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ABSTRACT 

A probabilistic Non-Standard Limit Analysis based method is proposed to do safety assessments of 
historical masonry structures when collapse develops under sliding movements. The problem is 
presented as an Unilateral Contact Problem, formulated as a Complementarity Problem and solved as 
a Sequential Linear Programming with random starting points. The implemented method is a Monte 
Carlo type method that consists in: 1) fixing random points of application; 2) calculating the maximum 
value of the point load by Linear Programming; 3) making sure that the solution is in the onset of 
collapse; 4) rejecting the solutions that do not meet the requirements; 5) calculating the minimum 
value of the point load that would promote the collapse while keeping the same values of the limit 
conditions. The results are compared with a set of thirty three sliding tests carried out on dry masonry 
walls.  
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1. INTRODUCTION

The safety assessment of historical masonry structures is still a controversial matter nowadays (Roca 
et al., 2010). Global failure is often due to instability when yield conditions appear at a certain number 
of points, turning the structure into a mechanism, even when compressive stresses could still be 
under their limit value. In these cases and when no sliding occurs, many authors [1,2,3] have 
proposed the application of the Limit Analysis theorems since they constitute an excellent simplified 
tool.  

The equivalence of both Limit Analysis theorems and two dual Linear Programs were proved [4,5,6] at 
the beginning of plasticity theory, and Limit Analysis by Linear Programming [7,8] allowed to obtain 
the actual load of the onset of collapse.   

However, when the collapse includes sliding [9,10,11], the standard Limit Analysis theorems are no 
longer valid and the load factor of the onset of collapse is not necessarily unique. Hence many 
researchers have been looking for the solution of the onset of collapse which load factor is minimal. 
This is a very hard problem, in its simplest formulation is presented as a Linear Complementarity 
Problem [10,12]. Its computational complexity is NP-hard [13,14,15] and there is no method that 
guarantees to obtain a solution if exists, or to prove there is no solution. On the other hand, some 
researchers have pointed out that this minimal solution is perhaps too conservative [3,16], and recent 
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numeric results obtained by applying Monte Carlo simulation [17] allows to conjecture that when 
there are multiple solutions the minimum and maximum values are not the most probable solutions. 

At the end of 2013 in the Building Structures Department Laboratory, ETSAM, Technical University of 
Madrid, a wall of dry masonry was subjected to a series of thirty three load tests, the actions were 
their self-weight and a horizontal load. The objective was to obtain plenty of sliding tests which could 
enable to form a statistical judgment of the results and compare them with the results of several 
numerical methods. The obtained results show a wide dispersion (Fig. 1), and all of them not being 
equally probable. Even when all of them are in the range of Non-Standard Limit Analysis solutions it 
seems appropriate the implementation of a method that allows obtaining more accurate results to 
resolve problems such as the one treated. 

Figure 1. An example of one of the experimental tests and the comparison between all the results. 

2. METHOD

A Non-Standard Limit Analysis based method is proposed, presented as an Unilateral Contact 
Problem, formulated as a Complementarity Problem [10] and solved as a Sequential Linear 
Programming from random starting points. In [17], the calculation of all the extreme solutions of the 
onset of collapse appear to be equivalent to the calculation of all the possible combinations of the 
points of application of the resultant contact forces in the contact surfaces, rejecting those that do not 
meet the requirements. The implemented method is a Monte Carlo type method that consists in: 1) 
fixing random points of application; 2) calculating the maximum value of the point load by Linear 
Programming; 3) making sure that the solution is in the onset of collapse; 4) rejecting the solutions 
that do not meet the requirements; 5) calculating the minimum value of the point load that would 
promote the collapse while keeping the same values of the limit conditions. The theoretical basis of 
the method and its implementation is detailed below. 

2.1. Theoretical basis 

The proposed model is classified as an “Advanced Computer Developments Based on Limit Analysis: 
Analysis of Blocky Structures”, by Roca et al. [18] in his recent review of applicable studies in historical 
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These kinds of problems are hard and they could: have no solution, have one solution or multiple 
solutions. It is easy to check a previously calculated solution, but there are no deterministic method 
that guarantees to find a solution, if this one exists, or evidence that it does not exists. In addition, the 
main challenge from the practical point of view is [15] that many programs are capable of obtaining 
without any guarantee of success some kind of solution, but they are not capable of giving the quality 
of the obtained solution, in other words, they do not find out if the solution is near the corresponding 
global minimum. It seems necessary a method that rates the obtained solutions. 

