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equation is that \Anderson loalization is ompletely di�erent from anhar-moni loalization" (setion 5.2 of [2℄), beause the numeris show Andersonmodes deloalising rapidly as the anharmoniity is turned on. In our paper,however, it is shown numerially that on moving parameters in the oppositediretion in a family of models, LOs of anharmoni ordered systems an beonneted virtually ontinuously to LOs of harmoni disordered systems. Firstwe reall the basi results in the two ontexts.LOs are ommon in anharmoni latties and have reeived onsiderable atten-tion reently (for a review, see [3℄). They have been given a variety of names,but the one we shall use is \disrete breather", or more simply \breather".In partiular, MaKay and Aubry [4℄ proved analytially the existene ofbreathers in Hamiltonian latties of weakly oupled osillators of nonlinearKlein-Gordon type | those with an anharmoni 4 on-site potential. The bre-athers are proved to exist as smooth ontinuations of the trivial solutions atzero oupling where some osillators are on periodi orbits and the remain-der at rest. This limit has been alled the anti-integrable or anti-ontinuouslimit [7℄, but is most simply referred to as the \unoupled limit". Proofs havealso been given for some systems with no on-site potential, e.g. [8,9℄.On the other hand, loalization is also a physial phenomenon observed in theontext of wave propagation through disordered media. By \disorder" for alassial lattie we mean that the loal frequenies and/or ouplings betweenosillators are random. When the disorder is suÆiently large, ertain types ofwaves beome trapped and the spreading of any initial wave paket is anoma-lously slow or impossible. Instead, the eigenfuntions are spatially loalized, sogive loalized modes that we all \Anderson modes", following the pioneeringwork of Anderson for Shr�odinger equations with random potential [10{12℄.In this paper we address the question raised in [13℄, whether there is a onne-tion between these two di�erent types of LO, i.e. if there is a ontinuous paththat transforms a breather in an anharmoni ordered lattie into an Andersonmode in a harmoni disordered lattie. We study the question numerially,using a variant of the ontinuation method developed in [14,15℄.Our models are of the formH = mXn=1 12 p2n + 12!2n u2n � s u3n + "12 m�1Xn=1(un � un+1)2 (1)where " is �xed at 0:05, the \site frequenies" !n are hosen randomly froma 2-point distribution of variable width �, and the \anharmoniity" s is also4 \Anharmoni" means that the period of osillation varies with amplitude. A bet-ter term is \non-isohronous", f. [5℄, beause the harmoni osillator is by no meansthe only potential for whih the period is independent of amplitude, e.g. [6℄.2



variable. We onsider paths in the (�; s) plane onneting the extremes (1; 0)(random harmoni) to (0; 1) (translation-invariant anharmoni). This typeof model di�ers from that of [1℄ in three ways. Firstly, Feddersen's modelhas global phase rotation symmetry whih gives it speial features (e.g. on-served exitation \number" and existene of \stationary solutions" { disretebreathers with time-dependene purely of the form ei!t) 5 . Seondly, Fedder-sen has a disordered oupling matrix in addition to random site frequenies 6 .Thirdly, Feddersen's distribution of site frequenies is ontinuous rather thandisrete. Further work will be required to assess the e�ets that suh di�er-enes an make, but we note that Kopidakis and Aubry [17℄ have reentlystudied a similar model to ours but with a ontinuous distribution of sitefrequenies, and it will be interesting to ompare their results.There are some mathematial results on this problem. Continuation of An-derson modes to weak nonlinearity (equivalently, from in�nitesimal to smallamplitude in a nonlinear system) was studied mathematially by Albanese andFr�ohlih [18℄. They proved that Anderson modes have a \ontinuation" to aCantor set of amplitudes whose omplement has vanishing relative measurein the neighbourhood of zero amplitude. Their proof leaves gaps in the set ofallowed amplitudes beause of the possibility of resonane with nearby An-derson modes. Non-ontinuability aross these gaps is a priori quite likely butwe onsidered it interesting to investigate numerially to what extent there isa genuine obstale.In the other diretion, the proofs of existene of disrete breathers applyequally well to disordered systems as to translation invariant latties: simply,more are must be taken to satisfy the ondition of non-resonane between thebreather frequeny and the linearised frequenies about the equilibria [19℄ (seealso [13℄ for a speial ase). Thus ontinuation of disrete breathers from theordered nonlinear regime is guaranteed to at least some amount of disorderand weakening of the nonlinearity.The questions we address here numerially are whether one an �nd ontinuouspaths of LOs from the ordered nonlinear regime to the edge of the Albanese-Fr�ohlih regime and whether there is a genuine obstale to ontinuation withinthe Albanese-Fr�ohlih regime. The answer we �nd in our hosen model is thatall the disrete breathers we studied ontinue to Anderson modes exept forsome small disontinuities ourring in the Albanese-Fr�ohlih regime.5 DST models (also known as disrete nonlinear Shr�odinger equations) were animportant early soure of LOs in nonlinear latties [16℄, but the reent wave ofativity on LOs is onneted with the realisation that the phenomenon is muhmore general.6 He also kept the disorder �xed, but by saling the �eld by the square root of thenonlinearity this is equivalent to dereasing the disorder to zero as the nonlinearitygoes to in�nity. 3



