lines between CH(S+
1 ) and CH(S−

1 ∪ S+
2 ), and between CH(S−

1 ∪ S+
2 )

and CH(S−
2 ) define at most two (possible unbounded and degenerate) convex quadrilateral Q whose interior points are apices of

stabbing wedges for S.

Proof. Clearly CH(S−
1 ∪ S+

2 ) is contained inside W . Thus, W separates the endpoints in CH(S−
1 ∪ S+

2 ) from the remaining
endpoints. Hurtado et al. [14] show how to compute the locus of apices of all these separating wedges W in O (n log n)

time. �
Definition 3. Two stabbing wedges W1 and W2 for S are combinatorially different if the sets of endpoints of segments inside
the wedges W1 and W2 are different.
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Fig. 10. Two combinatorially different stabbing wedges with the same apex.

It is easy to construct a segment set having two combinatorially different stabbing wedges with the same apex (Fig. 10).
Thus, there is not a one-to-one correspondence between apices and combinatorially different stabbing wedges.

Lemmas 9, 10, and 11 are the key tools to design the next algorithm for computing the set W of combinatorially different
stabbing wedges for S and a set Q W of convex quadrilaterals Q which are a representation of those stabbing wedges.

Algorithm 2. Stabbing-wedges-with-separability-condition

Input: Set S of n segments in the plane.
Output: W and QW .

1. Preprocess:
(a) In O (n log kS ) time, sort the kS different slopes of the segments by increasing angular order. Denote them by

m1, . . . ,mkS .
(b) Use Algorithm 1 to compute the set of hS cells of L in O (hS log hS + n log n) time and O (hS + n) space. In O (hS)

time compute the dual graph G of L and do a traversal of G obtaining a tree. Following the tree-traversal (visiting
each edge of the tree at most twice) we can get a sequence of h′

S = O (hS) of nodes of the tree, i.e., a sequence
C = (C1, . . . , Ch′

S
) of adjacent cells of L: a sequence for the cells in Ru , and a sequence for the cells in Rl .

(c) Select a point p(1,1) ∈ C1. Let D(p(1,1)) := �′
1,(1,1) . Compute the set of segments stabbed by �′

1,(1,1) , written as S1,(1,1) ,
and S2,(1,1) = S \ S1,(1,1) . Classify the endpoints of the segments of S1,(1,1) with respect to �′

1,(1,1)
obtaining the sets

S+
1,(1,1) and S−

1,(1,1) . Compute CH(S+
1,(1,1)) and CH(S−

1,(1,1)). With the slope m1 determine the classification of the

endpoints of the segments in S2,(1,1) , i.e., at most two pairs (S+
2,(1,1), S−

2,(1,1)). Compute CH(S+
2,(1,1)) and CH(S−

2,(1,1)).
2. For i = 1, . . . ,kS do

For j = 1, . . . ,h′
S if i is odd and for j = h′

S , . . . ,1 if i is even do
(a) If i = j = 1, use the data computed in Step 1c and go to Step 2d.
(b) Select a point p(i, j) ∈ C j . Let D(p(i, j)) := �′

1,(i, j) . The difference between the segment sets stabbed by �′
1,(i, j−1)

and
�′

1,(i, j) is at most one segment s since the cells C j−1 and C j are adjacent. This segment s can be stabbed by �′
1,(i, j−1)

and not by �′
1,(i, j) or vice versa.

(c) From s and the sets S+
1,(i, j−1)

, S−
1,(i, j−1)

, S+
2,(i, j−1)

, and S−
2,(i, j−1)

, in constant time update: (1) S1,(i, j) is the set of

segments stabbed by �′
1,(i, j) and S2,(i, j) = S \ S1,(i, j); (2) the sets of endpoints S+

1,(i, j) , S−
1,(i, j) classified with respect

to �′
1,(i, j); and (3) the (at most two) pairs of sets of endpoints (S+

2,(i, j), S−
2,(i, j)) classified with respect the slope mi .