In [17], the method proposed consists in studying all the possible interval of the onset of collapse 
solutions, to analyze afterwards the probability of each of the load factors associated to the solutions. 
With this procedure the probability of collapse generation, for a smaller or equal load factor value 
compared with the one given, can be calculated.    

This procedure requires the calculation of the volume of the set of solutions with load factors smaller 
or equal to the ones given. This calculation can be solve through exact determinists methods [21] or 
probabilistic methods [22] being both equivalent from the practical point of view. The first method 
finds out the implicit form for all the solutions of the onset of collapse and the second method 
consists in a Monte Carlo simulation that tries to meet with a huge amount of extreme solutions of 
the onset of collapse. As well, it has been shown that when there is a contact that is imperfect, the 
solutions are extreme, and the calculation of all the extreme solutions of the onset of collapse appear 
to be equivalent to the calculation of all the possible combinations of the points of application of the 
resultant contact forces in the contact surfaces, rejecting those that do not meet the requirements. 

The mentioned probabilistic method, although it is less expensive than the exact determinist method, 
it is still too expensive in computational terms, since the extreme solutions search is done with 
deterministic methods; therefore, the application is limited for small examples.  

A new method is propose where instead of calculating all the extreme possible solutions, it calculates 
a random wide sample that is significant enough, using the found relationship between contact 
imperfections and extreme solutions, and the relationship between extreme solutions and the points 
of application of contact forces. It is propose a random sampling of the extreme solutions assigning in 
a random way points of application of the contact force. From the physical point of view, we can 
expect that the unavoidable imperfections in the contact surface will establish, in a random mode, the 
points of application of the contact force.  

2.2. Implementation 

The claim of this work is to obtain a wide sampling for the possible solutions for the onset of collapse, 
with the aim of studying the distribution of the destabilizing action values. In a simple way, the onset 
of collapse solution should have a valid static solution, that we represent as { }E∈ yy , and it must be a

kinematic valid solution represented as { }K∈ zz .

Besides, unilateral contact must be a requirement, so that the elemental displacement is not 
achievable, in a point of contact, unless the states of stresses have reached the limit value. The 
conditions already mentioned, since the static and the kinematic solutions have been formulated as a 
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function of two positive vectors y,z, they can be written as a null dot product 0⋅ =y z . Therefore a

solution for the onset of collapse it is a solution that meets the requirements (2). 

{ } { }E  ; 0 ; K∈ ⋅ = ∈y zy y z z  (2)

Due to the special characteristics of the constraints that govern the problem (1), once one part of the 
solution is substituted in the original problem, it turns into a linear problem, being reduced into a 
equation system and linear inequalities. When we choose a solution of the equilibrium limit  y =y´  , 

the problem is reduced to a linear problem with kinematic variables z  (3).

{ }  E  ;  0= ⇒ ∈ ⋅ =zy y´ z y´ z (3) 

The proposed implementation consists in obtaining multiple values of the point force that would 
promote the collapse, repeating the following steps:  

1) Obtain a limit equilibrium solution y =y´ , fixing randomly the points of application for the contact

forces. (Fig. 4) 

Figure 4. Equilibrium solution with random points of application of the contact forces.

2) Find the maximum value of the point load that promotes collapse calculated by Linear
Programming (Fig. 5) 

Figure 5. Two random stress states, the first only with their self-weight and the second one with their self-weight 

and a point load.
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3) Make sure that the solution is in the onset of collapse.
4) Reject all the solutions that do not meet the requirements.
5) Calculate the minimum value of the point load that would promote the collapse while keeping the
same values of the limit conditions. 0iy = . 

The procedure is repeated as many times as it is considered to obtain a large enough sample. 

3. RESULTADOS

Although the main objective of this work is to obtain the numerical values of point loads that cause 
the onset of collapse, we have also obtained the mechanisms, yield lines, corresponding to these 
loads. In Figure 6 there are represented four of these mechanisms, being the upper left mechanism 
the one that is produced more frequently compared with the rest. 

Figure 6. Different collapse mechanisms with simple yield lines.

