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Abstract.- The paper presents a new approach to deal with combinatorial problems. It makes use of a biological 

analogy inspired by the performance of viruses. The replication mechanism, as well as the hosts’ infection 

processes is used to generate a metaheuristic that allows the obtention of valuable results. The Viral System 

(VS) theoretical context is described and it is applied to a library of medium-to-large-sized cases of the Steiner 

problem for which the optimal solution is known. The method is compared with the metaheuristics that have 

provided the best results for the Steiner problem. The Viral System provides better solutions than genetic 

algorithms and certain tabu search approaches. For the most sophisticated tabu search approaches (the best 

metaheuristic approximations to the Steiner problem solution) VS provides solutions of similar quality. 
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1 Introduction 
In real life, most problems are combinatorial. For this type of problem, the available algorithms usually present 

weaknesses. The mathematically rigorous algorithms (as branching or cutting techniques) tend to be too slow 

while ad hoc heuristics often produce poor solutions. Since the last decades of the past century, metaheuristics 

and Artificial Intelligence (AI) have been trying to deal with these difficulties. This is the case of Simulated 

Annealing (see Kirkpatrick [1] and Rumelhart and McClelland [2] for the first references), Genetic Algorithms 

(firstly described by Holland [3], Holland et al. [4] and Goldberg [5]), Tabu Search (defined by Glover [6] and 

[7]) or more recently the use of Agent Technology (see Van Dyke [8], and Jennings et al. [9] for a survey 

including wide bibliography in the field). The use of agents to deal with optimisation problems is a new and 

incipient framework. The Network of Excellence “AgentLink” funded by the European Commission under its 

Fifth Framework Information Society Technologies programme has edited a report describing the current state-
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of-the-art of agent technologies and identifying trends and challenges that will need to be addressed over the 

next 10 years to progress in the field and realise the benefits (Luck et al. [10]). 

Recently, Artificial Immune Systems (AIS) have arisen. They are computer algorithms inspired by the 

principles and processes of the vertebrates immune system. The algorithms typically exploit the immune 

system's characteristics of learning and memory to solve a problem. They are coupled to artificial intelligence 

and closely related to genetic algorithms. Processes simulated in AlS include pattern recognition, hypermutation 

and clonal selection for B-cells, negative selection of T-cells, affinity maturation and immune network theory. 

AIS began in the eighties with Farmer et al. [11]. 

In this paper, we propose the use of a biological analogy based on viral infection. Not much research has been 

carried out using viral analogies. We have been able to find very few papers proposing the use of viruses , all of 

them as part of genetic algorithms. For instance, Kubota et al. [12] propose them as part of a specific operator in 

genetic algorithms, and Saito [13] has described the use of genetic algorithms which make use of a virus 

evolutionary theory (GAV), and an algorithm based on the conception of horizontal evolution caused by virus 

infections. GAV is carried out by attacking a chromosome by a number of viruses, and having the genes of the 

chromosome recombined by the attack. The infection is allowed when the evaluation value goes up, but it falls 

into local minima easily. In order to escape from these local minima, an infection which makes the evaluation 

value worse in a small rate under small probability is allowed as well. All these approaches do not fit with our 

definition of Viral System as a new metaheuristic. 

Here, we introduce a new optimisation approach that makes use of several ideas from multi-agent systems 

(MAS), as well as from other well-known AI approaches. In our proposal, we consider that the viruses are part 

of a general infection, where each virus tries to behave to its own benefit, but resulting in the benefit of the Viral 

System.  

A generic optimisation problem can be defined as (1), and its complexity is typically NP-complete (Garey and 

Johnson [14]). 

{ }nixgxf i ,,1  , 0)(:)(Min "=∀≤  ( 1 ) 

Where x is the set of feasible solutions of the problem, f(x) is the objective function, and gi(x) ≤ 0 are the 

problem constraints. The objective function and the constraints are not necessarily linear, and the variables 

could be integer or continuous. 
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Based on this problem, the next section of the paper follows with the description of the biological analogy that 

we will use to solve the problem in section 2, the description of the approach in section 3, and the results for a 

collection of trial problems in section 4. Finally, we review the main aspects in the conclusion section. 

2 Biological analogy description 

2.1 Generic definition of virus 
Viruses are intracellular parasites shaped by nucleic acids, such as DNA or RNA, and proteins. The protein 

generates a capsule, called a capsid, where the nucleic acid is located. The capsid plus the nucleic acid shape the 

nucleus-capsid, which defines the virus. Figure 1 depicts different types of viruses. 

FIGURE 1 

Each type of virus has different capabilities with respect to infecting cells, including the mechanisms of 

replication and spread/inoculation, and strategies to weaken the immune response of the host. Furthermore, each 

one of the different classes of viruses is able to be lodged in hosts that can be of animal, vegetal or bacterial 

type. Hence, they can represent unicellular or multi-cellular organisms. 

2.2 Virus replication mechanism 
Although the replication mechanism of viruses depends on the type of virus, we have considered the replication 

mechanism for phages, which are viruses that infect bacteria. The phage life cycle (see figure 2) follows the 

following process: 

1. The virus is adhered to the border of the bacterium. Subsequently the virus manages to penetrate the border 

being injected inside this one, (a) and (b) in figure 2. 

2. The infected cell stops the production of its proteins, beginning to produce the phage proteins. So, it starts 

to replicate copies of the virus nucleus-capsids, (c) and (d) in figure 2. 

3. After replicating a number of nucleus-capsids, the bacterium border is broken, and the new viruses are 

released, (e) in figure 2, which can infect other close cells, (f) in figure 2.  

FIGURE 2 

The life cycle of the viruses can be developed in one step, through this lytic replication, or it can include more 

than one step. Some viruses are capable of lodging in cells giving rise to the lysogenic replication. In this case 

the process (see figure 3) is as follows: 

1. The virus infects the host cell, being lodged in its genome, (a) and (b) in figure 3.  

2. The virus remains hidden inside the cell during a while until it is activated by any cause, for example 

ultraviolet irradiation or X-rays, (c) in figure 3. 
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3. The replication of cells altered, with proteins from the virus, starts. 

FIGURE 3 

The virus lodged in the genome of the host cell can cause alterations in the cell genome, (e) in figure 3. 

Occasionally certain genes participating in growth processes as the protooncogenes can give birth to tumour 

cells. Note that the virus enters the cell and then, the infected cell (bacteria for phagocyte case) is known as the 

organism’s host. 

2.3 Antigenic properties in certain viruses and infection end 
Some viruses have the property of leading an antigenic response in the infected organism. In these situations an 

immune response is originated causing the creation of antibodies. 

The end of the virus infection can be reached in two ways: the organism beats the virus implying the host 

recovery, or the virus beats the defence capabilities of the organism and the host death takes place.  

2.4 Natural optimization in Viral Systems and its computational equivalency 
In nature, viruses are active organisms that reach their major success when infecting individuals with a low level 

of health (note that the objective function f(x) represents the cell’s health).  