Throughout the paper we use the term LO for Anderson modes, breathersand any time-periodi spatially loalized osillations in between. We avoidthe terms \mode", whih suggests a linear regime, and \intrinsi", whih issupposed to denote an e�et not requiring randomness, beause our messageis that loalized osillation is a more general phenomenon enompassing bothlimits.We begin by desribing the hosen model in Setion 2. Then in Setions 3,4 and5, respetively, we desribe the numerial methods used to obtain a breatherin the anharmoni ordered ase, to ontinue it towards the linear disorderedase, and to ompute its linear stability. The results are presented in Setions 6and 7. The paper onludes with a short summary in Setion 8.2 The modelWe study an anharmoni Hamiltonian system of the Klein-Gordon type, givenby the Hamiltonian:H = mXn=1 12 p2n + 12!2n u2n � s u3n + "12 m�1Xn=1(un � un+1)2 (2)where fungmn=1 are the oordinates of the m partiles with respet to theirequilibrium positions; f!ngmn=1 are the frequenies of small amplitude osilla-tion of the partiles, whih an be di�erent as will be explained shortly; �s u3nis the anharmoni part of the on-site potential for the partile n, thereforea softening potential; s is a parameter whih desribes the degree of anhar-moniity and takes its value in [0; 1℄, s = 0 being the harmoni ase; and "is the oupling parameter, " = 0 orresponding to no oupling. The ouplingpotential is harmoni and nearest neighbour, though both these assumptionsan be relaxed.The disorder is implemented here by means of the urvatures !2n of the loalpotentials at their minima. Sine the masses have all been hosen equal to1, this gives rise to frequenies !n. Suppose they take two values randomlydistributed, say: !n = !0 (1 + � rn2 ): (3)Here � is the disorder parameter, taking its value in [0; 1℄. At � = 0, there isno disorder and all the frequenies are equal to !0, whih is taken to be 1;frngmn=1 are the omponents of a random vetor of �1. At � = 1, the mostdisordered ase, the frequenies are 0:5 !0 or 1:5 !0. The parameter � is to beonsidered a monotoni funtion � = �(s) of the nonlinearity s, with �(0) = 14



