
A Case Study in (Mem)Brane Computation:
Generating {n2 | n ≥ 1}

Nadia Busi1, Miguel A. Gutiérrez-Naranjo2

1 Dipartimento di Scienze dell’Informazione - Università di Bologna
Mura Anteo Zamboni 7, I-40127 Bologna, Italy
busi@cs.unibo.it

2 Dpto. de Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

Summary. The aim of this paper is to start an investigation and a comparison of the
expressiveness of the two most relevant formalisms inspired by membranes interactions,
namely, P systems and Brane Calculi. We compare the two formalisms w.r.t. their ability
to act as language generators. In particular, we show different ways of generating the set
L = {n2 |n ≥ 1} in P systems and in Brane Calculi.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry and biology. It abstracts
the way in which nature computes, conceiving new computing models. There are
several fields in Natural Computing that are now well established. Among them,
we mention Genetic algorithms introduced by J. Holland [6] that is inspired by
natural evolution and selection in order to find a good solution in a large set of
feasible candidate solutions, Neural Networks introduced by W.S. McCulloch and
W. Pitts [7] which is based on the interconnections of neurons in the brain, and
DNA-based molecular computing, that was born when L. Adleman [1] published
a solution to an instance of the Hamiltonian path problem by manipulating DNA
stands in a lab.

This paper is devoted to a new field in Natural Computing. Starting from the
structure and functioning of cells as living organisms able to process and generate
information, two different branches of Natural Computing were recently initiated:
Membrane Computing and Brane Calculi.

Membrane Computing was introduced by Gh. Păun in [8]; a comprehensive
presentation3 can be found at [9]. The devices of this model are called P systems.
3 A layman-oriented introduction can be found in [10] and further bibliography at [13].

82 N. Busi, M.A. Gutiérrez Naranjo

Roughly speaking, a P system consists of a membrane structure, in the compart-
ments of which one places multisets of objects which evolve according to given
rules in a synchronous non-deterministic maximally parallel manner.

Brane Calculi were introduced by L. Cardelli in [3] on the assumption that in
living cells membranes are not merely containers, they are highly dynamic and
participate actively in the cell life. In this way, computation happens on the mem-
brane, not inside of it.

The fist attempt of bridging the two research areas was made in [5] by the
fathers of the two disciplines, L. Cardelli and Gh. Păun. As they point out, Mem-
brane Computing and Brane Calculi have different objectives and develop in dif-
ferent directions. While Membrane Computing tries to abstract computing models,
in the Turing sense, from the structure and the functioning of the cell (. . .), Brane
Calculi pay more attention to the fidelity to the biological reality (. . .).

In that paper [5], four basic operations from Brane Calculi pino, exo, mate
and drip are expressed in terms on the Membrane Computing formalism and the
Turing completeness of systems which use the mate, drip operations is shown.
The Turing universality of Brane Calculi (in fact, by using only phago and exo
operations) was proved in [2].

In some sense, in this paper we cross the bridge in the other way. Instead of
expressing Brane Calculi operations in terms of the Membrane Computing formal-
ism, we take a problem from computability, the generation of a set of numbers,
and show how can be done both in Membrane Computing and in Brane Calculi.

The paper is organized as follows: first the case study, i.e., the set L = {n2 |n ≥
1} and some considerations with respect to the codifications are fixed in the next
section. In Section 3, two different Membrane Computing devices that generate L
are shown. Inspired on the second Membrane Computing design, two Brane Calculi
devices that generate L are presented in Section 4. Finally, some conclusions and
ideas for future research are presented in the last section.

2 The Case Study

Computational devices can be designed in order to perform different tasks. Among
such tasks, they can be designed to solve decision problems (IX , θX) where IX is
a language over a finite alphabet (whose elements are called instances) and θX

is a total boolean function over IX . In a more general case, the function is not
boolean and the problem consists on the computation of a function f from IX

onto a general set S.
Another type of tasks is the generation of various sets (of numbers, vectors,

strings, etc.). Due to the non determinism, several different computations are ob-
tained and some piece of information is considered as the output. If this output is
composed by some information units, we can talk about the language generated
by the computation device.

