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1 Introduction

A full cubical set in R
n is a finite union of n-dimensional boxes of fixed size

(called cubes for short) aligned with a uniform rectangular grid in R
n. Due to the

product structure and alignment with coordinate axes, using full cubical sets for
approximating bounded subsets of R

n is very natural: a cube containing a point
x = (x1, . . . , xn) ∈ R

n can be instantly calculated by simply truncating the Cartesian
coordinates of x down to the nearest grid thresholds. For simplicity of notation, these
thresholds can be set to the integers, so that the cubes are of unitary size. Such cubical
sets naturally correspond to 2D and 3D binary images.

By analogy to simplicial complexes (see e.g. [44]), sets of cubes with their ver-
tices, edges, faces, etc., yield a natural chain complex structure, which can be used to
compute their homology groups. We refer to [34] for a comprehensive study of this
subject, and to the [9] and the [10] for a representative implementation of homology
computation algorithms focused specifically on cubical sets.

Homology computation of cubical sets has already found some interesting appli-
cations. To mention a few of them, homology was used to extract topological
information from medical images (e.g. [45]), to classify the complexity of patterns
coming from numerical simulations of PDEs (e.g. [20]) or from physical experiments
(e.g. [37]), and also in an automatized method for the computation of the Conley
index from index pairs constructed as cubical sets in R

n [41, 48], used e.g. in a
method for editing vector fields and extraction of periodic orbits [8], and also very
helpful in an automatic method for classification of dynamics in multi-parameter sys-
tems [4, 7], which found applications e.g. in population biology [38] and in physics
of plasmas [49]. Homology has also been proposed as a reliable criterion for thinning
binary images of arbitrary dimension [46].

With the increasing use of data structures based upon cubical sets in various appli-
cations, which often require the determination of certain topological features of the
sets under consideration, the importance of the development of efficient algorithms
for the computation of comprehensive algebraic-topological invariants of such sets is
undeniable. Our work is aimed at contributing to this field of research by providing
effective algorithms for the computation of comprehensive homological informa-
tion on cubical sets. A prototype software implementation of these algorithms which
allows for experimenting with sample datasets is published at the project’s website
[47].

In a typical approach to homology computation (see e.g. [1, 44, 60]), which we
call the differential approach here, the matrices of the boundary homomorphisms
∂q (the differential of the chain complex) are reduced to the Smith Normal Form
(SNF), from which the homology groups are determined. In the integral approach,
on the other hand, in addition to the computation of the homology groups, one also
constructs degree +1 homomorphisms φq : Cq → Cq+1, which record the infor-
mation on a chain contraction of the entire chain complex C to a reduced chain
complex that represents its homology (see e.g. [17, 55, 57]). This contraction pro-
vides much more comprehensive homological information which may be important
for various applications. In particular, it allows one to calculate a representative cycle
for each homology class, to find the homology class of every cycle, and to compute
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the coboundary of every homologically trivial cycle (that is, find the chain c′ such
that c = ∂c′ if [c] = [0]). Obviously, the computational cost of the integral approach
is higher, especially because much more information needs to be stored. This addi-
tional information which is normally lost in the differential approach, however, may
be essential in specific applications, e.g. for the computation of various homological
or cohomological operations, as we show in Section 5.

Intuitively speaking, the profound difference between the differential approach
and the integral one is that the former aims at reducing the topological information to
a minimal linear system that describes the degree of connectivity of the subdivided
objects, while the latter provides a dense algebraic skeleton for representing these
objects. Unfortunately, this latter approach is very under-represented in the literature;
only some works of Sergeraert relating to effective homology (see e.g. [54]) and those
regarding AT models and AM models (referred to below) emphasize this aspect of
homological constructions.

The integral approach was applied to the computation of the cohomology ring and
some other cohomology operations in the context of simplicial complexes in [21–
24, 26, 50]. The philosophy behind this approach, as described in [23], is to deduce
cohomology operation formulas at (co)chain level in terms of face operators on sim-
plices, and to use the chain contractions to correctly transfer these operations to the
cohomology level. In order to use this methodology in the cubical setting, the most
straightforward idea would be to construct a simplicial representation of a cubical set
and to apply the existing theory and algorithms to this simplicial complex. However,
this induces a considerable overhead, especially in higher dimensions, not to men-
tion the additional effort necessary to express the obtained simplicial chains in terms
of cubical chains. A much more effective solution is thus to transfer the computa-
tional cohomology approach from simplicial to cubical setting. Therefore, the main
aim of our work is to develop efficient (co)homology algorithms directly on the cubi-
cal structure, skipping the intermediate steps. As the main tool for this purpose, we
are going to use an algebraic-topological model (AT model, see Definition 1) and an
algebraic minimal model (AM model, see Definition 2). These notions have already
proved useful in several publications (e.g. [6, 21, 24, 25, 42, 53]).

The worst-case complexity of homology computation, independent of the
approach, is in general cubical if the ring of coefficients is a field, or a little higher
yet polynomial otherwise, because of the need to compute the SNF of the boundary
matrices (either explicitly or implicitly). Although this is too expensive for processing
large datasets that appear in practical applications, various reduction techniques help
decrease the size of the data considerably without loss of homological information
(see e.g. [43]), and thus achieve much better performance in practice. These reduc-
tion techniques may come from geometric representation of the data, or be derived
from other heuristics. As an interesting example, a physics inspired algorithm for
the computation of the first cohomology group on three-dimensional complexes was
introduced in [14] whose average running time was linear in their experiments, even
though theoretically estimated worst-case complexity was cubical.

Although several software packages that aim at (co)homology computation
already exist, none of them, as far as we are aware, can be used to achieve the
functionality of our approach. To name a few most prominent examples, Plex and
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Dionysus are powerful projects aimed at simplicial persistent (co)homology compu-
tation, CHomP and CAPD/RedHom focus on the development of efficient homology
algorithms for cubical sets using the differential approach. There are also some mod-
ules in large mathematical software packages, such as GAP or SAGE, but they all
have limited capabilities and are using the differential approach. In particular, our
contribution fills an important gap in the collection of publicly available homological
software.

Since the construction of a chain contraction has a considerable additional
cost in comparison to using the differential approach (in which all this informa-
tion is lost), it is obviously pointless to use the integral approach if one aims
at the computation of (co)homology groups (possibly with their generators) of a
cellular complex alone. The integral approach, however, provides a considerably
more efficient solution in cases where the chain contraction is actually useful.
For instance, if one needs to compare homology classes of various cycles that
are not known a priori then using the differential approach might incur consider-
able cost of processing each cycle, while the integral approach provides an instant
answer. In particular, comparison of effectiveness of software that uses the differ-
ential approach with software that is based upon the integral approach might be
very tricky and will strongly depend on a particular application. Therefore, in order
to avoid the introduction of misleading information, in this paper we purposely
refrain from any speed comparison between our software and the other homology
packages.