and �(1) = 0, giving a path from the anharmoni ordered ase to the harmonidisordered ase. Examples of these paths are� = 1� sq; q > 0: (4)We study paths with q = 1 and q = 14 in this paper (it might have been morenatural to take only C1 paths, but we were interested to investigate the e�etof the q = 14 approah to the disordered linear limit too, beause of the smallnumber of bifurations on it).We ould have hosen random masses or random oupling strengths insteadof or as well as random urvatures, or a ontinuous distribution for !n ratherthan a disrete one, but we think that our hoie is a good �rst ase to study.For a study of an example with ontinuous distribution of !n, see [17℄. Notealso how this approah di�ers from that used in [1℄: in that work, the degree ofdisorder was kept �xed while the nonlinearity was tunable; here we tune both.We suspet that this is more relevant than the possible di�erenes arising fromthe two underlying models (a Hamiltonian lattie of lassial osillators vs. adisrete self-trapping equation). We onsider only 1D hains, but it would alsobe interesting to study 2D or 3D models and models in whih the randomnessarises partially or ompletely from a random network of ouplings.The dynamial equations of the system are ( _pn = �un = ��H=�un):Fn(u; s; ") = �un + !2nun � 3 s u2n + "(2un � un�1 � un+1) = 0: (5)3 Obtaining breathers and Anderson modes3.1 Obtaining a breatherNumerial methods for �nding breathers are desribed in [14,15,20℄. We workin the spae of time-periodi, time-symmetri solutions of spei�ed frequeny!b, with ontinuous seond derivative, whih is denoted by E2s (!b). Thereforethe funtions un(t) an be approximated by trunated Fourier series (rotatingwave approximation) of the form:un(t) = kmXk=�km zkn eik!bt = z0 + k=kmXk=1 2zkn os(k!bt): (6)The seond equality holds beause zkn is real and zkn = zk�n, as a result of theoperator in Eq. (5) being real and the time-symmetry of un(t).5



Using the Newton-Raphson method, we �rst �nd a solution for the isolatedosillator with a given frequeny !b, using as a seed the solution of the har-moni problem. The starting seed for obtaining a breather is a partile withthis solution and the others at rest. By varying " from " = 0, with small steps,we are able to obtain a breather from the unoupled limit.3.2 Obtaining Anderson modesThis is a muh simpler task. When the on-site potential is harmoni the dy-namial equations of the system (Eq. (5)) an be written:�un = �!2nun � "(2un � un�1 � un+1); (7)or in more ompat notation: �u = �
u: (8)Then it is simply a question of �nding eigenvetors u of the matrix 
 andheking whether they are spatially loalized. In one dimension (f. [21℄), forarbitrarily weak disorder the spetrum of 
 onsists of m eigenvalues ~!2k in(0;1), whose eigenvetors vk are loalized near n = k and deay exponentiallyas jnj ! 1. Thus equation (8) has periodi solutions:ukn(t) = os(~!kt)vkn; sin(~!kt)vkn: (9)As we are working in the spae of time-reversible solutions, we are only on-erned with the �rst set of solutions of Eq. (9). They are easy to obtainnumerially. Two of them are shown in Fig. 1, whih are the LOs at the endof the q = 1=4 and q = 1 paths.4 Continuation of loalized osillationsHere we explain the method that we have used for ontinuing the breather inits path towards disorder. Sample results are presented in Setions 6 and 7.The ontinuation annot be done at onstant frequeny as there is no guaran-tee that at the harmoni limit there is any Anderson mode with the breatherfrequeny (exept for the trivial solution, un = 0, 8n). Instead, we hoose tomaintain onstant the ation of the loop,I = mXn=1 I pn dqn = mXn=1 I _undun (10)6
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Fig. 1. The omponents of two Anderson modes, whih are at the end of the pathswith (a) q = 1=4, and (b) q = 1.(perhaps better alled its \area", as \ation" has many other meanings).Among other advantages, this prevents the ontinuation from moving towardsthe zero solution. As the periodi funtions of arbitrary frequeny do not forma vetor spae, we hange the time saling: t ! � = !bt. Denoting di�eren-tiation with respet to � by prime (0), we have �u = !2bu00, and !b will appearin the dynamial funtion as a parameter to be determined. Therefore, wework in Es(2�)� R, Es(2�) being a suitable Banah spae of time-symmetri2�-periodi funtions. The ation is I = !bPmn=1 R 2�0 (u0n)2d�.Substituting the expressions (6) with � = !bt into the dynamial equations(5), with u00 = !2b�u, and olleting the terms in the exponentials exp(ik�), weobtain m(km + 1) di�erent algebrai equations G(z; s) = ffGkn(z; s)gkmk=0gmn=1for the m(km + 1) variables z = ffzkngkmk=0gmn=1 and the frequeny of the self-loalized mode !b. Using the expressions for un in Eq. (6), I an be easilyalulated to be I(z; !b) = �!b mXn=1 kmXk=1(k 2zkn)2: (11)Then, we add to the system of equations G the equation:GI(z; !b) = I(z; !b)� I0 = 0 : (12)The dynamial equations are redued to a set of m(km + 1) + 1 algebraiequations in the m (km + 1) + 1 unknowns zkn and !b. Hereafter we will use7