The viral infection acts in an efficient way by means of developing a continuous process in time searching for 

individuals, or bacteria in the case of phagocyte infections, that are “suitable for infection”, precisely those with 

a lower level of health (or low value of f(x)in computational terms). This way, viruses optimize their objective, 

and infecting less healthy individuals (poorer solutions) viruses are propagated through a major size of the 

population. In fact, in some occasions when the virus infection capabilities decrease, the virus using the cell 

genome (solution encoding) mutates to a different form with the intention of achieving higher success in the 

infection process, see figure 3. This describes a continuous process of the infection’s systematic progress 

lodging on unhealthy cells that can lead the organism up to two different ends. The organism dies (it 

corresponds to reaching the optimum or beating the gap) or the organism resists the infection according to the 

virus isolation case (it corresponds to reaching the maximum number of iterations).  In fact, the concept is close 

to reality because “more successful epidemics” are those where a larger number of deaths took place. For 

example, this was the case of the Black Death killing between a third and two thirds of Europe's population in 

the mid-late 14th century, the Spanish Flu Pandemic causing between 50 million and 100 million people 

worldwide killed in 1918 and 1919, or more recently the African Ebola with mortality rates ranging from 50% 

to 90%. So, following this data the death of the organism would lead to the objective (optimum) of a “successful 

infection”.  
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3 Viral System description 

3.1 Viral System components 
The use of natural analogies is quite common when dealing with optimization in NP-complete problems. In this 

line, multiagent systems (MAS) have contributed a large number of methods taken from the natural world.  This 

is the case of ants for path planning or brood sorting, termites for nest building, wasps for task differentiation, 

birds and fish for flocking, and wolves for surrounding preys (see Van Dyke [8] for an in-depth explanation). 

Here, we present viruses infecting organisms. 

Our Viral System (VS) is an approach capable of dealing with any optimisation problem. To present the VS we 

follow the Van Dyke suggestion. 

Each VS is defined by three components: a set of viruses, an organism and an interaction between them: 

VS = <Virus, Organism, Interaction> 

The Virus component of the VS is a set consisting of single viruses: 

Virus = { Virus1, Virus2 , … , Virusn } 

Each virus is defined in four components: 

Virusi = <Statei, Inputi, Outputi, Processi> 

Where each component means: 

 Statei characterizes the virus. It defines the cell infected by the virus. It is typically the mathematical 

encoding of the solution in computational terms, which we also call genome. 

A concrete virus, Virusi, can produce the infection of a cell of the organism providing a host. 

Additionally, the evolution of the residence time of the virus inside the cell can be defined by the 

number of nucleus-capsids replicated for the lytic replication (NR) or the number of iterations for the 

lysogenic replication (IT). So, the three-tuple genome-NR-IT defines the Statei for the Virusi. 

 Inputi identifies the information that the virus can collect from the organism. This information is 

always collected in the proximity of the virus. Inputi represents the input’s interaction with the 

organism (organism’s information  virus). It corresponds to the neighbourhood of the cell in 

computational terms. 

 Outputi identifies the actions that the virus can take. Outputi represents the output’s interaction with the 

organism (virus  organism). It corresponds to the selection mechanism of the type of virus replication 

in computational terms. 
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 Processi represents the autonomous behaviour of the virus, changing the Statei. It corresponds to the 

replication operator process in computational terms. 

The Organism component of the VS is defined by two components: 

Organism = < Stateo, Processo> 

Where each component means: 

 Stateo characterizes the organism state in each instant. It consists of the clinical picture and the lowest 

healthy cell (the best solution found of the optimization problem). 

The set of feasible solutions in a specific space ℜn is given by the problem constraints (2). 

{ }nixgx i ,,1  , 0)(:K "=∀≤=  ( 2 ) 

Where each one of the feasible solutions of the problem (2), x∈K, has been called a cell. The genome is 

the mathematical encoding of each cell or feasible solution. When a virus infects a cell, this cell enters 

the population of infected cells. The total amount of infected cells constitutes the infected part of K for 

each time instant, and it is named “clinical picture”. It contains the overall information of the infection 

needed by the algorithm in each instant, t.  

Thus, the clinical picture consists of every three-tuple genome-NR-IT defining the Statei of each Virusi. 

In the same way, the overall clinical picture plus the lowest value of f(x) defines the Organism Stateo. 

Figure 4 depicts the State concept for the organism and the viruses. 

FIGURE 4 

 Processo represents the autonomous behaviour of the organism that tries to protect itself from the 

infection threat, consisting of antigen liberation. Medically, an antigen is any substance that elicits an 

immune response. The antigens generate an immune response by means of antibodies trying to fight 

the virus infection. The computational mission of the antigens is to liberate space in the population of 

infected cells (clinical picture), trying to maintain free record memory in the clinical picture to 

incorporate new infected cells (new feasible solutions). Thus, due to the antigens’ activity, infected 

cells (in the clinical picture) can be recovered (removed) and cells in the organism that could be 

infected are not infected due to this antigenic substance. In computational terms, the antigens can be 

viewed as destructive agents, as described in Talukdar et al. [15]. 
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3.2 Viral System Interaction  
The Interaction component of the VS is conditioned by the Input and Output actions that lead to a Process of 

every virus and the corresponding Organism response. A Virusi process implies a resulting change in the 

organism, and the same applies for an Organism’s process. The interaction is the union of both actions.  

3.2.1 Virus input sensor: Neighbourhood identification 
The input sensor of each virus, Inputi, collects information from the organism. The sensors map the genome of 

the cell and detect the set of cells close to the infected one. This set is named the neighbourhood of the feasible 

solution x, V(x). The neighbourhood depends on the shape of the constraints of the problem, gi(x). 

3.2.2 Virus output ejector: replication type selection 
The ejector, Outputi, selects the type of evolution of the virus. We consider two options: the lytic replication if 

the life cycle of the virus is executed in only one step; and the lysogenic replication if the life cycle of the virus 

is executed in two steps. So, in order to select the type of replication, we consider lytic replication (with 

probability plt) or lysogenic replication (with probability plg), where plt + plg  = 1.  

3.2.3 Process: Lytic replication 
For the lytic replication case we have considered two different evolutions for different types of infection: a 

parsimonious infection, selecting the cells to be infected; and a devastating infection where a massive number of 

cells is infected. An example of the first case is the HIV virus, which through a step-by-step evolution destroys 

the immune system during a process that can take years. On the contrary, an example of the second case is the 

Ebola virus with a rapid and massive infection that very often produces the death of the patient in a few days. 

3.2.3.1 Virus process in massive infection 
The lytic replication starts only after a specific number of nucleus-capsids have been replicated. So, each time 

instant (iteration t) a number of virus replications (NR) takes place. The number of replications per iteration is 

calculated as function of a binomial variable, Z, adding its value to the total NR.  

After a specific number of nucleus-capsids has been replicated inside the cell (LNR), the bacterium border is 

broken, liberating the lodged viruses. All these viruses are active and prepared to infect new cells. The value of 

LNR depends on the cell’s health conditions. So a healthy cell (with high value of f(x)) will have low probability 

of getting infected, and therefore the value of LNR will be higher. In the opposite it will have a lower value of 

LNR. The following equation (3) shows the calculation procedure for LNR in a cell x: 

https://www.researchgate.net/publication/242356870_Adaptation_In_Natural_And_Artificial_Systems?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
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The number of nucleus-capsids replicated each iteration can be approximated by a Binomial distribution given 

by the maximum level of nucleus-capsids replicated, LNR, and the single probability of one replication, pr,: Z = 

Bin (LNR , pr). 

Once the distribution has been stated, we can calculate the probability of replicating exactly z nucleus-capsids, 

P(Z=z), as well as the average, E(Z), and variance, Var(Z), equations (4-6). 
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Once the bacterium border is broken liberating the viruses, each one of the viruses has a probability, pi, of 

infecting other new cells of the neighbourhood. 

Let the neighbourhood cardinality of the feasible solution, x, be |V(x)|. Then, we can define Y as a binomial 

random variable representing the cells infected by the virus in the neighbourhood. The parameters of the 

binomial distribution are Y = Bin (|V(x)|, pi). 

In this situation, the probability of infecting exactly y nucleus-capsids, P(Y=y), as well as the expected number 

of new infected cells, E(Y), and the variance, Var(Y), will be (7-9): 
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Under these conditions, the growth of the total number of infected cells follows a geometric progression and 

there is no apparent limit to the growth of the population infected. So it must be bounded by another 
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phenomenon in order to maintain the VS bounded-in-computation (this is described in the Organism Process 

section as the antigenic response). 

