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Abstract

Time-periodic localised oscillations occur in a variety of contexts, in particular in
weakly coupled anharmonic lattices and in disordered harmonic networks of oscilla-
tors, where they are known respectively as discrete breathers and Anderson modes.
It is shown numerically in some examples of systems which interpolate between
these two limits that discrete breathers can be continued to Anderson modes, mod-
ulo small jumps associated with resonance with Anderson modes on other parts of
the network.
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1 Introduction

Spatially localized time-periodic oscillations, or “localized oscillations” (LO)
for short, appear in various types of spatially discrete models. In particular
they occur in lattices of weakly coupled anharmonic oscillators and in disor-
dered lattices of linear oscillators, but their origins in these two contexts have
up till now been thought of as independent. For example, Scott’s assessment
of the numerics of Feddersen [1] on a disordered discrete self-trapping (DST)
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equation is that “Anderson localization is completely different from anhar-
monic localization” (section 5.2 of [2]), because the numerics show Anderson
modes delocalising rapidly as the anharmonicity is turned on. In our paper,
however, it is shown numerically that on moving parameters in the opposite
direction in a family of models, LOs of anharmonic ordered systems can be
connected virtually continuously to L.LOs of harmonic disordered systems. First
we recall the basic results in the two contexts.

LLOs are common in anharmonic lattices and have received considerable atten-
tion recently (for a review, see [3]). They have been given a variety of names,
but the one we shall use is “discrete breather”, or more simply “breather”.
In particular, MacKay and Aubry [4] proved analytically the existence of
breathers in Hamiltonian lattices of weakly coupled oscillators of nonlinear
Klein-Gordon type  those with an anharmonic® on-site potential. The bre-
athers are proved to exist as smooth continuations of the trivial solutions at
zero coupling where some oscillators are on periodic orbits and the remain-
der at rest. This limit has been called the anti-integrable or anti-continuous
limit [7], but is most simply referred to as the “uncoupled limit”. Proofs have
also been given for some systems with no on-site potential, e.g. [8,9].

On the other hand, localization is also a physical phenomenon observed in the
context of wave propagation through disordered media. By “disorder” for a
classical lattice we mean that the local frequencies and/or couplings between
oscillators are random. When the disorder is sufficiently large, certain types of
waves become trapped and the spreading of any initial wave packet is anoma-
lously slow or impossible. Instead, the eigenfunctions are spatially localized, so
give localized modes that we call “Anderson modes”, following the pioneering
work of Anderson for Schrodinger equations with random potential [10-12].

In this paper we address the question raised in [13], whether there is a connec-
tion between these two different types of LO, i.e. if there is a continuous path
that transforms a breather in an anharmonic ordered lattice into an Anderson
mode in a harmonic disordered lattice. We study the question numerically,
using a variant of the continuation method developed in [14,15].

Our models are of the form

m 1 1 1m71
szipi+§wiui—su2+852(un—un+1)2 (1)
n=1 n=1

where ¢ is fixed at 0.05, the “site frequencies” w, are chosen randomly from
a 2-point distribution of variable width p, and the “anharmonicity” s is also

4 “Anharmonic” means that the period of oscillation varies with amplitude. A bet-
ter term is “non-isochronous”, cf. [5], because the harmonic oscillator is by no means
the only potential for which the period is independent of amplitude, e.g. [6].



variable. We consider paths in the (p, s) plane connecting the extremes (1,0)
(random harmonic) to (0,1) (translation-invariant anharmonic). This type
of model differs from that of [1] in three ways. Firstly, Feddersen’s model
has global phase rotation symmetry which gives it special features (e.g. con-
served excitation “number” and existence of “stationary solutions” discrete
breathers with time-dependence purely of the form e“!) 5. Secondly, Fedder-
sen has a disordered coupling matrix in addition to random site frequencies® .
Thirdly, Feddersen’s distribution of site frequencies is continuous rather than
discrete. Further work will be required to assess the effects that such differ-
ences can make, but we note that Kopidakis and Aubry [17] have recently
studied a similar model to ours but with a continuous distribution of site
frequencies, and it will be interesting to compare their results.

There are some mathematical results on this problem. Continuation of An-
derson modes to weak nonlinearity (equivalently, from infinitesimal to small
amplitude in a nonlinear system) was studied mathematically by Albanese and
Frohlich [18]. They proved that Anderson modes have a “continuation” to a
Cantor set of amplitudes whose complement has vanishing relative measure
in the neighbourhood of zero amplitude. Their proof leaves gaps in the set of
allowed amplitudes because of the possibility of resonance with nearby An-
derson modes. Non-continuability across these gaps is a priori quite likely but
we considered it interesting to investigate numerically to what extent there is
a genuine obstacle.