In order to fix ideas, let us consider the case study used in this paper. We
will consider the set {n2 |n ≥ 1}. For its generation, we will design appropriate

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 83

devices in the computational models Membrane Computing and Brane Calculi.
Such devices are non-deterministic and several computations can be performed
from the starting point. In each device, a piece of information will be considered the
output of the system. In the case of Membrane Computing, the output is codified
as the number of objects inside a fixed membrane in a halting configuration. In
the Brane Calculi device, the output is codified as the number of membranes of a
specific kind that are present in the system in a halting computation. The set of
all possible outputs of the device is exactly L = {n2 |n ≥ 1}. In this way, L is the
set generated by the device.

3 Membrane Computing

In Membrane Computing, many different types of rules and different semantics
have been presented. The choice of these rules and semantics lead us to different
models of P systems. In this section we present two P systems constructed in two
different models that generate the set {n2 |n ≥ 1}.

In these examples several types of rules are used (O is the alphabet of objects,
H is a finite set of labels and λ is the empty string):

• Object evolution rules [a → v]h where h ∈ H, a ∈ O, and v is a string over
O describing a multiset of objects. They are associated with membranes and
depending only on the label of the membrane. It means that an object a evolves
to the multiset v inside the membrane with label h.

• Cooperation rules: [v → w]h where h ∈ H and v, w are string over O describing
a multisets of objects. This rule is similar to the previous one, but in this type,
rules are triggered by a multiset of objects whereas in the object evolution rules
only one object is necessary for triggering it.

• Dissolution rules: [a]h → b where h ∈ H, a ∈ O, b ∈ O∪{λ}. The object a inside
the membrane labeled with e produces the dissolution of the membrane and
it is transformed into the object b. This object b together with the remaining
objects in the membrane h are placed inside the surrounding membrane.

• Send-in communication rules: a[]h → [b]h where h ∈ H, a, b ∈ O. An object
a out of the membrane labeled with h is sent into the membrane transformed
into b.

• Send-out communication rules: [a]h → []h b where h ∈ H, a, b ∈ O. It is the
dual case of the previous one. An object a inside the membrane labeled with
h is sent out of the membrane transformed into b.

Rules are applied according to the following principles:

• Rules are used as usual in the framework of Membrane Computing, that is, in
a maximally parallel way. In one step, each object in a membrane can only be
used for one rule (non-deterministically chosen when there are several possibil-
ities), but any object which can evolve by a rule of any form must do it (with
the restrictions indicated below).

84 N. Busi, M.A. Gutiérrez Naranjo

• If a membrane is dissolved, its content (multiset and internal membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Several rules can be applied to different objects in the same membrane simulta-
neously. The exception are the division rules since a membrane can be dissolved
only once.

In order to generate a set, an output membrane is fixed and the number of
objects in it is counted when the system halts. The number of objects can vary
from one computation to other due the non determinism of the system. In the next
examples, the set of numbers obtained in the output membrane, i.e., the generated
set is {n2 |n ≥ 1}.

3.1 Cooperation and Priorities

The first P system that we show is taken from [9] (p. 75) and it uses two of the most
powerful features in P systems. The first one is the use of rules with cooperation
between objects as described above. This type of rules are not triggered by the
occurrence of only one object, but two or more objects are necessary in order to
trigger the rule. The second feature is the priority among rules. In the general
framework of Membrane Computing, if two rules can be applied, one of them is
chosen in a non-deterministic way. If a priority between rules is added, we decrease
the non-determinism, since we have a precedence between them.

With the notation fixed above, the P system is Π = (O,H, µ,w1, w2, w3, 1, R)
where O = {a, b, d, e, f} is the set of objects, H = {1, 2, 3} is the set of labels,
µ = [[[]3]2]1 is the membrane structure, w1 = ∅, w2 = ∅, w3 = af are the
multisets placed in the membranes at the starting point, 1 is the label of the
output membrane and R is the set of rules:

Rule 1: [a → ab]3 Rule 5: [b → d]2
Rule 2: [a]3 → b Rule 6: [d → de]2
Rule 3: [f → ff]3 Rule 7: [ff → f]2
Rule 4: [d]1 → d []1 Rule 8: [f]2 → λ

with the priority

(Rule 7: [ff → f]2) > (Rule 8: [f]2 → λ)

Rules 1, 3, 5 and 6 are object evolution rules. Rule 7 is a cooperation rule: we
need two objects f in order to trigger the rule. Rules 2 and 8 are dissolution rules.
Finally, rule 4 is a send-out communication rule.