In Section 2, we introduce the terminology and we carefully define all the notions
to be used throughout the remainder of the paper; in particular, we define an AT
model and an AM model for a finite cell complex. In Section 3, we provide explicit
algorithms for the computation of AT models and AM models. In Section 4, we show
how to retrieve selected homological information from the AT models and AM mod-
els, such as (co)homology generators. In Section 5, we use this approach to compute
the cup product based on formulas at chain level for cubical complexes. In Section 6,
we discuss certain additional constructions and variants, like relative (co)homology
or reduced (co)homology, which our machinery is capable of handling with very lit-
tle additional effort. Finally, in Section 7, we briefly describe the prototype software
and selected examples that have been made available at the project’s website [47],
which concludes the paper.

2 Preliminaries

Let R be a Euclidean domain (see e.g. [30], §2.15), that is, a principal ideal domain
equipped with the function δR : R → Z that assigns a non-negative integer to each
element of the ring, such that for every a, b ∈ R, b �= 0, there exist q, r ∈ R for
which a = qb + r and δR(r) < δR(b). Intuitively speaking, we assume that R is a
commutative ring in which the dividing with remainder is a valid operation. Note that
δR(k) = 1 if and only if k ∈ R has its inverse in R, δR(0) = 0, and δR(a) > 1 for all
the non-invertible elements a ∈ R. In the case of the ring or integers Z, one can take
δZ(k) := |k|. If R is a field, such as the integers modulo a prime number p, denoted
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Zp (the field frequently used in homology computation, especially for p = 2), or the
rational numbers, Q, then δR(k) = 1 for all k �= 0. An interesting though rarely used
in this situation example of a suitable ring might be the ring of polynomials in one
variable, with δR corresponding to the degree of the polynomial increased by 1 and
δR(0) := 0.

A chain complex (see e.g. [44]) is a graded free abelian group {Cq}q∈Z with a
degree −1 homomorphism ∂q : Cq → Cq−1 such that ∂∂ = 0, called the boundary
operator or the differential of the chain complex. Such a complex arises naturally
from a cell complex structure, where each Cq is a free abelian group whose generators
correspond to q-dimensional cells, and for each q-dimensional cell c, ∂q(c) is a linear
combination of (q − 1)-dimensional cells in the boundary of c with the coefficients
reflecting incidence numbers and orientation. Thanks to the requirement that ∂∂ = 0,
the group of boundaries B := im ∂ is a subgroup of the group of cycles Z := ker ∂ ,
and thus the homology group H := Z/B is well defined; since it is an invariant of the
topological space (polyhedron) which is the union of all the cells in the complex, it
is also called the homology of the topological space. The homology class of a chain
a ∈ Cq is denoted by [a].

Let K be an n-dimensional cell complex, also called a CW complex; see e.g.
[27, Ch. 0] for the definition. Denote the set of its q-dimensional cells by K(q).
Throughout the entire paper, we shall assume that the number of cells in the complex
is finite. The corresponding chain complex (Cq(K), ∂q)q∈Z over R consists of the
free R-modules of q-chains Cq , whose elements are formal combinations of the cells
in K(q) with coefficients in R, and a family of homomorphisms ∂q : Cq → Cq−1
such that ∂q−1 ◦ ∂q = 0 and ∂q(σ ) is a combination of (q − 1)-dimensional cells
that appear in the boundary of σ with coefficients corresponding to the orientation
and multiplicity of these cells (we shall provide explicit formulas in the case of a
simplicial complex and a cubical complex below). Note that Cq(K) = 0 whenever
q < 0 or q > n. If R = Z then each Cq is a free abelian group. If R is a field then
each Cq is a vector space over R. Since we assume that the number of cells in K is
finite, all the R-modules under consideration are finitely generated. On each Cq , we
define a bilinear form Cq × Cq � (c, c′) �→ 〈c, c′〉 ∈ R on each pair of generators
σ, τ ∈ K(q) of Cq as follows: 〈σ, τ 〉 := 1 if σ = τ and 〈σ, τ 〉 := 0 otherwise. This
bilinear form is a frequently used formal construct for extracting the coefficient that
appears in a chain at a given cell (see e.g. [34]).

As for the actual formula for the boundary operator ∂ , the case of a simplicial com-
plex is well established (see e.g. [27]). If a simplex of dimension q > 0 is identified
by the (q +1)-tuple of its (pairwise different) vertices, that is, σ = (v0, . . . , vq), then
∂q(σ ) = ∑

(−1)i (v0, . . . , v̂i , . . . , vq), where the hat over vi means that vi is omitted
in the q-tuple, and ∂q = 0 if q ≤ 0 or q > n.

The case of a cubical complex is less typical, so we recall some definitions in
order to avoid any ambiguity. The reader is referred to [34] for a comprehensive
introduction; we also follow some notation from [56]. An elementary interval is an
interval of the form [k, k + 1] (the non-degenerate case) or a set {k}, also denoted
as the interval [k, k] or even [k] (the degenerate case), where k ∈ Z. An elementary
cube in R

n is the Cartesian product of n elementary intervals, and the number of
non-degenerate intervals in this product is its dimension.
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Let σ = I1 ×· · ·×In be an elementary cube in R
n, where Ij =

[
a0
j , a1

j

] (
possibly

a0
j = a1

j

)
. Let k1, . . . , kq denote those indices that correspond to non-degenerate

intervals Ikj = [a0
kj

, a1
kj

] in σ (q is the dimension of σ ). For a set J ⊂ {1, . . . , q},
let J ′ denote the complement of J in {1, . . . , q}. Define k(J ) := {ki : i ∈ J }, and

for i ∈ {0, 1} define the elementary cube λi
J σ := I ′

1 × · · · × I ′
n, where I ′

j =
{
ai
j

}
if

j ∈ k(J ) or I ′
j = Ij otherwise. If card J = 1, we shall write λi

j instead of λi
{j}. Then

define the boundary of σ as follows (see [56], p. 440 in the context of singular cubes):

∂q(σ ) :=
q∑

j=1

(−1)j
(
λ0

j σ − λ1
j σ

)
.

