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Summary. Spiking neural P systems were recently introduced in [4] and proved to be
Turing complete as number computing devices. In this paper we show that these systems
are also computationally efficient. Specifically, we present a variant of spiking neural P
systems which have, in their initial configuration, an arbitrarily large number of inactive
neurons which can be activated (in an exponential number) in polynomial time. Using
this model of P systems we can deterministically solve the satisfiability problem (SAT) in
constant time.

1 Introduction

Spiking neural P systems (in short, SN P systems) were recently introduced in
[4] and proved [8, 9] to be Turing complete as number computing devices and
also complete modulo direct and inverse morphisms in the case when they are
used as language generators (see [1]). In this paper we show that if some precom-
puted resources (namely, the neurons disposed in a particular – initially inactive
– structure) are considered, SN P systems having a self-activation behavior prove
to be also computationally efficient, and can solve SAT, one of the best known NP
complete problems, in constant time.
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An SN P system consists of a set of neurons placed in the nodes of a graph,
which communicate through signals (spikes) emitted along the synapses (edges of
the graph) and controlled by firing and forgetting rules. Within the system the
spikes are moved, created, or deleted (we consider only one type of objects in the
system).

In this paper we address the question of the efficiency of solving problems
by means of SN P systems, and to this aim we use systems with precomputed
resources. The basic idea, initially mentioned in [3], is that, instead of producing
in linear time an exponential workspace, we start from the beginning with an
exponentially large precomputed workspace in the form of an exponentially large
number of inactive neurons, which will be activated and used in constant time in
our computation.

We assume a structure of neurons given “for free” as a result of a pre-
computation whose duration does not matter – although the structure is not
completely independent from the problem we want to solve. The neurons in the
structure are initially inactive and become active immediately when a spike enters
them.

This strategy corresponds to the well-known fact that the human brain contains
a huge number of neurons out of which only a small part are currently used, and
(some of) the inactive neurons can change their status as soon as they receive
(electrical) signals from active neurons.

2 Preliminaries

The reader is assumed to be familiar with basic notions on languages, automata
theory (for details, see [10]), and complexity theory (see [11]). We only briefly
introduce some notations and notions used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ;
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+.
Regular expressions over a given alphabet V are constructed starting from

λ and the symbols of V and using the operations of union, concatenation, and
Kleene +, using parentheses when necessary for specifying the order of operations.
Specifically, (i) λ and each a ∈ V are regular expressions, (ii) if E1, E2 are regular
expressions over V , then also (E1)∪ (E2), (E1)(E2), (E1)

+ are regular expressions
over V , and (iii) nothing else is a regular expression over V . With each expression
E we associate a language L(E), defined in the following way: (i) L(λ) = {λ} and
L(a) = {a}, for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) =
L(E1)L(E2), and L((E1)

+) = L(E1)
+, for all regular expressions E1, E2 over V .

Non-necessary parentheses are omitted when writing a regular expression, and
(E)+ ∪ {λ} is written in the from (E)∗.

Let M be a deterministic Turing machine that halts on all inputs. The running
time or time complexity of M is the function f : N → N, where f(n) is the
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maximum number of steps that M uses on any input of length n. If f(n) is the
running time of M , we say that M runs in time f(n) and that M is an f(n)
time Turing machine. Let t : N → N be a function. The time complexity class
TIME(t(n)) is defined as TIME(t(n))={L | L is a language decided by an O(t(n))
time Turing machine}.

In time complexity theory polynomial differences in running time are consid-
ered to be small, whereas exponential differences are considered to be large. Poly-
nomial time algorithms are fast enough for many purposes, but exponential time
algorithms rarely are useful. All reasonable deterministic computational models
are polynomially equivalent, that is, any of them can simulate another with only
a polynomial increase in running time.

NP is the class of languages that are decidable in polynomial time on a non-
deterministic Turing machine. In other words, NP=

⋃
k NTIME(nk). Inside NP

there are problems such that if a polynomial time algorithm exists for any of these
problems, then all problems in NP would be solvable in polynomial time. These
problems are called NP-complete.

A well known NP-complete problem is satisfiability problem, SAT. It asks
whether or not for a given propositional formula in the conjunctive normal form
there is a truth-assignment of variables such that the formula assumes the value
true.

A propositional formula C is in the conjunctive normal form if it is a conjunc-
tion of disjunctions, C = C1 ∧ C2 ∧ . . . ∧ Cm, where each Ci, 1 ≤ i ≤ m, is a
clause of the form Ci = yi,1 ∨ yi,2 ∨ . . . ∨ yi,pi

with each literal yj being either a
propositional variable, xs, or its negation, ¬xs.