the notation ~G = (G;GI) and ~z = (z; !b): (13)The Jaobian of ~G with respet of ~z is of speial importane. On the one handits invertibility is the ondition for the Impliit Funtion Theorem (IFT) toapply and, therefore, to guarantee the existene of a unique branh of solutions~z(s) in the neighbourhood of a solution ~z0 at s0. On the other hand, it is usedwithin the Newton method for ontinuing a solution, whih is the pratialrealisation of the IFT. If (~z0; s0) is a solution of ~G(~z; s) = 0, and s1 = s0 + Æsis a nearby value, writing ~z1 = ~z0 + Æ~z, we have:~G(~z0 + Æ~z; s1) � ~G(~z0; s1) + �~z ~G(~z0; s1) Æ~z : (14)Therefore, we obtain a �rst approximation for the solution at s1 by makingthe last expression zero. This approximation is:~z1 = ~z0 + Æ~z = ~z0 � [�~z ~G(~z0; s1)℄�1 ~G(~z0; s1) : (15)Using ~z1 as a new seed instead of ~z0, and repeating this proedure, we areable to obtain a sequene of approximations to the solution at s1 whih, pro-vided it exists and it is lose enough to s0, onverges quadratially to mahinepreision.We need an initial breather solution at s0 = 1 to start our ontinuation proe-dure. This an be obtained by a preliminary ontinuation from the unoupledlimit, as disussed above in Setion 3.1. In our numeris we started with thesimplest on�guration, single breathers (i.e. those whih orrespond in theunoupled limit to one partile osillating and the others at rest). One thesolution is ontinued to the desired value of the oupling ", it beomes thestarting point for our ontinuation into Anderson modes. We have used amodel with 21 partiles, a number whih proves to be large enough to observethe LOs.For every initial ondition and path in parameter spae that we examined, wefound several values of s where the Jaobian �~z ~G has zero eigenvalues, so inpriniple a bifuration ould take plae. In spite of that, the Newton methodgenerated an almost ontinuous path of LOs.To larify whether an eigenvalue is really zero or only very small, beause ofthe inauray of the trunations of the Fourier series and the numerial error,we have plotted the whole set of eigenvalues with respet to s. Then it is easy8



to observe the evolution of the di�erent eigenvalues, and if one of them hangessign it is lear that we have a zero eigenvalue. As the eigenvalues fvig an beomplex we plot abs(vi) sign(Re vi), whih gives the learest plot. A omplexeigenvalue whose real part hanges sign would appear as a disontinuity, butthere are two of them, and they are easily reognized and heked with theplot of their ounterpart abs(vi) sign(Im vi).Most of the eigenvalues of �~z ~G are easily reognized, due to the fat that mostosillators in a LO are osillating with very small amplitudes. An easy way totrae their origin is to analyze the spetrum from the limit of weak oupling.In suh ase, the dynamial equations orresponding to osillators with smallamplitudes are: Fn(u; s) = !2bu00n + !2n(s)un = 0: (16)Substitution of the Fourier representation in terms of the modes zkn os k�,gives: �k2!2bzkn + !2n(s)zkn = 0: (17)That is, these osillators would only ontribute with diagonal entries in theJaobian �~z ~G, of the form: vkn = !2n(s)� k2!2b(s): (18)As !n an take only two di�erent values, !�(s) = !0 � 12�(s), we obtain:vk� = !2�(s)� k2!2b(s): (19)Therefore, we obtain 2(km+1) di�erent possible values for these eigenvalues. At" = 0, eah of these has a degeneray oiniding with the number of osillatorsat rest with frequeny !+(s) or !�(s), respetively. When the oupling " isswithed on, eah of these will split into a \band", and that degeneray willgenerially be raised.Then there will be other eigenvalues of di�erent origin, those assoiated to siteswhih are in a high-amplitude osillation (just one site for a single breather).Those will be typially detahed from the bands disussed above, so theyare easily spotted. Another omplex onjugate pair of isolated eigenvaluesomes from the last equation (Eq. 12). It is assoiated with the interhangeof amplitude and frequeny that maintains the ation onstant.9