The computation is performed as follows. In the initial configuration we only
have objects af in the membrane labeled with 3.

C0 = [[[af]3]2]1

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 85

Due to rule 3, the object f deterministically evolves to ff . For the object a we
have two possibilities: By application of rule 1, the object a evolves to ab or by
applying rule 2, membrane 3 dissolves. If we iterate the use of rules 1 and 3, after
n steps, n ≥ 0, we get n occurrences of b, one copy of a and 2n occurrences of f
in membrane 3.

C1 = [[[abf2]3]2]1
C2 = [[[ab2f4]3]2]1
. . .
Cn = [[[abnf2n

]3]2]1
If then rule 2 is chosen, the membrane labeled with 3 is dissolved after the evolution
of f . With the dissolution, the 2n+1 copies of object f and the n + 1 copies of b
become occurrences of objects of membrane 2.

Cn+1 = [[bn+1f2n+1
]2]1

In one step, the n + 1 copies of b are transformed into n + 1 copies of d by rule
5, while the number of occurrences of f is halved.

Cn+2 = [[dn+1f2n

]2]1

In the next step each occurrence of d introduces one occurrence of e and the
number of occurrences of f is halved again.

Cn+3 = [[dn+1en+1f2n−1
]2]1

After n applications of rule 7, [ff → f]2, only one copy of object f is present
in membrane labelled with 2. In the meantime, rule 6 is applied n + 1 times in
each step.

Cn+4 = [[dn+1e2(n+1)f2n−2
]2]1

Cn+5 = [[dn+1e3(n+1)f2n−3
]2]1

. . .

Following the priority relation, rule 7 [ff → f]2 is used as much as possible;
when only one object f remains, rule 8 is used.

C2n+2 = [[dn+1en(n+1)f]2]1
C2n+3 = [dn+1e(n+1)2]1

With the dissolution of membrane 2, all the objects d become objects of mem-
brane 1. In the next step, rule 4 is applied n + 1 times and all copies of d are sent
out to the environment.

C2n+4 = [e(n+1)2]1 dn+1

No further step is possible and the computation stops. In the membrane labeled
with 1 we have (n + 1)(n + 1) copies of object e for some n ≥ 0, hence the set
generated is {n2|n ≥ 1}.

86 N. Busi, M.A. Gutiérrez Naranjo

3.2 A simplified solution

Now we present a new solution to the same problem. We do not use cooperation
or priorities. Only send-in communication, dissolution and object evolution rules
are applied. The design is based on the well-known property of natural numbers

n∑
k=0

(2k + 1) = (n + 1)2 for all n ≥ 0

The P system is the following: Π = (O,H, µ,we, wr, ws, r, R) with the set of
objects O = {a, b, c, z}, the set of labels H = {e, r, s}, the membrane structure
µ = [[]e []r]s. The initial multisets are we = a2bz, wr = ∅ and ws = ∅, i.e., the
membranes s and r are empty and there exist two copies of a and one copy of b
and z in the membrane e. The output membrane is labeled with r and the set of
rules R is the following:

Rule 1: [a → ab]e Rule 5: [a → λ]s
Rule 2: [b → bc]e Rule 6: [b → λ]s
Rule 3: [z → z]e Rule 7: c []r → [c]r
Rule 4: [z]e → λ

Note that the only non-determinism in this example is produced by the object
z. This object can trigger two rules. The first one is [z → z]e which represents that
the object z inside the membrane e does not change. The second one is [z]e → λ
which means that the object z dissolves the membrane e. The collateral effect of
the application of this rule is that the remaining objects in e are sent to s.

The initial configuration is C0 = [[a2bz]e []r]s. In the first step the two objects
a evolve according to the rule 1, [a → ab]e, and the object b evolves following the
rule 2, [b → bc]e. These evolutions are deterministic. For the object z we have two
options, rules 3 and 4. Let us suppose that z remains unchanged following rule
3, [z → z]e. We obtain the configuration C1 = [[a2b3cz]e []r]s. Let us suppose
that in the next steps the object z does not dissolve the membrane e. We obtain
C2 = [[a2b5c4z]e []r]s, C3 = [[a2b7c9z]e []r]s,. . . and in general, if the element
z does not dissolves the membrane e, in the n-th (n ≥ 1) step we reach the
configuration