For each pair proceed as follows.
(d) In O (log n) time, update CH(S+

1,(i, j)), CH(S−
1,(i, j) ∪ S+

2,(i, j)), and CH(S−
2,(i, j)) and check whether CH(S−

1,(i, j) ∪ S+
2,(i, j))

and CH(S−
2,(i, j)) are line separable by a line, say �′

2,(i, j) . If so, by Lemma 10, there exists a stabbing wedge W (i, j) for
S with apex in the intersection point of �′

1,(i, j) and �′
2,(i, j) . Compute this wedge W (i, j) = {�1,(i, j), �2,(i, j)}. Add W (i, j)

to W .
Compute the quadrilateral Q (i, j) defined by the interior supported lines between CH(S+

1,(i, j)) and CH(S−
1,(i, j) ∪ S+

2,(i, j))

and the interior supported lines between CH(S−
1,(i, j) ∪ S+

2,(i, j)) and CH(S−
2,(i, j)). Add Q (i, j) to QW .

Theorem 4. The set W of combinatorially different stabbing wedges for S with the separability condition and the set Q W can be
computed in O (hSkS log n + n log n) time and O (hS + n) space.

Proof. Step 1 of Algorithm 2 can be done in O (hS log hS + n log n) time and O (hS + n) space since its complexity is domi-
nated by the complexity of Algorithm 1. The time complexity of Step 2 is O (kShS logn) since convex hulls can be updated
by insertions/deletions in O (log n) time [5]. The total cost is O (hSkS log n + n log n) time and O (hS + n) space. There are at
most hS combinatorially different stabbing wedges for S since each one can be defined by an extreme line. �
Corollary 1. The set W of combinatorially different stabbing wedges for a set of n parallel segments with the separability condition
and the set QW can be computed in O (hS log n + n log n) time and O (hS + n) space.



312 M. Claverol et al. / Computational Geometry 44 (2011) 303–318
Fig. 11. (a) Stabbing wedge without the separability condition, (b) non-stabbing wedge.

Remarks. Fig. 7(a) shows that the number of combinatorially different stabbing wedges for a set of (parallel) segments
can be quadratic. To decide whether S is stabbed by two parallel lines with the separability condition can be done using
Algorithm 2 and checking if at least one of the quadrilaterals is unbounded. The stabbing wedge with maximum and
minimum aperture angle can also be computed by checking in constant time the aperture angle of the stabbing wedges
with apices in the vertices of the quadrilaterals in Q W and maintaining the maximum and minimum aperture angle.

3.2. Stabbing wedges without the separability condition

Let W = {�1, �2} be a stabbing wedge for S without the separability condition. The same terminology than in the previ-
ous subsection is used for �′

i , S1, S2 = S \ S1, S+
i and S−

i for i = 1,2. We start by proving some fundamental properties of
this type of wedge.

Lemma 12. If S is stabbed by a wedge W = {�1, �2} without the separability condition, then we can create a combinatorially equivalent
stabbing wedge W ′ such that the line supporting one of the rays of W ′ becomes a critical line for S and the line supporting the other
ray of W ′ becomes one of the two interior supporting lines of CH(S+

2 ) and CH(S−
2 ).

Proof. The ray �1 can be rotated anchored at the apex of W decreasing the aperture angle of W until �1 passes through a
critical point for S before reaching the ray �2, since otherwise there exists a stabbing line for S . Thus, the new �′

1 becomes
critical line for S (Fig. 11(a)). Note that a segment might be stabbed by the two rays. Moreover, the line �′

2 can be moved
decreasing the aperture angle of W and maintaining the apex on �′

1, until the new �′
2 becomes an interior supporting line

of CH(S+
2 ) and CH(S−

2 ). �
By Lemma 12, we can conclude that the candidates to be the ray �1 of W are critical lines. Moreover the ray �2 is

determined by computing the interior supporting lines of CH(S+
2 ) and CH(S−

2 ). Notice that Lemma 10 does not hold for
stabbing wedges without the separability condition. Thus, we have designed a process to determine the apex of the possible
stabbing wedge. Once a wedge W has been computed, we have to check whether W with apex a stabs all the segments in
S1 (Fig. 11(b)). An algorithm similar to Algorithm 2 with some changes can be used to compute a set of stabbing wedges
for S violating the separability condition. The changes are the following:

Step 1(b). Compute a representation of the set of cS critical cells in O (cS log cS + n log n) time and O (cS + n) space and
compute a sequence C = (C1, . . . , Cc′

S
) of c′

S = O (cS ) adjacent critical cells: a sequence of the cells in Ru and a sequence of
the cells in Rl .

