
On Two Families of Multiset Tree Automata?

José M. Sempere, Damián López

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
{jsempere,dlopez}@dsic.upv.es

Summary. The relation between the membrane structures of P systems and an exten-
sion of tree automata which introduces multisets in the transition function has been
proposed in previous works. Here we propose two features of tree automata which have
been previously studied (namely, reversibility and local testability) in order to extend
them to multiset tree automata. The characterization of these families will introduce a
new characterization of membrane structures defined by the set of rules used for mem-
brane creation and deletion.

1 Introduction

The relation between membrane structures and tree languages has been explored
in previous works. So, Freund et al. [4] proved that P systems are able to generate
recursively enumerable sets of trees through their membrane structures. Other
works have focused on extending the definition of finite tree automata in order to
take into account the membrane structures generated by P systems. So, in [13], the
authors propose an extension of tree automata, namely multiset tree automata,
in order to recognize membrane structures. In [7], the authors propose the use
of this model to calculate editing distances between membrane structures. Later,
the authors proposed a method to infer multiset tree automata from membrane
observations [14].

In this work we introduce two new families of multiset tree automata, by using
previous results taken from tree language theory. We propose a formal definition of
reversible multiset tree automata and local testable multiset tree automata. These
features have been widely studied in previous works [6, 8].

The structure of this work is simple: first we give basic definitions and notation
for tree languages, P systems and multiset tree automata and we define the new
families of multiset tree automata. Finally, we give some guidelines for future
research.
? Work supported by the Spanish Generalitat Valenciana under contract GV06/068.

316 J.M. Sempere, D. López

2 Notation and definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the following books to the
reader [12], [10] and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [15].

Definition 2.1 Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2.2 Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by A	B, is the multiset C = 〈D,h〉 where
for all a ∈ D h(a) = max(f(a)− g(a), 0).

Definition 2.3 Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Definition 2.4 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum,
denoted by A⊕ B, is the multiset C = 〈D,h〉, where for all a ∈ D h(a) = f(a) +
g(a).

Definition 2.5 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say that
A = B if the multiset (A	B)⊕ (B 	A) is empty.

The size of any multiset M , denoted by |M | will be the number of elements
that it contains. We are specially interested in the class of multisets that we call
bounded multisets. They are multisets that hold the property that the sum of all
the elements is bounded by a constant n. Formally, we will denote by Mn(D) the
set of all multisets 〈D, f〉 such that

∑
a∈D f(a) = n.

A concept that is quite useful to work with sets and multisets is the Parikh
mappings. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
Nn where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define Ψ(x) =
(#d1(x), · · · ,#dn

(x)) where #dj
(x) denotes the number of occurrences of dj in x.

P systems

We will introduce basic concepts from membrane systems taken from [10]. A gen-
eral P system of degree m is a construct

Π = (V, T,C, µ,w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)
• T ⊆ V (the output alphabet)

On Two Families of Multiset Tree Automata 317

• C ⊆ V , C ∩ T = ∅ (the catalysts)
• µ is a membrane structure consisting of m membranes
• wi, 1 ≤ i ≤ m is a string representing a multiset over V associated with the

region i
• Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set tar by {here, out, ink : 1 ≤ k ≤ m}.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging the leaving order (if several objects leave the
system at the same time then permutations are allowed). The set of numbers
that represent the objects in the output membrane i0 will be denote by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in which
these variants have been proposed (see, for example, [1, 9, 10, 11]).

In the following, we enumerate some kind of rules which are able to modify the
membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h
3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones (e.g.
exocytosis, endocytosis, etc.) has been widely studied in the previously related
works and other ones.

Tree automata and tree languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 5]. First, let a ranked alphabet be the association of an alpha-
bet V together with a finite relation r in V × N. We denote by Vn the subset
{σ ∈ V : (σ, n) ∈ r}.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0

σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .

318 J.M. Sempere, D. López

Given the tuple l =< 1, 2, ..., k > we will denote the set of permutations of
l by perm(l). Let t = σ(t1, ..., tn) be a tree over V T , we will denote the set of
permutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin

) :<
i1, i2, ..., in >∈ perm(< 1, 2, ..., n >)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots, formed
using the catenation as the composition rule and the empty word λ as the identity.
Let the prefix relation ≤ in N∗ be defined by the condition that u ≤ v if and only
if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of N∗ is called a tree
domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes correspond
to the elements of D where the hierarchy relation is the prefix order. Thus, each
tree t over V can be seen as an application t : D → V . The set D is called the
domain of the tree t, and denoted by dom(t). The elements of the tree domain
dom(t) are called positions or nodes of the tree t. We denote by t(x) the label of
a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as
depth(t) = max{|x| : x ∈ dom(t)}. In the same way, for any tree t, we denote the
size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

Given a tree t = σ(t1, . . . , tn), the root of t will be denoted as root(t) and
defined as root(t) = σ. If t = a then root(t) = a. The successors of a tree t =
σ(t1, . . . , tn) will be defined as Ht =< root(t1), . . . , root(tn) >. Finally, leaves(t)
will denote the set of leaves of the tree t.

