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1 Introdu
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alized time-periodi
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ur in latti
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equation is that \Anderson lo
alization is 
ompletely di�erent from anhar-moni
 lo
alization" (se
tion 5.2 of [2℄), be
ause the numeri
s show Andersonmodes delo
alising rapidly as the anharmoni
ity is turned on. In our paper,however, it is shown numeri
ally that on moving parameters in the oppositedire
tion in a family of models, LOs of anharmoni
 ordered systems 
an be
onne
ted virtually 
ontinuously to LOs of harmoni
 disordered systems. Firstwe re
all the basi
 results in the two 
ontexts.LOs are 
ommon in anharmoni
 latti
es and have re
eived 
onsiderable atten-tion re
ently (for a review, see [3℄). They have been given a variety of names,but the one we shall use is \dis
rete breather", or more simply \breather".In parti
ular, Ma
Kay and Aubry [4℄ proved analyti
ally the existen
e ofbreathers in Hamiltonian latti
es of weakly 
oupled os
illators of nonlinearKlein-Gordon type | those with an anharmoni
 4 on-site potential. The bre-athers are proved to exist as smooth 
ontinuations of the trivial solutions atzero 
oupling where some os
illators are on periodi
 orbits and the remain-der at rest. This limit has been 
alled the anti-integrable or anti-
ontinuouslimit [7℄, but is most simply referred to as the \un
oupled limit". Proofs havealso been given for some systems with no on-site potential, e.g. [8,9℄.On the other hand, lo
alization is also a physi
al phenomenon observed in the
ontext of wave propagation through disordered media. By \disorder" for a
lassi
al latti
e we mean that the lo
al frequen
ies and/or 
ouplings betweenos
illators are random. When the disorder is suÆ
iently large, 
ertain types ofwaves be
ome trapped and the spreading of any initial wave pa
ket is anoma-lously slow or impossible. Instead, the eigenfun
tions are spatially lo
alized, sogive lo
alized modes that we 
all \Anderson modes", following the pioneeringwork of Anderson for S
hr�odinger equations with random potential [10{12℄.In this paper we address the question raised in [13℄, whether there is a 
onne
-tion between these two di�erent types of LO, i.e. if there is a 
ontinuous paththat transforms a breather in an anharmoni
 ordered latti
e into an Andersonmode in a harmoni
 disordered latti
e. We study the question numeri
ally,using a variant of the 
ontinuation method developed in [14,15℄.Our models are of the formH = mXn=1 12 p2n + 12!2n u2n � s u3n + "12 m�1Xn=1(un � un+1)2 (1)where " is �xed at 0:05, the \site frequen
ies" !n are 
hosen randomly froma 2-point distribution of variable width �, and the \anharmoni
ity" s is also4 \Anharmoni
" means that the period of os
illation varies with amplitude. A bet-ter term is \non-iso
hronous", 
f. [5℄, be
ause the harmoni
 os
illator is by no meansthe only potential for whi
h the period is independent of amplitude, e.g. [6℄.2



variable. We 
onsider paths in the (�; s) plane 
onne
ting the extremes (1; 0)(random harmoni
) to (0; 1) (translation-invariant anharmoni
). This typeof model di�ers from that of [1℄ in three ways. Firstly, Feddersen's modelhas global phase rotation symmetry whi
h gives it spe
ial features (e.g. 
on-served ex
itation \number" and existen
e of \stationary solutions" { dis
retebreathers with time-dependen
e purely of the form ei!t) 5 . Se
ondly, Fedder-sen has a disordered 
oupling matrix in addition to random site frequen
ies 6 .Thirdly, Feddersen's distribution of site frequen
ies is 
ontinuous rather thandis
rete. Further work will be required to assess the e�e
ts that su
h di�er-en
es 
an make, but we note that Kopidakis and Aubry [17℄ have re
entlystudied a similar model to ours but with a 
ontinuous distribution of sitefrequen
ies, and it will be interesting to 
ompare their results.There are some mathemati
al results on this problem. Continuation of An-derson modes to weak nonlinearity (equivalently, from in�nitesimal to smallamplitude in a nonlinear system) was studied mathemati
ally by Albanese andFr�ohli
h [18℄. They proved that Anderson modes have a \
ontinuation" to aCantor set of amplitudes whose 
omplement has vanishing relative measurein the neighbourhood of zero amplitude. Their proof leaves gaps in the set ofallowed amplitudes be
ause of the possibility of resonan
e with nearby An-derson modes. Non-
ontinuability a
ross these gaps is a priori quite likely butwe 
onsidered it interesting to investigate numeri
ally to what extent there isa genuine obsta
le.In the other dire
tion, the proofs of existen
e of dis
rete breathers applyequally well to disordered systems as to translation invariant latti
es: simply,more 
are must be taken to satisfy the 
ondition of non-resonan
e between thebreather frequen
y and the linearised frequen
ies about the equilibria [19℄ (seealso [13℄ for a spe
ial 
ase). Thus 
ontinuation of dis
rete breathers from theordered nonlinear regime is guaranteed to at least some amount of disorderand weakening of the nonlinearity.The questions we address here numeri
ally are whether one 
an �nd 
ontinuouspaths of LOs from the ordered nonlinear regime to the edge of the Albanese-Fr�ohli
h regime and whether there is a genuine obsta
le to 
ontinuation withinthe Albanese-Fr�ohli
h regime. The answer we �nd in our 
hosen model is thatall the dis
rete breathers we studied 
ontinue to Anderson modes ex
ept forsome small dis
ontinuities o