Cn = [[a2b2n+1cn2
z]e []r]s

Let us now suppose that in the n-th step the object z dissolves the membrane
e by using rule 4. Since the dissolution is considered after the evolution of objects
a and b, we reach the configuration

Cn+1 = [a2b2(n+1)+1c(n+1)2z []r]s n ≥ 0

One of the effects of the dissolution is that the objects a, b and c are now in the
membrane s. On one hand the rules [a → λ]s and [b → λ]s are triggered in

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 87

the next step, so objects a and b disappear. On the other hand, objects c are in
the region surrounding the membrane r, so the communication rule c []r → [c]r
are applied and all the elements c go into membrane r. In this way, the next
configuration is Cn+2 = [[c(n+1)2]r]s with n ≥ 0.

No more rules can be applied, so this is a halting configuration and we have
computed the number n2 with n ≥ 1 (encoded by the elements c) in the output
membrane.

4 Brane Calculi

In this section we tackle the problem of generating the set {n2 |n ≥ 1} in Brane
Calculi.

Brane Calculi [3] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [11], a variant of Mobile Ambients [4] based
on a set of biologically inspired primitives of interaction. The main novelty of Brane
calculi consists in the fact that the active entities reside on membranes, and not
inside membranes.

In this paper we are interested in the membrane operations of two basic in-
stances of Brane calculi proposed in [3]: the Phago/Exo/Pino (PEP) and the
Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process
of incorporating external material into a cell by engulfing it with the cell mem-
brane) and exocytosis (the reverse process). A relevant feature of such primitives is
bitonality, a property ensuring that there will never be a mixing of what is inside
a membrane with what is outside, although external entities can be brought inside
if safely wrapped by another membrane. As endocytosis can engulf an arbitrary
number of membranes, it turns out to be a rather uncontrollable process. Hence,
it is replaced by two simpler operations: phagocytosis, that is engulfing of just one
external membrane, and pinocytosis, that is engulfing zero external membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split a
membrane at an arbitrary place, it is replaced by two simpler operations: budding,
that is splitting off one internal membrane, and dripping, that consists in split-
ting off zero internal membranes. An encoding of the MBD primitives in PEP is
provided in [3].

A notable difference between Brane Calculi and P systems is concerned with
the semantics of the two formalism: whereas Brane Calculi are usually equipped
with an interleaving, sequential semantics (each computational step consists of the
execution of a single instruction), the usual semantics in membrane computing is
based on maximal parallelism (a computational step is composed of a maximal set
of independent interactions).

88 N. Busi, M.A. Gutiérrez Naranjo

4.1 Basic Brane Calculi: syntax and semantics

In this section we recall the syntax and the semantics of Brane Calculi [3]. A system
consists of nested membranes, and a process is associated to each membrane.

Definition 1. The set of systems is defined by the following grammar:

P,Q ::= � | P ◦Q | !P | σL P M

The set of brane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions, that will be detailed later.

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σL P M denotes the brane
that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number of
instances of process σ. Term a.σ is a guarded process: after performing the action
a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with LP M we
denote 0L P M, and with σL M we denote σL � M.

The structural congruence relation on systems and processes is defined as fol-
lows:4

Definition 2. The structural congruence ≡ is the least congruence relation satis-
fying the following axioms:

P ◦Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0L � M ≡ �

Definition 3. The basic reaction rules are the following:
4 With abuse of notation we use ≡ to denote both structural congruence on systems

and structural congruence on processes.

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 89

(par)
P → Q

P ◦R → Q ◦R
(brane)

P → Q

σL P M → σL Q M

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Rules (par) and (brane) are the contextual rules that respectively permit to a
system to execute also if it is in parallel with another process or if it is inside a
membrane, respectively. Rule (strucong) ensures that two structurally congruent
systems have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
We say that a system P is deterministic iff for all P ′, P ′′: if P → P ′ and

P → P ′′ then P ′ ≡ P ′′. We say that P has a halting computation (or a deadlock)
if there exists Q such that P →∗ Q and Q 6→.

The system P ′ is a derivative of the system P if P →∗ P ′; the set of derivatives
of a system P is denoted by Deriv(P).