The homology module of a finite cell complex is a finitely generated module over
R, and the classification theorem of finitely generated modules over a p.i.d. (see e.g.
[30], §3.9) implies that its description is rather simple: It is a direct sum of its tor-
sion submodule and its free submodule, where the former is a direct sum of primary
cyclic modules, and both are finitely generated. Therefore, the homology module(
Hq(K)

)
q∈Z is characterized by the ranks of the free submodules for each Hq(K),

each called the q-th Betti number and denoted βq(K), respectively, and the torsion
coefficients, which describe the torsion submodules of each Hq(K).

Intuitively speaking, homology groups provide information about different kinds
of holes in the space. Namely, β0 corresponds to the number of connected compo-
nents (see also the note on reduced homology in Section 6), β1 is the number of
linearly independent holes (like the one inside a circle), β2 counts the number of voids
(like the one surrounded by a sphere), and in general βq corresponds to the number
of defects of the space that look like the hollow space inside the q-dimensional uni-
tary sphere in R

q+1. See the figures and discussion in Section 7 for some examples
of topological spaces and their homology groups.

Dual concepts lead to the definition of cohomology of a cell complex K , as
follows. The cochain complex (Cq(K), δq)q∈Z of K over R consists of homomor-
phisms from Cq to R, Cq(K) := Hom(Cq(K); R). The coboundary operator, as
the dual to ∂ , is given by the formula

(
δq(c)

)
(a) := c

(
∂q+1(a)

)
for c ∈ Cq(K)

and a ∈ Cq+1(K). A cochain a ∈ Cq(K) is called a q-cocycle if δq(a) = 0.
If a = δq−1(a′) for some a′ ∈ Cq−1(K) then a is called a q-coboundary. The
q-th cohomology module Hq(K) of K is the quotient module of q-cocycles and q-
coboundaries. The cohomology class of a cochain a ∈ Cq(K) is denoted by [a].
Although the cohomology groups can be determined from the homology groups
using the universal coefficient theorem for cohomology (see e.g. [44], § 53, p. 320),
we prefer a direct approach here in order to efficiently use the additional structures
necessary in the integral approach, as it will be clear in the sequel. Moreover, note that
while chains can be perceived as column vectors containing coefficients of the com-
binations of cells in K , cochains correspond to row vectors containing coefficients
of the dual cochains corresponding to single cells in K (cf. [13]).
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If C∗ = {
Cq, ∂q

}
and C′∗ =

{
C′

q , ∂ ′
q

}
are two chain complexes then a chain

map f∗ : C∗ → C′∗ is a family of homomorphisms
{
fq : Cq → C′

q

}

q∈Z such that

∂ ′
qfq = fq−1∂q . A chain contraction from C∗ to C′∗ is a triple (f, g, φ) of chain

maps f : C∗ → C′∗ (projection), g : C′∗ → C∗ (inclusion) and φ : C∗ → C∗+1 (chain
homotopy or integral operator) that satisfy the following conditions:

(a) IdC −gf = ∂φ + φ∂;
(b) fg = IdC ′ ;
(c) f φ = 0;
(d) φg = 0;
(e) φφ = 0.

This is a classical notion in homological algebra and algebraic topology; see e.g.
[16, §12] and comments on the terminology and applications in [22, p. 86]. Note that
because of the condition (a), if there exists a chain contraction from C∗ to C′∗ then
their homology and cohomology modules are isomorphic.

A homomorphism φ : C∗ → C∗+1 is called a homology gradient vector field if
the following conditions hold:

(a) φφ = 0;
(b) ∂φ∂ = ∂;
(c) φ∂φ = φ.

A chain contraction in which φ is a homology gradient vector field is called homology
integral chain contraction.

Definition 1 (AT model) An algebraic-topological model (introduced in [25]), or
an AT model for short, of a cell complex K , is a homology integral chain contraction
from C∗(K) to some free chain complex M∗ with null differential.

Fig. 1 A sample cubical set K in R
2 consisting of nine squares (indicated in gray), two additional 1-

dimensional segments ([3, 4] × [0] and [4] × [0, 1]) and an isolated point ([4] × [3]). Its homology groups
over Z2 are: H0 ∼= Z2 ⊕ Z2, H1 ∼= Z2 ⊕ Z2, and Hq is trivial for q /∈ {0, 1}. Indeed, the set consists of
two connected components and has two holes
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Fig. 2 An AT model (see Definition 1) of the cubical set K shown in Fig. 1 computed with Algorithm 1
(see Section 3). Representants of the four homology generators are: a1 = [4] × [3], a2 = [0] × [1],
b1 = [3, 4] × [0] and b2 = [0] × [0, 1]. These cells correspond to a basis of M∗. Their images by the
inclusion g are homology generators of C(K): g(a1) = a1, g(a2) = a2, g(b1) is the loop around the entire
gray area, indicated in the figure with a thick line (red online), and g(b2) is the boundary of the missing
square in the lower right corner, indicated in the figure with another thick line (green online)

The complex M∗ in an AT model of K is isomorphic to the homology module of
K . An AT model exists for a cell complex if and only if its homology is torsion-free
(e.g. if R is a field), and any two AT models of the same complex are isomorphic.
Figures 1, 2 and 3 show an example of a cubical complex, its AT model, and a sample
application of the AT model to the computation of the coboundary of a homologi-
cally trivial cycle. This example is included in the software package available from
the project’s website [47], and the results shown here were actually obtained by the
software.

In fact, given an integral operator φ on C∗(K), that is, a homomorphism
φ : C∗(K) → C∗+1(K) satisfying φφ = 0, it is possible to algebraically deter-
mine the other components of the chain contraction (see e.g. [26, 52, 53]); however,

Fig. 3 Sample computation of a coboundary of a homologically trivial cycle, using the integral operator φ

computed as part of the AT model of K (shown in Figs. 1 and 2). Consider the cycle c = c1 +c2 +c3 +c4,
indicated with thick lines in the figure, with c1 = [1, 2]×[0] (green online), c2 = [2]×[0, 1] (pink online),
c3 = [1, 2] × [1] (gray), and c4 = [1] × [0, 1] (blue online). The integral operator applied to these cells is
as follows: φ(c1) = 0, not shown in the figure, φ(c2) = [2, 3] × [0, 1] + [2, 3] × [1, 2] + [3, 4] × [1, 2],
the three squares shaded in dark gray (in print) or in dark pink (online), φ(c3) = 0, not shown, and
φ(c4) = [1, 2] × [0, 1] + [2, 3] × [0, 1] + [2, 3] × [1, 2] + [3, 4] × [1, 2], the four squares indicated with
dashes. As a consequence, φ(c) = c′, where c′ = [1, 2] × [0, 1]. One can check that indeed ∂c′ = c (note
the field Z2 of coefficients)
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direct construction of M∗ and the chain contraction of C∗(K) to M∗ (provided in
Algorithm 1) makes it easier to obtain explicit representations of homology and
cohomology generators (as we show in Section 4).