Figure 7 shows four of the onset of collapse mechanisms from the tests. 

Figure 7. Different collapse mechanisms with simple yield lines 
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As it is shown the Relative Cumulative Frequencies of the numerical method is near but always above 
the corresponding of the experimental results. The two sample Kolmogorov-Smirnov test [23] 
confirms this situation, giving a p-value of 0.994 for the "Numerical model < Experimental test" 
hypothesis. This concludes that the use of the model results is reliable in contrast to the experimental 
results. 

The results have also been compared with the ones obtained by several numerical methods of single 
solution (Fig. 10). In addition, the best fit Gaussian Distribution for the experimental results and the 
Gaussian Kernel Density Estimation for the numerical simulation are shown in black and red.  

Figure 10. Comparison between: the frequency of test results (thin black line), the frequency of model results 

(thin red line),the best-fit Normal (Gaussian) Distribution of test results (thick black line), the Gaussian Kernel 

Density Estimation of model results (thick red line), the confidence interval of characteristic value of test results 

and the single value which is obtained by other numerical methods. 

The Relative Frequencies Distribution corresponding to the onset of collapse of the numeric model 
and of the experimental test are represented too (Fig 10). 

In Table 1, it is shown the comparison between the characteristic values, meaning the 5% percentiles, 
between the model and the test. Once more, the values are quite accurate and in the safe side.  

Table 1. Comparison between the characteristic values of numerical methods and experimental 
results. 

Numerical model Experimental test

5% percentile 99% confidence interval 5% percentile 99% confidence interval 5% percentile 

298 N 282 N 315 N 285 N 347 N 

636



Fernando Magdalena, José Ignacio Hernando, Eva Magdalena 

3. DISCUSSION

The structure where the tests were executed and the load conditions corresponds to a particular 
case. However the present case has a practical interest, since this mode of failure by sliding can occur 
in those parts of the historic buildings subjected to strong thrust in the direction of the joint and at 
low compression along the perpendicular direction. This could happen in the upper parts of 
buttresses, the upper bands of masonry shear walls under thrust of roofs or transverse walls, or the 
anchorage zones for tension ties. 

All the solutions obtained in the tests are within the range of feasible solutions to the Non-Standard 
Limit Analysis, nevertheless, in the studied case this range is wide. In this case, the maximum load 
factor obtained by Standard Limit Analysis may be unsafe. The minimum load factor obtained by non-
Standard Limit Analysis, is not always the actual load factor of the onset of collapse, in fact it never 
happened for the current tests. Therefore, their use may produce overly conservative results, besides 
being very expensive computationally.  

Other methods such as Rankine, Uniform Stress Distribution, that produce intermediate results gives 
values that are closer to the characteristic value obtained in the tests but may be unsafe. 

The proposed method, which ignores the elastic deformation of the material but considers the 
discontinuity of the material and the irregular surfaces contact, gets tighter results and reflects in a 
more suitable way the dispersion of the experimental results.  

A model that also incorporates elastic deformations would be even tighter, however  would not give 
safer results for each of the studied random cases, because the minimum value of the load that will 
cause the collapse has been calculated and the incorporation of new constraints will give a new 
minimum equal or higher than the calculated one. 

4. CONCLUSION

As a conclusion, it should be noticed that in the studied case of dry masonry or similar structures 
when the collapse is caused by sliding and the actions are point loads, the approach that considers 
randomness in contact conditions as the proposed here and [17], could give best fit results with 
experimental data rather than with other methods whose solution is unique. 

REFERENCES 

[1] Kooharian, A. (1952). Limit Analysis of Voussoir (segmental) and Concrete Arches. Proceedings 

of American Concrete Institute. 49(24):317-328. 
[2] Heyman J. (1966). The stone skeleton.  International Journal of Solids and Structures.  2(2): 

249-256. 
[3] Orduña, A. & Lourenço, P.B. (2001). Limit analysis as a tool for the simplified assessment of 

ancient masonry structures. In Historical Constructions, Guimarães: University of Minho. 511-
520. 

637



Sliding collapse in masonry structures: a numerical model. 
Third International Conference on Mechanical Models in Structural Engineering 
University of Seville. 24-26 june 2015. 

