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Chemostat refers to a laboratory device used for growing microorganisms in a cultured environment, and has been regarded

as an idealization of nature to study competition modeling of mathematical biology. The simple form of chemostat model

assumes that the availability of nutrient and its supply rate are both fixed. In addition the tendency of microorganism to

adhere to surfaces is neglected by assuming the flow rate is fast enough. However, these assumptions largely limit the

applicability of chemostat models to realistic competition systems. In this paper, we relax these assumptions and study

the chemostat models with random nutrient supplying rate or random input nutrient concentration, with or without wall

growth. This leads the models to random dynamical systems and requires the concept of random attractors developed

in the theory of random dynamical systems. Our results include existence of uniformly bounded non-negative solutions,

existence of random attractors and geometric details of random attractors for different value of parameters. Copyright c©
2009 John Wiley & Sons, Ltd.
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1. Introduction

Competition modeling is one of the most challenging aspects of mathematical biology. The simplest form of competition occurs

when two or more populations compete for the same resource, e.g. a common food supply of a growth-limiting nutrient.

Chemostat can be regarded as a laboratory idealization of nature to study such competitions [31]. The chemostat model plays

an important role in theoretical ecology [6, 10, 13, 16, 26, 27, 28, 30], waste water treatment [1, 21], and the study of

recombinant problems in genetically altered organism [14, 15]. Derivation and analysis of chemostat models are well documented

in [23, 24, 29] and references therein.

Two standard assumptions for simple chemostat models are: (1) the availability of the nutrient and its supply rate are fixed

and (2) the tendency of microorganism to adhere to surfaces is not taken into account. Denoting by x(t) the concentration of

the growth-limiting nutrient and y(t) the concentration of the microorganism at any specific time t, these assumptions lead to

the following growth equations [22, 24]:

x ′(t) = D (I − x)− aU(x(t))y(t), (1)

y ′(t) = −Dy(t) + aU(x(t))y(t), (2)

where D is the rate at which the nutrient is supplied and also the rate at which the contents of the growth medium are removed,

I is the input nutrient concentration which describes the quantity of nutrient available with the system at any time, a is the

maximal consumption rate of the nutrient and also the maximum specific growth rate of microorganisms, and U is the functional
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response of the microorganism describing how the nutrient is consumed by the species. We assume in this paper that U follows

the Michaelis-Menten or Holling type-II form:

U(x) =
x

m + x
, (3)

where m > 0 is the half-saturation constant [22, 24].

However, in reality the chemostat models are neither autonomous nor deterministic; they process information provided

by physical or chemical inputs with noise, which can be caused by environmental perturbations, internal variability, randomly

fluctuating parameters, measurement errors, etc. This motives our study of chemostat models with randomly fluctuated input

parameters, the nutrient supplying rate D and the nutrient supplying concentration I. From biological point of view, for an

experiment to be repeatable, one has to have a reasonable description of its random aspects. These aspects may change in time

and thus the noise can be modeled as a time-dependent stochastic process with certain known properties.

Representing mathematically such a stochastic process starts with a probability space (Ω,F ,P), where F is the σ−algebra

of measurable subsets of Ω and P is the probability measure. To connect the state ω ∈ Ω of the random environment with its

state after a time t has elapsed, we define a family of time-dependent maps {θt : Ω→ Ω} that keeps track of noise. In this

work, we formalize the two input parameters D as D(θtω) and I as I(θtω). In addition, we formalize D(θtω) and I(θtω) as

bounded processes. This is a natural formalism to model the realistic stochastic fluctuations of a biological system caused by

its interaction with the external world, because the parameters in dynamical systems of biological interest are inherently positive

and bounded.

One other drawback of traditional chemostat model (1)-(2) is the ignorance of wall attachment of microorganisms. Most of

the time microorganisms grow not only in the growth medium, but also along the walls of the container, either due to the ability

of the microorganisms to stick on to the walls of the container or the flow rate is not fast enough to wash these organisms out

of the system. Naturally, we can regard the consumer population y(t) as an aggregate of two categories of populations, one

in the growth medium, denoted by y1(t), and the other on the walls of the container, denoted by y2(t). These individuals may

switch their categories at any time, i.e., the microorganisms on the walls may join those in the growth medium or the biomass

in the medium may prefer walls.

Let r1 and r2 represent the rates at which the organisms stick on to and shear off from the walls, respectively. Assume that

the nutrient is equally available to both of the categories, therefore it is assumed that both categories consume the same amount

of nutrient and at the same rate. When the flow rate is low, the organisms may die naturally before being washed out and thus

washout is no longer the only prime factor of death. Denote by ν(> 0) the collective death rate coefficient of y(t) representing

all the aforementioned factors such as diseases, aging, etc. On the other hand, when the flow rate is small, the dead biomass

is not sent out of the system immediately and is subject to bacterial decomposition which in turn leads to regeneration of the

nutrient. Expecting not 100% recycling of the dead material but only a fraction, we let constant b ∈ (0, 1) describe the fraction

of dead biomass that is recycled.