Definition 2 (AM model) An algebraic minimal model (introduced in [22]), or an
AM model for short, of a cell complex K is a chain contraction from C∗(K) to a chain
complex (M, d) such that each Mq is a free R-module and all the non-zero elements
in the SNF of each dq are non-invertible in R.

An AM model exists for every cell complex, and any two AM models for the same
complex are isomorphic. Moreover, an AM model of a complex K is isomorphic to
an AT model of K if the latter exists.

AT models and AM models are the main tools in our approach to computing
comprehensive homological information for cell complexes.

3 Algorithms for the computation of chain contractions

Given a cell complex, the following algorithm constructs another complex that rep-
resents its homology and computes a homology integral chain contraction of the
original cell complex to the new one. It is based on the incremental homology
computation algorithm [11, 12], and in its original form was introduced in [25].
Below, we provide this algorithm, rewritten in a detailed way so that the chain
maps are defined with respect to the original basis in K and an explicitly con-
structed set of generators of M∗, which is crucial for effective implementation and for
applications.

The input of the algorithm consists of the list of all the cells of a cell com-
plex K ordered as a filter (c0, . . . , cm−1), that is, for each i = 0, . . . , m − 1,
the set {c0, . . . , ci} forms a valid cell complex. In other words, all the cells that
appear in the boundary of each cell must precede the cell in the list. A simple
filter may be created by sorting the cells in K by their dimension in the ascend-
ing order. We assume that a formula for the boundary of each cell is given as a
combination of lower-dimensional cells. In order to be consistent with the software
implementation, we choose the convention of the C++ programming language to
index sequences starting from 0. In order to emphasize the meaning of the compo-
nents of the chain contraction (f, g, φ) being constructed, we denote the projection
f by π and the inclusion g by ι in the algorithm. The maps π and φ are defined
on generators of their domains, and we transparently use them as homomorphisms.
The chain complex M∗ with the differential d = 0 is represented by means of the
set of generators M corresponding to selected cells from K , with their dimension
q corresponding to the level q of Mq . We use the subscript index i to indicate the
objects constructed at each run of the main loop, but in the software implementation
only one instance of these objects exists, and is modified during the computations,
so that upon completion of each loop, the previous instance is replaced with the
new one.
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Algorithm 1 (AT model computation)

INPUT:
(c0, . . . , cm−1) — a filter of a cell complex K;
∂ — the boundary operator on C∗(K).

PSEUDOCODE:
M−1 := ∅; φ−1 := 0; π−1 := ∅; ι−1 := ∅;
for i := 0 to m − 1 do

φi(ci) := 0;
c̄i := ci − φi−1(∂ci);
if ∂c̄i = 0 then

Mi := Mi−1 ∪ {ci};
ιi (ci) := c̄i;
πi(ci) := ci;
for j := 0 to i − 1 do

φi(cj ) := φi−1(cj );
πi(cj ) := πi−1(cj );

for all h ∈ Mi−1 do
ιi (h) := ιi−1(h);

else
take any ui ∈ Mi−1 such that λi := 〈ui, πi−1(∂c̄i)〉 �= 0;
πi(ci) := 0;
for j := 0 to i − 1 do

ηi
j := 〈ui, πi−1(cj )〉;
if ηi

j �= 0 then

φi(cj ) := φi−1(cj ) + ηi
j λ

−1
i c̄i;

πi(cj ) := πi−1(cj ) − ηi
j λ

−1
i πi−1(∂c̄i);

else
φi(cj ) := φi−1(cj );
πi(cj ) := πi−1(cj );

Mi := Mi−1 \ {ui};
ιi := ιi−1|Mi

;
OUTPUT:

Mm−1 — a set of generators of M∗;
(πm−1, ιm−1, φm−1) — a chain contraction.

The idea of the algorithm is the following. We process all the cells in the input
filter one by one. For each cell ci , we initially set φ(ci) = 0, which may be later
modified if necessary. If ci is found to be a cycle then it is added to M , and the values
of ι and π are set accordingly. Otherwise, a collapse of ci through one of its faces
ui is carried out. This means that ci is not added to M , and ui is removed from M ,
with the homomorphisms φ and π being modified accordingly to reflect the collapse
in which the face ui is replaced by the remainder of the boundary of ci .
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Note that because of the need to compute the inverse of λi , it is necessary to
assume the invertibility of all the coefficients encountered in the run of the algorithm
at the relevant place; therefore, the algorithm may only be applied safely for field
coefficients.

Proposition 1 (see [25]) In the case of coefficients in a field, Algorithm 1 applied to
a filter of a cell complex K returns an AT model of K .

If the coefficients form a ring which is not a field (e.g. the integers Z) then Algo-
rithm 1 may fail, and thus a more general algorithm must be used. The constructed
object is then an AM model. We adapt the algorithm introduced in [22, 26] to obtain
a chain contraction and a chain complex (M∗, d) explicitly, with respect to the orig-
inal basis in C∗(K) that corresponds to the cells in K . This algorithm requires the
computation of the Smith Normal Form (SNF) D of the entire boundary matrix ∂ ,
together with the change-of-basis matrix A and its inverse A−1. More specifically,
given the matrices of all ∂q , it is necessary to compute matrices Dq , Aq and A−1

q such

that Dq is in the SNF and Dq = A−1
q−1∂qAq . We say that D is in the SNF and all the

entries of D are zero except possibly for λ1,1, . . . , λl,l , for some l ≥ 0, with each λi,i

dividing λi+1,i+1 for i = 1, . . . , l − 1.
The subject of the development of effective algorithms and software for comput-