[4] Charnes, A. and Greenberg, H.J. (1951). Plastic collapse and linear programming. Bulletin of 

the American Mathematics Society. 57:480. 
[5] Dorn W. S. (1955). On the Plastic Collapse of Structures and Linear Programming. 

Dissertations. Carnegie Institute of Technology. Paper 85 
[6] Charnes, A., Lemke, C.E. and Zienkiewicz, O.C. (1959). Virtual Work, Linear Programming and 

Plastic Limit Analysis" Proceedings of the Royal Society of London. Mathematical, Physical and 

Engineering Sciences. 251(1264):110-116. 
[7] Livesley R.K. (1978). Limit analysis of structures formed from rigid blocks. International Journal 

for Numerical Methods in Engineering. 12(12):1853-1871. 
[8] Gilbert, M., and Melbourne, C. (1994). Rigid-block analysis of masonry structures.  Structural 

engineer, 72(21):356-361. 
[9] Drucker, D. C. (1953).Coulomb friction, plasticity, and limit loads. Sliding friction versus plastic 

resistance. Transactions of American Society of Mechanical Engineers. 76:71-74. 
[10] Fishwick, R.J. (1996). Limit analysis of rigid block structures. Ph.D. thesis. Department of Civil 

Engineering University of Portsmouth. 
[11] Magdalena-Layos, F. (2013). El problema del rozamiento en el análisis de estructuras de 

fábrica mediante modelos de sólidos rígidos. Ph.D. thesis. Technical University of Madrid. 
[12] Ferris, M. C. & Tin-Loi, F. (2001). Limit analysis of frictional block assemblies as a mathematical 

program with complementarity constraints. International Journal of Mechanical Sciences, 
43(1):209-224. doi:10.1016/S0020-7403(99)00111-3. 

[13] Cottle, R.W., Pang, J.S. & Stone, R.E. (2009). The linear complementarity problem. SIAM 
Classics in Applied Mathematics. doi:10.1137/1.97808987190 00. 

[14] Garey, M. R. & Johnson, D. S. (1979). Computers and intractability. New York: Freeman.
[15] Hu, J., Mitchell, J. E., Pang, J.S., Bennett, K. P. & Kunapuli, G. (2008). On the global solution of 

linear programs with linear complementarity constraints. SIAM Journal on Optimization, 
19(1):445-471. doi:10.1137/07068463x. 

[16] Gilbert, M., Casapulla, C. and Ahmed, H. M. (2006). Limit analysis of masonry block structures 
with non-associative frictional joints using linear programming. Computers & Structures, 
84(13):873-887. doi:10.1016/j.compstruc.2006.02.005. 

[17] Magdalena-Layos, F., Hernando-García, J. I. (2014). Análisis Límite de estructuras de fábrica 
como problema de contacto unilateral: un enfoque probabilista. Informes de la Construcción, 
66(extra-1): m015, doi: http://dx.doi org/10.3989/ic.13.098. 

[18] Roca, P., Cervera, M. & Gariup, G. (2010). Structural analysis of masonry historical 
constructions. Classical and advanced approaches. Archives of Computational Methods in 

Engineering, 17(3), 299-325. doi:10.1007/s11831-010-9046-1. 
[19] Orduña, A. & Lourenço, P. B. (2005). Three-dimensional limit analysis of rigid blocks 

assemblages. Part II: Load-path following solution procedure and validation. International 

journal of solids and structures, 42(18), 5161-5180. doi:10.1016/j.ijsolstr.2005.02.011. 
[20] Tran-Cao, T. (2009). Collapse analysis of block structures in frictional contact. (Tesis doctoral). 

The University of New South Wales. 
[21] Büeler, B., Enge, A. & Fukuda, K. (2000) Exact volume computation for polytopes: A practical 

study. In Polytopes - Combinatorics and computation. Basel: Birkhäuser, 131-154. 
doi:10.1007/978-3-0348-8438-9_6. 

638



Fernando Magdalena, José Ignacio Hernando, Eva Magdalena 

[22] Rubinstein, R.Y. & Kroese, D.P. (2007). Simulation and the Monte Carlo method. Wiley. com. 
doi:10.1002/ 9780470230381. 

[23] Nikiforov A.M. (1994) Algorithm AS 288: Exact two-sample Smirnov test for arbitrary 
distributions. Appl. Stat., vol.43, No. 1. (pp.265-270). 

639