In the other direction, the proofs of existence of discrete breathers apply
equally well to disordered systems as to translation invariant lattices: simply,
more care must be taken to satisfy the condition of non-resonance between the
breather frequency and the linearised frequencies about the equilibria [19] (see
also [13] for a special case). Thus continuation of discrete breathers from the
ordered nonlinear regime is guaranteed to at least some amount of disorder
and weakening of the nonlinearity.

The questions we address here numerically are whether one can find continuous
paths of LOs from the ordered nonlinear regime to the edge of the Albanese-
Frohlich regime and whether there is a genuine obstacle to continuation within
the Albanese-Frohlich regime. The answer we find in our chosen model is that
all the discrete breathers we studied continue to Anderson modes except for
some small discontinuities occurring in the Albanese-Frohlich regime.

» DST models (also known as discrete nonlinear Schrodinger equations) were an
important early source of LOs in nonlinear lattices [16], but the recent wave of
activity on LOs is connected with the realisation that the phenomenon is much
more general.

6 He also kept the disorder fixed, but by scaling the field by the square root of the
nonlinearity this is equivalent to decreasing the disorder to zero as the nonlinearity
goes to infinity.



Throughout the paper we use the term LO for Anderson modes, breathers
and any time-periodic spatially localized oscillations in between. We avoid
the terms “mode”, which suggests a linear regime, and “intrinsic”, which is
supposed to denote an effect not requiring randomness, because our message
is that localized oscillation is a more general phenomenon encompassing both
limits.

We begin by describing the chosen model in Section 2. Then in Sections 3,4 and
5, respectively, we describe the numerical methods used to obtain a breather
in the anharmonic ordered case, to continue it towards the linear disordered
case, and to compute its linear stability. The results are presented in Sections 6
and 7. The paper concludes with a short summary in Section 8.

2 The model

We study an anharmonic Hamiltonian system of the Klein-Gordon type, given
by the Hamiltonian:

7 1 1 1 m—1
H = Zipz, +§wi ui—s ui+€§ Z(“n*“nH)Q (2)
n=1 el

where {u,}" , are the coordinates of the m particles with respect to their
equilibrium positions; {w, }_; are the frequencies of small amplitude oscilla-
tion of the particles, which can be different as will be explained shortly; —s u?
is the anharmonic part of the on-site potential for the particle n, therefore
a softening potential; s is a parameter which describes the degree of anhar-
monicity and takes its value in [0, 1], s = 0 being the harmonic case; and ¢
is the coupling parameter, ¢ = 0 corresponding to no coupling. The coupling
potential is harmonic and nearest neighbour, though both these assumptions

can be relaxed.

The disorder is implemented here by means of the curvatures w? of the local
potentials at their minima. Since the masses have all been chosen equal to
1, this gives rise to frequencies w,. Suppose they take two values randomly
distributed, say:

= w0 (149 ). (3)
Here p is the disorder parameter, taking its value in [0, 1]. At p = 0, there is
no disorder and all the frequencies are equal to wy, which is taken to be 1;
{r,}™_, are the components of a random vector of +1. At p = 1, the most
disordered case, the frequencies are 0.5 wy or 1.5 wy. The parameter p is to be
considered a monotonic function p = p(s) of the nonlinearity s, with p(0) =1



and p(1) = 0, giving a path from the anharmonic ordered case to the harmonic
disordered case. Examples of these paths are

p=1—-5s% ¢>0. (4)

We study paths with ¢ =1 and ¢ = i in this paper (it might have been more
natural to take only C* paths, but we were interested to investigate the effect
of the ¢ = % approach to the disordered linear limit too, because of the small
number of bifurcations on it).

We could have chosen random masses or random coupling strengths instead
of or as well as random curvatures, or a continuous distribution for w, rather
than a discrete one, but we think that our choice is a good first case to study.
For a study of an example with continuous distribution of w,, see [17]. Note
also how this approach differs from that used in [1]: in that work, the degree of
disorder was kept fixed while the nonlinearity was tunable; here we tune both.
We suspect that this is more relevant than the possible differences arising from
the two underlying models (a Hamiltonian lattice of classical oscillators vs. a
discrete self-trapping equation). We consider only 1D chains, but it would also
be interesting to study 2D or 3D models and models in which the randomness
arises partially or completely from a random network of couplings.