ing the SNF is an intensively investigated area of research on its own. Although the
original algorithm given in [58] (see also [44]) has exponential worst-case complex-
ity, as is the case of the naive approach using elementary column and row operations,
there exist algorithms for computing the SNF in polynomial time for coefficients
in Z (e.g. [29, 36, 59]), and different variants of these algorithms for solving this
problem exist, also crafted to special cases or environments (e.g. for concurrent sys-
tems [31]). Unfortunately, these general algorithms turn out to be insufficient for
homology computation in practical applications, because of the need to process huge
matrices, with hundreds of thousands of rows and columns. However, the bound-
ary matrices derived from cellular complexes are very sparse, that is, have a very
small number entries in their columns and rows, which can be used for designing
more efficient algorithms (e.g. [15]). Indeed, simple reduction techniques motivated
by geometric interpretation of the data may dramatically reduce the matrices in size
before coming to a point where no more reductions of this type can be applied and
thus the general algorithm for the computation of the SNF must be used. The work
by Forman [19] is often used as an inspiration for such reduction techniques. Each
geometric reduction corresponds to a change of bases, and thus the matrices A and
A−1 may be incrementally constructed during the procedure. These reductions corre-
spond e.g. to collapsing external faces or to joining adjacent cells, which were a basis
for an algorithm for homology computation by reduction of chain complexes intro-
duced in [33]. Its generalization was implemented in [9] (see also [34]) and is used
in the software package available at the project’s website [47]. This specific algo-
rithm constructs the SNF matrix Dq of each ∂q separately, and takes care of keeping
generators corresponding to the columns and rows of the already computed SNF at
adjacent levels intact, so that, as a result, new bases of all Cq are computed, such that
with respect to these bases, all the matrices Dq of ∂q are in the SNF.
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Algorithm 2 (AM model computation)

INPUT:
(c0, . . . , cm−1) — a filter of a cell complex K;
∂ — the boundary operator on C∗(K).

PSEUDOCODE:
compute bases

{
e
q

1 , . . . , e
q
mq

}
of each Cq(K) in which

the matrices Dq of ∂q are in the SNF;
let Ai denote the corresponding
change-of-basis matrices: Di = A−1

i−1∂iAi;
for q := 0 to dim K do

for i := 1 to mq do
if Dqe

q

i �= 0 then

let j and λ
q−1
j be such that Dqe

q
i = λ

q−1
j e

q−1
j ;

if λ
q−1
j is invertible then

ψq−1
(
e
q−1
j

)
:= λ

q−1
j e

q

i ;

continue (take the next i);
else

Mq−1 := Mq−1 ∪
{
m

q−1
j

}
;

dq

(
m

q

i

) := λ
q−1
j m

q−1
j ;

if there exists k and an invertible λ
q

i

such that Dq+1

(
e
q+1
k

)
= λ

q

i e
q

i then

continue (take the next i);
ψq(e

q

i ) := 0;
Mq := Mq ∪ {

m
q

i

}
;

ι
(
mq

i

) := A−1
q

(
e
q
i

)
;

for each j such that γ
q

j := 〈Aq(cj ), e
q

i 〉 �= 0 do

π(cj ) := π(cj ) + γ
q

j m
q

i ;

φq−1 := Aqψq−1A
−1
q−1;

OUTPUT:
M — a set of generators of M∗;
d — a differential on M∗;
(π, ι, φ) — a chain contraction.

This algorithm is valid in the general case, with coefficients in a Euclidean
domain. Note that if H∗(K) has no torsion then this algorithm actually produces an
AT model of K , because then the differential of M∗ is 0. Moreover, if the coefficient
ring is a field then SNF can be computed in cubic time using the simple method based
on Gaussian elimination (see e.g. [33]).

The idea of the algorithm is to determine the generators of M∗ and the differential
d on M∗, as well as the corresponding chain contraction, directly from the SNF of
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the boundary operator on K . More specifically, we consider all the elements e1
i of

a computed collection of bases of Cq(K) in which the boundary matrices are all in
the SNF. If the boundary of e

q

i is nonzero then one can deduce that e
q

i is not in the

boundary of any e
q+1
j , because DqDq+1 = 0. In this case, if λ

q−1
j is invertible then

the pair
(
e
q

i , e
q−1
i

)
corresponds to a reduction of the chain complex (a collapse of a

cell through its face), and this relation is stored in the chain homotopy operator ψq−1.
If λ

q−1
j is non-invertible, on the other hand, then a torsion in (co)homology will arise.

Indeed, in this case, e
q−1
j is a cycle (note that the boundary of e

q−1
j is trivial, because

Dq−1Dq = 0), and at the same time it is not a boundary, while its multiple λ
q−1
j e

q−1
j

is a boundary. The projection and inclusion components of the chain contraction can
be determined from the matrices Aq and A−1

q , and the chain homotopy operator ψ

must be transferred to φ in the original bases also using A and A−1.

Proposition 2 (see [22]) Algorithm 2 applied to a filter of a cell complex K returns
an AM model of K . Moreover, for each e ∈ M , either d(e) = 0, or there exists
e′ ∈ M such that d(e) = γ e′ with a non-invertible γ ∈ R.

An generic implementation in C++ of Algorithms 1 and 2 is the main part of the
software package available at the project’s website [47], and discussed in Section 7.

4 Homology and cohomology

Let (f, g, φ, M∗, d) be an AM model of a cell complex K with the boundary operator
denoted by ∂ , or an AT model of K if d = 0. In this section we shall show how to
derive various homological features of K from this model.

The first obvious information to obtain from the AM model of K is a representa-
tion of homology of K and cohomology of K . If d = 0 (i.e., this is actually an AT
model) then M∗ � H∗(K), and both Algorithms 1 and 2 provide a set representing a
basis of H∗(K), which is a free module. By duality, in this case H ∗(K) � H∗(K) and
cohomology generators are the duals to homology generators. Otherwise, if d �= 0,
some processing of the AM model is necessary; for example, the procedure based
on SNF computation of the boundary homomorphisms may be applied to (M∗, d) in
order to determine the torsion coefficients of H∗(K) and of H ∗(K), as well as the
Betti numbers. Fortunately, (M∗, d) is a much smaller object than (C∗(K), ∂), so the
expected cost of such computation is negligible, even if a simple (naive) algorithm
is applied at this stage. In fact, as stated in Proposition 2, Algorithm 2 actually com-
putes a basis M for M∗, in which the matrix of d is already in the SNF. Then the set
of those eq ∈ Mq (Mq is a basis of Mq ) for which dq(eq) = 0 corresponds to a set of
generators of Hq(K). If there exists eq+1 ∈ Mq+1 such that dq+1(eq+1) = γ eq with
a non-invertible γ ∈ R, then eq corresponds to a generator of a cyclic submodule of
Hq(K) with the torsion coefficient γ ; otherwise, eq generates a free submodule of
Hq(K). The number of generators of the latter type is the q-th Betti number of K

(see e.g. [44]). Representative cycles that correspond to the homology generators of
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K can be instantly obtained by applying the map g to those elements of M whose
boundary is zero, which results in chains in C(K) that are linear combinations of
cells in K with coefficients taken from the columns of the matrix representing g in
the natural basis in K corresponding to the cells in K and the computed basis M of
M∗.