Our object is to study the evolution of concentrations of the nutrient and microorganism when the input parameters are

random and wall growth is taken into account, which can be described by the following random system:

x ′(t) = D(θtω) (I(θtω)− x(t))− a x(t)

m + x(t)
(y1(t) + y2(t)) + bνy1(t), (4)

y ′1(t) = − (ν +D(θtω)) y1(t) + c
x(t)

m + x(t)
y1(t)− r1y1(t) + r2y2(t), (5)

y ′2(t) = −νy2(t) + c
x(t)

m + x(t)
y2(t) + r1y1(t)− r2y2(t), (6)

where 0 < c ≤ a is the growth rate coefficient of the consumer species. In particular we assume that the inputs are perturbed

by real noise, i.e. D(θtω) and I(θtω) are continuous and essentially bounded:

D(θtω) ∈ d · [1− ε, 1 + ε], I(θtω) ∈ i · [1− ε, 1 + ε], d > 0, i > 0, ε < 1.

Bounded noise can be modeled in various ways. For example in [4], given a stochastic process Zt such as an Ornstein-Uhlenbeck

process, the stochastic process

ζ(Zt) := ζ0

“
1− 2ε

Zt

1 + Z2
t

”
, (7)

where ζ0 and ε are positive constants with ε ∈ (0, 1], takes values in the interval ζ0[1− ε, 1 + ε] and tends to peak around

ζ0(1± ε). It is thus suitable for a noisy switching scenario. In another example, the stochastic process

η(Zt) := η0

“
1− 2ε

π
arctanZt

”
, (8)
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where η0 and ε are positive constants with ε ∈ (0, 1] takes values in the interval η0[1− ε, 1 + ε] and is centered on η0. In the theory

of random dynamical systems the driving noise process Zt(ω) is replaced by a canonical driving system θtω. This simplifications

allows a better understanding of the path-wise approach to model noise: a system influenced by stochastic processes for each

single realization ω can be interpreted as wandering along a path θtω in Ω and thus may provide additional statistical/geological

information to the modeler.

The rest of the paper is organized as follows. In section 2 we give a brief preliminary review of classical random dynamical

system (RDS) theory, in section 3 we analyze the special case of system (4)-(6) without wall growth. In section 4 we analyze

the full system of (4)-(6), with wall growth. Some closing remarks will be stated in section 5.

2. Random dynamical systems

In this section we first present some concepts (from [2]) related to general random dynamical systems (RDSs) and random

attractors that we require in the sequel. Our situation is, in fact, somewhat simpler, but to facilitate the reader’s access to the

literature we give more general definitions here.

Let (X, ‖ · ‖X) be a separable Banach space and let (Ω,F ,P) be a probability space where F is the σ−algebra of measurable

subsets of Ω (called “events”) and P is the probability measure. To connect the state ω in the probability space Ω at time 0 with

its state after a time of t elapses, we define a flow θ = {θt}t∈R on Ω with each θt being a mapping θt : Ω→ Ω that satisfies

(1) θ0 = IdΩ,

(2) θs ◦ θt = θs+t for all s, t ∈ R,

(3) the mapping (t, ω) 7→ θtω is measurable and

(4) the probability measure P is preserved by θt , i.e. θtP = P.

This set-up establishes a time-dependent family θ that tracks the noise, and (Ω,F ,P, θ) is called a metric dynamical system [2].

Definition 1 A stochastic process {S(t, ω)}t≥0,ω∈Ω is said to be a continuous RDS over (Ω,F ,P, (θt)t∈R) with state space X

if S : [0,+∞)×Ω× X → X is (B[0,+∞)× F × B(X), B(X))- measurable, and for each ω ∈ Ω,

(i) the mapping S(t, ω) : X → X, x 7→ S(t, ω)x is continuous for every t ≥ 0;

(ii) S(0, ω) is the identity operator on X;

(iii) (cocycle property) S(t + s, ω) = S(t, θsω)S(s, ω) for all s, t ≥ 0.

Definition 2 (i) A set-valued mapping B : ω → 2X\∅ is said to be a random set if the mapping ω 7→ distX(x, B(ω)) is

measurable for any x ∈ X.

(ii) A random set B(ω) is said to be bounded if B(ω) is bounded for a.e. ω ∈ Ω; a random set B(ω) is said to be compact if

B(ω) is compact for a.e. ω ∈ Ω; a random set is said to be closed if B(ω) is closed for a.e. ω ∈ Ω.

(iv) A bounded random set B(ω) ⊂ X is said to be tempered with respect to (θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈B(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to (θt)t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R
|r(θ−tω)| = 0, for all β > 0.

In what follows we use D(X) to denote the set of all tempered random sets of X.

Definition 3 A random set K(ω) ⊂ X is called a random absorbing set in D(X) if for any B ∈ D(X) and a.e. ω ∈ Ω, there

exists TB(ω) > 0 such that

S(t, θ−tω)B(θ−tω) ⊂ K(ω), ∀t ≥ TB(ω).

Definition 4 Let {S(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, (θt)t∈R) with state space X and let A(ω)(⊂ X) be a random set.