The dynamical equations of the system are (p, = i, = —0H/0u,):

Fo(u,s,&) =1, + wiun -3 sui + &(2uy — Uy — Upyy) = 0. (5)

3 Obtaining breathers and Anderson modes
3.1 Obtaining a breather

Numerical methods for finding breathers are described in [14,15,20]. We work
in the space of time-periodic, time-symmetric solutions of specified frequency
wp, with continuous second derivative, which is denoted by £2(wy). Therefore
the functions u, (%) can be approximated by truncated Fourier series (rotating
wave approximation) of the form:

km k=,
u,(t) = Y 2E et =55 + 3" 228 cos(kwpt). (6)
k=—km k=1

The second equality holds because z* as a result of the

operator in Eq. (5) being real and the time-symmetry of w,,(t).

k

—n

is real and z* = 2



Using the Newton-Raphson method, we first find a solution for the isolated
oscillator with a given frequency wy,, using as a seed the solution of the har-
monic problem. The starting seed for obtaining a breather is a particle with
this solution and the others at rest. By varying ¢ from ¢ = 0, with small steps,
we are able to obtain a breather from the uncoupled limit.

3.2 Obtaining Anderson modes

This is a much simpler task. When the on-site potential is harmonic the dy-
namical equations of the system (Eq. (5)) can be written:

iy = — w2ty — £(2Up — Up_1 — Upy1), (7)

or in more compact notation:
i = —Qu. (8)

Then it is simply a question of finding eigenvectors u of the matrix €2 and
checking whether they are spatially localized. In one dimension (cf. [21]), for
arbitrarily weak disorder the spectrum of Q consists of m eigenvalues &? in
(0, 00), whose eigenvectors v* are localized near n = k and decay exponentially
as |n| — oo. Thus equation (8) has periodic solutions:

uk (1) = cos(@pt)vk,  sin(@pt)vr. (9)

As we are working in the space of time-reversible solutions, we are only con-
cerned with the first set of solutions of Eq. (9). They are easy to obtain
numerically. Two of them are shown in Fig. 1, which are the LLOs at the end
of the ¢ = 1/4 and ¢ = 1 paths.

4 Continuation of localized oscillations

Here we explain the method that we have used for continuing the breather in
its path towards disorder. Sample results are presented in Sections 6 and 7.

The continuation cannot be done at constant frequency as there is no guaran-
tee that at the harmonic limit there is any Anderson mode with the breather
frequency (except for the trivial solution, u,, = 0, Vn). Instead, we choose to
maintain constant the action of the loop,

I1=5 fpn dg, =Y ?{undun (10)
n=1 n=1
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Fig. 1. The components of two Anderson modes, which are at the end of the paths
with (a) ¢ = 1/4, and (b) ¢ = 1.

(perhaps better called its “area”, as “action” has many other meanings).
Among other advantages, this prevents the continuation from moving towards
the zero solution. As the periodic functions of arbitrary frequency do not form
a vector space, we change the time scaling: ¢t — ¢ = wpt. Denoting differen-
tiation with respect to ¢ by prime ('), we have i = wiu”, and wy, will appear
in the dynamical function as a parameter to be determined. Therefore, we
work in £(27) x R, &(27) being a suitable Banach space of time-symmetric
2m-periodic functions. The action is I = wy, X™, [ (u!))?d¢.

Substituting the expressions (6) with ¢ = wyt into the dynamical equations
(5), with u” = wiii, and collecting the terms in the exponentials exp(ik¢), we
obtain m(k,, 4+ 1) different algebraic equations G(z,s) = {{G*(z, s)}im,}",
for the m(ky, + 1) variables z = {{z}f=,}™ | and the frequency of the self-

localized mode wy,. Using the expressions for u, in Eq. (6), I can be easily
calculated to be

Inwn) = mop 303 (k 22502, (11)

n=1k=1

Then, we add to the system of equations GG the equation:

Gi(z,wp) =I(z,wp) = Ip=0. (12)

The dynamical equations are reduced to a set of m(k, + 1) + 1 algebraic
equations in the m (k,, + 1) + 1 unknowns 2* and wy,. Hereafter we will use



the notation

G = (G,Gy) and Z = (z,wp). (13)

The Jacobian of G with respect of Z is of special importance. On the one hand
its invertibility is the condition for the Implicit Function Theorem (IFT) to
apply and, therefore, to guarantee the existence of a unique branch of solutions
Z(s) in the neighbourhood of a solution Z, at sq. On the other hand, it is used
within the Newton method for continuing a solution, which is the practical
realisation of the IFT. If (%, s¢) is a solution of G(2,s) = 0, and s, = s¢ + 05
is a nearby value, writing z; = Zy + 0z, we have:

G (% + 0%, 51) = G(%,51) + 0:G (%, 51) 0% . (14)

Therefore, we obtain a first approximation for the solution at s; by making
the last expression zero. This approximation is:

5 =20+ 02 = 5 — [0:G (%, 1) "G (%0, 51) - (15)

Using z; as a new seed instead of Zy, and repeating this procedure, we are
able to obtain a sequence of approximations to the solution at s; which, pro-
vided it exists and it is close enough to sq, converges quadratically to machine
precision.