5 Linear StabilityThe linear stability of a LO an be alulated by means of the monodromymatrix, f. [22,7,20,19,15℄. This is obtained as follows; suppose u = fun(t)gmn=1is an LO for a ertain value of s, with frequeny !b and period Tb = 2�=!band �(t) = f�n(t)gmn=1 a C2m small perturbation of u(t) de�ned on [0; Tb℄. Lin-earization of Eq. (5) gives the equations:��n + !2n �n � 6s un(t) �n + "(2�n � �n�1 � �n+1) = 0: (20)Writing the momenta �n(t) = _�n(t), we obtain a set of dynamial equationsfor (f�n(t)g; f�n(t)g), whih an be integrated numerially. As the funtions(�(t); �(t)) are determined linearly by their initial onditions at t = 0, andthe integration determines their values at t = Tb, we obtain a 2m� 2m linearoperator, alled the monodromy matrix, T0:0B� f�n(Tb)gf�n(Tb)g1CA = T00B� f�n(0)gf�n(0)g1CA (21)Therefore the linear stability of the LO is determined by the eigenvalues ofthe monodromy matrix, alled Floquet multipliers. The fat that the systemis Hamiltonian and real implies that if � is an eigenvalue then 1=�; ��; 1=�� arealso eigenvalues. Then a neessary ondition for linear stability is that all theFloquet multipliers be on the unit irle in the omplex plane. Setting asidethe ases with multiple Floquet multipliers of mixed sympleti signature, thisis also a suÆient ondition for linear stability.6 ResultsHere we give details and explanations of some numerial simulations, andpresent the results. The number of partiles ism = 21, the oupling parameteris " = 0:05. The number of Fourier oeÆients was between 7 and 11, thatis km 2 f6; : : : ; 10g, whih may appear small, but in fat we onsidered thetrunation good only when the last Fourier oeÆient is at least 10�6 timessmaller than the largest one (whih is always k = 1 or 2). Of ourse, whenwe approah the disordered linear limit, this ratio diminishes to values of theorder of 10�20. We have inreased km as a test to values up to 14, but thisdoes not produe any hange (apart from the omputational time), even atthe diÆult points where the eigenvalues of �~z ~G approah zero and a hangeof behaviour is produed. The random vetor of �1, whih determines whih10