Step 2. Use c′
S instead h′

S and write Step 2(d) as follows: In O (log n) time, compute the interior supporting lines between
CH(S+

2,(i, j)) and CH(S−
2,(i, j)), assign �′

2,(i, j) to each of these lines (two possibilities), let a(i, j) be the intersection point of
�′

1,(i, j) and �′
2,(i, j) , let W (i, j) be the corresponding wedge with apex in a(i, j) . In O (n) time check whether W (i, j) stabs all

the segments in S1,(i, j) , and if it is so add W (i, j) to W .

Theorem 5. A set W of stabbing wedges for S without the separability condition can be computed in O (cSkSn + n log n) time and
O (cS + n) space.

Proof. Step 1 can be done in O (cS log cS + n log n) time and O (cS + n) space. Because Step 2(d) uses O (n) time, Step 2 can
be done in O (cSkSn) time. �
Corollary 2. A set W of stabbing wedges for a set of n parallel segments without the separability condition can be computed in
O (cSn + n log n) time and O (cS + n) space.

3.3. Lower bound for stabbing wedges

Now, we show an Ω(n log n) lower bound for the decision problem of the existence of a stabbing wedge for an arbitrary
set of segments S .
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Fig. 12. Lower bound construction for the segment set S ′ = S ∪ {s′
1, s′

2, s′
3}.

Fig. 13. The three types of stabbing wedges.

Theorem 6. Deciding whether there exists a stabbing wedge for S requires Ω(n log n) time in the fixed order algebraic decision tree
model.

Proof. We reduce the decision of the stabbing wedge problem to the problem of deciding whether there exists a stabbing
line for a segment set, which has an Ω(n log n) time lower bound in the fixed order algebraic decision tree model [2].

Let S be an arbitrary segment set. In O (n) time, compute the minimum orthogonal box B containing S defined by the
endpoints of the segments in S with the biggest and smallest y-coordinates, and the biggest and smallest x-coordinates. Let
s′

1, s′
2, and s′

3 be three “small” vertical segments out of the box B such that any stabbing line for the three of them does not
intersect B (Fig. 12). Consider the set S ′ = S ∪ {s′

1, s′
2, s′

3}. By construction, there exists a stabbing wedge for S ′ if and only
if there exists a stabbing line for S . Observe that our construction does not work with two segments s′

1 and s′
2 since there

might exist a stabbing wedge for S ∪ {s′
1, s′

2} with no stabbing line for S . �
4. Stabbing wedges for parallel segments with equal length

Let S = {s1, . . . , sn} be a set of n parallel and vertical segments with equal length in the plane. To check whether S is
stabbed by a line takes O (n) time, e.g., color red (blue) the endpoints of the segments with bigger (smaller) y-coordinate,
and decide whether the red points are line separable from the blue points (see [8]).

We consider the problem of computing a stabbing wedge for S with the separability condition, assuming that S is not
stabbed by a line. Corollary 1 says that such a stabbing wedge can be computed in O (hS log n + n log n) time and O (hS + n)

space, which in the worst case is O (n2 log n) time and O (n2) space (the segments in Fig. 7(a) might be parallel and with
equal length). In this section, we improve the running time and the space assuming that the segments have equal length.

Up to symmetry, we distinguish three types of possible stabbing wedges W = {�1, �2} for S according to the relative
position of the rays �1 and �2. Denote by αW the aperture angle or interval direction defined by �1 and �2. The three types
are the following: (a) αW contains the vertical direction; (b) αW contains the horizontal direction; and (c) both rays �1 and
�2 have positive slope (Fig. 13).

4.1. Type (a)

We describe an O (n log n)-time algorithm for computing a stabbing wedge for S when αW contains the vertical direction.
It uses an O (n log n) time and O (n) space algorithm for computing the separating wedges of n red and blue points in the
plane [14].

1. Classify into red/blue the endpoints of the segments in S as follows. Let R and B be the sets of endpoints of segments
of S with bigger and smaller y-coordinate, respectively (Fig. 13(a)).

2. In O (n log n) time, compute a separating wedge of R and B .

Observe that there exists a stabbing wedge for S if and only if R and B are wedge separable. The assumption of equal
length is not used in this algorithm. All the possible stabbing wedges are combinatorially equal and by Lemma 11 the locus
of their apices can be computed in O (n log n) time.