By duality, each generator eq ∈ Mq of Mq such that δqe∗
q = 0 (that is, there is no

e′
q+1 ∈ Mq+1 such that dq+1

(
e′
q+1

)
= γ eq with γ �= 0) corresponds to a distinct

element in a set of generators of Hq(K), and each non-invertible coefficient that

appears in δqe∗
q (or, equivalently, in dq+1

(
e′
q+1

)
) corresponds to a torsion coefficient

in Hq+1(K), with a generator of the corresponding torsion submodule given by e′
q+1

such that dq+1

(
e′
q+1

)
= γ eq . The actual cocycle in C∗(K) that corresponds to a

generator e∗ of M∗ (dual to e ∈ M ) is e∗ ◦ f : C∗(K) → R; the matrix of this map
consists of the row corresponding to e in the matrix of f .

If c ∈ C∗(K) is a cycle then its homology class can be instantly determined by
calculating f (c), which provides a linear combination of elements of M . Moreover,
if this class is trivial, that is, f (c) = 0, then a sample chain c′ ∈ C∗(K) such that
∂c′ = c can also be found easily: c′ := φ(c). By duality, if c ∈ C∗(K) is a cocycle
then a representant of its cohomology class is c ◦g : M∗ → R; the matrix of this map
consists of a single row containing the linear combination of elements of the dual
basis of M∗.

For i = 1, 2, let (fi, gi , φi, Mi∗, di) be an AM model of the corresponding
cell complex Ki with the boundary operator denoted by ∂i . Using the chain maps
gi to obtain representative cycles of homology classes and fi to project cycles to
homology gives a straightforward way of computing the homomorphism induced in
homology by a chain map h : C(K1) → C(K2). Namely, for each homology gener-
ator of H∗(K1) represented by e1

q ∈ M 1
q , one can compute its image by H∗(h) as

f2(h(g1(e
1
q))) ∈ M2

q , and the matrix of H∗(h) : M1∗ → M2∗ is the matrix of the homo-

morphism f2◦h◦g1. Using the duality, the homomorphism H ∗(h) : Hom(M2∗ ; R) →
Hom(M1∗ ; R) induced in cohomology by the map h applied to e : M2∗ → R is given
by the formula H ∗(h)(e) = e ◦ f2 ◦ h ◦ g1 : M1∗ → R, and thus the matrix of H ∗(h)

is the transpose of the matrix corresponding to f2 ◦ h ◦ g1.
The same idea can also be used for the computation of operations that are defined

at the chain level and carry over to (co)homology (see [22], Procedure 2): One would
take (co)chains that correspond to (co)homology generators, apply the operation to
these (co)cycles at the (co)chain level, and then compute the (co)homology class(es)
of the resulting (co)cycle(s). This idea was used for computing more advanced
(co)homology operations (e.g., Steenrod cohomology operations) in the context of
simplicial complexes in [21–23, 50, 51], and we apply it in Section 5 to compute the
cubical cup product in cohomology and the cubical version of Alexander-Whitney
coproduct in homology.
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5 Cubical cup product

The cup product in cohomology is a well known additional structure which trans-
forms the cohomology module of a cell complex into a ring. Although less popular,
there is a directly corresponding structure in homology, the Alexander-Whitney
coproduct. These operations are defined for simplicial homology by easy and natural
formulas at the chain level, but the corresponding formulas for cubical complexes are
not that straightforward. Therefore, we devote this section to providing explicit for-
mulas for both operations in the case of cubical complexes, and to discussing various
solutions.

The cup product of two simplicial cochains c ∈ Ck(K) and c′ ∈ Cl(K) is a
cochain c � c′ ∈ Ck+l (K) defined on each generator of Ck+l corresponding to a
single simplex σ = (v0, . . . , vk+l ) as follows:

(c � c′)(σ ) := c
(
σk

0

)
· c′ (σk+l

k

)
,

where σk
0 = (v0, . . . , vk) and σk+l

k = (vk, . . . , vk+l ), and the dot indicates the
multiplication in the ring R. This definition is extended to arbitrary chains by
linearity.

The Alexander-Whitney coproduct of a chain consisting of a single n-dimensional
simplex σ = (v0, . . . , vn) is given by the formula

AW(σ ) =
n∑

k=0

κn
k σ k

0 ⊗ σn
k ,

where σ
j
i = (vi , . . . , vj ), ⊗ is the tensor product over R, and

κn
k = (−1)0 · · · (−1)k−1 · (−1)k+1 · · · (−1)n = (−1)n(n+1)/2−k.

This formula is extended to arbitrary chains by linearity.
A formula for the cup product of two cubical cochains is more complicated. We

follow the idea and the notation from [56, p. 441], where a formula was provided for
the multiplication of cubical cochains in the context of singular cubical cohomology.
If c ∈ Ck(K) and c′ ∈ Cl(K) are cubical cochains then their cup product is a cubical
cochain c � c′ ∈ Ck+l (K) defined on each generator σ of Ck+l corresponding to a
single cube (also denoted by σ ) as follows:

(c � c′)(σ ) :=
∑

J⊂{1,...,k+l}, card J=k

ρJ,J ′ c
(
λ0

J ′σ
)

· c′ (λ1
J σ

)
, (1)

where J ′ = {1, . . . , k + l} \ J , and ρJ,J ′ = (−1)ν , where ν is the number of pairs
(i, j) ∈ J × J ′ such that j < i. The Alexander-Whitney coproduct of a cube σ ∈
Cn(K) is then given by

AW(σ ) =
∑

J⊂{1,...,n}
ρJ,J ′

(
λ0

J ′σ ⊗ λ1
J σ

)
.
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Let (f, g, φ, M∗, d) be an AM model of a cell complex K , or an AT model of K

if d = 0. Then the cup product of two cochains c : Mi → R and c′ : Mj → R is a
cochain c � c′ : Mi+j → R given by the following formula:

(c � c′)(σi+j ) = (μ ◦ (c ⊗ c′) ◦ (f ⊗ f ) ◦ AW ◦g)(σi+j ),

where σi+j ∈ Mi+j , μ : R × R → R is the multiplication in R, and ⊗ denotes
the tensor product of homomorphisms defined as follows: (h1 ⊗ h2)(x1 ⊗ x2) =
h1(x1) ⊗ h2(x2).