2.1 Spiking Neural P Systems

We recall the basic definition of SN P systems as shown in [4].
A spiking neural P system of degree m ≥ 1 is a construct of the form Π =

(O, σ1, . . . , σm, syn, i0), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes present in the neuron;
b) Ri is a finite set of rules of the following two forms:

(1) E/ar → a; d, where E is a regular expression over O, r ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any

rule E/ar → a; d of type (1) from Ri;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

among cells);
4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
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(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (a global clock is assumed, marking the time
for the whole system, hence the functioning of the system is synchronized).

If d = 0, then the spike is emitted immediately, if d = 1, then the spike is
emitted in the next step, etc. In the steps before emitting the spike, the neuron is
closed, it cannot use any rule and cannot receive spikes from other neurons. The
delay in sending the spike along the synapses models the refractory period of the
neuron from neurobiology – more details on its formalization can be found in [4].

A spike emitted by a neuron σi (is replicated and a copy of it) goes to each
neuron σj such that (i, j) ∈ syn.

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
simplified form ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can have
L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a neuron,
and in that case, only one of them is chosen non-deterministically. By definition,
if a firing rule is applicable, then no forgetting rule is applicable, and vice versa.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and by the state of the neuron, more precisely, by the
number of steps from now on until it becomes open (this number is zero if the
neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neu-
ron i = 1, 2, . . . ,m contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

Using the rules as described above, one can define transitions among configu-
rations. A transition between two configurations C1, C2 is denoted by C1 =⇒ C2.
Any sequence of transitions starting in the initial configuration is called a com-
putation. A computation halts if it reaches a configuration where all neurons are
open and no rule can be used.

In the spirit of spiking neurons, see, e.g., [5], as the result of a computation, in
[4] and [8] one considers the distance between two consecutive spikes which exit a
distinguished neuron of the system. Then, in [1] one considers as the result of a
computation the so-called spike train of the computation, the sequence of symbols
0 and 1 obtained by associating 1 with a step when a spike exits the system and
0 otherwise. Languages over the binary alphabet are computed in this way.

3 Spiking Neural P Systems with Self-Activation

In the following we define P systems with self-activation. As already discussed in
Section 1 we consider a neuron to be inactive if it contains no spike (hence no
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rule can be applied in it). As soon as a spike enters a neuron (as input in the
initial configuration or from another neuron through a synapse), it makes it active
altogether with the synapses that it establishes with other neurons.

In a self-activating SN P system we have an arbitrarily large number of neurons
which differ by the number of spikes and/or of rules they contain. Some of these
neurons will be active, the others will be inactive.

In what follows, we construct an SN P system for solving SAT problem in
constant time. Let us consider n variables x1, x2, . . . , xn, n ≥ 1, and a propositional
formula with m clauses, γ = C1 ∧ · · · ∧ Cm, such that each clause Ci, 1 ≤ i ≤ m,
is of the form Ci = yi,1 ∨ · · · ∨ yi,ki

, ki ≥ 1, where yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}.
The set of all instances of SAT with n variables and m clauses is denoted by

SAT (〈n,m〉).
The instance γ is encoded as a set over

X = {xi,j , x
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where xi,j represents variable xj appearing in clause Ci without negation, while
x′

i,j represents variable xj appearing in clause Ci with negation.

Now, we give an informal description of the precomputed resource structure
devoted to SAT (〈n,m〉). We look at Figure 1 which depicts an SN P system
working in self-activating manner using precomputed resources, where the nodes
and the arrows represent the neurons and the synapses, respectively. One can
notice that the nodes have (four) different shapes (©, ⊚, �, ⊲), but this is just
a way to make the construction easier to understand (the shape does not imply
any differences in the behavior of the nodes). Also, we see that the structure has
a sort of symmetry. Namely, for each clause we have a block of ©-neurons and
⊚-neurons.

The Device Structure The precomputed device (initially inactive) able to
deal with any γ ∈ SAT (〈n,m〉) is formed by 2n(m + 1) + 2nm + 1 neurons and
2n(3m + 1) synapses. Further on we are giving some details on the components of
this structure.

Neurons of type ©cixj1/0: For each variable xj of a clause Ci, we associate 2
neurons ©cixj1 and ©cixj0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Obviously, the subscript of
the neurons indicates the clause (ci for the clause Ci), and the variable (xj for the
jth variable in the clause). 1 and 0 are used to mark differently the two neurons
needed to encode the same variable; their use will be detailed further on in the
paper where the encoding part will be explained. However, each clause is described
by 2n neurons, and there are exactly 2nm neurons of type ©cixj1/0 associated with
m clauses.