Theorem 7. A stabbing wedge for S such that αW contains the vertical direction can be computed in O (n log n) time and O (n) space.
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Remark. If the slopes m and m′ of the rays of a stabbing wedge are known, we can apply the following O (n) time algorithm
to compute a stabbing wedge for S: Take the median M of the x-coordinates of the endpoints of the segments, let S1 (S2)
be the subset of segments which endpoints have x-coordinate on the left (right) side of M , in O (n/2) time check whether
the red endpoints of S1 (S2) are line separable from the blue endpoints of S1 (S2). In the affirmative answer, compute the
first and last endpoints (witnesses) of S1 (S2) according to a sweep line with slope m (m′). Proceed computing the median
on the left or right subset in case of one negative answer, and update the “best” witnesses considering the stored old
witnesses compared with the computed for the next subsets. The time needed is O (n/2) + O (n/4) + O (n/8) + · · · = O (n).
Notice that also in O (n) time we can check whether there exists a stabbing wedge for S with apex on a given point.

4.2. Type (b)

We now describe an O (n log n)-time algorithm for computing a stabbing wedge for S when αW contains the horizontal
direction. For each segment si ∈ S , consider its midpoint ρi . In O (n log n) time, sort these midpoints according to a sweep
with a horizontal line (decreasing y-coordinate), let �h denote this order. Because of the equal length and the separability
conditions, the following lemma is straightforward.

Lemma 13. If there exists a stabbing wedge W = {�1, �2} for S such that αW contains the horizontal direction, then the midpoints of
the segments stabbed by �1 appear first in the �h order than the midpoints of the segments stabbed by �2 .

The following result is a straightforward consequence of Lemma 10.

Lemma 14. There exists a stabbing wedge W = {�1, �2} for S if and only if both S+
1 and S−

2 are line separable from S−
1 ∪ S+

2 .

Lemmas 13 and 14 are the key tools to design the following algorithm for computing a set W of stabbing wedges for S
such that αW contains the horizontal direction.

Algorithm 3.
Input: Set S of n vertical segments in the plane with equal length.
Output: W .

1. In O (n log n) time, sort the segments of S according to the �h order obtaining the segment sequence S∗ = (s∗
1, . . . , s∗

n).
For i = 1, . . . ,n − 1 we define S1,i = (s∗

1, . . . , s∗
i ) and S2,i = (s∗

i+1, . . . , s∗
n).

In O (n) time, assign e+ (e−) to the endpoint of s ∈ S∗ with bigger (smaller) y-coordinate. Denote by S+
1,i (S−

1,i) the sets

of endpoints of S1,i classified into e+ (e−). The sets S+
2,i and S−

2,i are denoted analogously.

2. In O (n log n) time, compute CH(S+
1,1), CH(S−

1,1 ∪ S+
2,1), and CH(S−

2,1).
3. For i := 1 to n − 1 do

(a) In O (log n) time, check whether CH(S+
1,i) and CH(S−

1,i ∪ S+
2,i) are line separable, and whether CH(S−

1,i ∪ S+
2,i) is

separable from CH(S−
2,i).

If the answer is affirmative in both cases, there exists a stabbing wedge for S . In O (log n) time, compute a line �′
1,i

(�′
2,i) separating CH(S+

1,i) and CH(S−
1,i ∪ S+

2,i) (CH(S−
1,i ∪ S+

2,i) and CH(S−
2,i)). Let W i = {�1,i, �2,i}. Add W i to W .

(b) In constant time, update the sets S1,i , and S2,i , obtaining the sets S1,i+1 and S2,i+1 (only one segment changes from
one set to other set). In O (log n) time, update CH(S+

1,i+1), CH(S−
1,i+1 ∪ S+

2,i+1), and CH(S−
2,i+1).

Theorem 8. A stabbing wedge for S such that αW contains the horizontal direction can be computed in O (n log n) time and O (n)

space.