An equivalent recursive formula for the cubical cup product (1) was also derived
in [35] (see also [32]) in an explicit way in the context of cubical sets as in [34],
with [44] as a theoretical basis. The key idea of that construction was to see the cup
product in cohomology as a map induced by the composition of two chain maps (see
[27, Chapter 3] and [39, Chapter XIII, §3]):

Ck(K) ⊗ Cl(K) → Ck+l (K × K) → Ck+l (K),

where the first map is the cross product of cochains, defined on the chains
corresponding to elementary cubes Qk

1 × Ql
2 ⊂ R

k+l by the formula
(
ck

1 × cl
2

) (
Qk

1 × Ql
2

) = ck
1

(
Qk

1

) · cl
2

(
Ql

2

)
, and the second map is induced by the

diagonal map K � x �→ �(x) = (x, x) ∈ K × K . (The majority of [35] is devoted
to determining the chain map corresponding to �.)

This formula can also be derived by means of simplicial subdivision, using the
notion of simplicial sets [40]. A simplicial set is a graded set X = {Xk}k≥0 endowed
with two kinds of operators: face operators ∂X

i : Xk → Xk−1 (for i = 1, . . . , k),
and degeneracy operators sX

i : Xk → Xk+1 (for i = 0, . . . , k); see [40] for the
conditions that these operators must satisfy. Elements of X are called simplices.
In case of “classical” simplices, these two operators are given by the following
formulas: ∂X

i (v0, . . . , vk) = (v0, . . . , vi−1, vi+1, . . . , vk), and sX
i (v0, . . . , vk) =

(v0, . . . , vi−1, vi, vi, vi+1, . . . , vk). A simplex x ∈ X is called degenerate if x =
sX
i (y) for some i and some y ∈ X. The graded module generated by the degenerate

simplices of X is denoted by s(C∗(X)). The normalized chain complex CN∗ (X) is the
quotient CN∗ (X) = (C∗(X)/s(C∗(X)), ∂), where ∂ = �(−1)i∂X

i . Cartesian product
S × T of two simplicial sets is also a simplicial set with (S × T )k = {(x, y) : x ∈
Sk, y ∈ Tk}, the face operators ∂S×T

i (x, y) = (∂S
i (x), ∂T

i (y)), and the degeneracy
operators sS×T

i (x, y) = (sS
i (x), sT

i (y)).
An interval I = [a, b] can be obviously considered a simplicial set SI = {SI

k }k≥0.
An elementary cube σ = I1×· · ·×In in R

n, where Ij = [a0
j , a1

j ] (possibly a0
j = a1

j ),
is the Cartesian product of the intervals, each of which can also be considered a
simplicial set. Therefore, the cube σ can be considered both as the simplicial set Ks

and a cubical set Kc. The cubical chain complex C∗(Kc) is isomorphic to the tensor
product

⊗
j CN∗ (Ij ). The homological equivalence of the chain complexes CN∗ (Ks)

and C∗(Kc) is given by the chain contraction cez = (fez, gez, φez) from the chain
complex CN∗ (Ks) of the Cartesian product of Ij to the tensor product C∗(Kc). In
classical algebraic topology, the chain contraction cez is called an Eilenberg-Zilber
chain contraction, and an explicit formulation is given [51, p. 56] (see also [18]). The
Alexander-Whitney coproduct AW : CN∗ (X) → CN∗ (X) ⊗ CN∗ (X) is defined on a
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simplicial set by AW(x) = ∂X
0 ∂X

1 . . . ∂X
i−1(x)⊗∂X

i+1 . . . ∂X
n (x). The chain contraction

cez can be used to transfer the simplicial Alexander-Whitney coproduct to the cubical
context:

AWc = (fez ⊗ fez) ◦ AWs ◦gez.

The Alexander-Whitney coproduct can then be translated to cup product at cochain
level by duality:

(c � c′)(σi+j ) = (μ ◦ (c ⊗ c′) ◦ AWc)(σi+j ),

where c and c′ are cubical cochains of degree i and j , respectively, σi+j is a cubical
chain of degree i + j , and μ : R × R → R is the multiplication in R.

Instead of delving into further technical details, we shall describe this construc-
tion in the case of a 2-dimensional cube. The cubical set Kc = {

Kc
0 , Kc

1 , Kc
2

}

corresponding to the 2-dimensional elementary cube σ = [a, b] × [c, d] is given by

Kc
0 = {(a, c), (a, d), (b, c), (b, d)},

Kc
1 = {[a, b] × {c}, [a, b] × {d}, {a} × [c, d], {b} × [c, d]},

Kc
2 = {[a, b] × [c, d]}.

The simplicial set Ks = {
Ks

0 , Ks
1, Ks

2

}
has the following non-degenerate cells:

Ks
0 = {(a, c), (a, d), (b, c), (b, d)},

Ks
1 = {(aa, cd), (ab, cc), (ab, cd), (ab, dd), (bb, cd)},

Ks
2 = {(abb, ccd), (aab, cdd)}.

The chain homotopy operator φez : CN∗ (Ks) → CN
∗+1(K

s) helps get rid of the diag-
onal cell, and is defined as follows: φez(x) = −(aab, cdd) if x = (ab, cd) and
φez(x) = 0 otherwise. The Alexander-Whitney coproduct of a 2-dimensional simplex
is given by

AWs (w1, w2, w3) = −(w1) ⊗ (w1, w2, w3) + (w1, w2) ⊗ (w2, w3) − (w1, w2, w3) ⊗ (w3).

Using cez, we obtain the following:

AWc([a, b]×[c, d]) = ({a}×{c})⊗([a, b]×[c, d])+([a, b]×{c})⊗({b}×[c, d])+
− ({a} × [c, d]) ⊗ ([a, b] × {d}) + ([a, b] × [c, d]) ⊗ ({b} × {d})

We remark that the ring structure introduced by the cup product allows to distinguish
some topological spaces which have isomorphic cohomology but different homo-
topy type. We discuss a few such examples in Section 7. However, the problem of
verification whether two rings are isomorphic or not, by means of checking their mul-
tiplication tables, is in general a nontrivial one. Therefore, from the practical point
of view it is much more efficient to use another invariant which can be derived from
the cup product, for example, the homology of the so-called reduced bar construc-
tion, which is a classical algebraic invariant in algebraic topology. Since the details
are beyond the scope of this paper, we refer the interested readers to [2, 3, 28]. A ver-
sion of the invariant called HB1 specific for 3D digital images and derived from this
construction was introduced in [24].
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6 Additional constructions and variants

Small modifications in the computational machinery introduced above allow for easy
implementation of additional useful features, which we discuss in this section. All
these features are implemented in the software provided at the project’s website [47].