3.2.3.2 Organism process in massive infection 
The organism responds to the viral infection by releasing antigens. The antigens generate an immune response 

by means of antibodies. The Organism Process is defined by the antigenic capacity of the organism, which 

depends on the Stateo and leads to a new situation of the Organism State.  

Each one of the infected cells in the clinical picture has a probability of developing antibodies against the 

infection. The probability of generating antibodies for any cell of the infected population can be given by a 

Bernoulli probability distribution. 

Therefore, the probability of generating antibodies is pan: A(x) = Ber (pan), where x is an infected cell. Hence, 

the total population of infected cells generating antibodies is characterized by a Binomial distribution of 

parameters: the size of the population infected, n, and the probability of generating antibodies, pan: 

A(population) = Bin (n, pan). 

On the other hand, we know that when a virus reaches the LNR limit, the bacterium border is broken and new 

viruses try to infect new cells in their neighbourhoods. Under these conditions, we must compute the antigenic 

capacity for every cell in the neighbourhood of an active virus. It is estimated as a Bernoulli probability 

distribution given by the probability of generating antibodies, pan: A(x’) = Ber (pan) : x’∈V(x). Therefore, the 

total number of cells in the neighbourhood with antibodies will follow a Binomial probability distribution given 

by the total size of the neighbourhood for all the active viruses, |V(x)|, and the probability of generating 

antibodies, pan: A = Bin (|V(x)|, pan). 

Then, the probability of finding exactly a immune cells, P(A=a), as well as the expected value of immune cells, 

E(A), and the variance, Var(A), is given by (10-12). 
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For this massive infection case, we have to guarantee two opposed tendencies. Firstly, we have to allow enough 

capability for the infection expansion (infecting as many cells in the neighbourhood as possible). Secondly, we 

have to keep the infection evolution bounded in order to have enough gaps in the clinical picture to guarantee 
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the incorporation of the new infected cells. For example, in the case of many cells being infected and not having 

many available gaps in the clinical picture, it would not be possible to incorporate these new infected cells. 

 

The steady state of the clinical picture includes cells with different numbers of replicated nucleus-capsids. This 

number will vary from 0 (for the most recent cells infected) to LNR for those infected cells on the point of 

breaking their borders for liberating the cultivated viruses. 

A Markovian Process defines the evolution of the clinical picture. The following Table 1 gives the transition law 

between the states, that is, the transition probability matrix, P.  

TABLE 1 

Once one cell reaches the state LNR the border is broken and the viruses are liberated. In the next iteration the 

cell is erased from the clinical picture leaving its gap for new infected cells. 

Let ),...,,( LNR10 ππππ =  be the probability of any cell of having 0, 1, … , LNR nucleus-capsids replicated. 

The, equations (13-15) are satisfied in steady state.  
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Therefore, the probability of having exactly LNR replicated nucleus-capsids, LNRπ , can be calculated by 

solving the (13-15) previous equations’ system. With n cells in the clinical picture, the expected number of cells 

with exactly LNR nucleus-capsids is given by LNRπ⋅n . 

The viruses cultivated inside each one of these cells will be capable of infecting new neighbour cells. Let the 

cell xk be an infected cell that has broken its border. Then, ( ) yxV
i

y
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kpp
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probability of infecting exactly y cells of its neighbourhood. 

The expected number of new cells infected in the neighbourhood of xk is given by |)(·|)x|Y(E k ki xVp= . 

Being LNRπ⋅n  the expected number of cells with exactly LNR nucleus-capsids and assuming independent 

events, the total expected number of new cells infected in the organism could be estimated as ∑
=

LNR·

1

|)(·|
πn

k
ki xVp . 
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Since ∑
=

⋅
LNR·

1

|)(|
πn

k
ki xVp  is normally higher than LNRπ⋅n , the number of gaps in the clinical picture will be 

lower than the total expected number of new cells infected in the organism. However in order to control the 

infection, the Organism responds to it by means of antibody generation. 

As we have stated before, at each iteration every cell has a probability equal to pan of generating antibodies and 

become immune to the virus infection. 

The expected number of cells in the clinical picture having developed antibodies will be ( ) anpnn ⋅⋅− LNRπ  and 

the expected number of cells in the neighbourhood of xk with antibodies will be ( ) anki pxVp ⋅|)(·| . 

Therefore, the expected number of empty gaps in the clinical picture will be given by (16) and the expected 

number of new cells infected by (17). 

( ) anpnnn ⋅⋅−+⋅ LNRLNR ππ  ( 16 ) 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅− ∑

=

LNR·

1

|)(·|1
πn

k
kian xVpp   ( 17 ) 

Equation (16) should be higher than equation (17) in order to fix an adequate value for pan. So, considering 

|)(| xV  as the average neighbourhood size for the concrete problem and solving the equation we can state (18) 

as an approximate value for pan. 

( )
( ) nxVpn

xVpn
p

i

i
an

+−⋅⋅⋅

−⋅⋅⋅
>

1|)(|
1|)(|

LNR

LNR

π

π
 ( 18 ) 

 

Figure 5 defines the algorithm evolution for the massive infection case. The initial state is depicted by the 

clinical picture on the left hand side. The viruses reaching the level of nucleus-capsids (LNR) break the border 

and start infecting new cells in their neighbourhoods. This phenomenon corresponds to the virus process formed 

by the input sensors and output ejectors. The Organism process is characterized by the antigenic response by 

liberating space in the clinical picture and by creating antibodies in cells in the viruses’ neighbourhoods. Finally, 

the interaction (right-hand side of the figure) defines the new clinical picture, with new infected cells lodging 

viruses. 

FIGURE 5 
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3.2.3.3 Virus process in selective infection 
After replicating nucleus-capsids, according to equations (4)-(6), and once the number of nucleus-capsids 

surpasses the limit given by LNR, the border of the cell is broken and the viruses are liberated. For this case, one 

single cell is selected to be infected. In order to do so, the neighbourhood is evaluated and one of the least 

healthy cells is selected, configuring the new host to expand the infection. This type of infection can be 

computationally considered a step-by-step method. 

3.2.3.4 Organism process in selective infection 
In this case, the virus selects a cell with a low value of f(x) in the neighbourhood. However, the virus will not be 

able to infect those cells that have developed antigens. 

A higher value of f(x) implies a healthy cell and therefore this cell will have a higher probability of developing 

an antigenic response. On the contrary, a cell with a low value of f(x) will imply an unhealthy cell with a lower 

probability of developing an antigenic response. 

In order to represent this phenomenon, we use of a hypergeometric function. The cell with an inverse objective 

function evaluation, ( )xf
1 , in ranking position-i, has a probability of generating antibodies, pan(x), that is given 

by q(1-q)i, being q the probability of generating antibodies for the worst individual. Finally, a residual 

probability remains, which is added to the worst individual. 

Then, if the probability of generating antibodies for the case of cell x is pan(x), A(x) is defined as a Bernoulli 

random variable: A(x) = Ber (pan(x)). 

If cell x generates antibodies, the cell is not infected and it is therefore not included in the new clinical picture. 

For recording this clinical picture we use the original cell (that was infected by the virus and that reached the 

LNR limit) and we initiate a lysogenic cycle for that cell. 

Figure 6 defines the algorithm evolution for the selective infection case. The initial state is on the left-hand side: 

the virus process starts with viruses breaking the border and starting the infection of new cells in their 

neighbourhoods. Each virus selects the most promising cell, which is the least healthy cell. The Organism 

process is characterized by the probability of antigenic response in the least healthy cell. Those cells developing 

antibodies are not infected. Finally, the interaction (right hand side of the figure) defines the new clinical 

picture, with new infected cells lodging viruses. The cells generating antibodies follow a new lysogenic 

replication. 