The Phago/Exo/Pino Calculus (PEP)

The PEP calculus is inspired by endocytosis/exocytosis. Endocytosis is the process
of incorporating external material into a cell by “engulfing” it with the cell mem-
brane, while exocytosis is the reverse process. As endocytosis can engulf an arbi-
trary amount of material, giving rise to an uncontrollable process, in [3] two more
basic operations are used: phagocytosis, engulfing just one external membrane, and
pinocytosis, engulfing zero external membranes.

Definition 4. Let Name be a denumerable set of ambient names, ranged over by
n, m, The set of actions of PEP is defined by the following grammar:

a ::= C←
n | C←⊥

n(σ) | C→
n | C→⊥

n | ©◦ (σ)

Action C←
n denotes phagocytosis; the co-action C←⊥

n is meant to synchronize with
C←
n; names n are used to pair-up related actions and co-actions. The co-phago

action is equipped with a process σ, this process will be associated to the new
membrane that engulfs the external membrane. Action C→

n denotes exocytosis,
and synchronizes with the co-action C→⊥

n . Exocytosis causes an irreversible mixing
of membranes. Action ©◦ denotes pinocytosis. The pino action is equipped with
a process σ: this process will be associated to the new membrane, that is created
inside the brane performing the pino action.

Definition 5. The reaction relation for PEP is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(phago) C←
n.σ|σ0L P M ◦ C←⊥

n(ρ).τ |τ0LQ M → τ |τ0L ρL σ|σ0L P M M ◦Q M

(exo) C→⊥
n .τ |τ0L C→

n.σ|σ0L P M ◦Q M → P ◦ σ|σ0|τ |τ0L Q M

(pino) ©◦ (ρ).σ|σ0LP M → σ|σ0L ρL M ◦ P M

90 N. Busi, M.A. Gutiérrez Naranjo

The Mate/Bud/Drip Calculus (MBD)

The MBD calculus is inspired by membrane fusion and splitting. To make mem-
brane splitting more controllable, in [3] two more basic operations are used: bud-
ding, consisting in splitting off one internal membrane, and dripping, consisting
in splitting off zero internal membranes. Membrane fusion, or merging, is called
mating.

Definition 6. The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥n | budn | bud⊥n(σ) | drip(σ)

Actions maten and mate⊥n will synchronize to obtain membrane fusion. Action
budn permits to split one internal membrane, and synchronizes with the co-action
bud⊥n . Action drip permits to split off zero internal membranes. Actions bud⊥ and
drip are equipped with a process σ, that will be associated to the new membrane
created by the brane performing the action.

Definition 7. The reaction relation for MBD is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0LP M ◦ mate⊥n .τ |τ0L Q M → σ|σ0|τ |τ0L P ◦Q M

(bud) bud⊥n(ρ).τ |τ0L budn.σ|σ0L P M ◦Q M → ρL σ|σ0L P M M ◦ τ |τ0LQ M

(drip) drip(ρ).σ|σ0L P M → ρL M ◦ σ|σ0L P M

In [3] it is shown that the operations of mating, budding and dripping can be
encoded in PEP.

For the sake of simplicity, in the present paper we consider a basic calculus
containing the membrane interaction primitives of both the PEP and the MBD
calculi. As the primitives of MBD can be encoded in PEP, we conjecture that the
system described in the following part of the paper can be encoded in an equivalent
system that makes use of the PEP primitives only.

4.2 Computing {n2 | n ≥ 1} in Brane Calculi

Now we show how to model our case study in Brane Calculi. Our solution is inspired
by the simplified solution in Subsection 3.2. When moving from P systems to Brane
Calculi, two main problems arise.

The first problem is concerned with the fact that in Basic Brane Calculi there
are no objects/proteins floating inside the membranes. Hence, we need an alterna-
tive representation of the output of our system. In the solution based on P systems
presented in Subsection 3.2, the natural number n is represented as n occurrences
of object c inside membrane r. Here the idea is to represent the output as a fam-
ily of branes with a particular process C on them, such that process C can be
distinguished by other processes residing on other auxiliary membranes.

