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ABSTRACT 

The effective tension area of concrete is a well known parameter in structural concrete. It is involved 
in several phenomena that affect the design of structural concrete elements, such as cracking, shear 
deformation or flexural deformation. In this work, the authors put forward a necessary change in the 
definition of the effective tension area of concrete provided by some groups of Standards.  
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1. INTRODUCTION

The uncracked concrete between adjacent cracks contributes to the stiffness of the composite 
material (i.e. reinforced concrete) due to the bond between the reinforcing bars and the concrete. 
This effect, called tension stiffening ([1]), significantly effects the response of the RC members.  In 
fact, actual Standards include it in load-deflection and serviceability verifications.  

The tension-stiffening model considered in Model Code [2] and Eurocode 2 [3] introduces the tension 
stiffening effect increasing the stiffening of the reinforcement by means of the presence of a 
surrounding area of concrete working in tension for strain levels greater than the cracking strain of 
concrete ([4]). This surrounding area is the effective tension area of concrete, Ac,eff. 

The value of Ac,eff is given by Eurocode 2 (§7.3.4) as function of: a) the type of structural element such 
as beams, slabs, … b) the position of the tensile reinforcement defined by its centroid and c) the 
neutral fiber depth. 

This paper questions the proposed expression by Eurocode 2 for the dependence of the effective 
tension area of concrete on the neutral fiber depth. Moreover, in a monotonically growing process of 
loading, the neutral fiber depth (x) decreases, and, in line with the proposed formula, this implies an 
increase in the effective tension area of concrete during the loading process, something which is 
physically impossible. Several examples are shown below.  

The notation used in this work is in accordance with Eurocode 2. 

2. CONSTITUTIVE equATIONS FOR CONCRETE AND STEEL.
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2.1. Concrete 

The non-linear relation between compressive stress, σc, and shortening strain, εc, proposed by EC2 -
§3.1.5(1) - for concrete under short term uniaxial loading is used.

There are several expressions available for the post-cracking relation of the tensile stress, σct, and 
tensile strain in concrete, εc. In this paper, the expression proposed by Hernández-Montes et al. [5] 
has been considered (Eq. (1)). The reason for doing so is that this expression has been derived from 
the formulation given in the Model Code 2010 with no additional assumptions:  
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The remaining the notation is in accordance with Eurocode 2. In fact, As is the area of tension 
reinforcement and Ac,eff, the effective area, for rectangular sections is the area of concrete 
surrounding the tension reinforcement of depth, hc,ef, where hc,ef is the lesser of 2.5(h-d), (h-x)/3 or 
h/2 (see Fig. 1). 

Figure 1. Effective height of concrete in tension and notation.

Expression in Eq. (1) is reinforced with the following observation by Wu & Gilbert [6]. After an 
exhaustive test campaign, they concluded that the tensile strength of concrete disappears when the 
deformation in steel reaches the value corresponding to yield, εy. Taking into account this evidence, 
Eq. (1) has been corrected by introducing a linear variation from the apparent yield strain of the steel 
to the value of 0 for εy. The value of the apparent yield strain of the steel, εced, is obtained, as 
suggested by Gil-Martín et al. [7], by imposing equilibrium in a short segment of an RC tension 
member, between a cracked section (where the reinforcement has yielded) and a generic section 
where the reinforcement stress is equal to the average stress (Fig. 2). 
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Figure 2. Apparent yield strain of the steel.

The complete concrete model is shown in Fig. 3 for concrete with a characteristic strength of 30 MPa 
and steel with a characteristic strength 500 MPa. 

Figure 3. Non-lineal strain-stress response of concrete for specimen represented in Fig. 5 with fck=30 

MPa, fyk=500 MPa. 

2.3. Steel 

The considered strain-stress curve for reinforcement steel is bilinear with no strain hardening. No p-
delta effects are considered in the reinforcement due to the presence of transversal reinforcement, 
Gil-Martin et al. [8]. The steel model has been corrected to account for the presence of the 
reinforcement embedded in the concrete cross-section, which is due to the fact that concrete stress 
is considered to operate over the gross section, not accounting for the presence of the 
reinforcement. The model of steel is represented in Fig. 4. 
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Figure 4. : Strain-stress curve of steel for specimen represented in Fig. 5 with fck=30 MPa, fyk=500 MPa. 