Then A(ω) is called a global random D attractor (or pullback D attractor) for {S(t, ω)}t≥0,ω∈Ω if ω 7→ A(ω) satisfies

(i) (random compactness) A(ω) is a compact set of X for a.e. ω ∈ Ω;

(ii) (invariance) for a.e. ω ∈ Ω and all t ≥ 0, it holds

S(t, ω)A(ω) = A(θtω);
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(iii) (attracting property) for any B ∈ D(X) and a.e. ω ∈ Ω,

lim
t→∞

distX(S(t, θ−tω)B(θ−tω), A(ω)) = 0,

where

distX(G,H) = sup
g∈G

inf
h∈H
‖g − h‖X

is the Hausdorff semi-metric for G,H ⊆ X.

Proposition 1 [5, 8, 12] Let B ∈ D(X) be an absorbing set for the continuous random dynamical system {S(t, ω)}t≥0,ω∈Ω which

is closed and satisfies the asymptotic compactness condition for a.e. ω ∈ Ω, i.e., each sequence xn ∈ S(tn, θ−tn , B(θ−tnω)) has a

convergent subsequence in X when tn →∞. Then the cocycle S has a unique global random attractor with component subsets

A(ω) =
\

τ≥tB(ω)

[
t≥τ

S(t, θ−tω)B(θ−tω).

If the pullback absorbing set is positively invariant, i.e., S(t, ω)B(ω) ⊂ B(θtω)) for all t ≥ 0, then

A(ω) =
\
t≥0

S(t, θ−tω)B(θ−tω).

For state space X = Rd as in this paper, the asymptotic compactness follows trivially. Note that the random attractor is pathwise

attracting in the pullback sense, but need not be pathwise attracting in the forward sense, although it is forward attracting in

probability, due to some possible large deviations, see e.g., Arnold [2].

When the cocycle mapping is strictly uniformly contracting [7, 18], i.e., there exists K > 0 such that

‖S(t, ω)x0 − S(t, ω)y0‖X ≤ e−Kt ‖x0 − y0‖X

for all t ≥ 0, ω ∈ Ω and x0, y0 ∈ X, then the random attractor consists of singleton subsets A(ω) = {A(ω)}. It is thus essentially

a single stochastic process with sample paths A(θtω) for all t ∈ R. The proof uses a Cauchy sequence rather than compactness

argument. In this case the random attractor is pathwise attracting in both the pullback and forward senses.

2.1. Chemostat generates an RDS

We next prove that equations (4)-(6) generates a random dynamical system, and the random dynamical system has a random

attractor. Letting

R3
+ = {(x, y , z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0}

we have the following lemma.

Lemma 1 For any ω ∈ Ω, any t0 ∈ R, and any initial data u0 := (x(t0), y1(t0), y2(t0))T ∈ R3
+, system (4)-(6) admits a unique

solution u(·; t0, ω, u0) ∈ C([t0,∞),R3
+) with u(t0; t0, ω, u0) = u0 and generates a random dynamical system S(t, ω)(·) defined

as

S(t, ω)u0 = u(t; 0, ω, u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω.

Moreover, u(·) = u(·; t0, ω, u0) is bounded.

Proof. With u(t) = (x(t), y1(t), y2(t))T , system (4)-(6) can be written as

du

dt
= L(θtω) · u + F (u, θtω),

where

L(θtω) =

0@ −D(θtω) 0 0

0 −ν −D(θtω)− r1 r2
0 r1 −ν − r2

1A ,
and F : R3

+ × [t0,+∞(→ R3 is given by

F (v, θtω) =

0BBBBBBB@

D(θtω)I(θtω)− av1

m + v1
(v2 + v3)

cv1

m + v1
v2

cv1

m + v1
v3

1CCCCCCCA
,
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where v = (v1, v2, v3) ∈ R3
+.

Since D(θtω) is bounded, the operator L generates an evolution system on R3. Also because D(θtω) and I(θtω) are continuous

with respect to t, function F (·, θ·ω) ∈ C(R3
+ × [t0,∞),R3) and is continuously differentiable with respect to the variables

(v1, v2, v3), being the partial derivatives bounded inside R3
+, what implies that is globally Lipschitz with respect to (v1, v2, v3)

in R3
+. Therefore, thanks to the classical results from the theory of ordinary differential equations, system (4)-(6) possesses a

unique global solution u(·; t0, ω, u0) ∈ C1([t0,∞),R3)

Notice that it is straightforward to check that

u(t + t0; t0, ω, u0) = u(t; 0, θt0ω, u0)

for all t0 ∈ R, t ≥ t0, ω ∈ Ω, u0 ∈ R3
+. This allows us to define a mapping S(t, ω)(·), which will be our random dynamical system,

as

S(t, ω)u0 = u(t; 0, ω, u0), ∀t ≥ 0, u0 ∈ R3
+, ω ∈ Ω. (9)

From now on, we will simply write u(t;ω, u0) instead of u(t; 0, ω, u0).