partiles have high or low frequeny is:rn = (1;�1;�1;�1; 1;�1; 1; 1|{z}A ;�1; 1;�1;�1| {z }C ; 1; 1;�1; 1; 1| {z }B ;�1;�1; 1; 1);(22)where we have labeled the groups of partiles A (partiles 7 and 8), C (partiles11 and 12), and B (partiles 13 to 17), for future referene. Several pathsfollowed from nonlinearity-order, s = 1, to linearity-disorder, s = 0, havebeen studied. Also we have studied paths bakwards starting at s = 0, whihusually lead to multi-breathers. Here we omment on two signi�ant ones froms = 1: the linear one, where the funtion � of Eq. (3) is � = 1 � s, and thepath � = 1� s1=4, whih we will refer to as the 1=4 path.6.1 The linear pathWe start with the single breather with frequeny !b = 0:85 obtained fromthe unoupled limit oded 0 for all the partiles, exept the entral partile,number 11, oded +1. The ode means 0 for partiles at rest, +1, for partilesosillating with phase 0 at t = 0, and �1, for initial phase � (see for example[7℄). This frequeny allows a relatively large window of values outside the linearmodes (the same referene). The Fourier spetrum of this breather appearsin Fig. 2, and its projetion onto the loal phase planes in Fig. 3. Its ation(area) was found to be I = 0:1286.Then we ontinued it from s = 1 towards s = 0. As s diminishes, the two par-tiles C with the same frequeny at rest begin to osillate in phase, evolving towhat we will all the double entral LO, that is the two partiles C osillatingin phase and the others almost at rest. At the same time two new LOs appear;one of them onsists of the group B, osillating with ode (+1;�1; 0;�1;+1),and the other is the group A of partiles with ode (�1;+1). All these osilla-tions an be seen in the Fourier spetrum that appears in Fig. 4. At s1 = 0:322,the osillation C disappears. At s2 = 0:234 the osillation A is annihilated and,in the end, the only surviving LO is B.In Fig. 5 we an see the evolution of the eigenvalues of �~z ~G(~z; s). At smallersale it an be seen that only the group of eigenvalues labelled w1� rossesthe zero line, whih happens about s1. Inspetion of the Fourier omponentsshows that for s < s1, the odd Fourier omponents are negligible, therefore thefrequeny is in fat doubled: we have an inverse period doubling bifurationas s dereases, and the resulting LO for s < s1 is an orbit of half the ationtaken twie over.The eigenvalues of the monodromy matrix evolve along the path, as shown in11
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Fig. 5. Evolution of the eigenvalues of the Jaobian �~z ~G(~z; s). Most of the eigenvaluesorrespond to linear modes on the partiles lose to rest; these are labelled bywk�, where k 2 Z denotes the dominant temporal Fourier harmoni involved andthe � sign indiates whether the mode is assoiated with partiles with disordervariable rn = �1, see eq. (2). The eigenvalues assoiated with perturbation ofthe exited sites are labeled bk; however, the �rst two are mixed with the linearmodes. Finally, the eigenvalue labelled Iw is a omplex onjugate pair related tothe interhange of amplitude and frequeny that maintains the ation onstant; theapparent disontinuity is due to the hange of sign of the real part.7 Bifuration studyWe have studied in some detail the important bifurations, that is those thatinvolve hanges of behaviour of non-negligible amplitude. These bifurationsan be deteted in several ways: slowness and/or diÆulty of onvergene of theNewton method, inluding jumps in the step presribed; looking at the pointswhere an eigenvalue of the Jaobian rosses or approahes zero; and abrupthanges in the Fourier spetrum or in the plot of the oordinates versus time.Speial are has to be taken when an eigenvalue approahes zero and turnsbak. Is the Newton method jumping to another branh of solutions, or are wedealing with a bifuration? With our present program, we annot expet toreah the exat point where a bifuration takes plae, as the Jaobian is notinvertible there (this ould be solved by using ar-length ontinuation with asuitable hoie of transversal). A great help is obtained, however, by restartingthe Newton method after the bifuration, and traing it bakwards, seeing ifthe solutions take the same path or another one, and in this ase, whih one.14



0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

s:    0, Anderson modes;    1, breathers

P
ha

se
 o

f t
he

 e
ig

en
va

lu
es

Evolution of the eigenvalues of the monodromy. Linear path.