We need an initial breather solution at sq = 1 to start our continuation proce-
dure. This can be obtained by a preliminary continuation from the uncoupled
limit, as discussed above in Section 3.1. In our numerics we started with the
simplest configuration, single breathers (i.e. those which correspond in the
uncoupled limit to one particle oscillating and the others at rest). Once the
solution is continued to the desired value of the coupling ¢, it becomes the
starting point for our continuation into Anderson modes. We have used a
model with 21 particles, a number which proves to be large enough to observe
the LOs.

For every initial condition and path in parameter space that we examined, we
found several values of s where the Jacobian 8;G has zero eigenvalues, so in
principle a bifurcation could take place. In spite of that, the Newton method
generated an almost continuous path of LOs.

To clarify whether an eigenvalue is really zero or only very small, because of
the inaccuracy of the truncations of the Fourier series and the numerical error,
we have plotted the whole set of eigenvalues with respect to s. Then it is easy



to observe the evolution of the different eigenvalues, and if one of them changes
sign it is clear that we have a zero eigenvalue. As the eigenvalues {v;} can be
complex we plot abs(v;) sign(Re v;), which gives the clearest plot. A complex
eigenvalue whose real part changes sign would appear as a discontinuity, but
there are two of them, and they are easily recognized and checked with the
plot of their counterpart abs(v;) sign(Imv;).

Most of the eigenvalues of 0;G are easily recognized, due to the fact that most
oscillators in a LO are oscillating with very small amplitudes. An easy way to
trace their origin is to analyze the spectrum from the limit of weak coupling.
In such case, the dynamical equations corresponding to oscillators with small
amplitudes are:

Fo(u,s) = wiu!! + w2(s)u, = 0. (16)

Substitution of the Fourier representation in terms of the modes z* cos ke,
gives:

—kPwiE Wl (s)E =o0. (17)

That is, these oscillators would only contribute with diagonal entries in the
Jacobian 0;G, of the form:

vf = wi(s) — E*wi(s). (18)

n

As w, can take only two different values, wy (s) = wo £ 3p(s), we obtain:

vt = wl(s) — kAwi(s). (19)

Therefore, we obtain 2(k,,+1) different possible values for these eigenvalues. At
¢ = 0, each of these has a degeneracy coinciding with the number of oscillators
at rest with frequency w,y(s) or w_(s), respectively. When the coupling ¢ is
switched on, each of these will split into a “band”, and that degeneracy will
generically be raised.

Then there will be other eigenvalues of different origin, those associated to sites
which are in a high-amplitude oscillation (just one site for a single breather).
Those will be typically detached from the bands discussed above, so they
are easily spotted. Another complex conjugate pair of isolated eigenvalues
comes from the last equation (Eq. 12). Tt is associated with the interchange
of amplitude and frequency that maintains the action constant.



5 Linear Stability

The linear stability of a LO can be calculated by means of the monodromy
matrix, cf. [22,7,20,19,15]. This is obtained as follows; suppose v = {u, (¢},
is an LO for a certain value of s, with frequency wy, and period T, = 27/wy,
and £(t) = {&,(1)}™, a C2% small perturbation of u(t) defined on [0, T}]. Lin-
earization of Eq. (5) gives the equations:

En + w?l fn — 6s Un(t) fn + 5(2£n - fnfl - £n+1) =0. (20)

Writing the momenta 7,(t) = fn(t), we obtain a set of dynamical equations
for ({&.(t)}, {mn(t)}), which can be integrated numerically. As the functions
(&(t),m(t)) are determined linearly by their initial conditions at ¢ = 0, and
the integration determines their values at ¢ = T}, we obtain a 2m x 2m linear
operator, called the monodromy matrix, Tj:

{mu(Th)} {mn(0)}

Therefore the linear stability of the LO is determined by the eigenvalues of
the monodromy matrix, called Floquet multipliers. The fact that the system
is Hamiltonian and real implies that if A is an eigenvalue then 1/A; A*, 1/\* are
also eigenvalues. Then a necessary condition for linear stability is that all the
Floquet multipliers be on the unit circle in the complex plane. Setting aside
the cases with multiple Floquet multipliers of mixed symplectic signature, this
is also a sufficient condition for linear stability.

