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Abstract

Lie theory of transformation groups is applied to the study of λ − ω

reaction-diffusion systems in two-dimensional media. Our study proves

that they are invariant with respect to a five-parameter symmetry group.

Multiple types of invariant solutions with physical interest are possible,

some of them can be found in the literature applied to particular models.
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1 Introduction.

Non-linear reaction-diffusion equations have been widely studied throughout the
passed years. These equations arise naturally as description models of many
evolution problems in the real world, as in chemistry [1], biology [2], ecology [3],
etc.

As is well known, complex behaviour is a peculiarity of systems modelled
by reaction-diffusion equations, and the Belousov-Zhabotinskii reaction [4-6]
provides a classic example.

Reaction-diffusion equations have been investigated for certain boundary
and initial conditions and in most cases explicit solutions cannot been found.

This paper deals with the application of Lie group theory to non-linear
reaction-diffusion equations. Although group analysis of differential equations
has been applied a great deal in many fields of mathematical physics [7-11], much
less has been applied in conection with problems related to reaction-diffusion
models. We think that application of these techniques to systems of reaction-
diffusion equations may help to elucidate many types of solutions, specially for
models which possess the appropriate symmetries.

We have selected for investigation the denominated λ−ω models, introduced
some years ago by Koppell and Howard [12], which have been widely used in
prototype studies of reaction-diffusion processes. Their importance lie in the
fact that λ− ω systems arise naturally as the dominant part in the asymptotic
analysis of many general reaction-diffusion systems [13]. Spiral wave solutions
of particular λ− ω systems have been investigated, for example, by Greenberg
[14], Hagan [15] and Kuramoto and Koga [16]. Many other solutions are also
known and the list of references is extensive.

We show that the λ−ω systems in two-dimensional media are invariant with
respect to a five-parameter symmetry group. The invariance properties give rise
to multiple types of solutions and to the reduced equations, which are essential
in the study of bifurcating solutions applied to particular models.

2 Lie symmetries and λ − ω reaction-diffusion
models

The λ−ω reaction-diffusion systems with two reactants are described by systems
of partial differential equations (SPDE) of the form:

ut = D∇2u+ λ(z)u− ω(z)v,

vt = D∇2v + ω(z)u+ λ(z)v,

z = (u2 + v2)1/2,

(1)
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where λ(z) is a positive function of z for 0 ≤ z < z0 and negative for z > z0,
ω(z) is a positive function of z; u = u(x, y, t) and v = v(x, y, t) represent, for
example, concentrations of two chemical reactants which at the same time diffuse
through the plane (x, y). D represents the diffusion coefficient, λ(z)u − ω(z)v
and ω(z)u + λ(z)v are nonlinear functions that describe the kinetics of the
reaction. The spacially homogeneus system, has a limit cycle solution with
amplitude z0 and frequency w(z0), thus, λ− ω systems have been proposed as
models for chemical or biological systems which exhibit oscillating behaviour in
homogeneous situations.

We have found, using Lie group theory of transformations [8], that this
system is invariant with respect to the five-parameter group which has associated
the following characteristics:

Qu = a1ux + a2uy + a3ut + a4 (xuy − yux) + a5v,

Qv = a1vx + a2vy + a3vt + a4 (xvy − yvx)− a5u,
(2)

where the set {ai}5i=1 represents arbitrary constants. Every set {ai}5i=1 is
associated to a one-parameter group of transformations.

Five simple one-parameter groups can be obtained by making ai = 1,
i = 1, ..., 5, and aj = 0 with j ̸= i. We denote each of theses groups by
Gi, and the associated characteristics by Qu

i and Qv
i :

G1 : Qu
1 = ux, Qv

1 = vx,
G2 : Qu

2 = uy, Qv
2 = vy,

G3 : Qu
3 = ut, Qv

3 = vt,
G4 : Qu

4 = xuy − yux, Qv
4 = xvy − yvx,

G5 : Qu
5 = v, Qv

5 = −u.