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 91

A second, major problem is concerned with the interleaving semantics of Brane
Calculi. We note that the maximal parallelism semantics of P systems is a very
powerful synchronization mechanism. This ensures that – at each computational
step – for each occurrence of object b a new object c is created and for each
occurrence of object a a new object b is created. If we simply encode each object
a (resp. b, c) with a brane AL M (resp. BL M, CL M, thus obtaining a flat multiset
of branes, then for mimicking a computational step of the corresponding P system
we need to perform a synchronization among an unbounded number of branes,
and this seems to be a very difficult task in Brane Calculi. On the other hand,
it is quite easy to synchronize an a priori fixed number of branes. To solve this
problem, we decided to move from the flat structure of branes proposed above
(and consisting in a multiset of branes AL M, BL M, and CL M contained in the
same surrounding brane) to a hierarchical structure.

We start presenting a simplified version of the solution, where the output of the
system is represented by the number of occurrences of C appearing in the whole
structure of the system, and not inside a specific brane. Then, we present a more
elegant solution where the output of the system is represented by the number of
occurrences of C contained in a specific brane.

Solution with output scattered in the whole system

The initial system consists of an external brane, containing two instances of branes
representing an encoding of object a and one brane representing an encoding of
object b, as depicted in Figure 1 (the need for the auxiliary branes decorated with
processes X, Ta and Tb will be clarified in the following).

A A

!
B X

Ext

Ta Tb Ta Tb
M

Fig. 1. The initial brane system (with M = mate⊥n).

We mimic a single maximal parallelism computational step of the P system
in Subsection 3.2 by the following sequence of steps: each brane encoding object
b creates – by dripping – a new brane representing an encoding of c; each brane
encoding object a is surrounded by a newly created brane representing a and
containing a new instance of a brane representing b.

An evolution of the representation of an object a as a nested family of branes
is reported in Figure 2.

92 N. Busi, M.A. Gutiérrez Naranjo

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �A’

E
B

A

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �A

Fig. 2. The evolution of the system encoding object a.

The representations of objects a and b are arranged in a hierarchical structure:
there exists a brane with process A (and representing object a) surrounding both
a brane with process B (representing object b) and another brane with process A′

(surrounded by another brane with process E – such a brane is created during the
phagocytosis to preserve bitonality and cannot be avoided). The brane with object
A′ contains a brane decorated with B and another brane E containing a brane
A′, and so on. The most internal instance of brane decorated with A′ contains the
two terminal branes Ta and Tb.

A maximal parallelism computational step of the P system in Subsection 3.2
is mimicked in the following way: the external brane – with process Ext – sends
one (asynchronous) signal to each of its children. The child brane with process
B reacts to the signal by spawning a new child brane with process C, and sends
a signal to the external brane to communicate that it has finished its task. Each
child brane with process A reacts in the following way:

• first of all, the A brane sends two signals to its children – decorated with B
and E – that will be used to wake up the instances of branes decorated with
B inside the hierarchical structure (each of such B branes will spawn a new C
brane);

• then it waits for two signals from its children, to acknowledge the end of the
creation of new copies of C by the B branes in the hierarchical structure;

• now, a new brane is created, and the A brane enters this new brane by phago-
cytosis and spawns a new brane with process B;

• finally, the A brane sends a signal to the external brane to acknowledge the
end ot its task, and evolves to a brane with process A′.

Before presenting the definition of the system, we show how to obtain asyn-
chronous communication between a father and a child brane. If the father brane
wants to send a signal to one of its children, it produces by pinocytosis a bubble
with process mate⊥x ; the child accepts this signal by performing an action matex.
On the other hand, if a child wants to send a signal to its father, it produces by
dripping a bubble with process C→

x; the father receives this signal by performing
an action C→⊥

x .

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 93

Formally, the system is defined as follows:

mate⊥nL M ◦ ExtL AL TaL M ◦ TbL M M ◦
AL TaL M ◦ TbL M M ◦
BL M ◦
!(XL M) M

So, we have a big brane containing two copies of A and one copy of B, plus the
brane mate⊥nL M. Brane mate⊥nL M is a trigger that fuses with the big brane: if the
fusion is performed by the first maten action of Ext, then some new copies of C
are produced; otherwise, the system ends. As we already said before, the output
of the system is represented by the number of occurrences of C appearing in the
whole structure of the system, and not inside a specific brane.

The process Ext is the following:

Ext = !maten.©◦(mate⊥as
).©◦(mate⊥as

).©◦(mate⊥bs
). C→⊥

af
. C→⊥

af
.