FIGURE 6 
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3.2.4 Process: Lysogenic replication 

3.2.4.1 Virus Process 
If the life cycle of the virus is executed in two steps it is called lysogenic replication. In this situation, the virus 

remains hidden inside the cell until an external cause activates the virus. We consider that the activation of the 

lysogenic replication can happen after a limit of iterations has passed (LIT). As for the calculation of LNR, the 

value of LIT depends on the cell’s health conditions, so a healthy cell (high value of f(x)) will have a low 

probability of getting infected, id est. the value of LIT will be higher. On the contrary, it will have a lower value 

of LIT. The following equation (19) shows the calculus procedure for LIT in a cell x: 

( ) ( )
( )

LITfor   valueinitial  theis LIT where

LITLIT

0

0
-cell ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⋅=

xf
xfxf

x �
�

 ( 19 ) 

 

Once the virus has been activated, it produces alterations in the cell’s genome. It is equivalent to a genome 

mutation process in the mathematical programming encoding of the feasible solution. 

3.2.4.2 Organism Process 
The lysogenic interaction is described as the substitution of the new genome-modified cell by the old one. It is 

quite similar to a mutation process in several types of evolutionary algorithms.  

 

Finally, for both type of replications (lysogenic and lytic), one last control is applied to the Interaction between 

the Organism and the Virus. As much for the lytic replication as for the lysogenic replication, a duplication 

control is carried out in order to avoid visits to cells previously explored and recorded in the clinical picture. 

3.3 Viral System algorithm 

3.3.1 Initialisation 
The algorithm initialisation provides the first State for the Organism and the Virus. 

1. Inoculate n viruses over n cells. This gives the first clinical picture with the first set of feasible solutions. 

2. Define type of virus infection: selective or massive infection. 

3.3.2 Steady state  

1. In case of massive infection: initiate the Organism Process: antigenic response of the clinical picture. 

2. The Output ejector of each virus determines if any Virus Process can start. And in positive case, the type of 

cycle to be initiated for each cell: lytic or lysogenic replication. 

3. In case of lytic replication. 

https://www.researchgate.net/publication/220668942_Solving_the_Steiner_Tree_Problem_on_a_Graph_Using_Branch_and_Cut?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
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3.1. All the infected cells start to replicate nucleus-capsids. This updates the NR parameter for the Virusi 

lodged in the cell. 

3.2. Those cells with NR greater than LNR represent active viruses. 

3.2.1. The Input sensor determines the neighbourhood of the cell infected, V(x). 

3.2.2. Initiate Virus Process:  

3.2.2.1. Case of massive infection: Y-A cells of the neighbourhood are infected, and must be 

incorporated into the clinical picture. If there is not enough free space in the population, it 

will randomly erase the necessary cells from the Y-A selected cells. 

3.2.2.2. Case of selective infection: One only cell from the neighbourhood is selected 

according to the selective selection. The antigenic response of such cell is evaluated as a 

Bernoulli process (A). In case of antigenic response a lysogenic replication is initiated. 

4. In case of lysogenic replication. If the number of iterations is greater than LIT. 

4.1. The Input sensor maps the cell genome  

4.2. Initiate Virus Process: the virus mutates the cell genome encoding. 

4.3. The new mutated cell substitutes the previous one in the clinical picture. 

5. Update the best solution reached in the Organism State. 

3.3.3 Ending 
The VS ending is achieved in two ways: the collapse and death of the organism, or the isolation of the virus. 

Collapse and death of the organism 

Computationally, the death of the organism can be reached when the difference between the best found solution 

and a known lower bound is smaller than a stated gap. There exist certain lower bounds known for several NP-

problems. Nevertheless, a lower bound could always be calculated by means of the linear or Lagrangian 

relaxation for problems with a linear objective function and linear constraints. In case of knowing the optimum 

of the problem, the gap can be set equal to zero. This is a common case when dealing with trial problem 

collections. 

When the difference between the lower bound (LB) and the best found solution is below a gap, we consider that 

the organism has collapsed (20), and call the end of the VS. 

LB
|LB)(| * −

=
xfgap  ( 20 ) 
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Virus isolation 

After a number of iterations have been produced (Nmax), we consider that the viral infection cannot evolve 

further.  

When this criterion is used together with the previous one, the situation denotes that the gap is not reached, and 

the virus does not create a serious infection in the organism. Under this condition, the organism would have 

survived the virus infection. 

3.4 Selective infection case pseudocode 
The following exhaustive pseudocode corresponds to the selective infection case. The massive infection case 

will follow the main procedures, but it will replace the procedure ‘Get_Best_Neighbourhood_Solution’ by the 

specific massive procedure corresponding to the selection of a set of cells to be infected as previously described 

in section 3.3. 

Procedure Virus_System(Nmax , clinical_size , plt , pi , pan , LNR , LIT) 

CP = ∅ {Clinical Picture} 
iterations = 0 
Get_Initial_Clinical_Picture(CP , clinical_size , plt) 
Do 
iterations = iterations + 1 
For c = 1 to clinical_size 
If Replicat_Type(CP(c)) = ‘Lytic’ Then 
Lytic_Replication (c , LNR) 

Else 
Lysogenic_Replication(c) 

End If 
Next 

Loop Until iterations= Nmax or Check_Gap(CP) = True 
End Procedure 
 
Procedure Get_Initial_Clinical_Picture(CP , clinical_size , plt) 
For i = 1 to clinical_size 
{Get randomly a feasible solution} 
CP(i)= Get_Rnd_Feasible_Solution()  
{Assign randomly a replication type, Lytic or Lysogenic} 
Replicat_Type(CP(i)) = Get_Rnd_Replication _Type (plt)   

Next 
End Procedure 
 
Procedure Lytic_Replication (c) 
{Get the number of replicated nucleus-capsids}  
Z = Get_Rnd_Binomial_Probability(LNR , pr) 
z = Get_Value_Binomial(Z , LNR , pr) 
CP(c).NR = CP(c).NR + z 
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If CP(c).NR > CP(c).LNR Then  
Interaction_Virus(c) 

End If 
End Procedure 
 
Procedure Interaction_Virus(c) 
Get_ Neighbourhood (c , Vc) 
{Get the probability of generating antibodies} 
A = Get_Rnd_Binomial_Probability(|Vc| , pan) 
a = Get_Value_Binomial(A, |Vc|, pan) 
 
{Get the probability of infection in the neighbourhood} 
Y = Get_Rnd_Binomial_Probability(|Vc| , pi) 
y = Get_Value_Binomial(Y , |Vc| , pi) 
Get_Best_Neighbourhood_Solution(Vc , y , a , cNEW) 
c= cNEW 
Replicat_Type(CP(c)) = Get_Rnd_Replication_Type (plt) 

End Procedure 
Procedure Get_Best_Neighbourhood_Solution(Vc , y , a) 
j = Get_Rnd_Starting_Evaluation(|Vc|) 
i = 0 
Do 
i = i + 1 
Solution = Get_Solution(Vc , j) 
if health(cNEW ) < health(Solution) then 
cNEW = Solution 

end if 
j = j+1 

Loop Until i = y-a 
End Procedure 
 
Procedure Lysogenic(c) 
CP(c).IT = CP(c).IT + 1 
If CP(c).IT > CP(c).LIT Then  
Mutation(c, cNEW) 
c = cNEW 
Replicat_Type(CP(c)) = Get_Rnd_Replication _Type(PLytic) 

End If 
End Procedure 

4 An application example for Viral Systems: the Steiner problem 
We have used the Steiner problem, a well-known NP-Complete problem, to test the efficiency of our Viral 

System described above. 