(3)

The characteristics associated to G1, G2 and G3 correspond to translations
in the coordinates x, y, and t, respectively. The associated to G4 and G5

correspond to rotations in the planes (x, y) and (u, v), respectively.
Also, we denote by Gij the one-parameter groups obtained by making ai ̸= 0,

aj ̸= 0 and ak = 0 with k ̸= i, j.
It is convenient to change the variables (x, y) to polar variables (r, θ), and

(u, v) to polar variables (z, ϕ). The characteristics of G4 and G5 are:

G4 : Qu
4 = a4uθ , Qv

4 = a4vθ,

G5 : Qz
5 = 0 , Qϕ

5 = 1.
(4)

In terms of the variables (z, ϕ), system (1) reads:

∇2z + z (λ(z)− |∇ϕ|2)− zt = 0 , ∇2ϕ+ 2∇ϕ
∇z

z
+ ω(z)− ϕt = 0. (5)

Let us now consider the general reaction-diffusion systems of the form:

F ≡ ∇2u+ f(u, v)− ut = 0 , G ≡ ∇2v + g(u, v)− vt = 0. (6)
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If these systems are invariant under the groups associated to the
characteristics (2), we can demonstrate that they are of the type λ− ω .

These systems are invariant with respect to G1, G2, G3 and G4, because F
and G do not depend explicitly on (x, y, t). The condition of invariance with
respect to G5 is:

V5(F ) = 0 , V5(G) = 0, (7)

when u is a solution of the system (6). We represent by V5 the prologation of
the Lie operator for G5:

V5 = −v
∂

∂u
+ u

∂

∂v
+

∑
I

−vI
∂

∂uI
+ uI

∂

∂vI
, (8)

I is a multi-index refering to the multiple derivatives of u and v, with |I| > 0.
Then:

−∇2v − v
∂f

∂u
+ u

∂f

∂v
+ vt = 0,

∇2u− v
∂g

∂u
+ u

∂g

∂v
− ut = 0.

(9)

That is, substituting ut and vt from (6):

−v
∂f

∂u
+ u

∂f

∂v
= −g,

−v
∂g

∂u
+ u

∂g

∂v
= f.

(10)

These equations may be written in the variables (z, ϕ) as:

∂f

∂ϕ
= −g ,

∂g

∂ϕ
= f, (11)

thus,

f +
∂2f

∂ϕ2
= 0 , g = −∂f

∂ϕ
.

Consequently the functions f and g take the form of the kinetics of the λ − ω
systems:

f = λ(z)z cos(ϕ)− ω(z)z sin(ϕ) = λ(z)u− ω(z)v,
g = ω(z)z cos(ϕ) + λ(z)z sin(ϕ) = ω(z)u+ λ(z)v.

(12)

Thus, we have proved that λ−ω systems are characterized, among reaction
diffusion systems, by their symmetry properties. In the next section we show
that the study of solutions invariant with respect to some subgroups of the full
symmetry group may be useful to describe pattern formation .
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3 Invariant solutions

Invariant solutions, u and v, for a subgroup of the full symmetry group, i.e.
partially invariant solutions [17], must satisfy system (1) and the characteristic
equations:

Qu(u, v) = 0 , Qv(u, v) = 0. (13)

for some set of the constants {ai}. This requirement imposes special forms to
the solutions. Substitution in system (1) gives rise to the reduced equations,
these are PDE’s with a number of independent variables reduced in one.

There exist two types of invariant solutions according to the value of the
constant a5:

I) If a5 = 0, it is possible to change the variables (x, y, t) to new variables
(ξ1, ξ2, η), such that the characteristic equations are:

uη = 0 , vη = 0. (14)

Hence, invariant solutions depend only on (ξ1, ξ2). Substitution in (1) leads to
a new system of PDE’s with two independent variables.