C→⊥
bf

.drip(mate⊥n) |
maten.0

The program Ext triggers the two copies of A and B by producing three bubbles
by pinocytosis that can fuse with the two instances of A and with B. The brane
B simply produces a child bubble labeled with C then signals the termination of
this task to the external membrane. In this simplified version of the solution, C
may be any process that can be distinguished from the others.

The evolution of brane A is depicted in Figure 2; here we give a more detailed
description of the behavior of such a kind of brane.

First of all, the brane A sends a signal to its children: at the beginning, this
membrane has two dummy children (represented by systems Ta and Tb) that
simply send back the signal; however, during the computation the last created
brane A has to send a signal to its children to permit to its descendants of kind B
to produce new copies of C. Thus, brane A sends a signal with label as to its child
with process E and a signal with label bs to its child with process B to trigger the
starting of the execution of a computational step by the two children. Then. the
brane A waits for two signals: a signal with label af from its child E (meaning that
all the B descendants have spawn a new copy of C) and a signal with label bf from
its child B (meaning that B has spawn a new copy of C). After the brane A has
received these two signals from its children, brane A creates a new sibling bubble
decorated with D, then A enters the D bubble (note that phagocytosis creates a
new brane surrounding A inside D; this causes the necessity to propagate signals
across this brane, that has process E). After A enters D, D creates a child with
process B by pinocytosis, and then signals that it has finished its task to its father,
and then, by fusing with a copy of an X brane, it becomes a brane with program A.

The definitions of the remaining systems and processes are as follows:

94 N. Busi, M.A. Gutiérrez Naranjo

A = mateas .©◦(mate⊥as
).©◦(mate⊥bs

). C→⊥
af

. C→⊥
bf

.drip(D). C←
d.A

′

A′ = !mateas
.©◦(mate⊥as

).©◦(mate⊥bs
). C→⊥

af
. C→⊥

bf
.drip(C→

af
)

D = C←⊥
d (E).©◦(B).drip(C→

af
).mate⊥x

X = matex.A
E = !mateas

.©◦(mate⊥as
). C→⊥

af
.drip(C→

af
)

B = !matebs
.©◦(C).drip(C→

bf
)

Ta = (!mateas
.drip(C→

af
))

Tb = (!matebs
.drip(C→

bf
))

Solution with output contained in a specific brane

Now we show how to put the encoding of the output of the system inside a single
brane, with process Res. First of all, we surround the system by two branes: the
external brane is decorated with process Ext1 and the internal brane is decorated
with process Ext2. The initial state of the system is reported in Figure 3.

!
XA A B

Ext2

Ta Tb Ta Tb

Res

Ext1

M

!
Y

Fig. 3. The initial configuration of the system with output in the Res brane (with
M = mate⊥n).

The system behaves as the system presented in the previous subsection as far as
the generation of new copies of C is concerned. On the other hand, when we decide
to terminate (by choosing the second maten action) then, instead of blocking the
system, the continuation of process Ext2 (together with system !Y L M) permits
to the nested branes A,A′ and B to perform an exocytosis. In this way, all the C
branes (as well as the terminating Ta and Tb branes) are put in the region of the
external brane. The Ext2 brane, as well as the E branes, disappear by performing
an exocytosis with the external brane, whereas each C brane produces a child
decorated with C ′ by pinocytosis, and then fuses with the Res brane.

When the computation stops, the result is represented by the number of C ′

branes contained inside the Res brane, and the structure of the system is depicted
in Figure 4.

Formally, the system is defined as follows:

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 95

X

!

Ext1’

Res

C’ C’ C’...
Y

!
Fig. 4. The final configuration of the system with output in the Res brane.

Ext1Lmate⊥nL M◦ Ext2L AL TaL M ◦ TbL M M ◦
AL TaL M ◦ TbL M M ◦
BL M ◦
!(XL M)◦
!(Y L M)M ◦

ResL M M

The processes Ext1 and Ext2 are defined as follows:

Ext1 = ! C→⊥
out

Ext2 = !maten.©◦(mate⊥as
).©◦(mate⊥as

).pino(mate⊥bs
). C→⊥

af
. C→⊥

af
.