The Steiner problem can be stated as follows: 

 Given a non-directed graph G = (N,A) with |N| nodes and |A| arcs with costs cij ∀(i,j)∈A; and a subset 

T⊆N with |T| nodes called terminals or targets, with the rest of the nodes in N called Steiner nodes, 
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 find a network GT ⊆ G joining all the terminal nodes in T at minimum cost. This network can include 

some of the Steiner nodes but does not have to include all the Steiner nodes. 

The Steiner problem has been widely dealt with in the scientific literature. There exists a wide range of 

heuristics giving good approximations (e.g. Takahashi and Matsuyama [16], and Beasley [17]), as well as other 

well-proven direct methods like branch and bound, branch and cut, cutting plane algorithms, etc. (e.g. Wong 

[18], Chopra et al. [19], and Grötschel et al. [20]). Also, metaheuristics have been applied to the Steiner problem 

successfully. Gendreau et al. [21] for Tabu Search, as well as the Genetic Algorithms from Esbensen [22], and 

Voss and Gutenschwager [23] are three of the most notable approaches. 

4.1 VS characterization for the Steiner problem 
The Organism state is depicted by the clinical picture representing the infected part of the Steiner problem hull, 

K, containing all the feasible solutions. A common formulation (21) for K is the coverage one, e.g. Koch et al. 

[24]. 

( )( ) ( )( )
( )

integer        

,  , 10       
\  ,   ,   , 1δ:

x

Ajix
TWNTWNWWXK

ij ∈∀≤≤
∅≠∅≠⊂∀≥ ∩∩

 ( 21 ) 

 

Where δ(X) denotes the cut induced by X⊆N, that is, the set of arcs with one node in W and one in its 

complement, and 
( )

AFxFX
Fji

ij ⊆∀= ∑
∈

   , )(
,

. It is easy to see that there is a one-to-one correspondence 

between Steiner trees in G = (N,A) and {0,1} vectors satisfying K. 

We represent the genome of the cells by a bit string of size equal to |N| in which each bit position i corresponds 

to the node i in the graph. A 1 means that the node i is connected, while the bit is set to 0 otherwise. As all the 

terminals must be in the Steiner tree, it is sufficient to use a bit string of size |N-T| including only the Steiner 

nodes belonging to the Steiner tree. 

Under these conditions, a Steiner tree can be constructed by means of a minimum spanning tree (MST) that 

contains all the terminal nodes (set T), the subset of Steiner nodes in the bit string fixed to 1 and, perhaps, some 

artificial arcs if the set is disconnected. In case of necessity of introduction of artificial arcs due to the 

disconnection of the tree, there will be diverse possibilities. We make use of the graph construction mechanisms 

described in Gendreau et al. [21]. 

https://www.researchgate.net/publication/220668942_Solving_the_Steiner_Tree_Problem_on_a_Graph_Using_Branch_and_Cut?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/220209634_A_tabu_search_heuristic_for_the_Steiner_Tree_Problem?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/220209634_A_tabu_search_heuristic_for_the_Steiner_Tree_Problem?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/225945384_Dual_Ascent_Approach_for_Steiner_Tree_Problems_on_a_Directed_Graph?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/216458355_A_chunking_based_genetic_algorithm_for_the_Steiner_tree_problem_in_graphs?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/242327080_An_approximate_solution_of_the_Steiner_problem_in_graphs?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
https://www.researchgate.net/publication/2750414_Computing_Near-Optimal_Solutions_to_the_Steiner_Problem_in_a_Graph_Using_a_Genetic_Algorithm?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
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Once we have stated the cell genome we can define the Virus state. The three-tuple formed by the genome of 

each cell infected plus the number of replicated nucleus-capsids (in the case of lytic replication) or the number 

of generations (in the case of lysogenic replication) defines the virus state. 

The entire infected cell population, which is the clinical picture, and the best solution complete the Organism 

and therefore the Virus state. 

The Output ejectors of the Virus component of the VS are clearly defined by the type of replication. On the 

contrary, the Input sensors must be carefully stated. In fact, a key decision in every VS is to state an adequate 

cell neighbourhood for the virus in the lytic replication process and a genome alteration process for the 

lysogenic replication. 

In the case of the Steiner problem, for the lysogenic replication and given a feasible solution x∈K, the genome 

alteration is made by flipping a bit in the string. 

For the lytic replication and given a feasible solution x∈K, the neighbourhood of such a solution consists of the 

set of bit strings that can be obtained by the removal or the addition of a single Steiner node from/to the current 

cell encoding. In order to be efficient, the new MSTs must be found by manipulating a rooted tree data structure 

carefully. Gendreau et al. [21] describes the procedure in-depth. 

Finally, the Virus and Organism components are completed by the specification of the Process. The Organism 

Process consists of the antigenic response and it is mainly determined by the determination of the parameter pan 

, as was stated in section 3.2.3.4. The Virus Process consists of the determination of the type of replication that 

is conditioned by the parameters plt and plg. Additionally, the Virus Process depends on the parameters of 

replication, pr, infection, pi, and the limits LNR0 and LIT0. 

Due to the special encoding for the Steiner problem solutions the neighbourhood size is constant and equal to 

the number of Steiner nodes. It must be noted that the neighbourhood is set by changing the value of each bit 

from 0 to 1 and vice versa. 

The Interaction takes place after the selection of the Virus Process. It is basically determined by the random 

evolution of the viral infection and the antigenic capacity of response.  

4.2 Specific pseudocode procedures for the Steiner problem 
The general pseudocode functions and procedures were described in section 3.4. We have included here the 

more specific procedures for the Steiner problem. They are mainly the neighbourhood characterization and the 

Steiner-oriented mutation for the lysogenic replication. Such procedures will have to be specifically oriented to 

the problem being analysed. The following pseudocode describes them. 

https://www.researchgate.net/publication/220209634_A_tabu_search_heuristic_for_the_Steiner_Tree_Problem?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
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Procedure Get_ Neighbourhood (c, Vc) 

Vc = ∅ {Neighbourhood} 
For i = 1 to NumSteiners 

If i∈Solution(c) then  
NeighbourNEW = Extract_from_Solution(c, i) 

Else 
NeighbourNEW = Introduce_in_the_Solution(c, i) 

End if 
Vc = Vc + NeighbourNEW 

Next 
End Procedure 
 
Procedure Get_Mutation_Solution(c, cNEW) 
SNode = Get_Rnd_SteinerNode(NumSteiners) 

If SNode∈Solution(c) then  
cNEW = Extract_from_Solution(c, SNode) 

Else 
cNEW = Introduce_in_the_Solution(c, SNode) 

End if 
End Procedure 

4.3 Computational results 
In order to evaluate the quality of the VS solutions, we have compared the VS results with the optimal solutions 

of a test problems’ collection of the OR-Library (series C, D and E, each one of them including 20 problems). 

Steiner problems series C consists of trials with 500 nodes, a number of arcs varying from 625 to 12,500, and 

terminals from 5 to 250, while series D consists of problems with 1,000 nodes, arcs varying from 1,250 to 

25,000, and terminals from 5 to 500; and finally series E includes trials of 2,500 nodes, arcs varying from 3,125 

to 62,500, and terminals from 5 to 1,250. The collection is accessible in the Web page 

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.  For the statistical calculations, due to the large size of the 

problems, we were forced to replace the binomial probabilistic distribution by its corresponding normal 

approximation. 