Relative (co)homology If K is a cellular complex and L is its subcomplex (that
is, a subset of cells which is a complex itself) then relative (co)homology of the
pair (K, L) is the (co)homology of the quotient chain complex C(K)/C(L). From
the algorithmic point of view, relative (co)homology can be computed as plain
(co)homology of the cellular complex K \ L, in which the cells in L are removed
from the boundary of each cell c ∈ K \ L.

Reduced (co)homology If we additionally consider the empty cell e as a valid cell of
dimension −1, and we put ∂0(σ ) := e for every 0-dimensional cell σ , then we obtain
the augmented chain complex with C−1 = R, and its (co)homology is called reduced
(co)homology. The nice feature of this variant is that the geometric interpretation
of reduced homology is more consistent. While the dimension of each homology
vector space over a field can be interpreted as the number of “holes” in all dimen-
sions except 0, where it corresponds to the number of connected components of the
space, the same interpretation is valid for reduced homology also at level 0, where
0-dimensional “holes” can be interpreted as “gaps” between the connected compo-
nents. As a consequence, the reduced (co)homology of a “trivial” space, that is, a
topological space that is contractible, is zero.

Periodic boundary conditions In various applications, one often imposes periodic
boundary conditions in certain directions of a Euclidean space, which corresponds
to taking some coordinates from the quotient space R/kZ � S1, where k ∈ Z,
k > 0. A modification of the definition of cubes and cubical sets for such a space
is straightforward, and helps defining certain topological spaces much more easily.
For instance, the torus can be viewed as the cubical set [0, k] × [0, l] in the space
(R/kZ) × (R/lZ), where k, l are arbitrary positive integers.

Fig. 4 Three 2-dimensional compact manifolds with the same (co)homology groups over Z2 but dis-
tinguishable using Alexander-Whitney coproduct in homology (see Table 1) or the cup product in
cohomology. From left to right: the torus, the wedge of the sphere and two circles, and the Klein bottle
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Fig. 5 Cubical approximations of two different configurations of three tori, available in the Voxelo soft-
ware package, http://munkres.us.es:8080/groups/catam/wiki/e33d2/ (called Toro A and Toro B). The
(co)homology groups of both topological spaces are the same, but the Alexander-Whitney coproduct in
homology or the cup product in cohomology can distinguish them (see Table 1)

7 Software and examples

A prototype implementation of Algorithms 1 and 2 together with some illustrative
examples are provided at the project’s website [47].

The core part of the software is a C++ programming library that defines templates
for Algorithms 1 and 2, as well as related data structures and algorithms. The type
of cells and the type of coefficients are parameters of the templates, and the algo-
rithms are designed in such a way that they apply to arbitrary types which satisfy the
necessary mathematical assumptions. The auxiliary data structures include filtered

Table 1 Results of computations for selected examples

Topological Homology groups Alexander-Whitney coproduct of 2D homology generators,

space example over Z2 restricted to 1-dimensional chains

Torus (Z2,Z2 ⊕ Z2,Z2) AW(c1) = b1 ⊗ b2 + b2 ⊗ b1

S2 ∧ S1 ∧ S1 (Z2,Z2 ⊕ Z2,Z2) AW(c1) = 0

Klein bottle (Z2,Z2 ⊕ Z2,Z2) AW(c1) = b1 ⊗ b2 + b2 ⊗ b1 + b2 ⊗ b2

Projective plane (Z2,Z2,Z2) AW(c1) = b1 ⊗ b1

S2 ∧ S1 (Z2,Z2,Z2) AW(c1) = 0

Three tori (A) (Z2,Z
4
2,Z

3
2) AW(c1) = b3 ⊗ b4 + b4 ⊗ b3

AW(c2) = b3 ⊗ b4 + b4 ⊗ b3 + b1 ⊗ b2 + b2 ⊗ b1

AW(c3) = b3 ⊗ b4 + b4 ⊗ b3

Three tori (B) (Z2,Z
4
2,Z

3
2) AW(c1) = b2 ⊗ b3 + b3 ⊗ b2 + b3 ⊗ b4 + b4 ⊗ b3

AW(c2) = b1 ⊗ b3 + b3 ⊗ b1 + b2 ⊗ b3 + b3 ⊗ b2

AW(c3) = b3 ⊗ b4 + b4 ⊗ b3

The torus, the wedge of the sphere and two circles, the Klein bottle, see Fig. 4 (note that these three objects
have isomorphic homology over Z2, but the Alexander-Whitney coproduct allows to distinguish them);
the real projective plane, the wedge of the sphere and the circle (again, the same homology, but different
Alexander-Whitney coproduct), and two combinations of three tori embedded in R

3 illustrated in Fig. 5
that can be distinguished by the Alexander-Whitney coproduct

http://munkres.us.es:8080/groups/catam/wiki/e33d2/
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complexes, chains, linear maps, and tensor products of chains. A special combinato-
rial version is provided for Z2 coefficients; its advantage is that chains correspond to
collections of cells, without the need for storing the coefficients. Definitions of cubi-
cal cells and simplices are included as sample types of cells, and the rings Z and Zp

(where p is a prime number) are also implemented, but other types of cells or rings
of coefficients can be also easily added by the users.

In order to simplify using the software, several utility programs are included in
the package, which read input data from text files and output the results to the screen
in human-readable format. These programs are interfaces to the main features of
the C++ software library, and are provided in order to make it easy to try this soft-
ware; however, using the C++ library interface directly is recommended for intensive
applications, as it is much more efficient.

The examples include the well known Klein bottle defined as a simplicial com-
plex, as a surface built of 2-dimensional cubical cells (squares) embedded in R

4, and
also as a full cubical set in R

4. There is also the torus and the wedge of a sphere with
two circles (see Fig. 4). Note that these three spaces have the same (co)homology
groups over Z2, but can be distinguished with the Alexander-Whitney coproduct (see
Table 1) or with the cup product. Another example consists of two different con-
figurations of three tori (see Fig. 5) discussed in [5] (note the wrong result for the
Alexander-Whitney coproduct provided there), which also cannot be distinguished
by computing (co)homology alone. Results of computations for these and two more
examples are gathered in Table 1.
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ogy and homological algebra: Problem of complexity. J. Math. Sci. 108, 1015–1033 (2002).
doi:10.1023/A:1013544506151

29. Iliopoulos, C.S.: Worst-case complexity bounds on algorithms for computing the canonical structure
of finite Abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J.
Comput. 18(4), 658–669 (1989). doi:10.1137/0218045
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