Now, as we will argue for each ω ∈ Ω fixed, we will not mention explicitly the random parameter and will write u(t) =

u(t;ω, u0), and the same as far as its components are involved. By continuity of solutions, each solution has to take value 0

before it reaches a negative value. With x = 0 and y1, y2 ≥ 0, equation (4) becomes

x ′(t) = D(θtω)I(θtω) + bνy1(t) > 0,

and thus x(t) is strictly increasing at x = 0. Similarly, with y1 = 0 and x, y2 ≥ 0, equation (5) gives y ′1(t) = r2y2 ≥ 0, and with

y2 = 0 and x, y1 ≥ 0, equation (6) gives y ′2(t) = r1y1 ≥ 0. Therefore, y1(t) is non-decreasing at y1 = 0 and y2(t) is non-decreasing

at y2 = 0, i.e., u(t) ∈ R3
+ for any t ≥ 0.

For any u0 ∈ R3
+, solution u(·;ω, u0) ∈ R3

+ for t ∈ [0,∞). Since function F (u, θtω) = F (u, t, ω) is continuous in u, t, and

is measurable in ω, u : [0,∞)×Ω× R3
+ → R3

+, (t;ω, u0) 7→ u(t;ω, u0) is (B[0,∞)×F0 × B(R3
+),B(R3

+))-measurable. It then

follows directly that (4)-(6) generate the continuous random dynamical system S(t, ω)(·) defined by (9).

For u(t) ∈ R3
+, define ‖u(t)‖1 := x(t) + y1(t) + y2(t), and let s(t) = x(t) + a

c
(y1(t) + y2(t)). Since a ≥ c, then

‖u(t)‖1 ≤ s(t) ≤ a

c
· ‖u(t)‖1.

The time derivative of s(t) along solutions to (4)-(6) satisfies

ds(t)

dt
= D(θtω) [I(θtω)− x(t)]−

h a
c

(ν +D(θtω))− bν
i
y1(t)− a

c
νy2(t)

≤ di(1 + ε)2 − d(1− ε)x(t)−
h a
c

(ν + d(1− ε))− bν
i
y1(t)− a

c
νy2(t). (10)

Note that, since a ≥ c and 0 < b < 1,

a

c
(ν + d(1− ε)− bν) =

a

c
d(1− ε) +

“ a
c
− b
”
ν >

a

c
d(1− ε).

Therefore by letting λ := min{d(1− ε), ν} we obtain

ds(t)

dt
≤ di(1 + ε)2 − λs(t). (11)

On the one hand, for s(0) ≥ di(1 + ε)2/λ, s(t) will be non-increasing for all t ≥ 0 and thus s(t) ≤ v(0). On the other hand,

for s(0) < di(1 + ε)2/λ, s(t) ≤ di(1 + ε)2/λ for all t ≥ 0. These imply that ‖u(t)‖1 is bounded:

0 ≤ ‖u(t)‖1 ≤ max
n
di(1 + ε)2/λ, x(0) +

a

c
(y1(0) + y2(0))

o
, t ≥ 0.

2

2.2. Existence of a random attractor

In this subsection we study the existence of tempered random bounded absorbing sets of the random dynamical system

{S(t, ω)}t≥0,ω∈Ω, followed by the existence of a random attractor for {S(t, ω)}t≥0,ω∈Ω.

Lemma 2 For ω ∈ Ω, there exists a tempered bounded closed random absorbing set K(ω) ∈ D(R3
+) of the random dynamical

system {S(t, ω)}t≥0,ω∈Ω such that for any B ∈ D(R3
+) and each ω ∈ Ω, there exists TB(ω) > 0 yielding

S(t, θ−tω)B(θ−tω) ⊂ K(ω) ∀t ≥ TB(ω).
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Proof. Recall that u(t;ω, u0) = S(t, ω)u0 denotes the solution of system (4)-(6) satisfying u(0;ω, u0) = u0. Then, for

u0 := u0(θ−tω) ∈ B(θ−tω),

‖S(t, θ−tω)u0‖1 = ‖u(t; θ−tω, u0(θ−tω))‖1 ≤ s(t; θ−tω, s0(θ−tω)).

According to inequality (11),

s(t, ω) ≤ s0e
−λt + di(1 + ε)2/λ. (12)

Substituting ω by θ−tω in (12), we obtain

s(t; θ−tω, s0(θ−tω)) ≤ e−λt sup
(x,y1,y2)∈B(θ−tω)

“
x +

a

c
(y1 + y2)

”
+
di(1 + ε)2

λ
. (13)

Therefore for any ε > 0, there exists TB(ω) such that when t > TB,

‖u(t; θ−tω, u0)‖1 = x(t; θ−tω, u0) + y1(t; θ−tω, u0) + y2(t; θ−tω, u0)

≤ di(1 + ε)2/λ+ ε,

for all u0 ∈ B(θ−tω).

Name

Kε(ω) = {(x, y1, y2) ∈ R3
+ : x + y1 + y2 ≤ di(1 + ε)2/λ+ ε},

then Kε(ω) is positively invariant and absorbing in R3
+. 2.

It follows directly from Proposition 1, that the random dynamical system generated by system (4)-(6) possesses a random

attractor A = {A(ω) : ω ∈ Ω}, consisting of nonempty compact random subsets of R3
+ contained in Kε(ω). In the next sections,

we will study the geometric structure of the random attractor of the random dynamical system generated by (4)-(6), first

without wall growth, then with wall growth.