6 Results

Here we give details and explanations of some numerical simulations, and
present the results. The number of particles is m = 21, the coupling parameter
is £ = 0.05. The number of Fourier coefficients was between 7 and 11, that
is k, € {6,...,10}, which may appear small, but in fact we considered the
truncation good only when the last Fourier coefficient is at least 107% times
smaller than the largest one (which is always & = 1 or 2). Of course, when
we approach the disordered linear limit, this ratio diminishes to values of the
order of 1072°. We have increased k,, as a test to values up to 14, but this
does not produce any change (apart from the computational time), even at
the difficult points where the eigenvalues of d;G approach zero and a change
of behaviour is produced. The random vector of &1, which determines which

10



particles have high or low frequency is:

T'n = (17 _17 _17 _17 17 _17 17 17 _17 17 _17 _17 17 17 _17 17 17 _17 _17 17 1)7
S~~~ S—_— Y—m—————

A C B
(22)

where we have labeled the groups of particles A (particles 7 and 8), C' (particles
11 and 12), and B (particles 13 to 17), for future reference. Several paths
followed from nonlinearity-order, s = 1, to linearity-disorder, s = 0, have
been studied. Also we have studied paths backwards starting at s = 0, which
usually lead to multi-breathers. Here we comment on two significant ones from
s = 1: the linear one, where the function p of Eq. (3) is p = 1 — s, and the
path p =1 — s'/*, which we will refer to as the 1/4 path.

6.1 The linear path

We start with the single breather with frequency w, = 0.85 obtained from
the uncoupled limit coded 0 for all the particles, except the central particle,
number 11, coded 4+1. The code means 0 for particles at rest, +1, for particles
oscillating with phase 0 at ¢ = 0, and —1, for initial phase 7 (see for example
[7]). This frequency allows a relatively large window of values outside the linear
modes (the same reference). The Fourier spectrum of this breather appears
in Fig. 2, and its projection onto the local phase planes in Fig. 3. Its action
(area) was found to be I = 0.1286.

Then we continued it from s = 1 towards s = 0. As s diminishes, the two par-
ticles C with the same frequency at rest begin to oscillate in phase, evolving to
what we will call the double central L.O, that is the two particles C oscillating
in phase and the others almost at rest. At the same time two new LOs appear;
one of them consists of the group B, oscillating with code (+1, 1,0, —1,+1),
and the other is the group A of particles with code (—1, +1). All these oscilla-
tions can be seen in the Fourier spectrum that appears in Fig. 4. At s; = 0.322,
the oscillation C disappears. At so = 0.234 the oscillation A is annihilated and,
in the end, the only surviving LO is B.

In Fig. 5 we can see the evolution of the eigenvalues of 9;G(2, s). At smaller
scale it can be seen that only the group of eigenvalues labelled wl— crosses
the zero line, which happens about s;. Inspection of the Fourier components
shows that for s < s;, the odd Fourier components are negligible, therefore the
frequency is in fact doubled: we have an inverse period doubling bifurcation
as s decreases, and the resulting LO for s < s; is an orbit of half the action
taken twice over.

The eigenvalues of the monodromy matrix evolve along the path, as shown in

11



Fourier components of the central particles
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Fig. 2. Fourier components of the breather with w, = 0.85 and s = 1. Vertical lines
separate the coefficients of the particles. Crosses give the Fourier coefficients. We

can see that only the first two or three of each particle (four for the eleventh one)
contribute significantly to the spectrum.

Phase space of the 21 particles, s=1, wb=0.85
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Fig. 3. Phase space of the breather. The exterior curve corresponds to the particle
11, the first interior curve corresponds to both the two neighbouring particles.

Fig. 6. To numerical resolution they sometimes cross each other but do not
appear to abandon the unit circle, even when some with opposite symplectic
(Krein) signature [7] cross, or when a pair of conjugates join at +1. If observed
on a small scale, however, we expect that one would see small bubbles of
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Fourier components of the localised oscillations. Linear path.
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Fig. 4. LO at halfway to the disordered linear regime. From the single breather
a two particle LO, C, is formed at 11 and 12, which will completely disappear at
s = 0.322, bif. 1. The two particle LO, C, at particles 7 and 8, will disappear at
s = 0.234, bif. 2. There is a 5 particle LO, B, at (13,14,15,16,17) which in the end
will be completely symmetrized and the only surviving localized oscillation of non
negligible amplitude. For these last two modes the largest Fourier component is
k = 2, and the odd k’s are negligible. Therefore their frequency is in fact double
that shown we are close to a period doubling bifurcation.

instability near these collisions, cf. [15,20,23].