Neurons of type ⊚cibin: There are 2n ⊚cibin neurons, associated to each clause
Ci, injectively labeled with elements of {cibin | bin ∈ {1, 0}n}. They correspond to
the 2n truth-assignments for variables variables x1, . . . , xn. In total, the device has
2nm ⊚cibin neurons (2n for each of the m clauses). Later on, we will see that these
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neurons will handle, during the computation, boolean operation ∨ (OR) present
in the clauses of the formula.

Synapses ©cixj1/0 −→ ⊚cibin: The connections are in one direction from
©cixj1/0 to ⊚cibin. The synapses are designed in such a way that the two neu-
rons linked by a connection have the same prefix of the labels (ci), and the last
symbol of label cixj0/1 is the same with the jth symbol (0 or 1) of the string bin.
Each ⊚cibin neuron is connected to n ©cixj1/0 neurons.

Neurons of type �bin: There are exactly 2n �bin neurons in the device labeled
injectively with strings from bin ∈ {0, 1}n. These neurons are designed to handle
boolean operation ∧ (AND) between the clauses of the formula.

Synapses ⊚cibin −→ �bin: Each �bin neuron is connected to one ⊚cibin neuron
from each clause block, hence, m double circled neurons may send spikes to each
square neuron. Strings bin from the labels of the connected ⊚cibin and �bin neurons
are the same.

Neuron of type ⊲4: Finally, there is a unique output neuron ⊲ with label 4. By
choosing label 4 for this neuron we emphasize that it spikes in the 4th step of the
computation if the problem has at least a solution and does not spike in this step,
otherwise. All �bin neurons are connected to the output neuron, hence, there are
2n connections of type �bin −→ ⊲4.

Rules: Here are the rules which apply to each type of neurons:
R◦ = {a → λ, a2 → a; 0, a3 → λ, a4 → a; 0},
R⊚ = {a+/a → a; 0},
R� = {am → a; 0},
R⊲ = {a+/a → a; 0}.

We have described the precomputed device structure for solving SAT problem
as depicted in Figure 1, with the neurons in the inactive mode. Note that this
structure is independent of the instance of SAT we want to solve, and it depends
only on n and m. Let us explain now how we encode the particular instance of the
problem into the device.

The Problem Encoding The variables are encoded by spikes as follows: one
assigns values 1 and 0 to each variable xj and ¬xj . Further, a variable xj is encoded
by two spikes (a2), and one spike (a) if we assign to xj values 1 and 0, respectively.
Similarly, we use a3 and a4 to encode variable ¬xj , which has assigned values 1
and 0, respectively.

1 0

xi,j (a2,©cixj1) (a,©cixj0)

¬xi,j (a3,©cixj1) (a4,©cixj0)

Table 1. The variable encoding.

In Table 1 one can notice how we introduce the encoded variables (the spikes)
into the precomputed device. The (encoded) variables xj or ¬xj , from a clause Ci,
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assigned with value 1 are introduced in the neuron with label cixj1 (©cixj1), while
the other “half” of the encoding, the one where variable is assigned with value 0
is introduced in the neuron labeled cixj0, (hence ©cixj0). Some of the ©cixj1/0

neurons will not be activated in the case the corresponding variables are missing
form the given instance of the problem. Anyway, we stress the fact that at most
2nm ©cixj1/0 neurons are activated in when the device is initialized, the other
neurons in the system remaining inactive.

The Computation Starting this moment (when the device is initialized and
the corresponding neurons activated), the computation can be performed and the
problems will be solved in 4 steps. Once the system starts to evolve the spikes
follow the one-directional path:

©-neurons −→ ⊚-neurons −→ �-neurons −→ ⊲-neuron,

as shown in Figure 2.

3.1 An Example

In order to illustrate the procedure discussed above, let us examine a simple ex-
ample.

We consider the following instance of SAT, with two variables and three clauses,
γ ∈ SAT (〈2, 3〉),

γ = (x1) ∧ (¬x1 ∨ x2) ∧ (¬x2).

The device structure The system we construct is given in a pictorial way in
Figure 1, and has 29 inactive neurons (4 ∗ 22 + 2 ∗ 2 ∗ 3 + 1) and 40 synapses.
There are 3 blocks of neurons, each dealing with a clause of the problem. Each
block contains 4 solid circled (©cix11, ©cix10, ©cix21, ©cix20) neurons – 2 for
each variable – to which we assign 1 and 0 (see the labels). In each block, there are
also 4 double circled neurons (⊚ci11,⊚ci10,⊚ci01,⊚ci00) connected to the ©cixj1/0

neurons, corresponding to the 22 truth-assignments (see the labels). Moreover, we
have 4 �bin neurons connected to the corresponding ⊚cibin neurons.