Firstly, Steiner OR-Library problems were pre-processed according to the graph reduction rules (Winter [25]) 

that reduce the graph size. The graph characteristics are defined by the number of nodes, terminals and arcs. One 

of the parameters that determine the difficulty of obtaining the optimum is the percentage of terminals with 

respect to the total number of nodes, as Cortés et al. [26] have previously stated, although other factors like the 

total number of nodes and arcs also affect the computing time. The argument is based on the fact that problems 

with a low density of terminals or with a high density of terminals have a small feasible region; however 

problems with a medium density of terminals have a large feasible region. 

https://www.researchgate.net/publication/247647825_Steiner_problem_in_networks?el=1_x_8&enrichId=rgreq-0ef066fa-260d-41bb-b3b4-0f94188d0f73&enrichSource=Y292ZXJQYWdlOzIyMDQ3MTk4NDtBUzoxMDQ3OTgyOTI1NDU1NDBAMTQwMTk5NzI2ODMzMw==
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Using this rationale, we divided the problems into three groups: group 1 for problems with less than 15% of 

terminal nodes; group 2 for problems with a percentage of terminal nodes between 15% and 30%; and group 3 

for problems with more or equal than 30% of terminal nodes. 

According to the special characteristics of the Steiner problem we realised that the selective infection provided a 

more adequate approach. We used an experimental design based on a fractional factorial design at two levels in 

order to analyse the impact of the VS parameters on solution quality.  The fractional factorial design is a 

factorial experiment in which only an adequately chosen fraction of the treatment combinations required for the 

complete factorial experiment is selected to be run. In fact, for a number of factors k in a full factorial design, 2k 

runs must be computed, which can quickly become very large. The solution to this problem is to use only a 

fraction of the runs specified by the full factorial design. The advantages of choosing fractional factorial designs 

for 2-level experiments are the desirable properties of being both balanced and orthogonal. See, for example, 

Montgomery [27] for an in-depth explanation on fractional factorial design. 

The main two-level parameters of the VS according to the selective infection were encoded for the fractional 

factorial design as:  

 ITER: number of iterations. Fractional factorial design levels: 50,000 (+) / 10,000 (-) 

 POB: clinical picture. Fractional factorial design levels: 100 (+) / 50 (-) 

 PLITI: probability for the lytic cycle. Fractional factorial design levels: 0.7 (+) / 0.3 (-)  

 LNR: Limit of iterations for the lytic cycle (number of replications inside the cell to be broken). 

Fractional factorial design levels: 20 (+) / 10 (-) 

 LIT: Limit of iterations for the lysogenic cycle. Fractional factorial design levels: 20 (+) / 10 (-) 

 PZ: Probability of replicating z nucleus-capsids. Fractional factorial design levels: 0.7 (+) / 0.3 (-) 

The experimental design was done with the Stein-C problems from the OR-Library. The fractional factorial 

design at two levels generated a total number of 26 parameter settings that were executed 4 times in order to 

reduce the random component. This gave a total amount of 256 trial parameter settings for each Stein-C 

problem. Since there are 20 test problems in the Stein-C set, we solved 5,120 instances. We grouped the 

parameter settings in the Stein-C set into three different categories according to the percentage of terminals (a 

critical parameter when solving the Steiner problem). Thus, Stein-C group 1 includes parameter settings with 

percentage of terminals under 15%, Stein-C group 2 parameter settings with percentage of terminals between 

15% and 30%, and Stein-C group 3 for parameter settings with percentage of terminals higher than 30%. Hence, 

the group 1 is formed by steinc1, c2, c6, c7, c11, c12, c16, and c17 cases (giving 2,048 instances), while the 
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group 2 is formed by steinc8, c9, c13, c14, c18, and c19 cases (giving 1,536 instances), and the group 3 is 

formed by steinc3, c4, c5, c10, c15, and c20 cases (giving 1,536 instances). 

We used Limdep econometric software in order to adjust the mode of the experimental design. In accordance 

with the selected codification, the variance analysis coincides with the minimum square error regression 

analysis. The results summarised for the three groups are shown below in Table 2,  

TABLE 2 

We have used italics to highlight the significant parameters for each specific group. Group 1 shows that the 

number of iterations (ITER), the clinical picture size or population (POB), the lytic replication probability 

(PLITI), and the limit of iterations for the lysogenic cycle (LIT) are the most relevant parameters in the 

experimental design. Also, the interactions with a t-ratio higher than 1 or lower than -1 must be taken into 

account. For example, the independent analysis of parameter ITER will recommend a low value of the 

parameter, whereas in the case of parameter POB a high value is recommended; however, a positive 

combination of both parameters ITER and POB (which is also called the combined effect or the cocktail) is 

recommended in order to obtain a better fitting. This situation corresponds to a contribution ‘+ +’ or ‘- -’ for 

ITER_POB. We have to take into account all these possible combinations in order to select the best overall 

combination of parameters (the final selection is shown in Table 3). Finally, we highlight that we obtained a 

very good adjusted R-squared equal to 92.1% for the data of this group. 

Group 2 shows that the number of iterations (ITER), the clinical picture sizes (POB), the lytic replication 

probability (PLITI), and the limit of iterations for the lysogenic cycle (LIT) are the most relevant parameters in 

the experimental design. Also, the interactions with a t-ratio greater than 1 or lower than -1 must be taken into 

account. We obtained a very good adjusted R-squared equal to 93.1%. 

Finally, for group 3, the number of iterations (ITER), the clinical picture size (POB), the lytic replication 

probability (PLITI), the limit of iterations for the lytic cycle, and the limit of iterations for the lysogenic cycle 

(LIT) are the most relevant parameters in the experimental design. Also, the interactions with a t-ratio greater 

than 1 or lower than -1 were taken into account. We obtained a very good adjusted R-squared equal to 98.4%. 

Table 3 describes the best parameter selection for each group of Steiner problems. The selection of parameters 

was done by calculating the average error for each possible combination of sequences. 

TABLE 3 

It is important to note that the VS efficiency is non-dependent on the probability of generating a great or low 

number of nucleus-capsids (parameter PZ) with respect to the Steiner problem case, so its performance showed 
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non-dependency from this parameter. The rest of parameters can affect in different ways the objective of 

reducing the error of the method. 

After executing the whole fractional factorial design at two levels we obtained the optimum for all the Stein-C 

set problems. Then we used the parameters from Table 3 to solve the more complex Stein-D and Stein-E 

collections. First, we executed four times the VS with the first set of parameters, and then we executed four 

times the VS with the second set of parameters. Table 4, Table 5 and Table 6 show the results (in error 

percentage with respect to the optimum) for the Stein-C, Stein-D and Stein-E problems and their comparison 

with the Tabu Search approach from Gendreau et al. [21] (their P-Tabu and F-Tabu methods), which is the best 

approach for the Steiner problem in terms of solution quality. The tables include the best Genetic Algorithm 

approaches that have solved the Steiner problem, which are due to Esbensen [22] (GA-E) and Voss and 

Gutenschwager [23] (GA-V). Finally, we also show the results obtained for the Minimum Path Heuristic (MPH) 

by Takahashi et al. [16] and their results reported by Gendreau et al [21]. This collection of methods provides an 

adequate basis of comparison in order to test the effectiveness of our VS. 

TABLE 4, TABLE 5, TABLE 6 

According to the results of Table 4, Table 5 and Table 6 (a total of 60 problems), VS was the best approach in 

48 times and beat clearly the GA-E (22 times), GA-V (9 times), P-Tabu (40 times) and MPH (25 times) 

approaches. Only F-Tabu showed better performance, being the best approach 51 times. However, VS provided 

a better solution for the C9, C14, D3, E3, E12, E15 and E19 problems. VS provided very valuable results taking 

into account that F-Tabu was processed after selecting the 100 best different trees found by the MPH algorithm, 

after executing the P-Tabu approach as an initial search and reprocessing it into the final Full Tabu Steiner (F-

Tabu). So the quality of the F-Tabu results is very high but it is also very much conditioned by the very good 

seed that was provided (MPH). Furthermore, it is remarkable that MPH obtains better results than special 

oriented genetic algorithms such as GA-E and GA-V; it gives an idea of the seed quality for F-Tabu. 