Fig. 6. Evolution of the eigenvalues of the monodromy for the linear path. All ofthem appear to remain of modulus 1. The two groups of eigenvalues at s = 1 whihhave di�erent Krein signature ross around s = 0:8 at -1 (phase �) and again mixabout s = 0:4 at 1 (phase 0) without apparent loss of stability.Some other onsiderations suh as approximate symmetries an be used, aswe shall see below.We depit bifuration diagrams by plotting with respet to the parameter sa bifuration variable, whih is the projetion of the solutions on the nullsubspae of the Jaobian at the bifuration, that is the entre subspae. Ifwe do not have exatly zero eigenvalues, or two very small ones rossing orapproahing zero, we may have to deide whih is the appropriate entre sub-spae where the bifuration is taking plae. This an be done by omparing theorresponding eigenvetors just before and after the bifuration and observingthe evolution of the eigenvalues.7.1 Bifurations in the 1/4 pathThis is a very simple path as there is only an isolated eigenvalue rossing zero(Fig. 8), exept when we get very lose to the linear disordered ase (s = 0:01),where a group of linear modes rosses zero. We think that the bifurationassoiated with this eigenvalue rossing zero is a typial feature for LOs inrandom systems, when they resonate with linear modes on other parts of thesystem. The bifuration diagram an be seen in Fig. 10. To understand this,15
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Fig. 8. Enlargement of Fig. 7, showing the eigenvalues in the group w1�. Appar-ently only one eigenvalue rosses the zero line; it is related to a hange of phaseof a small amplitude mode on partile 5. The double LO on partiles 11 and 12evolves ontinuously. Also visible in this piture is the group of eigenvalues w2+ atvery small s, whih rosses the zero line at about s = 0:01; this is related to thedisappearane of the Fourier omponents with k 6= 1 at the linear limit.time before and after the bifuration. It shows the hange of phase in a groupof six partiles. Moreover, the null eigenvetor is omposed mainly of the �rstFourier omponents of these partiles.This is not a standard imperfet pithfork bifuration, however, as both the\horizontal" branhes are observed to be linearly stable, in ontrast to a stan-dard imperfet pithfork for periodi orbits of a Hamiltonian system for whihthe \horizontal" branh would hange stability. We onjeture that the bifur-ation diagram should be ompleted by reation of a pair of unstable time-asymmetri LOs by a \Rimmer bifuration" (pithfork for periodi orbits ofreversible Hamiltonian systems) [24℄ from one of the \vertial branhes" aftera short interval of instability.Note that although the standard setting for analyzing bifurations of periodiorbits in Hamiltonian systems is to onsider variation of the set of periodiorbits of given energy E with respet to E and/or external parameters, thesame results apply for given ation I, beause dI= dE = T , the period, whihis neither zero nor in�nite. 17
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7.3 General ommentIn eah ase, we found only a limited number of eigenvalues rossing zero,whih are the eigenvalues of the two or three �rst linear modes of the partileswith frequenies !+ or !� near rest, and the ompound modes, dependingon the path followed; their number is of the order of the number of partiles.Inreasing the number of Fourier omponents does not hange this fat; onlythe very few �rst omponents di�er appreiably from zero, and the highermodes are of very small amplitude. Inreasing the number of partiles, on theother hand, inreases proportionally the number of zero rossings. Therefore,we guess that for in�nite systems there will be an in�nite number of eigenvaluesrossing zero.8 ConlusionDisrete breathers are time-periodi loalised osillations (LO) of weakly ou-pled networks of anharmoni osillators. Anderson modes are LOs for spatiallyrandom networks with linear dynamis. For a model whih interpolates be-tween these two limits, we have found numerially that although Andersonmodes typially 7 evolve to a \general osillation" with no spatial loalisation,on moving parameters in the opposite diretion, disrete breathers an be fol-lowed almost ontinuously to Anderson modes, whih are often (though notalways) loalised around the same sites as the breathers. This asymmetry isnatural in view of the fat that there are many more time-symmetri periodisolutions of given period at the ordered anharmoni limit ((3m � 1)=2 for asystem of size m) than at the disordered harmoni limit (m), but only m ofthem are single-site breathers. The others are \multi-site breathers" [4℄.No paths have been found, however, that ompletely avoid degeneraies in thelinearized ontinuation operator. We found bifurations at these points. Theyare often fold bifurations, whih stritly speaking makes it impossible to on-tinue further. Nevertheless, at every fold point we always found a very nearbypath onto whih to jump and ontinue towards the disordered linear limit. Forsome paths these bifurations are related to hanges in behaviour of groupsof partiles near rest. This happens, for example, in the path alled the 1=4path. The maximum value of the Fourier oeÆients of the partiles involvedin the bifuration are about 10�2 times the largest of the whole system. Evenless signi�ant are the eigenvalues of the k = 2 modes rossing zero almost at7 Not always: in some ases, the omputation ontinued an Anderson mode onto adisrete breather, but this depended on how fast it went through some bifurationpoints where there was a \random" hoie of branhes.21
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