urring in the Albanese-Fr�ohli
h regime.5 DST models (also known as dis
rete nonlinear S
hr�odinger equations) were animportant early sour
e of LOs in nonlinear latti
es [16℄, but the re
ent wave ofa
tivity on LOs is 
onne
ted with the realisation that the phenomenon is mu
hmore general.6 He also kept the disorder �xed, but by s
aling the �eld by the square root of thenonlinearity this is equivalent to de
reasing the disorder to zero as the nonlinearitygoes to in�nity. 3



Throughout the paper we use the term LO for Anderson modes, breathersand any time-periodi
 spatially lo
alized os
illations in between. We avoidthe terms \mode", whi
h suggests a linear regime, and \intrinsi
", whi
h issupposed to denote an e�e
t not requiring randomness, be
ause our messageis that lo
alized os
illation is a more general phenomenon en
ompassing bothlimits.We begin by des
ribing the 
hosen model in Se
tion 2. Then in Se
tions 3,4 and5, respe
tively, we des
ribe the numeri
al methods used to obtain a breatherin the anharmoni
 ordered 
ase, to 
ontinue it towards the linear disordered
ase, and to 
ompute its linear stability. The results are presented in Se
tions 6and 7. The paper 
on
ludes with a short summary in Se
tion 8.2 The modelWe study an anharmoni
 Hamiltonian system of the Klein-Gordon type, givenby the Hamiltonian:H = mXn=1 12 p2n + 12!2n u2n � s u3n + "12 m�1Xn=1(un � un+1)2 (2)where fungmn=1 are the 
oordinates of the m parti
les with respe
t to theirequilibrium positions; f!ngmn=1 are the frequen
ies of small amplitude os
illa-tion of the parti
les, whi
h 
an be di�erent as will be explained shortly; �s u3nis the anharmoni
 part of the on-site potential for the parti
le n, thereforea softening potential; s is a parameter whi
h des
ribes the degree of anhar-moni
ity and takes its value in [0; 1℄, s = 0 being the harmoni
 
ase; and "is the 
oupling parameter, " = 0 
orresponding to no 
oupling. The 
ouplingpotential is harmoni
 and nearest neighbour, though both these assumptions
an be relaxed.The disorder is implemented here by means of the 
urvatures !2n of the lo
alpotentials at their minima. Sin
e the masses have all been 
hosen equal to1, this gives rise to frequen
ies !n. Suppose they take two values randomlydistributed, say: !n = !0 (1 + � rn2 ): (3)Here � is the disorder parameter, taking its value in [0; 1℄. At � = 0, there isno disorder and all the frequen
ies are equal to !0, whi
h is taken to be 1;frngmn=1 are the 
omponents of a random ve
tor of �1. At � = 1, the mostdisordered 
ase, the frequen
ies are 0:5 !0 or 1:5 !0. The parameter � is to be
onsidered a monotoni
 fun
tion � = �(s) of the nonlinearity s, with �(0) = 14



and �(1) = 0, giving a path from the anharmoni
 ordered 
ase to the harmoni
disordered 
ase. Examples of these paths are� = 1� sq; q > 0: (4)We study paths with q = 1 and q = 14 in this paper (it might have been morenatural to take only C1 paths, but we were interested to investigate the e�e
tof the q = 14 approa
h to the disordered linear limit too, be
ause of the smallnumber of bifur
ations on it).We 
ould have 
hosen random masses or random 
oupling strengths insteadof or as well as random 
urvatures, or a 
ontinuous distribution for !n ratherthan a dis
rete one, but we think that our 
hoi
e is a good �rst 
ase to study.For a study of an example with 
ontinuous distribution of !n, see [17℄. Notealso how this approa
h di�ers from that used in [1℄: in that work, the degree ofdisorder was kept �xed while the nonlinearity was tunable; here we tune both.We suspe
t that this is more relevant than the possible di�eren
es arising fromthe two underlying models (a Hamiltonian latti
e of 
lassi
al os
illators vs. adis
rete self-trapping equation). We 
onsider only 1D 
hains, but it would alsobe interesting to study 2D or 3D models and models in whi
h the randomnessarises partially or 
ompletely from a random network of 
ouplings.The dynami
al equations of the system are ( _pn = �un = ��H=�un):Fn(u; s; ") = �un + !2nun � 3 s u2n + "(2un � un�1 � un+1) = 0: (5)3 Obtaining breathers and Anderson modes3.1 Obtaining a breatherNumeri
al methods for �nding breathers are des
ribed in [14,15,20℄. We workin the spa
e of time-periodi
, time-symmetri
 solutions of spe
i�ed frequen
y!b, with 
ontinuous se
ond derivative, whi
h is denoted by E2s (!b). Thereforethe fun
tions un(t) 
an be approximated by trun
ated Fourier series (rotatingwave approximation) of the form:un(t) = kmXk=�km zkn eik!bt = z0 + k=kmXk=1 2zkn 
os(k!bt): (6)The se
ond equality holds be
ause zkn is real and zkn = zk�n, as a result of theoperator in Eq. (5) being real and the time-symmetry of un(t).5