C→⊥
bf

.drip(mate⊥n) |
maten. C→⊥

ae
. C→⊥

ae
. C→⊥

be
. C→

out

The definitions of the remaining systems and processes are as follows:

A = mateas
.©◦(mate⊥as

).©◦(mate⊥bs
). C→⊥

af
. C→⊥

bf
.drip(D). C←

d.A
′ | C→

ae

A′ = !mateas
.©◦(mate⊥as

).©◦(mate⊥bs
). C→⊥

af
. C→⊥

bf
.drip(C→

af
) | C→

ae

D = C←⊥
d (E).©◦(B).drip(C→

af
).mate⊥x

X = matex.A
Y = matey. C→⊥

ae
. C→⊥

be
. C→⊥

out

E = !mateas
.©◦(mate⊥as

). C→⊥
af

.drip(C→
af

) | mate⊥y
B = !matebs

.©◦(C).drip(C→
bf

) | C→
be

Ta = (!mateas
.drip(C→

af
)) | C→

out

Tb = (!matebs
.drip(C→

bf
)) | C→

out

Res = !mate⊥res

C = ©◦ (C ′).materes

96 N. Busi, M.A. Gutiérrez Naranjo

5 Conclusion and Future Work

In this paper we started an investigation of the differences between the two most
prominent formalisms inspired by the behavior of biological membranes, namely, P
systems [9] and Brane Calculi [3]. In particular, we investigate the computational
power of the two formalisms w.r.t. their ability to generate sets of numbers, and
we take as a case study the set L = {n2 |n ≥ 1}.

First we recalled the P systems presented in [9] which generates L, then we
provided a new, simplified solution. Then we move to Brane Calculi, and we tackle
the problem of presenting a solution to the case study based on the simplified
solution we propose for P systems. After discussing the problems which arise when
moving from P systems to Brane Calculi, we present two solutions of the problem
in Brane Calculi. The most relevant problem is due to the shift from the maximal
parallelism semantics of P systems to the interleaving semantics of Brane Calculi:
while maximal parallelism turns out to be a very powerful synchronization tool,
permitting to synchronize an unbounded number of components, it seems that this
form of synchronization turns out to be problematic in Brane Calculi. We solve
this problem by moving from a “flat” representation of the system to a hierarchical
representation, that can be easily obtained by making use of an unbounded number
of membranes.

We think that the present paper could represent a first step in the comparison
of the two aforementioned formalism. As future work, we plan to investigate the
possibility to compute NP-complete problems in polynomial time with Brane Cal-
culi, by taking as a starting point the encouraging results on this topic obtained
for P systems (see, for example, [12] and references therein).

Acknowledgment

The second author acknowledges the support by Ministerio de Educación y Ciencia
of Spain, project TIC2002-04220-C03-01, cofinanced by FEDER funds.

References

1. L.M. Adleman: Molecular computations of solutions to combinatorial problems. Sci-
ence, 226 (1994), 1021–1024.

2. N. Busi, R. Gorrieri: On the computation power of brane calculi. In Proc. Third
Workshop on Computational Methods in Systems Biology, Edinburgh, 2005.

3. L. Cardelli: Brane calculi. In Computational Methods in Systems Biology 2004 (V.
Danos, V. Schachter, eds.), LNBI 3082, Springer-Verlag, Berlin, 2005, 257–278.

4. L. Cardelli, A.D. Gordon: Mobile ambients. Theoretical Computer Science, 240, 1
(2000), 177–213.

5. L. Cardelli, Gh. Păun: A universality result for a (mem)brane calculus based on
mate/drip operations. In Cellular Computing (Complexity Aspects) (M.A. Gutiérrez-
Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.) Fénix Editora, Sevilla, Spain, 2005,
75–94.

A Case Study in (Mem)Brane Computation: Generating {n2 |n ≥ 1} 97

6. J.H. Holland: Adaptation in Natural and Artificial Systems. Ann Arbor, MI, Univer-
sity of Michigan Press, 1975.

7. W.S. McCulloch, W. Pitts: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5 (1943), 115–133.

8. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

9. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
10. Gh. Păun, M.J. Pérez-Jiménez: Recent computing models inspired from biology:

DNA and membrane computing. Theoria, 18 (2003), 72–84.
11. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro: BioAmbients –

An abstraction for biological compartments. Theoretical Computer Science, 325, 1
(2004), 141–167.

12. A. Riscos-Núñez: Cellular Programming: Efficient Resolution of Numerical NP-
complete Problems. Ph.D. Thesis. University of Seville, 2004.

13. P systems web page: http://psystems.disco.unimib.it/