4.3. Type (c)

First, we show how to obtain a consistent classification of the midpoints of the segments according to the possible
stabbing wedge of type (c). Denote by d the length of the segments of S . Assume that there exists a stabbing wedge
W = {�1, �2} of type (c) for S . Suppose also that its aperture angle αW is known. Consider the line �′

i containing the ray �i
for i = 1,2. Denote by �′′

1 (�′′
2) the line below (above) and parallel to �′

1 (�′
2) such that the vertical distance between the two

lines is exactly d/2 (see Fig. 14).
Obviously, the angle defined by �′′

1 and �′′
2 is αW . Let � be the bisector line of αW . In fact, any line whose slope is within

the slope interval defined by αW can play the role of �. Consider the upper rays and the lower rays of the double-wedge
formed by the lines �′′

1 and �′′
2. By construction of �′′

i , all the midpoints of the segments of S stabbed by �1 (�2) are above
(below) or over these upper rays (lower rays). Let �� be the order of the midpoints of the segments of S according to a
sweeping by �. The following lemma is straightforward.
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Fig. 14. Both rays �1 and �2 of a stabbing wedge have positive slope.

Lemma 15. If there exists a stabbing wedge W = {�1, �2} of type (c) for S with aperture angle αW , then all the midpoints of the
segments stabbed by �1 appear first in the �� order than all the midpoints of the segments stabbed by �2 .

Using Lemmas 14 and 15, we design the following algorithm for computing a set W of stabbing wedges W of type (c)
with aperture angle αW � α.

Algorithm 4.
Input: Set S of n vertical segments in the plane with equal length and a value α > 0.
Output: W .

1. Preprocess. Let � π
2α � := t be a constant. Let {α1, . . . ,αt} be the set of t different aperture angles obtained by splitting

the first quadrant orientations into t consecutive aperture angles. Let � j be the bisector of α j .
2. For j := 1 to t do: Run Algorithm 3 on S using the �� j order instead of �h .

Since Step 1 takes constant time and Step 2 repeats Algorithm 3 a constant number t of times, we can state the following
result.

Theorem 9. A stabbing wedge for S of type (c) with aperture angle αW � α > 0 can be computed in O ( n
α log n) time and O (n) space.

Remarks. There is no relationship between αW and the length of the segments. Indeed, αW might be very small and the
length be very large. Fig. 7(a) shows that there can be O (n2) combinatorially different stabbing wedges of types (b) and (c)
for a set S , nevertheless our algorithms find one of them. A still open question is whether the algorithms for the stabbing wedges
of types (a), (b) and (c) are optimal.

5. Other stabbers

In this section we consider the problem of computing other simple stabbers for S such as a double-wedge and a zigzag,
both with or without the separability condition.

5.1. Stabbing double-wedge

A stabbing double-wedge DW = {�1, �2} for a set of segments S is formed by two intersecting lines �1 and �2, where �1
stabs the subset S1 � S with S1 �= ∅, and �2 stabs S2 = S \ S1.

5.1.1. Stabbing double-wedges without the separability condition
The main property of a stabbing double-wedge DW = {�1, �2} without the separability condition is that every segment

can be stabbed by both lines �1 and �2. Consider the sets S+
2 and S−

2 of endpoints of S2 = S \ S1 classified according to a
sweeping line of slope m as in Lemma 8. We use the following lemma to design the algorithm for computing a set D W of
stabbing double-wedges for S . Its proof is straightforward.

Lemma 16. There exists a stabbing double-wedge DW = {�1, �2} for S without the separability condition if and only if CH(S+
2 ) and

CH(S−
2 ) are line separable.

Algorithm 5. Stabbing-double-wedges-without-separability-condition

Input: Set S of n segments in the plane.
Output: D W .
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1. Preprocess
(a) In O (n log kS ) time sort the kS different slopes of the segments by increasing angular order. Denote them by

m1, . . . ,mkS .
(a) In O (n2) time compute A(S) which divides the plane into O (n2) cells. Compute the dual graph G of A(S), do a

traversal of G , and (following the tree-traversal of the dual graph as above) obtain the sequence C = (C1, . . . , CrS )

of rS = O (n2) adjacent cells.
(c) Select a point p(1,1) ∈ C1. Let D(p(1,1)) := �1,(1,1) . Let S1,(1,1) be the subset of segments stabbed by �1,(1,1) and

S2,(1,1) = S \ S1,(1,1) . Classify the endpoints of the segments of S1,(1,1) with respect to �1,(1,1) obtaining the sets
S+