3. EQUILIBRIUM.

There are two accepted hypotheses at cross-section level for the study of reinforced concrete 
elements: a. Adherence concrete - steel: steel and concrete placed at the same fiber of the cross-
section presents the same strain; and b. Plane section hypothesis (PSH): plane sections remain plane 
after deformation. As shown in Fig. 1, the PSH hypothesis implies that the deformation of any fiber 
located at a distance y of the center of gravity of the gross section can be expressed as a function of 
the curvature (φ) and of the strain of the center of gravity (εcc). 

cccc yy εϕεϕε +=],,[ (3) 

Imposing the equilibrium of axial force and of flexural moment at the center of gravity of the gross 
section, the response of the reinforced concrete section, in terms of φ and εcc, to the loadings NSd 
and MSd can be obtained from: 
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where b is the width of the cross section, in the case of non-rectangular sections, b is function of y: 

b[y]. Aφi and yφi are the area of the cross section and the y-coordinate of bar φi.

In the former expression σc[ε] and σs[ε] are the constitutive equations of concrete and steel 
represented in Fig. 3 and 4, respectively. 

Eqs. (4) and (5) can be solved estimating values of the curvature (φ), for a given value of NSd. For each 
value of the curvature, εcc can be obtained from the equation 4. The value of MSd is obtained from 
Equation 5 for each pair (ϕ , ccε ). For a constant axial load NSd, values of the stress in concrete, the
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stress in steel and the depth of the neutral fiber (x), can be obtained from  monotonic values of the 
flexural moment MSd. 

4. EXAMPLE.

Fig. 5 shows a 0.3×0.5 m cross section of a beam having concrete with a characteristic compressive
strength of 30 MPa and a reinforcement characteristic yield strength of 500 MPa. The longitudinal 
reinforcement consists of two bars of 12 mm diameter and 5 bars of 20 mm diameter, positioned as 
shown in Fig. 5. Transverse reinforcement corresponds to stirrups 10 mm diameter at 150 mm. 

Figure 5. Example of beam cross section.

For no axial load, i.e. 0=SdN , and for values of the curvature (φ) between 8102 −⋅  and 5102 −⋅ the

system of Eqs. (4) and (5) has been solved using Mathematica©. The bisection method has been 
used with a tolerance for axial load equal to 110− N.

The value of hc,ef , given in  Fig. 1, is affected by the neutral fiber depth. Using an iterative procedure, 
the neutral fiber depth (x) is obtained from Eqs. (4) and (5), see Fig. 6.  

Figure 6. Evolution of the neutral fiber depth, x.
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Fig. 6 shows that the neutral fiber depth, x, decreases with increasing flexural bending moment. In 
such circumstances, the value of the effective height of concrete in tension, hc,ef, given in Fig. 1 
(Eurocode2, §7.3.4(2)), might increase during the load history, as is shown in Fig. 7. Notice that the 
curve h/2=250 mm, related to one of the values of hc,ef, is not represented. 

Figure 7. Effective height of concrete in tension for the rectangular cross-section represented in Fig. 1.

In Fig. 7, values of the cracking moment, Mcr, and value of flexural moment for which the behavior of 
the concrete is no longer lineal (i.e. the maximum compressive stress in concrete reaches 0.4fcm), 
Mlinear, have also been represented.  

The increase of the effective area or effective height of concrete in tension in Fig. 7 goes against the 
physical phenomenon of concrete degradation associated with bond decay at higher tensile strains. 
So an upper limit should be imposed to the condition (h-x)/3. If the value hc,ef is defined as less than 
2.5(h-d) or (h-x)/3 with x corresponding to Mcr (Fig. 7) this incongruence can be  avoided.  

Fig. 8 shows two M-φ curves, one considering hc,ef as proposed by Eurocode2, in a continuous line, 
and the other considering (h-xcr)/3 instead of (h-x)/3, represented by the dashed line. This figure 
shows that in the linear range, in which the design for serviceability is evaluated, the increase of 
effective height, Δhc,ef in Fig. 7, as is defined in Eurocode2 leads to smaller deflections. 
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Figure 8. Moment-curvature diagrams.

5. CONCLUSIONS.

Usually a linear stress-strain relationship is assumed for the concrete under service conditions, 
provided that the concrete stress does not exceed 40% of the compressive strength, according to 
Eurocode2. Serviceability design is essential to users of the structures and it is based on sectional 
analysis, assuming an effective tension area of concrete (the product of width times the effective 
height). Regulations, such as Eurocode2 or Model Code 2010, propose an effective height as the 
lesser of three values, one of which depends on the neutral fiber depth.  In order to obtain physically 
possible results, the value of the neutral fiber depth should have a lower bound; possibly being the 
one corresponding to the cracking moment. 
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