Encoding According to the formula γ, in the first clause C1, there is only one
variable x1. We assign values 1 and 0 to x1 and encode it by two spikes (a2) and
one spike (a1) that are placed in ©c1x11 and ©c1x10, respectively. The other two
neurons ©c1x21 and ©c1x20 corresponding to variable x2 remain empty, since there
is no variable x2 or ¬x2 in the clause.

The second clause (C2) is encoded in the following clause block. To each variable
¬x1 and x2 are assigned values 1 and 0. Further, they are encoded by a3 in ©c2x11,
a4 in ©c2x10, for ¬x1, and a2 in ©c2x21, a1 in ©c2x20, for x2.

The last clause C3 has only one variable, ¬x2, which is encoded in the neurons
©c3x21 and ©c3x20. The other two neurons corresponding to this clause remain
empty. See Step 1 of Figure 2.

Computation Once the encoding is done, single circled neurons are activated
and send signals, or erase spikes according to the rules they contain. In the first
step, neurons having inside a2 and a4 fire, while spikes a1 and a3 from the other
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Rules used in ΠSAT (〈2,3〉): R◦ = {a → λ, a2 → a; 0, a3 → λ, a4 → a; 0};
R⊚ = {a+/a → a; 0}; R� = {a3 → a; 0}; R⊲ = {a+/a → a; 0}.

Fig. 1. Precomputed spiking neural net for SAT(〈2, 3〉)

neurons are deleted. We see in Step 2 from Figure 2, that only 7 double circled
neurons out of 12 contain spikes, hence only 7 will be activated in the second
step. Then, in next step of computation, double circled neurons containing spikes
fire because of the rules a+/a → a inside. One can notice that neurons �11, �00,
and �10 have received two spikes, and neuron �01 has received only one spike.
In the third step of the computation, only neuron ⊚c201 fires since there was one
spike remained, and nothing else happens in the system. The rule present inside
the square neurons, a3/a → a, cannot be applied, because there is no such neuron
containing three spikes. At the fourth step, the output neuron does not spike, since
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no spike has arrived here in the third step of the computation, hence the given
problem has no solution.

We have mentioned before that what happens after the fourth step of the
computation is out of our interest because it does not give further details with
respect to the satisfiability of the given problem. We just want to mention that
the system may not stop after giving the answer to our problem.
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Fig. 2. The steps of the computation for γ ∈ SAT (〈2, 3〉).

3.2 SN P Systems Solving SAT

Formally, for given (n,m) ∈ N2, an SN P system using precomputed resources,
working in a self-activating manner, devoted to solve SAT problem with n variables
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and m clauses, is a construct

Πn,m
SAT

= (ΠSAT (〈n,m〉), Σ(〈n,m〉))

with:

• ΠSAT (〈n,m〉) = (O,µ, ⊲4), where:
1. O = {a} is the singleton alphabet;
2. µ = (H,Ω,RH , syn) is the precomputed device structure, where:

– H = H1 ∪ H2 ∪ H3 ∪ H4 is a finite set of neuron labels, where
H1 = {cixj1, cixj0 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
H2 = {cibin | 1 ≤ i ≤ m, bin ∈ {0, 1}n},
H3 = {bin | bin ∈ {0, 1}n},
H4 = {4};

– Ω = {(0,©h1
), (0,⊚h2

), (0,�h3
), (0, ⊲h4

) | h1 ∈ H1, h2 ∈ H2, h3 ∈
H3, h4 ∈ H4} are the empty (inactive) neurons present in the precom-
puted structure (with |Ω| = 2n(m + 1) + 2nm + 1);

– RH = RH1
∪ RH2

∪ RH3
∪ RH4

is a finite set of rules associated to the
neurons, where
RH1

={a1 → λ, a2 → a; 0, a3 → λ, a4 → a; 0},
RH2

= RH4
= {a+/a → a; 0},

RH3
= {am → a; 0};

– syn =
⋃m

i=1{(©cixj1,⊚cibin) | bin|j = 1, 1 ≤ j ≤ n, bin ∈ {0, 1}n}
∪

⋃m
i=1{(©cixj0,⊚cibin) | bin|j = 1, 1 ≤ j ≤ n, bin ∈ {0, 1}n}

∪ {(⊚cibin,�bin) | bin ∈ {0, 1}n, 1 ≤ i ≤ m}∪{�bin, ⊲4 | bin ∈ {0, 1}n};
3. ⊲4 is the output neuron;