3. Random chemostat without wall growth

In this section we first consider the special case when y2(t) ≡ 0, r1 = r2 = 0, ν = 0 and a = c, which describes the random

chemostat system with no wall growth. In particular we will study the system with both random nutrient input concentration

and random nutrient supplying rate.

When there is no wall growth, equations (4) - (6) can be reduced to

dx(t)

dt
= D(θtω)(I(θtω)− x(t))− a x(t)

m + x(t)
y1(t) (14)

dy1(t)

dt
= −D(θtω)y1(t) + a

x(t)

m + x(t)
y1(t) (15)

Let v(t) := x(t) + y1(t), then v(t) satisfies

dv(t)

dt
= D(θtω) [I(θtω)− v(t)] (16)

This has a nontrivial random solution which is both forward and pullback attracting. In fact, for any initial value v0, it holds

v(t;ω, v0) = v0e
−
R t

0 D(θsω)ds +

Z t

0

D(θsω)I(θsω)e−
R t
s D(θτω)dτds. (17)

Replacing ω by θ−tω in (17) we obtain

v(t; θ−tω, v0) = v0e
−
R 0
−t D(θsω)ds +

Z 0

−t
D(θsω)I(θsω)e−

R t
0 D(θτω)dτds,

which is pullback convergent (i.e., when t → +∞) to

v ∗(ω) :=

Z 0

−∞
D(θsω)I(θsω)e−

R 0
s D(θτω)dτds.

Note that since d(1− ε) ≤ D(θtω) ≤ d(1 + ε) and i(1− ε) ≤ I(θtω) ≤ i(1 + ε),

di(1− ε)2

Z 0

−∞
e−

R 0
s d(1+ε)dτds ≤ v ∗(ω) ≤ di(1 + ε)2

Z 0

−∞
e−

R 0
s d(1−ε)dτds,
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i.e.
i(1− ε)2

1 + ε
≤ v ∗(ω) ≤ i(1 + ε)2

1− ε , ω ∈ Ω. (18)

For a fixed and small enough δ > 0, name the nonempty compact set

K(ω) :=


(x, y1) ∈ R2

+ :
i(1− ε)2

1 + ε
− δ ≤ x + y1 ≤

i(1 + ε)2

1− ε + δ

ff
.

Then for any B(ω) ∈ D(R2
+) and a.e. ω ∈ Ω, there exists TB(ω) > 0 such that

S(t, θ−tω)B(θ−tω) ⊂ K(ω),

i.e. K(ω) is positively invariant and absorbing in R2
+ for system (16).

The random dynamical system generated by system (14)-(15) thus has a random attractor A = {A(ω) : ω ∈ Ω} consisting

of non-empty compact subsets of K(ω). We provide in the next theorem sufficient conditions for the extinction and persistence

of microorganism y1.

Theorem 1 The random pullback attractor A = {A(ω) : ω ∈ Ω} for the random dynamical system generated by equations

(14)-(15)

(i) has singleton component sets A(ω) = {(v ∗(ω), 0)} for every ω ∈ Ω, provided

d(1− ε) ≥ a;

(ii) possesses nontrivial component sets which include (v ∗(ω), 0) and strictly positive points, provided

d(1 + ε) ≤ ai(1− ε)3

m(1− ε2) + i(1 + ε)3
;

(iii) contains a nontrivial entire solution that attracts all other strictly positive entire solutions, provided

d(1− ε) > a − ami(1− ε)2/(1 + ε)

(m + i(1 + ε)2/(1− ε))2
.

Proof. Note that since the pullback attractor contains all bounded entire solutions, then (v ∗(ω), 0) ∈ A(ω) for every ω ∈ Ω,.

(i) Equation (15) can be written as

dy1(t)

dt
=

„
−D(θtω) +

ax(t)

m + x(t)

«
y1(t)

< (−d(1− ε) + a)y1(t).

Thus when d(1− ε) > a, y ′(t) < 0. This implies that y1(t)→ 0 as t →∞ and x(t, ω) = v ∗(θtω), y1(t) = 0 is

asymptotically stable in R2
+.

(ii) Besides x + y1 = i(1 + ε)2/(1− ε) and x + y1 = i(1− ε)2/(1 + ε), the absorbing set K(ω) has two other edges x = 0

and y1 = 0. On x = 0, x ′(t)|x=0 = D(θtω)I(θtω) > 0, i.e., x(t) is increasing towards the interior of K(ω) on this edge.

The edge y1 = 0 is invariant, as y ′1|y1=0 = 0. But for y = ε� i(1− ε)2/(1 + ε), x(t) satisfies i(1− ε)2/(1 + ε) ≤ x ≤
i(1 + ε)2/(1− ε). Hence when

d(1 + ε) ≤ ai(1− ε)3

m(1− ε2) + i(1 + ε)3
,

equation (15) gives

dy1

dt
=

„
−D(θtω) +

ax(t)

m + x(t)

«
y1 >

„
ai(1− ε)3

m(1− ε2) + i(1 + ε)3
− d(1 + ε)

«
y1 ≥ 0.

This implies that the positive interior of the absorbing set also contains points of the random attractor.