Using the Newton-Raphson method, we �rst �nd a solution for the isolatedos
illator with a given frequen
y !b, using as a seed the solution of the har-moni
 problem. The starting seed for obtaining a breather is a parti
le withthis solution and the others at rest. By varying " from " = 0, with small steps,we are able to obtain a breather from the un
oupled limit.3.2 Obtaining Anderson modesThis is a mu
h simpler task. When the on-site potential is harmoni
 the dy-nami
al equations of the system (Eq. (5)) 
an be written:�un = �!2nun � "(2un � un�1 � un+1); (7)or in more 
ompa
t notation: �u = �
u: (8)Then it is simply a question of �nding eigenve
tors u of the matrix 
 and
he
king whether they are spatially lo
alized. In one dimension (
f. [21℄), forarbitrarily weak disorder the spe
trum of 
 
onsists of m eigenvalues ~!2k in(0;1), whose eigenve
tors vk are lo
alized near n = k and de
ay exponentiallyas jnj ! 1. Thus equation (8) has periodi
 solutions:ukn(t) = 
os(~!kt)vkn; sin(~!kt)vkn: (9)As we are working in the spa
e of time-reversible solutions, we are only 
on-
erned with the �rst set of solutions of Eq. (9). They are easy to obtainnumeri
ally. Two of them are shown in Fig. 1, whi
h are the LOs at the endof the q = 1=4 and q = 1 paths.4 Continuation of lo
alized os
illationsHere we explain the method that we have used for 
ontinuing the breather inits path towards disorder. Sample results are presented in Se
tions 6 and 7.The 
ontinuation 
annot be done at 
onstant frequen
y as there is no guaran-tee that at the harmoni
 limit there is any Anderson mode with the breatherfrequen
y (ex
ept for the trivial solution, un = 0, 8n). Instead, we 
hoose tomaintain 
onstant the a
tion of the loop,I = mXn=1 I pn dqn = mXn=1 I _undun (10)6
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Fig. 1. The 
omponents of two Anderson modes, whi
h are at the end of the pathswith (a) q = 1=4, and (b) q = 1.(perhaps better 
alled its \area", as \a
tion" has many other meanings).Among other advantages, this prevents the 
ontinuation from moving towardsthe zero solution. As the periodi
 fun
tions of arbitrary frequen
y do not forma ve
tor spa
e, we 
hange the time s
aling: t ! � = !bt. Denoting di�eren-tiation with respe
t to � by prime (0), we have �u = !2bu00, and !b will appearin the dynami
al fun
tion as a parameter to be determined. Therefore, wework in Es(2�)� R, Es(2�) being a suitable Bana
h spa
e of time-symmetri
2�-periodi
 fun
tions. The a
tion is I = !bPmn=1 R 2�0 (u0n)2d�.Substituting the expressions (6) with � = !bt into the dynami
al equations(5), with u00 = !2b�u, and 
olle
ting the terms in the exponentials exp(ik�), weobtain m(km + 1) di�erent algebrai
 equations G(z; s) = ffGkn(z; s)gkmk=0gmn=1for the m(km + 1) variables z = ffzkngkmk=0gmn=1 and the frequen
y of the self-lo
alized mode !b. Using the expressions for un in Eq. (6), I 
an be easily
al
ulated to be I(z; !b) = �!b mXn=1 kmXk=1(k 2zkn)2: (11)Then, we add to the system of equations G the equation:GI(z; !b) = I(z; !b)� I0 = 0 : (12)The dynami
al equations are redu
ed to a set of m(km + 1) + 1 algebrai
equations in the m (km + 1) + 1 unknowns zkn and !b. Hereafter we will use7