6.2 The 1/4 path

This path starts with the same single breather, at the particle 11, but the
evolution of the LO is much simpler. The neighbouring particle 12 begins to
oscillate in phase, and we get a double LO in C that evolves to the double
Anderson mode in C. The evolution of the eigenvalues of the Jacobian can
be observed in Fig. 7, with an enlargement in Fig. 8. The eigenvalue crossing
zero at s, = 0.2938 can be identified with resonance with a linearised mode
on particles 1 6; the oscillation of this group increases as s approaches the
s. from either side, but with opposite phase on the two sides, as illustrated
in Fig. 9. Also, the whole group labelled w2+ crosses zero near s = 0.01, as
mentioned in the figure caption.
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Evolution of the eigenvalues of the Jacobian. Linear path.
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Fig. 5. Evolution of the eigenvalues of the Jacobian 9;G (%, s). Most of the eigenvalues
correspond to linear modes on the particles close to rest; these are labelled by
wk=, where k € 7 denotes the dominant temporal Fourier harmonic involved and
the + sign indicates whether the mode is associated with particles with disorder
variable r,, = =£1, see eq. (2). The eigenvalues associated with perturbation of
the excited sites are labeled bk; however, the first two are mixed with the linear
modes. Finally, the eigenvalue labelled Tw is a complex conjugate pair related to
the interchange of amplitude and frequency that maintains the action constant; the
apparent discontinuity is due to the change of sign of the real part.

7 Bifurcation study

We have studied in some detail the important bifurcations, that is those that
involve changes of behaviour of non-negligible amplitude. These bifurcations
can be detected in several ways: slowness and /or difficulty of convergence of the
Newton method, including jumps in the step prescribed; looking at the points
where an eigenvalue of the Jacobian crosses or approaches zero; and abrupt
changes in the Fourier spectrum or in the plot of the coordinates versus time.
Special care has to be taken when an eigenvalue approaches zero and turns
back. Is the Newton method jumping to another branch of solutions, or are we
dealing with a bifurcation? With our present program, we cannot expect to
reach the exact point where a bifurcation takes place, as the Jacobian is not
invertible there (this could be solved by using arc-length continuation with a
suitable choice of transversal). A great help is obtained, however, by restarting
the Newton method after the bifurcation, and tracing it backwards, seeing if
the solutions take the same path or another one, and in this case, which one.
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Evolution of the eigenvalues of the monodromy. Linear path.
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Fig. 6. Evolution of the eigenvalues of the monodromy for the linear path. All of
them appear to remain of modulus 1. The two groups of eigenvalues at s = 1 which
have different Krein signature cross around s = 0.8 at -1 (phase ) and again mix
about s = 0.4 at 1 (phase 0) without apparent loss of stability.

Some other considerations such as approximate symmetries can be used, as
we shall see below.

We depict bifurcation diagrams by plotting with respect to the parameter s
a bifurcation variable, which is the projection of the solutions on the null
subspace of the Jacobian at the bifurcation, that is the centre subspace. If
we do not have exactly zero eigenvalues, or two very small ones crossing or
approaching zero, we may have to decide which is the appropriate centre sub-
space where the bifurcation is taking place. This can be done by comparing the
corresponding eigenvectors just before and after the bifurcation and observing
the evolution of the eigenvalues.

7.1  Bifurcations in the 1/4 path

This is a very simple path as there is only an isolated eigenvalue crossing zero
(Fig. 8), except when we get very close to the linear disordered case (s = 0.01),
where a group of linear modes crosses zero. We think that the bifurcation
associated with this eigenvalue crossing zero is a typical feature for L.Os in
random systems, when they resonate with linear modes on other parts of the
system. The bifurcation diagram can be seen in Fig. 10. To understand this,
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Evolution of the eigenvalues of the Jacobian. 1/4 path.
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Fig. 7. Evolution of the eigenvalues of the 9;G(Z, s) along the 1/4 path. The labels
are the same as in Fig. 5.

it is helpful to compare with Fig. 9 and to notice how the frequencies of the
LO and a linearised mode located mainly on particles 2-4 cross (Fig. 11).