Undoubtedly it is due to the heuristic being executed 100 times in order to obtain the best possible seed to be 

supplied to the P-Tabu and F-Tabu methods. On the contrary, we apply VS directly to the reduced graph without 

pre-processing it with any special previous heuristic as MPH (or the others that F-Tabu uses). Nevertheless, our 

initial clinical picture (the seed of our method) is wholly random-generated. We did not use a good seed 

provided by a good heuristic because we were interested in observing the quality of the VS evolution to the final 

solution, more than on outperforming previous heuristics. However, we realized that without searching for a 
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good seed we were obtaining results equivalent (in quality terms) to the best Steiner approach: the F-Tabu 

algorithm. 

We also have to state that when the problem was fully executed for the overall set of parameters with all the 

possible combinations, that is, what we did with the Stein-C, VS always obtained the optimum of the problem. 

Nevertheless, when we reduced the possible combinations of parameters (focusing them on Table 3) the results 

quality was maintained on a very high standard, but several (very few) times we were outperformed by F-Tabu, 

due to all our previous explanations (mainly the preparation of the seed by means of other previously executed 

heuristics).  

With respect to the time consumption, we have omitted the CPU times in Tables 7, 8 and 9 as they cannot be 

compared with other algorithms whose tests were run in a different computer. However, we can estimate the 

order of time consumption by the algorithm’s complexity, given in (22). 

( )2~ NgraphsNumSteinerITEROtime ⋅⋅  ( 22 ) 

where ITER is the maximum number of iterations, NumSteiners the number of Steiner nodes in the graph and 

Ngraph the total number of nodes in the graph. 

The evaluation of the neighbourhood of a cell is the process that requires the largest amount of computational 

time in the algorithm, and this process is the same used in the F-Tabu algorithm to reach the next solution in the 

search procedure. Therefore, the worst case would be to run lytic replications in all iterations of the algorithm. 

For that case, the degree of complexity would be equal to the number of neighbourhood solutions evaluated 

multiplied by the complexity of the evaluation process. The number of evaluations is obtained as the number of 

iterations multiplied by the number of Steiner nodes. The evaluation process is the calculation of a minimum 

spanning tree, which is O(Ngraph2). 

Furthermore, many combinations of VS parameters were analysed in our experimentation. Hence, we just 

indicate in Table 7 the average of the computational times (in CPU-seconds) on the best (ITER=10.000, 

PLITI=0.3 and LNR=20) and worst cases (ITER=50.000, PLITI=0.7 and LNR=10). 

TABLE 7 

5 Conclusions 
In this paper we have presented a new approach to optimize combinatorial problems called Viral System due to 

its inspiration in the infection behaviour of viruses. The method was tested with the Steiner problem, which is 

NP-Complete. VS was applied to a library of medium-to-large-sized problems for which the optimal solution is 
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known and the results were compared with the best Tabu Search approach (and perhaps the best metaheuristic 

for the Steiner problem) and the best Genetic Algorithm approaches that we found in the scientific literature. VS 

clearly improves the results from the Genetic Algorithms (a bio-inspired evolutionary methodology close to our 

proposal) and for several cases VS obtains better results than the Tabu Search, even taking into account that the 

Tabu Search starts from a very good seed provided by the MPH heuristic. 

Our future research is focused on generating an optimisation library associated to different classes of viruses 

(Figure 1 showed several cases). Here we have only addressed the phagocyte case, which corresponds to the less 

complex virus infection. We want to test different type of infections with different set of problems trying to 

identify the most adequate one to each type of problem. 
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Figure 3. Lysogenic replication 
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Figure 5. Algorithm evolution for lytic replication case in massive infection 
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Figure 6. Algorithm evolution for lytic replication case in selective infection 
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TABLES 

 

Table 1. States transition law for the clinical picture 

Transition Law 
State 

0 1 2 … J … LNR 

0 0)P(Z0 ==p  1)P(Z1 ==p  2)P(Z2 ==p  … j)P(Z ==jp  … LNR)P(ZLNR ==p  

1 0 0)P(Z0 ==p  1)P(Z1 ==p  … 1)-jP(Z1 ==−jp  … 1LNRLNR −+ pp  

2 0 0 0)P(Z0 ==p  … 2)-j(Z2 ==−jp  … LNR1LNRLNR −− ++ ppp
 

… … … … … … … … 

j 0 0 0 … 0)P(Z0 ==p  … ∑
=

−

j

k
kp

0
LNR  

… … … … … … … … 

LNR 1 0 0 … 0 … 0 

 

Table 2. Least squares regression analysis for Stein-C set of problems 

 
Stein-C: group 1 
Adjusted R-squared =  0.92115 
Standard error = 0.90721662E-03 

Stein-C: group 2  
Adjusted R-squared =  0.93107 
Standard error = 0.74477109E-03 

Stein-C: group 3 
Adjusted R-squared =  0.98426 
Standard error = 0.18575403E-03 

Parameter Coefficient t-ratio P[|T|>t] Coefficient t-ratio P[|T|>t] Coefficient t-ratio P[|T|>t] 
ITER 
POB 
PLITI 
LNR 
LIT 
PZ 
ITER_POB 
ITER_PLI 
ITER_LNR 
ITER_LIT 
ITER_PZ 
POB_PLIT 
POB_LNR 
POB_LIT 
POB_PZ 
PLITI_LN 
PLITI_LI 
PLITI_PZ 
LNR_LIT 
LNR_PZ 
LIT_PZ 