• Σ(〈n,m〉) is a polynomial encoding from an instance γ of SAT into ΠSAT (〈n,m〉),
providing the initialization of the system such that

Σ(〈n,m〉)(γ) = {(1,©cixj0) | xi,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(2,©cixj1) | xi,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(3,©cixj0) | x′
i,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(4,©cixj1) | x′
i,j ∈ γ, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

In the precomputed structure of Π(〈n,m〉) (for any SAT problem with n vari-
ables and m clauses), neurons are described as a pair (spikes inside, neuron).
There are 2n(m+1)+2nm+1 neurons and 2n(3m+1) synapses initially inactive.
Σ(〈n,m〉) encodes the given instance of the problem in spikes, that is, the encoded
problem is introduced into the precomputed structure (spikes are assigned to solid
circled neurons) activating the corresponding neurons. It is important to note that
at most 2nm neurons will be activated, hence the initialization takes a polynomial
time.

The system evolves exactly in the same manner as the basic SN P systems. The
result of the computation is obtained in its 4th step. If the system (output neuron)
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spikes, then the given problem has at least a solution. Otherwise, it does not have
any solution. The evolution of the system after this step of the computation is
ignored.

Thus, the system evolves as follows:

Step 1: After encoding the problem (the variables) in (the number of) spikes
we introduce into the system, namely in at most 2nm neurons of type
©ci0xj1/0, these neurons are activated and evolve according to the rules
inside.

Step 2: Neurons of type ⊚cibin which provide information on the truth-
assignments at the level of clauses (OR operations are simulated) – at
most 2nm initially inactive neurons – will be activated, and they will send
spikes to the 2n �bin neurons corresponding to the truth-assignments at
the level of the system.

Step 3: Now, only those neurons of type �bin in which the threshold is reached
(AND operations are simulated, if all m clauses are satisfied, hence there
exist m spikes inside) will spike (because of the rule am → a; 0) toward
the output neuron.

Step 4: If in the output neuron will spike, it means that our problem has at
least a solution. Otherwise, we do not have any solution for the given
problem.

As already mentioned both in the definition of the system and in the example, it is
not mandatory for the system to halt. We only observe its behavior in the fourth
step of the computation.

Based on the previous explanations we can state that:

Theorem 1. Πn,m
SAT

can deterministically solve each instance of size (n,m) of SAT
in constant time.

4 Conclusions and Remarks

In this paper, we have shown that SN P systems are not only computationally
universal, but also computationally efficient devices. We show that the idea of
using an already existing, but inactive, workspace proves to be very efficient in
solving NP-complete problems. We illustrate this possibility with the satisfiability
problem. The initial system is fixed, depending only on the number of variables
(n) and the number of clauses (m). Then any instance of SAT with size nxm is
encoded in a polynomial time in spikes introduced in the system and then it is
solved in exactly 4 steps by our device.

If we use rules of type R◦ = R⊲ = {a+ → a; 0} (and we interpret such
a rule in the sense that if at least one spike is present in a moment inside a
neuron, then it should spike immediately and all spikes are consumed) in the
(ΠSAT (〈n,m〉), Σ(〈n,m〉)), then the computation halts in the fourth step with the
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system spiking if the problem has at least a solution. Otherwise the problem does
not have any solution. After the fourth step, no spike will remain in the system.

Another way to stop the computation after sending the answer out is the
following. Let us introduce two intermediate neurons in between each �bin and ⊲4

neuron, so that in step 4 (the intermediate neurons take one step for transmitting
the spikes further) neuron △4 receives an even number of spikes. Then, instead
of the rule a+/a → a; 0, in neuron ⊲4 we use the rule (a2)+/a → a; 0. Thus, if
any spike reaches neuron ⊲4, then an even number of spikes arrive here; thee rule
(a2)+/a → a; 0 can be used only once, in step 5, because after that the number of
remaining spikes is odd.

In this way, we add 2 · 2n neurons and further 3 · 2n synapses, while the com-
putation lasts five steps only.

Moreover, if we consider 3SAT problem, then each clause block will contain
exactly 14 = 3 ∗ 2 + 23 neurons.

One possible line of research would be to try to investigate other computation-
ally hard problems with the SN P systems using precomputed resources. Finally,
investigating other computational complexity issues within this framework would
be also very challenging.
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