1,(1,1) and S−
1,(1,1) . Compute CH(S+

1,(1,1)), and CH(S−
1,(1,1)). With slope m1, determine the classification of the end-

points of the segments of S2,(1,1) , i.e., at most two pairs (S+
2,(1,1), S−

2,(1,1)). Compute CH(S+
2,(1,1)), and CH(S−

2,(1,1)).
2. For i = 1 to kS do

For j = 1, . . . , rS do
(a) If i = j = 1, use the data computed in Step 1c and go to Step 2d.
(b) Select a point p(i, j) ∈ C j . Let D(p(i, j)) := �1,(i, j) . The difference between the segment sets stabbed by �1,(i, j) and

�1,(i, j−1) is at most a segment s since the cells C j−1 and C j are adjacent. This segment s can be stabbed by �1,(i, j−1)

and not by �1,(i, j) or vice versa.
(c) From s and the sets S+

1,(i, j−1)
, S−

1,(i, j−1)
, S+

2,(i, j−1)
, and S−

2,(i, j−1)
, in constant time update: (1) S1,(i, j) is the set of

segments stabbed by �1,(i, j) and S2,(i, j) = S \ S1,(i, j); (2) the sets of endpoints S+
1,(i, j) , S−

1,(i, j) classified with respect

to �1,(i, j); and (3) the pair of sets of endpoints (S+
2,(i, j), S−

2,(i, j)) classified with respect the slope mi (at most two
pairs). For each pair proceed as follows.

(d) In O (log n) time update CH(S+
2,(i, j)), and CH(S−

2,(i, j)) and check if they are line separable by a line �2,(i, j) . If so, by
Lemma 16, there exists a stabbing double-wedge DW(i, j) = {�1,(i, j), �2,(i, j)} for S . Add DW(i, j) to W .

Notice that Step 2 of the above-described algorithm uses O (n2kS log n) time. The time complexity of Step 2 dominates
the time complexity of Step 1.

Theorem 10. A stabbing double-wedge for S without the separability condition can be computed in O (n2kS log n) time and O (n2)

space.

Corollary 3. A stabbing double-wedge for a set of n parallel segments without the separability condition can be computed in O (n2 log n)

time and O (n2) space.

5.1.2. Stabbing double-wedges with the separability condition
We now assume the separability condition, i.e., a segment cannot be stabbed by both lines of a stabbing double-wedge

DW = {�1, �2}. The following lemma is straightforward.

Lemma 17. If DW = {�1, �2} is a stabbing double-wedge for S with the separability condition, then �1 (�2) gives rise to a disjoint
bipartition of the subset S2 (S1).

A simple O (n4)-time and O (n2)-space algorithm for computing a stabbing double-wedge is as follows. Consider a line
�1 corresponding to a cell in A(S) which stabs the subset S1 � S with S1 �= ∅. In O (n2) time, check whether there exists a
cell in A(S) corresponding to a line �2 which stabs exactly the segment subset S2 = S \ S1.

Next we describe an algorithm depending on kS . It is analogous to Algorithm 5 but replacing Step 2d by the following
step:

Step 2(d): In O (n log n) time do: (1) update CH(S+
2,(i, j)) and CH(S−

2,(i, j)), check whether CH(S+
2,(i, j)) and CH(S−

2,(i, j)) are

separable by a line, say �2,(i, j); (2) if so classify the endpoints of S2,(i, j) as follows: color red the endpoints in �+
2,(i, j) ∩�+

1,(i, j) ,

say R1, and the endpoints in �−
2,(i, j) ∩ �−

1,(i, j) , say R2; color blue the endpoints of S2,(i, j) in �−
2,(i, j) ∩ �+

1,(i, j) , say B1, and the

endpoints in �+
2,(i, j) ∩ �−

1,(i, j) , say B2; (3) sort the intersection points of the segments in S1,(i, j) with the line �1,(i, j); for
each bipartition of S1,(i, j) according to this order, from bottom to top, classify the endpoints of the segments in S1,(i, j) as
follows: color the endpoints of the bottom segments as blue in B1 (red in R2) if they are in �+

1,(i, j) (�−
1,(i, j)), and color the

endpoints of the top segments as red in R1 (blue in B2) if they are in �+
1,(i, j) (�−

1,(i, j)); (4) maintaining the convex hulls
CH(R1 ∪ B2) and CH(B1 ∪ R2), check whether they are line separable by a line �′

2,(i, j) . If so, by Lemma 17, there exists a
stabbing double-wedge DW(i, j) = {�1,(i, j), �

′
2,(i, j)} for S . Add DW(i, j) to W .