If the frequencies of a (time-symmetric) LO of action I on one finite chain of
oscillators and a linearised mode on another finite chain cross as a parameter s
passes through a value s,, then for the joint system of two independent chains
there is a pitchfork bifurcation in the set of time-symmetric L.Os of action I at
s = ., because one can add any small amount of the linearised mode, in either
phase, and decrease the action of the LLO correspondingly. Generically, these
changes cause a slight shift in the frequency ratio, requiring a compensating
shift in parameter leading to a pitchfork. If one now connects the two chains
by coupling their ends to make a single chain, the pitchfork can be expected
generically to break (unless some spatial symmetry is preserved), making an
imperfect pitchfork. This can be seen in the bifurcation diagram in Fig. 10.
We have obtained the two outer prongs of the pitchfork by the following
procedure: we add to a solution {u,}, not too close to the bifurcation, the
eigenvector corresponding to the centre subspace, scaled so as both have the
same action. We rescale again so as to obtain a vector with the same action
as our solutions. This is used as a seed for the Newton method to obtain a
branch of solutions that joins to the previous one at the bifurcation point.
Subtracting the eigenvector, instead of adding, we are able to obtain the other
branch.

This can be confirmed easily by comparing the plots of the coordinates versus
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Evolution of the eigenvalues of the Jacobian. 1/4 path.
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Fig. 8. Enlargement of Fig. 7, showing the eigenvalues in the group wl—. Appar-
ently only one eigenvalue crosses the zero line; it is related to a change of phase
of a small amplitude mode on particle 5. The double LO on particles 11 and 12
evolves continuously. Also visible in this picture is the group of eigenvalues w2+ at
very small s, which crosses the zero line at about s = 0.01; this is related to the
disappearance of the Fourier components with & # 1 at the linear limit.

time before and after the bifurcation. It shows the change of phase in a group
of six particles. Moreover, the null eigenvector is composed mainly of the first
Fourier components of these particles.

This is not a standard imperfect pitchfork bifurcation, however, as both the
“horizontal” branches are observed to be linearly stable, in contrast to a stan-
dard imperfect pitchfork for periodic orbits of a Hamiltonian system for which
the “horizontal” branch would change stability. We conjecture that the bifur-
cation diagram should be completed by creation of a pair of unstable time-
asymmetric LOs by a “Rimmer bifurcation” (pitchfork for periodic orbits of
reversible Hamiltonian systems) [24] from one of the “vertical branches” after
a short interval of instability.

Note that although the standard setting for analyzing bifurcations of periodic
orbits in Hamiltonian systems is to consider variation of the set of periodic
orbits of given energy E with respect to F and/or external parameters, the
same results apply for given action I, because dI/dFE = T, the period, which
is neither zero nor infinite.
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Fig. 9. Evolution of the LO through the zero eigenvalue at s = 0.2938 on the 1/4
path. On the right, Fourier components before the bifurcation, at s = 0.294, on the
left, after the bifurcation, at s = 0.293. On the top, the 21 particles, on the bottom,
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Fig. 10. Bifurcation diagram along the 1/4 path. The bifurcation variable is the
component in Fourier space in the direction of the eigenvector with zero eigenvalue
for the operator 85@(2,3) at s = 0.2938, which is shown in the inset. The outer
prongs, composed of the central oscillation plus an oscillation similar to this eigen-
vector, with the same phase for the upper prong, and a phase difference of 7 for the
lower one, lead to non localized oscillations in the nonlinear limit.
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Frequencies of the linearised modes about equilibrium
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Fig. 11. Frequencies of the LO (also twice its frequency) and all the linearised modes
about equilibrium for the 1/4 path.

7.2 Bifurcations in the linear path

The bifurcation diagram can be seen in Fig. 12. The bifurcation variable is the
projection of the solutions on the centre subspace for bif. 2. The breather starts
at s = 1 with code 4+1 on particle 11 (in group C) and follows the path 1(+), on
which the LOs A and B grow as s decreases. The first eigenvalue crossing the
zero line is not visible in Fig. 12, but corresponds to a linear mode on another
part of the chain, given a discontinuity like the one described above. The
second produces the first important bifurcation, i.e. related to interactions of
LOs of non-negligible amplitude. This is bif. 1, at s; = 0.322. There the central
mode on C, disappears, producing path 2, on which the odd Fourier coefficients
are negligible and presumed to be due to numerical error, i.e. the frequency
is doubled. Continuation of the solution backwards from the bifurcation leads
to path 1(-), where the solution is identical to that on path 1(+) except for a
phase change of 7, leading at s = 1 to the single breather coded -1 on particle
11. Manipulation of the solutions in path 1, before and near the bifurcation,
eliminating the central LLO, and continuing it forwards and backwards, makes
it possible to find a third branch, path 5, which leads at s = 1 to a general
oscillation of the system.