the notation ~G = (G;GI) and ~z = (z; !b): (13)The Ja
obian of ~G with respe
t of ~z is of spe
ial importan
e. On the one handits invertibility is the 
ondition for the Impli
it Fun
tion Theorem (IFT) toapply and, therefore, to guarantee the existen
e of a unique bran
h of solutions~z(s) in the neighbourhood of a solution ~z0 at s0. On the other hand, it is usedwithin the Newton method for 
ontinuing a solution, whi
h is the pra
ti
alrealisation of the IFT. If (~z0; s0) is a solution of ~G(~z; s) = 0, and s1 = s0 + Æsis a nearby value, writing ~z1 = ~z0 + Æ~z, we have:~G(~z0 + Æ~z; s1) � ~G(~z0; s1) + �~z ~G(~z0; s1) Æ~z : (14)Therefore, we obtain a �rst approximation for the solution at s1 by makingthe last expression zero. This approximation is:~z1 = ~z0 + Æ~z = ~z0 � [�~z ~G(~z0; s1)℄�1 ~G(~z0; s1) : (15)Using ~z1 as a new seed instead of ~z0, and repeating this pro
edure, we areable to obtain a sequen
e of approximations to the solution at s1 whi
h, pro-vided it exists and it is 
lose enough to s0, 
onverges quadrati
ally to ma
hinepre
ision.We need an initial breather solution at s0 = 1 to start our 
ontinuation pro
e-dure. This 
an be obtained by a preliminary 
ontinuation from the un
oupledlimit, as dis
ussed above in Se
tion 3.1. In our numeri
s we started with thesimplest 
on�guration, single breathers (i.e. those whi
h 
orrespond in theun
oupled limit to one parti
le os
illating and the others at rest). On
e thesolution is 
ontinued to the desired value of the 
oupling ", it be
omes thestarting point for our 
ontinuation into Anderson modes. We have used amodel with 21 parti
les, a number whi
h proves to be large enough to observethe LOs.For every initial 
ondition and path in parameter spa
e that we examined, wefound several values of s where the Ja
obian �~z ~G has zero eigenvalues, so inprin
iple a bifur
ation 
ould take pla
e. In spite of that, the Newton methodgenerated an almost 
ontinuous path of LOs.To 
larify whether an eigenvalue is really zero or only very small, be
ause ofthe ina

ura
y of the trun
ations of the Fourier series and the numeri
al error,we have plotted the whole set of eigenvalues with respe
t to s. Then it is easy8



to observe the evolution of the di�erent eigenvalues, and if one of them 
hangessign it is 
lear that we have a zero eigenvalue. As the eigenvalues fvig 
an be
omplex we plot abs(vi) sign(Re vi), whi
h gives the 
learest plot. A 
omplexeigenvalue whose real part 
hanges sign would appear as a dis
ontinuity, butthere are two of them, and they are easily re
ognized and 
he
ked with theplot of their 
ounterpart abs(vi) sign(Im vi).Most of the eigenvalues of �~z ~G are easily re
ognized, due to the fa
t that mostos
illators in a LO are os
illating with very small amplitudes. An easy way totra
e their origin is to analyze the spe
trum from the limit of weak 
oupling.In su
h 
ase, the dynami
al equations 
orresponding to os
illators with smallamplitudes are: Fn(u; s) = !2bu00n + !2n(s)un = 0: (16)Substitution of the Fourier representation in terms of the modes zkn 
os k�,gives: �k2!2bzkn + !2n(s)zkn = 0: (17)That is, these os
illators would only 
ontribute with diagonal entries in theJa
obian �~z ~G, of the form: vkn = !2n(s)� k2!2b(s): (18)As !n 
an take only two di�erent values, !�(s) = !0 � 12�(s), we obtain:vk� = !2�(s)� k2!2b(s): (19)Therefore, we obtain 2(km+1) di�erent possible values for these eigenvalues. At" = 0, ea
h of these has a degenera
y 
oin
iding with the number of os
illatorsat rest with frequen
y !+(s) or !�(s), respe
tively. When the 
oupling " isswit
hed on, ea
h of these will split into a \band", and that degenera
y willgeneri
ally be raised.Then there will be other eigenvalues of di�erent origin, those asso
iated to siteswhi
h are in a high-amplitude os
illation (just one site for a single breather).Those will be typi
ally deta
hed from the bands dis
ussed above, so theyare easily spotted. Another 
omplex 
onjugate pair of isolated eigenvalues
omes from the last equation (Eq. 12). It is asso
iated with the inter
hangeof amplitude and frequen
y that maintains the a
tion 
onstant.9



5 Linear StabilityThe linear stability of a LO 
an be 
al
ulated by means of the monodromymatrix, 
f. [22,7,20,19,15℄. This is obtained as follows; suppose u = fun(t)gmn=1is an LO for a 
ertain value of s, with frequen
y !b and period Tb = 2�=!band �(t) = f�n(t)gmn=1 a C2m small perturbation of u(t) de�ned on [0; Tb℄. Lin-earization of Eq. (5) gives the equations:��n + !2n �n � 6s un(t) �n + "(2�n � �n�1 � �n+1) = 0: (20)Writing the momenta �n(t) = _�n(t), we obtain a set of dynami
al equationsfor (f�n(t)g; f�n(t)g), whi
h 
an be integrated numeri
ally. As the fun
tions(�(t); �(t)) are determined linearly by their initial 
onditions at t = 0, andthe integration determines their values at t = Tb, we obtain a 2m� 2m linearoperator, 
alled the monodromy matrix, T0:0B� f�n(Tb)gf�n(Tb)g1CA = T00B� f�n(0)gf�n(0)g1CA (21)Therefore the linear stability of the LO is determined by the eigenvalues ofthe monodromy matrix, 
alled Floquet multipliers. The fa
t that the systemis Hamiltonian and real implies that if � is an eigenvalue then 1=�; ��; 1=�� arealso eigenvalues. Then a ne
essary 
ondition for linear stability is that all theFloquet multipliers be on the unit 
ir
le in the 
omplex plane. Setting asidethe 
ases with multiple Floquet multipliers of mixed symple
ti
 signature, thisis also a suÆ
ient 
ondition for linear stability.6 ResultsHere we give details and explanations of some numeri
al simulations, andpresent the results. The number of parti
les ism = 21, the 
oupling parameteris " = 0:05. The number of Fourier 
oeÆ
ients was between 7 and 11, thatis km 2 f6; : : : ; 10g, whi
h may appear small, but in fa
t we 
onsidered thetrun
ation good only when the last Fourier 
oeÆ
ient is at least 10�6 timessmaller than the largest one (whi
h is always k = 1 or 2). Of 
ourse, whenwe approa
h the disordered linear limit, this ratio diminishes to values of theorder of 10�20. We have in
reased km as a test to values up to 14, but thisdoes not produ
e any 
hange (apart from the 
omputational time), even atthe diÆ
ult points where the eigenvalues of �~z ~G approa
h zero and a 
hangeof behaviour is produ
ed. The random ve
tor of �1, whi
h determines whi
h10