Theorem 11. A stabbing double-wedge for S with the separability condition can be computed in min{O (n4), O (n3kS log n)} time and
O (n2) space.
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Corollary 4. A stabbing double-wedge for a set of n parallel segments with the separability condition can be computed in O (n3 log n)

time and O (n2) space.

5.2. Stabbing zigzag

A zigzag Z Z = {�1, s, �2} is a non-convex simple 3-polygonal chain formed by two non-intersecting rays �1, �2 and a
segment s joining the origin of both rays.

Since a zigzag Z Z = {�1, s, �2} splits the plane into two disjoint regions, it seems natural to consider a stabbing zigzag
for S with the separability condition such that a segment is stabbed by only one of the three elements of the zigzag and
no by the three of them, so that its endpoints can be classified into red or blue. Next we give a short description of the
algorithm for computing a stabbing zigzag for S .

5.2.1. Stabbing zigzag with the separability condition
Consider the O (n2) possible lines �0 which contain s and stabs a subset S0 � S with S0 �= ∅. Classify the segments of

S \ S0 depending on which half-plane �−
0 or �+

0 they lie on, say S1 and S2, respectively. We now apply the classification
of the endpoints in S1 and S2 by two (equal or different) slopes in an additive way since the processes for S1 and S2 are
independent. The separating lines �′

1 for S1 and �′
2 for S2 are obtained. We then check the separability condition for the

two corresponding stabbing wedges: (1) left of �0 formed by �′
1 and �0, and (2) right of �0 formed by �′

2 and �0, again in
an independent way by using the updated convex hulls of the colored endpoints as we did for the stabbing wedge. In the
two affirmative answers case we can compute the stabbing zigzag formed by the rays �1 and �2 contained in �′

1 and �′
1,

respectively, and the segment s they define which is contained in the line �0. Notice that the algorithm spends O (n log n)

time in a preprocess step for computing the initial convex hulls and then, in the following steps the convex hulls can be
updated in O (log n) time per step. Thus, the complexities of the described algorithm are O (n2kS log n) time and O (n2)

space.

Theorem 12. A stabbing zigzag for S with the separability condition can be computed in O (n2kS log n) time and O (n2) space.

5.2.2. Stabbing zigzag without the separability condition
The algorithm for finding a stabbing zigzag without the separability condition is basically the same algorithm above for

the stabbing zigzag with the separability condition but with the unique change of checking whether from the separating
lines for S1 and for S2 we can construct a stabbing zigzag for S without the separability condition. To do this task we
proceed as follows: As line �′

1 (�′
2) for S1 (S2) we take the two possible interior supporting lines of CH(S+

1 ) and CH(S−
1 )

(CH(S+
2 ) and CH(S−

2 )). Compute the intersection point A (B) of the line �′
1 (�′

2) with the line �0 and the corresponding ray
�1 (�2) contained in �′

1 (�′
2). In O (n) time, check whether the zigzag formed by the ray �1, the segment AB , and the ray

�2 stab all the segments in S . In the affirmative case, we obtain a stabbing zigzag Z Z = {�1, AB, �2} for S . Thus, the time
complexity is O (n2kSn).

Theorem 13. A stabbing zigzag for S without the separability condition can be computed in O (n3kS ) time and O (n2) space.

The following tables summarize the main results obtained in this paper. By sc (nsc) we denote with (without) the separa-
bility condition

Stabber Time Space

Wedge (sc) O (hS kS logn + n log n) O (hS + n)

Wedge (nsc) O (cS kSn + n log n) O (cS + n)

Double-wedge (sc) min{O (n4), O (n3kS log n)} O (n2)

Double-wedge (nsc) O (n2kS logn) O (n2)

Zigzag (sc) O (n2kS logn) O (n2)

Zigzag (nsc) O (n3kS ) O (n2)

Parallel segments with equal length Time Space

Wedge type (a) and (b) O (n log n) O (n)

Wedge type (c) O ((n/α) log n) O (n)
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