Definition 2.6 A finite deterministic tree automaton is defined by the tuple A =
(Q,V, δ, F): where Q is a finite set of states; V is a ranked alphabet, Q ∩ V = ∅;
F ⊆ Q is the set of final states and δ =

⋃
i:Vi 6=∅ δi is a set of transitions defined as

follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . ,m

δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by
Ant(q), as the set of strings

On Two Families of Multiset Tree Automata 319

Ant(q) = {p1 · · · pn : pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3, 5] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
you can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F), where:

Q = Sub(T)
F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

Let $ be a new symbol in V0, and V T
$ the set of trees (V ∪ {$})T where each

tree contains $ only once. We will name the node with label $ as link point when
necessary. Given s ∈ V T

$ and t ∈ V T , the operation s#t is defined as:

s#t(x) =
{

s(x) if x ∈ dom(s), s(x) 6= $
t(z) if x = yz, s(y) = $, y ∈ dom(s)

therefore, given t, s ∈ V T , let the tree quotient (t−1s) be defined as:

t−1s =
{

r ∈ V T
$: s = r#t if t ∈ V T − V0.

t if t ∈ V0.

this quotient can be extended to consider set of trees T ⊆ V T as:

t−1T = {t−1s : s ∈ T}

For any k ≥ 0, let the k-root of a tree t be defined as follows:

rootk(t) =
{

t, if depth(t) < k
t′ : t′(x) = t(x), x ∈ dom(t) ∧ |x| ≤ k, otherwise

320 J.M. Sempere, D. López

Multiset tree automata and mirrored trees

We will extend over multisets some definitions of tree automata and tree lan-
guages. We will introduce the concept of multiset tree automata and then we will
characterize the set of trees that it accepts.

Given any tree automata A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1) ⊕MΨ (p2) ⊕ · · · ⊕MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals to the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up pars-
ing as in the tree automaton case.

Definition 2.7 A multiset tree automaton is defined by the tuple MA = (Q,V, δ, F),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V) = n,
Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n
δ0(a) = MΨ (a) ∈M1(Q ∪ V0) ∀a ∈ V0

We can take notice that every tree automaton A defines a multiset tree au-
tomaton MA as follows

Definition 2.8 Let A = (Q,V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q,V, δ′, F) where each δ′ is
defined as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, ..., pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A
is non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended as
follows

On Two Families of Multiset Tree Automata 321

δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′
n(σ, M1 ⊕ · · · ⊕Mn) : Mi ∈ δ′(ti)1 ≤ i ≤ n} for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T : MΨ (q) ∈ δ′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M : MΨ (q) ∈ δn(σ,M)}.

Theorem 2.9 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree au-
tomaton, MA = (Q,V, δ′, F) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ (q) ∈ δ′(t).

Corolary 2.10 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree au-
tomaton and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A.
If t ∈ L(A) then t ∈ L(MA).

We will introduce the concept of mirroring in tree structures as exposed in [13].
Informally speaking, two trees will be related by mirroring if some permutations
at the structural level are hold. We propose a definition that relates all the trees
with this mirroring property.

Definition 2.11 Let t and s be two trees from V T . We will say that t and s are
mirror equivalent, denoted by t ./ s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈

perm(< s1, s2, ..., sn >) such that ∀1 ≤ i ≤ n ti ./ si

Theorem 2.12 (Sempere and López, [13]) Let A = (Q,V, δ, F) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F)
be the multiset tree automaton induced by A. If t ./ s then δ′(t) = δ′(s).

Corolary 2.13 (Sempere and López, [13]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T . If
t ∈ L(MA) then, for any s ∈ V T such that t ./ s, s ∈ L(MA).

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [13]. So, given two trees s and t, we can establish
in time O((min{|t|, |s|})2) if t ./ s.

322 J.M. Sempere, D. López

3 k-testable in the strict sense (k-TSS) multiset tree
languages and reversible multiset tree languages

In the following section, we will define two new classes of multiset tree languages.
The definitions related to multiset tree automata come from the relation between
mirrored trees and multiset tree automata which we have established in the previ-
ous section. So, whenever we refer to multiset tree languages we are taking under
our consideration the set of (mirrored) trees accepted by multiset tree automata.

We refer [6] in order to know more about reversibility and local testability in
tree languages.

First, we define k-TSS tree languages for any k ≥ 2.

Definition 3.1 Let T ⊆ V T and the integer value k ≥ 2. T is a k-TSS multi-
set tree language if and only if, given whatever two trees u1, u2 ∈ V T such that
rootk−1(u1) = rootk−1(u2), u−1

1 T 6= ∅ and u−1
2 T 6= ∅ implies that u−1

1 T = u−1
2 T

Any multiset tree automaton that holds the definition given before will be
named a k-TSS multiset tree automaton. We can give the following characteriza-
tion of such automata.