(iii) We now consider equation (14) restricted to the stable manifold x(t) + y1(t) = v ∗(θtω), on which

dx(t)

dt
= D(θtω) (I(θtω)− x(t))− ax(t)

m + x(t)
(v ∗(θtω)− x(t)). (19)

For any two solutions x1(t) and x2(t) to equation (19), define δ(t) = x1(t)− x2(t). Then δ(t) satisfies

dδ(t)

dt
= −D(θtω)δ(t)− av ∗(θtω)

„
x1

m + x1
− x2

m + x2

«
+ a

„
x2

1

m + x1
− x2

2

m + x2

«
= −D(θtω)δ(t)− amv ∗(θtω)

(m + x1)(m + x2)
δ(t) + a

m(x1 + x2) + x1x2

(m + x1)(m + x2)
δ(t).

Math. Meth. Appl. Sci. 2009, 00 1–13 Copyright c© 2009 John Wiley & Sons, Ltd. 7
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Since for t large enough, x1(t), x2(t) ≤ v ∗(θtω) ≤ i(1 + ε)2/(1− ε), and v ∗(θtω) ≥ i(1− ε)2/(1 + ε), we have

dδ(t)

dt
< −d(1− ε)δ(t)− ami(1− ε)2/(1 + ε)

(m + i(1 + ε)2/(1− ε))2
δ(t) + aδ(t).

Hence δ(t)→ 0 as t →∞ when

d(1− ε) +
ami(1− ε)2/(1 + ε)

(m + i(1 + ε)2/(1− ε))2
> a.

This always holds if d(1− ε) ≥ a, which is scenario (i) of the theorem. But it can still hold if a is slightly larger. In fact,

mi(1− ε)2/(1 + ε)

(m + i(1 + ε)2/(1− ε))2
<

mi

(m + i)2
< 1.

In this case the above estimates with neither x1(t) or x2(t) equals v ∗(θtω), the system is strict uniformly contracting

[7, 17] in the positive quadrant and thus has a unique entire solution v ∗(θtω) as its pullback attractor in the positive

quadrant. 2

4. Random chemostat with wall growth

In this section we consider the full random chemostat system with wall growth taken into account. In particular we will study the

random dynamical system generated by (4)-(6) with both random nutrient input concentration and random nutrient supplying

rate. To obtain more detailed information on the internal structure of the pullback attractor, we make the following change of

variables:

y(t) = y1(t) + y2(t); γ(t) =
y1(t)

y(t)
. (20)

System (4)-(6) then becomes

dx(t)

dt
= D(θtω)(I(θtω)− x(t))− ax(t)

m + x(t)
y(t) + bνγ(t)y(t), (21)

dy(t)

dt
= −νy(t)−D(θtω)γ(t)y(t) +

cx(t)

m + x(t)
y(t), (22)

dγ(t)

dt
= −D(θtω)γ(t)(1− γ(t))− r1γ(t) + r2(1− γ(t)). (23)

By definition, γ(t) represents the portion of microorganism that attaches to the wall. Noting that the dynamics of γ(t) =

γ(t;ω, γ0) are uncoupled with x(t) and y(t), we first study the dynamics of γ(t).

4.1. Global dynamics of γ(t)

For any y1 > 0 and y2 > 0, we have 0 < γ(t) < 1 for all t ∈ R. Moreover, since

dγ

dt

˛̨̨̨
γ=0

= r2 > 0;
dγ

dt

˛̨̨̨
γ=1

= −r1 < 0,

the interval (0, 1) is positively invariant for γ. Therefore equation (23) has a pullback attractor Aγ = {Aγ(ω)}ω∈Ω [19] with its

component subsets given by

Aγ(ω) =
\
t≥0

γ(t; θ−tω, [0, 1]).

These component subsets have the form

Aγ(θtω) = [γl(θtω), γu(θtω)],

where γl(θtω) and γu(θtω) are entire bounded solutions of equation (23). The other bounded entire solutions of (23) lie between

these two. We next estimate bounds of these entire solutions by using differential inequalities.

On the one hand, since γ(t) ≤ 1 and D(θtω) > 0, we have

γ ′(t) = D(θtω)(γ2(t)− γ(t))− (r1 + r2)γ(t) + r2

≤ −(r1 + r2)γ(t) + r2.

On the other hand,

γ ′(t) = D(θtω)γ2(t)− (D(θtω) + r1 + r2)γ(t) + r2

≥ −(d(1 + ε) + r1 + r2)γ(t) + r2.

8 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–13
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Let α(t) and β(t) satisfy

α(t) = −(d(1 + ε) + r1 + r2)α(t) + r2, α(0) = γ(0), (24)

β(t) = −(r1 + r2)β(t) + r2, β(0) = γ(0). (25)

Then α(t) ≤ γ(t) ≤ β(t) and [γl(θtω), γu(θtω)] ⊆ [α∗, β∗], where

α∗ =
r2

r1 + r2 + d(1 + ε)
, β∗ =

r2
r1 + r2

(26)

are asymptotically stable steady states for (24) and (25) respectively. In summary,

Aγ(ω) = [γl(ω), γu(ω)] ⊆ [α∗, β∗] .

We provide the sufficient condition for A to consist of only a single entire solution in the next theorem.