II) If a5 ̸= 0, it is possible to change variables from (x, y, t) to (ξ1, ξ2, η) such
that the characteristic equations are:

αuη + v = 0 , αvη − u = 0, (15)

then:

u = z(ξ1, ξ2) cos(
η

α
+ β(ξ1, ξ2)) , v = z(ξ1, ξ2) sin(

η

α
+ β(ξ1, ξ2)). (16)

That is, invariant solutions are periodic functions with respect to η. Substitution

of z = z(ξ1, ξ2) and ϕ =
η

α
+ β(ξ1, ξ2)) in (5) leads to the reduced equations for

z and β.
If a solution is invariant with respect to a two-parameter group, the reduced

equations are ordinary differential equations.
In the following a solution invariant with respect to a group GI , will be

called a GI -solution. If it is invariant with respect to two groups GI and GJ , it
will be called a GI +GJ -solution.

4 Multiple solutions

In this section we consider solutions invariant with respect to different
subgroups.
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4.1 Homogeneous solutions

These are G1 +G2-solutions.
The reduced equations are:

z λ(z)− zt = 0 , ϕt − ω(z) = 0. (17)

As λ(z) has a zero with negative derivative in z0, then, there exists a stable
limit cicle defined by the equations:

u = z0 cos(ω(z0) + ϕ0) , v = z0 sin(ω(z0) + ϕ0). (18)

4.2 Travelling waves

These are G15-solutions, and the characteristic equations take the form:

zx = 0 , a1ϕx − 1 = 0, (19)

then,

u = z(y, t) cos(
x

a1
+ β(y, t)) , v = z(y, t) sin(

x

a1
+ β(y, t)). (20)

If in addition they are G35-solutions:

u = z(y) cos(
x

a1
+

t

a3
+ α(y)) , v = z(y) sin(

x

a1
+

t

a3
+ α(y)), (21)

which are travelling waves trains solutions.
The reduced equations are:

zyy + z (λ(z)− 1

a21
− α2

y) = 0 , αyy + 2αy
zy
z

+ (ω(z)− 1

a3
) = 0. (22)

4.3 Stationary bands

The characteristic equations for the two-parameter group G15 +G3 are:

zx = 0 , zt = 0,

ϕx =
1

a1
, ϕt = 0.

(23)

The solutions take the form:

u = z(y) cos(
x

a1
+ β(y)) , v = z(y) sin(

x

a1
+ β(y)). (24)

The reduced equations are:

zyy + z (λ(z)− 1

a21
− β2

y) = 0 , βyy + 2βy
zy
z

+ ω(z) = 0. (25)
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4.4 Wave Packets

The characteristic equations for G135 solutions are:

a1zx + a3zt = 0 ; a3ϕx + a1ϕt − 1 = 0, (26)

A change of variables to x′ = x − cgt and t′ = t, where cg =
a1
a3

, leads to

new characteristic equations:

a1zt = 0 ; a3ϕt′ − 1 = 0, (27)

The amplitude and phase in the new variables take the form:

z = z(x′, y) ; ϕ = Ωt′ + β(x′, y), (28)

where Ω =
1

a3
. The invariant solutions are:

u = z(x′, y) cos(Ωt′ + β(x′, y)) ; v = z(x′, y) sin(Ωt′ + β(x′, y)). (29)

We define the complex function:

ū = u+ iv = z(x′, y)ei(β(x
′,y)+Ωt′) (30)

It is easy to compare this expression with the wave packet travelling in the
x-direction:

ū′ =
∫
G(k, y)ei(kx−ω(k)t)dk (31)

The group speed cg =
dw

dk
is supposed aproximately constant in the interval

where G is significantly different from zero. Then w(k) = w0 + cgk
′, with

k′ = k − k0 for some arbitrary wave number k0 in that interval, so:

ū′ =
∫
G′(k′, y)ei(k0x+k′x−w0t−cgk

′t)dk′ =

A(x′, y)eiα(x
′,y)ei(k0x−w0t)