Corolary 3.2 Let A be a k-TSS multiset tree automaton. There not exist two
distinct states q1, q2 such that rootk(q1) ∩ rootk(q2) 6= ∅

Example 3.3 Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, aq2)= q2

δ(σ, q1q1)= q1

δ(σ, aq2q1)= q3 ∈ F

Note that the multiset tree language accepted by the automaton is k-TSS for
any k ≥ 2.

Note also that the following one does not hold the k-TSS condition for any
k ≥ 2:

δ(σ, aa)= q1

δ(σ, bb)= q2

δ(σ, q2q2)= q2

δ(σ, q1q1)= q1

δ(σ, q2q1)= q3 ∈ F

because both the states q1 and q2 (and q3) share a common k-root.

�

We also extend a previous result concerning k-reversible tree languages (for
any k ≥ 0) to give the following definition.

On Two Families of Multiset Tree Automata 323

Definition 3.4 Let T ⊆ V T and the integer value k ≥ 0. T is a k-reversible
multiset tree language if and only if, given whatever two trees u1, u2 ∈ V T such
that rootk−1(u1) = rootk−1(u2), whenever there exists a context t ∈ V T

$ such that
both u1#t, u1#t ∈ T , then u−1

1 T = u−1
2 T

Example 3.5 Consider the multiset tree automaton with transitions:

δ(σ, aa)= q1

δ(σ, a)= q2

δ(σ, q2q2)= q2

δ(σ, aaq1)= q1

δ(σ, q1q1)= q3 ∈ F
δ(σ, q2q1)= q3 ∈ F

the multiset tree language accepted by this automaton is k-reversible and it is also
an example of non k-TSS multiset tree language.

�

Finally, we can relate the two families of multiset tree languages that we have
previously defined with the following result.

Theorem 3.6 Let T ⊆ V T and an integer value k ≥ 2, if T is k-TSS then T is
(k − 1)-reversible.

Proof.
Let t#t1 and t#t2 belong to T , with t ∈ V T

$ and rootk(t1) = rootk(t2), trivially
t−1
1 T 6= ∅ and t−1

2 T 6= ∅. If T is a k-TSS tree language, then by previous definitions,
t−1
1 T = t−1

2 T , and also T is (k − 1)-reversible. �

4 Conclusions and future work

We have introduced two new families of multiset tree languages. Now, the open
question is the characterization of membrane structures defined by them. We think
that reversibility and local testability will introduce restrictions in the way of
defining membrane creation and deletion. This will be explored in future works.

References

1. A. Alhazov, T.O. Ishdorj: Membrane operations in P systems with active membranes.
In Proc. Second Brainstorming Week on Membrane Computing. TR 01/04 of RGNC,
Sevilla University, 2004, 37–44.

2. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing. LNCS
2235, Springer, 2001.

324 J.M. Sempere, D. López

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, M. Tommasi: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997, release October, 1rst 2002.

4. R. Freund, M. Oswald, A. Păun: P systems generating trees. In Pre-proceedings of
Fifth Workshop on Membrane Computing, WMC5 (G. Mauri, Gh. Păun, C. Zandron,
eds.), MolCoNet project IST-2001-32008, 2004, 221–232.

5. F. Gécseg, M. Steinby: Tree languages. In Handbook of Formal Languages, volume 3,
Springer, Berlin, 1997, 1–69.

6. D. López: Inferencia de lenguajes de árboles. PhD Thesis DSIC, Universidad
Politécnica de Valencia, 2003.

7. D. López, J.M. Sempere: Editing distances between membrane structures. In Pro-
ceedings of the 6th International Workshop on Membrane Computing, Vienna, 2005
(R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 3850, Springer, 2006,
326–341.

8. D. López, J. M. Sempere, P. Garćıa: nference of reversible tree languages. IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 34, 4 (2004),
1658–1665.

9. A. Păun: On P systems with active membranes. In Proc. of the First Conference on
Unconventionals Models of Computation (UMC2K), 2000, 187–201.

10. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
11. Gh. Păun, Y. Suzuki, H. Tanaka, T. Yokomori: On the power of membrane division

on P systems. In Proc. Conf. on Words, Languages and Combinatorics, Kyoto, 2000.
12. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer, 1997.
13. J.M. Sempere, D. López :Recognizing membrane structures with tree automata. In

3rd Brainstorming Week on Membrane Computing, Sevilla, 2005. RGNC Report
01/2005 Research Group on Natural Computing, Sevilla University, Fenix Editora,
Sevilla, 2005, 305–316.

14. J.M. Sempere, D. López: Identifying P rules from membrane structures with an error-
correcting approach. In Proceedings of the 7th International Workshop on Membrane
Computing, Leiden, 2006 (H.J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa,
eds.), LNCS 4361, Springer, 2006, 507–520.

15. A. Syropoulos: Mathematics of multisets. In [2], 347–358.