Theorem 2 The pullback attractor A associated to the random dynamical system γ(t, ω, ·) generated by (23) consists of a

single entire solution, denoted by γ∗(θtω), provided

2r2d(1 + ε) < (r1 + r2 + d(1− ε))(r1 + r2).

Proof. Equivalently, we need to find conditions under which γl(θtω) ≡ γu(θtω), t ≥ 0. To this end, we consider the difference

between γl(θtω) and γu(θtω), h(t) := γu(θtω)− γl(θtω). Then h satisfies

dh(t)

dt
= D(θtω)(γl(θtω) + γu(θtω))h(t)− (D(θtω) + r1 + r2)h(t). (27)

Solving (27) and replacing ω by θ−tω we obtain

h(t, θ−tω) = h0e
R 0
−t D(θsω)(γl (θsω)+γu(θsω))−(D(θsω)+r1+r2)ds

≤ h0e
R 0
−t d(1+ε)·2γu(θsω)−(d(1−ε)+r1+r2)

≤ e

“
2dr2(1+ε)
r1+r2

−(r1+r2+d(1−ε))
”
t
.

Therefore when 2r2d(1 + ε) < (r1 + r2 + d(1− ε))(r1 + r2), h(t, θ−tω)→ 0 as t →∞. This implies that the pullback attractor

A for the random dynamical system γ(t, ω, ·) has only one single entire solution. 2

Note that this sufficient condition is equivalent to

dε <
(r1 + r2)2 + d(r1 − r2)

r1 + 3r2
,

which essentially represents the restriction on the magnitude of noise on D. We next study the dynamics of x(t) and y(t).

4.2. Global dynamics of x(t) and y(t)

For convenience for readers, we restate equations for x(t) and y(t) here:

dx(t)

dt
= D(θtω)(I(θtω)− x(t))− ax(t)

m + x(t)
y(t) + bνγ(t)y(t),

dy(t)

dt
= −νy(t)−D(θtω)γ(t)y(t) +

cx(t)

m + x(t)
y(t).

According to the dynamics of γ(t) discussed in the previous subsection, for t large enough, γ(t) satisfies

α∗ ≤ γ(t) ≤ β∗,

where α∗ and β∗ are as stated in (26).

Theorem 3 Given a ≥ c, 0 < b < 1, ν > 0, assume that D(θtω) and I(θtω) are continuous and essentially bounded, with

d(1− ε) ≤ D(θtω) ≤ d(1 + ε) and i(1− ε) ≤ I(θtω) ≤ i(1 + ε). Then, system (21)-(22) has a pullback attractor A = {A(ω) :

ω ∈ Ω} inside the nonnegative quadrant. Moreover, letting

x∗(ω) =

Z 0

−∞
D(θsω)I(θsω)e−

R 0
s D(θτω)dτds, (28)

Math. Meth. Appl. Sci. 2009, 00 1–13 Copyright c© 2009 John Wiley & Sons, Ltd. 9
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(i) the pullback attractor A has a singleton component subset A(ω) = {(x∗(ω), 0)} provided

ν + d(1− ε)α∗ ≥ c,

(ii) the pullback attractor A also contains points strictly inside the positive quadrant in addition to the singleton solution

{(x∗(ω), 0)} provided

ac2di(1− ε)2 >
`
m(aν + ad(1 + ε)− cbνβ∗) + acdi(1− ε)2

´
· (ν + d(1 + ε)β∗). (29)

Proof. Let z(t) := cx(t) + ay(t), then z(t) satisfies

dz(t)

dt
= cD(θtω)I(θtω)−D(θtω) · cx(t)−

»
ν +D(θtω)γ(t)− cbν

a
γ(t)

–
· ay(t). (30)

Note that since b < 1, c ≤ a and γ(t) ≤ β∗ < 1, then

ν +D(θtω)γ(t)− cbν

a
γ(t) ≥ D(θtω)γ(t).

Therefore

dz(t)

dt
≤ cD(θtω)I(θtω)−D(θtω)γ(t)z(t)

≤ cdi(1 + ε)2 − d(1− ε)α∗z(t), (31)

and

z(t) ≤ ci(1 + ε)2

(1− ε)α∗
=
ci(1 + ε)2(r1 + r2 + d(1 + ε))

(1− ε)r2
.

It follows that for 0 < ε < 1, the nonempty compact set

K(ω) :=


(x, y) ∈ R2

+ : 0 ≤ cx + ay ≤ ci(1 + ε)2(r1 + r2 + d(1 + ε))

(1− ε)r2

ff
is positively invariant and absorbing in R2

+. The random dynamical system on R2
+ generated by equations (21)-(22) thus has a

pullback attractor A = {A(ω) : ω ∈ Ω}, consisting of nonempty compact subsets of R2
+ that are contained in K(ω).

(i) When ν + d(1− ε)α∗ ≥ c, y(t) satisfies

dy(t)

dt
= −

„
ν +D(θtω)γ(t)− cx(t)

m + x(t)

«
y(t)

< − (ν + d(1− ε)α∗ − c) y(t) ≤ 0.