-.1627359097E-01 
.6196468609E-02 

-.9859702694E-02 
-.3670145379E-03 
.6165346813E-02 

-.1663867492E-03 
-.7003059497E-02 
.8558958037E-02 
.7465536683E-04 

-.6091337370E-02 
.1520681087E-03 

-.3592776392E-02 
-.7503267980E-03 
.2544590416E-02 

-.6631948513E-03 
.2567051887E-03 

-.1712201851E-02 
-.6425612504E-03 
-.8883046612E-03 
-.6213004108E-03 
.2776950605E-04 

-17.938 
6.830 

-10.868 
-.405 
6.796 
-.183 

-7.719 
9.434 

.082 
-6.714 

.168 
-3.960 

-.827 
2.805 
-.731 
.283 

-1.887 
-.708 
-.979 
-.685 
.031 

.0000 

.0000 

.0000 

.6879 

.0000 

.8554 

.0000 

.0000 

.9348 

.0000 

.8677 

.0003 

.4129 

.0076 

.4688 

.7786 

.0660 

.4827 

.3331 

.4972 

.9757 

-.1273674287E-01 
.5878508007E-02 

-.1150348920E-01 
-.2338535169E-03 
.1751795999E-02 

-.2691466718E-04 
-.5167419501E-02 
.9824820706E-02 
.2547066287E-03 

-.1309931377E-02 
.4128354307E-04 

-.4961598593E-02 
-.5292303695E-04 
.3891250218E-03 
.1516634356E-03 
.2020066744E-03 

-.1237158692E-02 
.1878275183E-03 

-.2012397331E-03 
.3794939438E-04 
.9490056945E-04 

-17.102 
7.893 

-15.446 
-.314 
2.352 
-.036 

-6.938 
13.192 

.342 
-1.759 

.055 
-6.662 

-.071 
.522 
.204 
.271 

-1.661 
.252 

-.270 
.051 
.127 

.0000 

.0000 

.0000 

.7551 

.0234 

.9713 

.0000 

.0000 

.7341 

.0859 

.9561 

.0000 

.9437 

.6041 

.8396 

.7875 

.1041 

.8021 

.7883 

.9596 

.8992 

-.6201052638E-02 
.2075200906E-02 

-.7409459177E-02 
.2033251897E-03 
.4951710153E-03 

-.5265526171E-04 
-.1364551560E-02 
.5792975690E-02 
.6346707768E-04 

-.2162974302E-03 
-.7542575442E-04 
-.1731482463E-02 
.9390983973E-05 
.2019797493E-03 

-.6409390469E-04 
-.1561495836E-03 
-.3410437225E-03 
.1433866844E-03 
.8122341766E-04 
.1411620695E-03 

-.1452575337E-03 

-33.383 
11.172 

-39.889 
1.095 
2.666 
-.283 

-7.346 
31.186 

.342 
-1.164 

-.406 
-9.321 

.051 
1.087 
-.345 
-.841 

-1.836 
.772 
.437 
.760 

-.782 

.0000 

.0000 

.0000 

.2799 

.0109 

.7782 

.0000 

.0000 

.7343 

.2508 

.6868 

.0000 

.9599 

.2831 

.7318 

.4053 

.0734 

.4445 

.6642 

.4515 

.4386 
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Table 3. Adequate selection of parameters for each group of problems in the Steiner collection 

 Group 1 Group 2 Group 3 
Parameters 1st set 2nd set 1st set 2nd set 1st set 2nd set 
ITER 50,000 (+) 10,000 (-) 50,000 (+) 50,000 (+) 10,000 (-) 50,000 (+) 
POB 100 (+) 50 (-) 100 (+) 50 (-) 50 (-) 50 (-) 
PLITI 0.7 (+) 0.7 (+) 0.7 (+) 0.7 (+) 0.7 (+) 0.7 (+) 
LNR 15 (~) 15 (~) 15 (~) 15 (~) 10 (-) 10 (-) 
LIT 10 (-) 10 (-) 20 (+) 10 (-) 10 (-) 10 (-) 
Pz 0.5 (~) 0.5 (~) 0.5 (~) 0.5 (~) 0.5 (~) 0.5 (~) 

 

Table 4. Comparison on the solution quality for the reduced C graphs of the Steiner collection 

Problem Optimum GA-E GA-V MPH P-Tabu F-Tabu VS 
C1 106 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
C2 220 1,67% 0,83% 0,00% 0,00% 0,00% 0,00% 
C3 1565 0,13% 0,13% 0,00% 0,00% 0,00% 0,00% 
C4 1935 0,11% 0,04% 0,09% 0,00% 0,00% 0,00% 
C5 3250 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
C6 67 0,73% 1,09% 0,00% 0,00% 0,00% 0,00% 
C7 103 1,76% 2,75% 0,00% 0,00% 0,00% 0,00% 
C8 1072 0,63% 0,51% 0,00% 0,00% 0,00% 0,00% 
C9 1448 1,05% 1,30% 0,99% 0,14% 0,14% 0,00% 
C10 2110 0,26% 0,27% 0,09% 0,00% 0,00% 0,00% 
C11 29 1,88% 1,88% 0,00% 0,00% 0,00% 0,00% 
C12 42 1,30% 0,43% 0,00% 0,00% 0,00% 0,00% 
C13 500 1,01% 1,32% 0,78% 0,00% 0,00% 0,00% 
C14 667 0,87% 0,68% 1,24% 0,31% 0,31% 0,00% 
C15 1116 0,25% 0,22% 0,18% 0,00% 0,00% 0,00% 
C16 13 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
C17 23 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
C18 223 0,71% 0,71% 5,31% 0,88% 0,00% 0,00% 
C19 310 0,41% 0,82% 4,79% 0,68% 0,00% 0,00% 
C20 537 0,00% 0,00% 0,37% 0,00% 0,00% 0,00% 
Best approach  5 5 11 16 18 20 
 

Table 5. Comparison on the solution quality for the reduced D graphs of the Steiner collection 

Problem Optimum GA-E GA-V MPH P-Tabu F-Tabu VS 
D1 106 0,57% 0,88% 0,00% 0,00% 0,00% 0,00% 
D2 220 0,00% 0,73% 0,00% 0,00% 0,00% 0,00% 
D3 1565 0,92% 1,25% 0,77% 0,26% 0,06% 0,00% 
D4 1935 0,52% 0,63% 0,16% 0,00% 0,00% 0,00% 
D5 3250 0,12% 0,19% 0,06% 0,00% 0,00% 0,00% 
D6 67 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
D7 103 1,94% 3,62% 0,00% 0,00% 0,00% 0,00% 
D8 1072 1,55% 2,28% 1,59% 0,47% 0,37% 0,47% 
D9 1448 0,50% 1,15% 0,83% 0,41% 0,21% 0,69% 
D10 2110 0,13% 0,44% 0,38% 0,00% 0,00% 0,00% 
D11 29 2,07% 1,84% 0,00% 0,00% 0,00% 0,00% 
D12 42 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
D13 500 0,56% 1,48% 2,00% 0,00% 0,00% 0,00% 
D14 667 0,30% 0,75% 0,75% 0,15% 0,15% 0,15% 
D15 1116 0,16% 0,39% 0,36% 0,00% 0,00% 0,00% 
D16 13 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
D17 23 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 
D18 223 1,26% 1,43% 6,28% 1,35% 0,90% 0,90% 



 33

D19 310 1,03% 1,20% 5,81% 0,65% 0,32% 0,65% 
D20 537 0,15% 0,16% 0,19% 0,00% 0,00% 0,37% 
Best approach  5 4 8 15 19 16 

 

Table 6. Comparison on the solution quality for the reduced E graphs of the Steiner collection 

Problem Optimum GA-E MPH P-Tabu F-Tabu VS 
E1 111 0,00% 0,00% 0,00% 0,00% 0,00% 
E2 214 0,93% 0,00% 0,00% 0,00% 0,00% 
E3 4013 0,00% 1,07% 0,42% 0,32% 0,24% 
E4 5101 0,02% 0,18% 0,00% 0,00% 0,00% 
E5 8128 0,00% 0,02% 0,00% 0,00% 0,00% 
E6 73 0,00% 0,00% 0,00% 0,00% 0,00% 
E7 145 0,00% 2,07% 2,07% 0,00% 0,00% 
E8 2640 0,23% 1,63% 0,49% 0,42% 1,14% 
E9 3604 0,19% 1,17% 0,42% 0,14% 0,47% 
E10 5600 0,00% 0,21% 0,04% 0,04% 0,14% 
E11 34 0,00% 0,00% 0,00% 0,00% 0,00% 
E12 67 1,49% 1,49% 1,49% 1,49% 0,00% 
E13 1280 0,70% 1,88% 0,78% 0,63% 1,33% 
E14 1732 0,23% 1,04% 0,29% 0,23% 0,64% 
E15 2784 0,00% 0,22% 0,11% 0,11% 0,00% 
E16 15 0,00% 0,00% 0,00% 0,00% 0,00% 
E17 25 0,00% 0,00% 0,00% 0,00% 0,00% 
E18 564 3,37% 7,62% 2,66% 1,60% 2,66% 
E19 758 1,26% 4,35% 1,19% 1,19% 1,18% 
E20 1342 0,00% 0,67% 0,00% 0,00% 0,15% 
Best approach   12 6 9 14 12 

 

Table 7. Computational times (in seconds) 

Set of Problems Group Best Case Worst Case 

Stein-C 1 1 2 

Stein-C 2 71 205 

Stein-C 3 54 112 

Stein-D 1 4 13 

Stein-D 2 1,471 4,329 

Stein-D 3 166 750 

Stein-E 1 6 33 

Stein-E 2 4,692 19,892 

Stein-E 3 480 3,292 
 

 