parti
les have high or low frequen
y is:rn = (1;�1;�1;�1; 1;�1; 1; 1|{z}A ;�1; 1;�1;�1| {z }C ; 1; 1;�1; 1; 1| {z }B ;�1;�1; 1; 1);(22)where we have labeled the groups of parti
les A (parti
les 7 and 8), C (parti
les11 and 12), and B (parti
les 13 to 17), for future referen
e. Several pathsfollowed from nonlinearity-order, s = 1, to linearity-disorder, s = 0, havebeen studied. Also we have studied paths ba
kwards starting at s = 0, whi
husually lead to multi-breathers. Here we 
omment on two signi�
ant ones froms = 1: the linear one, where the fun
tion � of Eq. (3) is � = 1 � s, and thepath � = 1� s1=4, whi
h we will refer to as the 1=4 path.6.1 The linear pathWe start with the single breather with frequen
y !b = 0:85 obtained fromthe un
oupled limit 
oded 0 for all the parti
les, ex
ept the 
entral parti
le,number 11, 
oded +1. The 
ode means 0 for parti
les at rest, +1, for parti
lesos
illating with phase 0 at t = 0, and �1, for initial phase � (see for example[7℄). This frequen
y allows a relatively large window of values outside the linearmodes (the same referen
e). The Fourier spe
trum of this breather appearsin Fig. 2, and its proje
tion onto the lo
al phase planes in Fig. 3. Its a
tion(area) was found to be I = 0:1286.Then we 
ontinued it from s = 1 towards s = 0. As s diminishes, the two par-ti
les C with the same frequen
y at rest begin to os
illate in phase, evolving towhat we will 
all the double 
entral LO, that is the two parti
les C os
illatingin phase and the others almost at rest. At the same time two new LOs appear;one of them 
onsists of the group B, os
illating with 
ode (+1;�1; 0;�1;+1),and the other is the group A of parti
les with 
ode (�1;+1). All these os
illa-tions 
an be seen in the Fourier spe
trum that appears in Fig. 4. At s1 = 0:322,the os
illation C disappears. At s2 = 0:234 the os
illation A is annihilated and,in the end, the only surviving LO is B.In Fig. 5 we 
an see the evolution of the eigenvalues of �~z ~G(~z; s). At smallers
ale it 
an be seen that only the group of eigenvalues labelled w1� 
rossesthe zero line, whi
h happens about s1. Inspe
tion of the Fourier 
omponentsshows that for s < s1, the odd Fourier 
omponents are negligible, therefore thefrequen
y is in fa
t doubled: we have an inverse period doubling bifur
ationas s de
reases, and the resulting LO for s < s1 is an orbit of half the a
tiontaken twi
e over.The eigenvalues of the monodromy matrix evolve along the path, as shown in11
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trum.
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Fig. 3. Phase spa
e of the breather. The exterior 
urve 
orresponds to the parti
le11, the �rst interior 
urve 
orresponds to both the two neighbouring parti
les.Fig. 6. To numeri
al resolution they sometimes 
ross ea
h other but do notappear to abandon the unit 
ir
le, even when some with opposite symple
ti
(Krein) signature [7℄ 
ross, or when a pair of 
onjugates join at �1. If observedon a small s
ale, however, we expe
t that one would see small bubbles of12
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Fig. 4. LO at halfway to the disordered linear regime. From the single breathera two parti
le LO, C, is formed at 11 and 12, whi
h will 
ompletely disappear ats = 0:322, bif. 1. The two parti
le LO, C, at parti
les 7 and 8, will disappear ats = 0:234, bif. 2. There is a 5 parti
le LO, B, at (13,14,15,16,17) whi
h in the endwill be 
ompletely symmetrized and the only surviving lo
alized os
illation of nonnegligible amplitude. For these last two modes the largest Fourier 
omponent isk = 2, and the odd k's are negligible. Therefore their frequen
y is in fa
t doublethat shown|we are 
lose to a period doubling bifur
ation.instability near these 
ollisions, 
f. [15,20,23℄.
6.2 The 1/4 pathThis path starts with the same single breather, at the parti
le 11, but theevolution of the LO is mu
h simpler. The neighbouring parti
le 12 begins toos
illate in phase, and we get a double LO in C that evolves to the doubleAnderson mode in C. The evolution of the eigenvalues of the Ja
obian 
anbe observed in Fig. 7, with an enlargement in Fig. 8. The eigenvalue 
rossingzero at s
 = 0:2938 
an be identi�ed with resonan
e with a linearised modeon parti
les 1{6; the os
illation of this group in
reases as s approa
hes thes
 from either side, but with opposite phase on the two sides, as illustratedin Fig. 9. Also, the whole group labelled w2+ 
rosses zero near s = 0:01, asmentioned in the �gure 
aption. 13
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Fig. 5. Evolution of the eigenvalues of the Ja
obian �~z ~G(~z; s). Most of the eigenvalues
orrespond to linear modes on the parti
les 
lose to rest; these are labelled bywk�, where k 2 Z denotes the dominant temporal Fourier harmoni
 involved andthe � sign indi
ates whether the mode is asso
iated with parti
les with disordervariable rn = �1, see eq. (2). The eigenvalues asso
iated with perturbation ofthe ex