Putting these together, we obtain an inverse period-doubling bifurcation, shown

in the inset to Fig. 12 by using as bifurcation variable a coordinate on the
centre subspace for bif. 1, which distinguishes between the two phases 1(4). It
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Bifurcations in the linear path
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Fig. 12. Bifurcation diagram along the linear path. The bifurcation variable is the
component in Fourier space in the direction of the eigenvector with zero eigenvalue
for the operator 0;G(Z, s) at bif. 2 (bif. 1 in the inset). It is fully explained in the
text.

is not a standard period doubling bifurcation (as described by [25] for generic
Hamiltonian systems or [24] for reversible Hamiltonian systems), however,
because numerics show that all branches are linearly stable. Our conjecture
is that there is a short interval of instability on path 5 which terminates in
another period doubling bifurcation, generating an unstable LLO which differs
from that on path 1 mainly by group C being phase-shifted by /2. This would
still be a time-symmetric orbit, but about ¢ = 7'/4 rather than ¢t = 0 (7" being
the period).

Continuation of path 2 leads to bif. 2, at s, = 0.234, where it jumps onto path
3, where the LO A has disappeared, and at s = 0, it is the only surviving LO.
Using analogous procedures to the above, we also obtain two other nearby
branches, giving paths 4 and 6. On path 4, the LO A(-) differs from A(+) by
a phase m, and on path 6, the LO A is absent. The limits of paths 4 and 5
leading backwards to general oscillations give, approaching to s = 1, different
oscillations. The approximate symmetry between paths 4 and 5 occurs only
near the bifurcation. We identify this bifurcation as an imperfect pitchfork,
but again since all the branches shown are linearly stable, there must be some
unstable branches too and we conjecture the same diagram as in the previous
subsection.
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7.8  General comment

In each case, we found only a limited number of eigenvalues crossing zero,
which are the eigenvalues of the two or three first linear modes of the particles
with frequencies w, or w_ near rest, and the compound modes, depending
on the path followed; their number is of the order of the number of particles.
Increasing the number of Fourier components does not change this fact; only
the very few first components differ appreciably from zero, and the higher
modes are of very small amplitude. Increasing the number of particles, on the
other hand, increases proportionally the number of zero crossings. Therefore,
we guess that for infinite systems there will be an infinite number of eigenvalues
crossing zero.

8 Conclusion

Discrete breathers are time-periodic localised oscillations (LO) of weakly cou-
pled networks of anharmonic oscillators. Anderson modes are L.Os for spatially
random networks with linear dynamics. For a model which interpolates be-
tween these two limits, we have found numerically that although Anderson
modes typically 7 evolve to a “general oscillation” with no spatial localisation,
on moving parameters in the opposite direction, discrete breathers can be fol-
lowed almost continuously to Anderson modes, which are often (though not
always) localised around the same sites as the breathers. This asymmetry is
natural in view of the fact that there are many more time-symmetric periodic
solutions of given period at the ordered anharmonic limit ((3™ — 1)/2 for a
system of size m) than at the disordered harmonic limit (m), but only m of
them are single-site breathers. The others are “multi-site breathers” [4].

No paths have been found, however, that completely avoid degeneracies in the
linearized continuation operator. We found bifurcations at these points. They
are often fold bifurcations, which strictly speaking makes it impossible to con-
tinue further. Nevertheless, at every fold point we always found a very nearby
path onto which to jump and continue towards the disordered linear limit. For
some paths these bifurcations are related to changes in behaviour of groups
of particles near rest. This happens, for example, in the path called the 1/4
path. The maximum value of the Fourier coefficients of the particles involved
in the bifurcation are about 102 times the largest of the whole system. Even
less significant are the eigenvalues of the £ = 2 modes crossing zero almost at

" Not always: in some cases, the computation continued an Anderson mode onto a
discrete breather, but this depended on how fast it went through some bifurcation
points where there was a “random” choice of branches.
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the linear limit where they will disappear. No change of stability is observed
in these paths, although it can be found in some others. A detailed study of
the main bifurcations has been made, obtaining the different branches and
plotting them in numerically determined centre subspaces. We found inverse
period doublings and broken pitchforks. Bifurcations such as these, destroy-
ing LOs as disorder increases and nonlinearity decreases, should be expected,
since there are many more time-symmetric periodic orbits of given action at
the ordered anharmonic limit than at the disordered harmonic limit, as already
remarked above. A very interesting project for the future is to understand the
generic bifurcations for such systems, which are not standard ones because
they are unfoldings of bifurcations for decoupled systems.

A technical, but possibly important, point is that we continue L.Os at constant
action, rather than constant period.
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