Thus y(t) decreases to 0 as t approaches ∞. Consequently, x(t) satisfies

dx(t)

dt
= D(θtω)(I(θtω)− x(t)). (32)

The solution to (32) is

x(t) = x(0)e−
R t

0 D(θsω)ds +

Z t

0

D(θsω)I(θsω)e−
R t
s D(θτω)dτds.

Replacing ω by θ−tω, we obtain

x(t, θ−tω) = x(0)e−
R 0
−t D(θsω)ds +

Z 0

−t
D(θsω)I(θsω)e−

R 0
s D(θτω)dτds,

which converges to x∗(ω) as t →∞. According to the definition of γ(t) = y1(t)/y(t), y(t) cannot take value 0.

However, x(t) = x∗(w), y(t) = 0 corresponds to x(t) = x∗(w), y1(t) = y2(t) = 0 in original system (4)-(6), representing

the extinction of microorganisms.

(ii) Again let z(t) := cx(t) + ay(t). On the one hand by (31),

dz(t)

dt
≤ cdi(1 + ε)2 − d(1− ε)α∗z(t).
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On the other hand since γ(t) < 1 and ν − cbνγ(t)/a > 0, we derive from (30) that

dz(t)

dt
≥ cD(θtω)I(θtω)−D(θtω) · cx(t)−

„
ν +D(θtω)− cbν

a
γ(t)

«
· ay(t)

≥ cD(θtω)I(θtω)−
„
ν +D(θtω)− cbν

a
γ(t)

«
· z(t)

≥ cdi(1− ε)2 −
„
ν + d(1 + ε)− cbν

a
β∗
«
z(t).

Denote by

lz :=
acdi(1− ε)2

aν + ad(1 + ε)− cbνβ∗ ; uz :=
ci(1 + ε)2

(1− ε)α∗
,

we have the upper and lower bounds for z(t) as

lz ≤ z(t) ≤ uz .

For 0 < ε < 1, define Qε to be the quadrilateral

Qε :=
˘

(x, y) ∈ R2
+ : x ≥ 0, y ≥ 0, lz ≤ cx + ay ≤ uz

¯
.

On each of the four edges of Qε we have:

dx(t)

dt

˛̨̨̨
x=0

= D(θtω)I(θtω) + bνγ(t)y(t) > 0;

dz(t)

dt

˛̨̨̨
z=lz

> cdi(1− ε)2 −
„
ν + d(1 + ε)− cbν

a
β∗
«
lz = 0;

dz(t)

dt

˛̨̨̨
z=uz

< cdi(1 + ε)2 − d(1− ε)α∗lu = 0;

dy(t)

dt

˛̨̨̨
y=0

= 0.

It shows that y = 0 is invariant. But for y = ε� 1, x(t) satisfies lz/c ≤ x(t) ≤ uz/c. When condition (29) is satisfied,

since function x
m+x

is increasing with respect to x , we have

dy(t)

dt

˛̨̨̨
y=ε

=

„
−ν −D(θtω)γ(t) +

cx

m + x

«
ε

≥
„
−ν − d(1 + ε)β∗ +

clz
m + uz

«
ε > 0.

This implies that the pullback attractor A also contains points strictly inside the positive quadrant in addition to the set

(x∗(ω), 0). 2

5. Closing remarks

During the past two decades, the theory of random dynamical system (RDS) has made substantial progress in describing the

asymptotic behavior of systems with stochasticity, e.g. [25, 11, 9, 3, 5, 8] and references therein. The basic concept for RDS

theory is to view an RDS as consisting of two ingredient – a stochastic but autonomous “noise process”, and a classical dynamical

system driven by this process. The RDS theory thus provides an integration of classical ergodic theory with modern dynamical

systems, giving a theoretical framework parallel to classical smooth and topological dynamics (stability, attractors, bifurcation

theory, etc.), while allowing one to treat in a unified way the most important classes of dynamical systems with randomness –

random (or stochastic) differential (or partial differential) equations [20].

Our motivation for studying chemostat models with random inputs arises from the need to provide foundations for a

constructive theory of competition models exposed to external random forces. The resulting system is a system of coupled

random ordinary differential equations with randomly varying input parameters, and generates a random dynamical system.

Comparing to existing literatures on chemostat models, our major contributions include (1) varying randomly both the supply

rate and the input concentration of the microorganism, and (2) taking into account the tendency of microorganisms to attach

onto the wall.

In summary, we proved the existence of a unique random attractor to the random chemostat models. In addition, we provided

geological/biological/statistical insight of the random attractor by constructing sufficient conditions for extinction and persistence

Math. Meth. Appl. Sci. 2009, 00 1–13 Copyright c© 2009 John Wiley & Sons, Ltd. 11
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of the microorganism. More precisely, we provided conditions on the parameters under which the random attractor contains only

one “stochastic equilibrium”, or contains other points strictly inside the positive quadrant besides the “stochastic equilibrium”.

The stochastic equilibrium here refers to a singleton set which is essentially a stochastic process, and can be regarded as the

analogue of a steady state solution in deterministic systems.

Finally, we would like to mention that our objective has been to illustrate our results here in relatively basic chemostat models

to place emphasize on the new features that arise due to the noise. These will also be present in more complicated and maybe

more realistic models, but perhaps not so transparent.
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