ited sites are labeled bk; however, the �rst two are mixed with the linearmodes. Finally, the eigenvalue labelled Iw is a 
omplex 
onjugate pair related tothe inter
hange of amplitude and frequen
y that maintains the a
tion 
onstant; theapparent dis
ontinuity is due to the 
hange of sign of the real part.7 Bifur
ation studyWe have studied in some detail the important bifur
ations, that is those thatinvolve 
hanges of behaviour of non-negligible amplitude. These bifur
ations
an be dete
ted in several ways: slowness and/or diÆ
ulty of 
onvergen
e of theNewton method, in
luding jumps in the step pres
ribed; looking at the pointswhere an eigenvalue of the Ja
obian 
rosses or approa
hes zero; and abrupt
hanges in the Fourier spe
trum or in the plot of the 
oordinates versus time.Spe
ial 
are has to be taken when an eigenvalue approa
hes zero and turnsba
k. Is the Newton method jumping to another bran
h of solutions, or are wedealing with a bifur
ation? With our present program, we 
annot expe
t torea
h the exa
t point where a bifur
ation takes pla
e, as the Ja
obian is notinvertible there (this 
ould be solved by using ar
-length 
ontinuation with asuitable 
hoi
e of transversal). A great help is obtained, however, by restartingthe Newton method after the bifur
ation, and tra
ing it ba
kwards, seeing ifthe solutions take the same path or another one, and in this 
ase, whi
h one.14
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Fig. 6. Evolution of the eigenvalues of the monodromy for the linear path. All ofthem appear to remain of modulus 1. The two groups of eigenvalues at s = 1 whi
hhave di�erent Krein signature 
ross around s = 0:8 at -1 (phase �) and again mixabout s = 0:4 at 1 (phase 0) without apparent loss of stability.Some other 
onsiderations su
h as approximate symmetries 
an be used, aswe shall see below.We depi
t bifur
ation diagrams by plotting with respe
t to the parameter sa bifur
ation variable, whi
h is the proje
tion of the solutions on the nullsubspa
e of the Ja
obian at the bifur
ation, that is the 
entre subspa
e. Ifwe do not have exa
tly zero eigenvalues, or two very small ones 
rossing orapproa
hing zero, we may have to de
ide whi
h is the appropriate 
entre sub-spa
e where the bifur
ation is taking pla
e. This 
an be done by 
omparing the
orresponding eigenve
tors just before and after the bifur
ation and observingthe evolution of the eigenvalues.7.1 Bifur
ations in the 1/4 pathThis is a very simple path as there is only an isolated eigenvalue 
rossing zero(Fig. 8), ex
ept when we get very 
lose to the linear disordered 
ase (s = 0:01),where a group of linear modes 
rosses zero. We think that the bifur
ationasso
iated with this eigenvalue 
rossing zero is a typi
al feature for LOs inrandom systems, when they resonate with linear modes on other parts of thesystem. The bifur
ation diagram 
an be seen in Fig. 10. To understand this,15
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Fig. 7. Evolution of the eigenvalues of the �~z ~G(~z; s) along the 1/4 path. The labelsare the same as in Fig. 5.it is helpful to 
ompare with Fig. 9 and to noti
e how the frequen
ies of theLO and a linearised mode lo
ated mainly on parti
les 2{4 
ross (Fig. 11).If the frequen
ies of a (time-symmetri
) LO of a
tion I on one �nite 
hain ofos
illators and a linearised mode on another �nite 
hain 
ross as a parameter spasses through a value s
, then for the joint system of two independent 
hainsthere is a pit
hfork bifur
ation in the set of time-symmetri
 LOs of a
tion I ats = s
, be
ause one 
an add any small amount of the linearised mode, in eitherphase, and de
rease the a
tion of the LO 
orrespondingly. Generi
ally, these
hanges 
ause a slight shift in the frequen
y ratio, requiring a 
ompensatingshift in parameter leading to a pit
hfork. If one now 
onne
ts the two 
hainsby 
oupling their ends to make a single 
hain, the pit
hfork 
an be expe
tedgeneri
ally to break (unless some spatial symmetry is preserved), making animperfe
t pit
hfork. This 
an be seen in the bifur
ation diagram in Fig. 10.We have obtained the two outer prongs of the pit
hfork by the followingpro
edure: we add to a solution fung, not too 
lose to the bifur
ation, theeigenve
tor 
orresponding to the 
entre subspa
e, s
aled so as both have thesame a
tion. We res
ale again so as to obtain a ve
tor with the same a
tionas our solutions. This is used as a seed for the Newton method to obtain abran
h of solutions that joins to the previous one at the bifur
ation point.Subtra
ting the eigenve
tor, instead of adding, we are able to obtain the otherbran
h.This 
an be 
on�rmed easily by 
omparing the plots of the 
oordinates versus16
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Fig. 8. Enlargement of Fig. 7, showing the eigenvalues in the group w1�. Appar-ently only one eigenvalue 
rosses the zero line; it is related to a 
hange of phaseof a small amplitude mode on parti
le 5. The double LO on parti
les 11 and 12evolves 
ontinuously. Also visible in this pi
ture is the group of eigenvalues w2+ atvery small s, whi
h 
rosses the zero line at about s = 0:01; this is related to thedisappearan
e of the Fourier 
omponents with k 6= 1 at the linear limit.time before and after the bifur
ation. It shows the 
hange of phase in a groupof six parti
les. Moreover, the null eigenve
tor is 
omposed mainly of the �rstFourier 
omponents of these parti
les.This is not a standard imperfe
t pit
hfork bifur
ation, however, as both the\horizontal" bran
hes are observed to be linearly stable, in 
ontrast to a stan-dard imperfe
t pit
hfork for periodi
 orbits of a Hamiltonian system for whi
hthe \horizontal" bran
h would 
hange stability. We 
onje
ture that the bifur-
ation diagram should be 
ompleted by 
reation of a pair of unstable time-asymmetri
 LOs by a \Rimmer bifur
ation" (pit
hfork for periodi
 orbits ofreversible Hamiltonian systems) [24℄ from one of the \verti
al bran
hes" aftera short interval of instability.Note that although the standard setting for analyzing bifur
ations of periodi
orbits in Hamiltonian systems is to 
onsider variation of the set of periodi
orbits of given energy E with respe
t to E and/or external parameters, thesame results apply for given a
tion I, be
ause dI= dE = T , the period, whi
his neither zero nor in�nite. 17
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Fig. 10. Bifur
ation diagram along the 1=4 path. The bifur
ation variable is the
omponent in Fourier spa
e in the dire
tion of the eigenve
tor with zero eigenvaluefor the operator �~z ~G(~z; s) at s = 0:2938, whi
h is shown in the inset. The outerprongs, 
omposed of the 
entral os
illation plus an os
illation similar to this eigen-ve
tor, with the same phase for the upper prong, and a phase di�eren
e of � for thelower one, lead to non lo
alized os
illations in the nonlinear limit.18
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Fig. 11. Frequen
ies of the LO (also twi
e its frequen
y) and all the linearised modesabout equilibrium for the 1/4 path.7.2 Bifur
ations in the linear pathThe bifur
ation diagram 
an be seen in Fig. 12. The bifur
ation variable is theproje
tion of the solutions on the 
entre subspa
e for bif. 2. The breather startsat s = 1 with 
ode +1 on parti
le 11 (in group C) and follows the path 1(+), onwhi
h the LOs A and B grow as s de
reases. The �rst eigenvalue 
rossing thezero line is not visible in Fig. 12, but 
orresponds to a linear mode on anotherpart of the 
hain, given a dis
ontinuity like the one des
ribed above. These
ond produ
es the �rst important bifur
ation, i.e. related to intera
tions ofLOs of non-negligible amplitude. This is bif. 1, at s1 = 0:322. There the 
entralmode on C, disappears, produ
ing path 2, on whi
h the odd Fourier 
oeÆ
ientsare negligible and presumed to be due to numeri
al error, i.e. the frequen
yis doubled. Continuation of the solution ba
kwards from the bifur
ation leadsto path 1(-), where the solution is identi
al to that on path 1(+) ex
ept for aphase 
hange of �, leading at s = 1 to the single breather 
oded -1 on parti
le11. Manipulation of the solutions in path 1, before and near the bifur
ation,eliminating the 
entral LO, and 
ontinuing it forwards and ba
kwards, makesit possible to �nd a third bran
h, path 5, whi
h leads at s = 1 to a generalos
illation of the system.Putting these together, we obtain an inverse period-doubling bifur
ation, shownin the inset to Fig. 12 by using as bifur
ation variable a 
oordinate on the
entre subspa
e for bif. 1, whi
h distinguishes between the two phases 1(�). It19
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Fig. 12. Bifur
ation diagram along the linear path. The bifur
ation variable is the
omponent in Fourier spa
e in the dire
tion of the eigenve
tor with zero eigenvaluefor the operator �~z ~G(~z; s) at bif. 2 (bif. 1 in the inset). It is fully explained in thetext.
is not a standard period doubling bifur
ation (as des
ribed by [25℄ for generi
Hamiltonian systems or [24℄ for reversible Hamiltonian systems), however,be
ause numeri
s show that all bran
hes are linearly stable. Our 
onje
tureis that there is a short interval of instability on path 5 whi
h terminates inanother period doubling bifur
ation, generating an unstable LO whi
h di�ersfrom that on path 1 mainly by group C being phase-shifted by �=2. This wouldstill be a time-symmetri
 orbit, but about t = T=4 rather than t = 0 (T beingthe period).Continuation of path 2 leads to bif. 2, at s2 = 0:234, where it jumps onto path3, where the LO A has disappeared, and at s = 0, it is the only surviving LO.Using analogous pro
edures to the above, we also obtain two other nearbybran
hes, giving paths 4 and 6. On path 4, the LO A(-) di�ers from A(+) bya phase �, and on path 6, the LO A is absent. The limits of paths 4 and 5leading ba
kwards to general os
illations give, approa
hing to s = 1, di�erentos
illations. The approximate symmetry between paths 4 and 5 o

urs onlynear the bifur
ation. We identify this bifur
ation as an imperfe
t pit
hfork,but again sin
e all the bran
hes shown are linearly stable, there must be someunstable bran
hes too and we 
onje
ture the same diagram as in the previoussubse
tion. 20



7.3 General 
ommentIn ea
h 
ase, we found only a limited number of eigenvalues 
rossing zero,whi
h are the eigenvalues of the two or three �rst linear modes of the parti
leswith frequen
ies !+ or !� near rest, and the 
ompound modes, dependingon the path followed; their number is of the order of the number of parti
les.In
reasing the number of Fourier 
omponents does not 
hange this fa
t; onlythe very few �rst 
omponents di�er appre
iably from zero, and the highermodes are of very small amplitude. In
reasing the number of parti
les, on theother hand, in
reases proportionally the number of zero 
rossings. Therefore,we guess that for in�nite systems there will be an in�nite number of eigenvalues
rossing zero.8 Con
lusionDis
rete breathers are time-periodi
 lo
alised os
illations (LO) of weakly 
ou-pled networks of anharmoni
 os
illators. Anderson modes are LOs for spatiallyrandom networks with linear dynami
s. For a model whi
h interpolates be-tween these two limits, we have found numeri
ally that although Andersonmodes typi
ally 7 evolve to a \general os
illation" with no spatial lo
alisation,on moving parameters in the opposite dire
tion, dis
rete breathers 
an be fol-lowed almost 
ontinuously to Anderson modes, whi
h are often (though notalways) lo
alised around the same sites as the breathers. This asymmetry isnatural in view of the fa
t that there are many more time-symmetri
 periodi
solutions of given period at the ordered anharmoni
 limit ((3m � 1)=2 for asystem of size m) than at the disordered harmoni
 limit (m), but only m ofthem are single-site breathers. The others are \multi-site breathers" [4℄.No paths have been found, however, that 
ompletely avoid degenera
ies in thelinearized 
ontinuation operator. We found bifur
ations at these points. Theyare often fold bifur
ations, whi
h stri
tly speaking makes it impossible to 
on-tinue further. Nevertheless, at every fold point we always found a very nearbypath onto whi
h to jump and 
ontinue towards the disordered linear limit. Forsome paths these bifur
ations are related to 
hanges in behaviour of groupsof parti
les near rest. This happens, for example, in the path 
alled the 1=4path. The maximum value of the Fourier 
oeÆ
ients of the parti
les involvedin the bifur
ation are about 10�2 times the largest of the whole system. Evenless signi�
ant are the eigenvalues of the k = 2 modes 
rossing zero almost at7 Not always: in some 
ases, the 
omputation 
ontinued an Anderson mode onto adis
rete breather, but this depended on how fast it went through some bifur
ationpoints where there was a \random" 
hoi
e of bran
hes.21



the linear limit where they will disappear. No 
hange of stability is observedin these paths, although it 
an be found in some others. A detailed study ofthe main bifur
ations has been made, obtaining the di�erent bran
hes andplotting them in numeri
ally determined 
entre subspa
es. We found inverseperiod doublings and broken pit
hforks. Bifur
ations su
h as these, destroy-ing LOs as disorder in
reases and nonlinearity de
reases, should be expe
ted,sin
e there are many more time-symmetri
 periodi
 orbits of given a
tion atthe ordered anharmoni
 limit than at the disordered harmoni
 limit, as alreadyremarked above. A very interesting proje
t for the future is to understand thegeneri
 bifur
ations for su
h systems, whi
h are not standard ones be
ausethey are unfoldings of bifur
ations for de
oupled systems.A te
hni
al, but possibly important, point is that we 
ontinue LOs at 
onstanta
tion, rather than 
onstant period.A
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