(32)

with G′(k′, y) = G(k0 + k′, y), and:

A(x′, y)eiα(x
′,y) = (

∫
G′(k′, y)ei(k

′(x−cgt)dk′) (33)

This expression may be identified with the G135-solutions if:

ω0 = k0cg − Ω ; α(x′, y) = β(x′, y)− k0x
′ (34)

The reduced equations are:
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zx′x′ + zyy + z (λ(z)− βx′
2 − βy

2) + cgzx′ = 0

βx′x′ + βyy + 2βx′
zx′

z
+ 2βy

zy
z

+ ω(z)− Ω+ cgβx′ = 0
(35)

If the solutions are G2+G135 invariant, the functions z and β do not depend
on y , that is, the wave fronts are straight lines.

4.5 Solutions with rotational symmetry

These are G4-solutions, with characteristic equations:

uθ = 0 , vθ = 0. (36)

4.5.1 Stationary target patterns

These are G4 +G3-solutions. The additional characteristic equations are:

ut = 0 , vt = 0. (37)

The solutions are of the form u = u(r), v = v(r). The reduced equations are:

urr +
ur

r
+ uλ(z)− ω(z)v = 0 , vrr +

ur

r
+ uω(z) + λ(z)v = 0. (38)

4.5.2 Travelling circular waves

These are G4 +G35-solutions, with characteristic equations:

zt = 0 , a3ϕt − 1 = 0. (39)

The solutions are of the form:

u = z(r) cos(
t

a3
+ β(r)) , v = z(r) sin(

t

a3
+ β(r)). (40)

The reduced equations are:

zrr +
zr
r

+ z (λ(z)− β2
r (z)) = 0 , βrr +

βr

r
+ 2βr

zr
z

+ ω(z)− 1

a3
= 0.

(41)
If β(r) is not constant these solutions are travelling circular waves with speed

c = − 1

a3βr
.
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4.5.3 Stationary circular waves

If β(r) is a constant β,then ω(z) must be also constant with value
1

a3
, the

solutions are of the form:

u = z(r) cos(
t

a3
+ β) , v = z(r) sin(

t

a3
+ β), (42)

which are stationary circular waves.
The reduced equation is:

zrr +
zr
r

+ z λ(z) = 0. (43)

4.6 Rotating waves

These are G34-solutions, with characteristic equations:

a4uθ + a3ut = 0 , a4vθ + a3vt = 0, (44)

which may be written in the variables θ′ = θ−Ωt and t′ = t, where Ω =
a4
a3

, as:

a3ut′ = 0 , a3vt′ = 0. (45)

Then, u = u(r, θ′) and v = v(r, θ′). The reduced equations are:

∇′u+ uλ(z)− ω(z)v + uθ′Ω = 0 , ∇′v + uω(z) + λ(z)v + vθ′Ω = 0, (46)

where ∇′ is the nabla operator in the new variables.

4.7 Solutions with Sn symmetry

These are G45-solutions. The characteristic equations are:

a4zθ = 0 , a4ϕθ − 1 = 0. (47)

Then, z = z(r, t) and ϕ =
θ

a4
+ β(r, t). The solutions are of the form:

u = z(r, t) cos(
θ

a4
+ β(r, t)) , v = z(r, t) sin(

θ

a4
+ β(r, t)). (48)

These solutions must be continuous in the plane (x, y), that is, u(r, θ, t) =
u(r, θ + 2π, t) and v(r, θ, t) = v(r, θ + 2π, t), then a4 = 1/n, where n is an
integer. The solutions are of the form:

u = z(r, t) cos(nθ + β(r, t)) , v = z(r, t) sin(nθ + β(r, t)). (49)
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There are n equations for the curves of constant phase 2π:

θ = − 1

n
β(r, t) + 2π

m

n
, m = 0, 1, 2, ..., n− 1. (50)

The reduced equations are:

zrr +
zr
r

+ z (λ(z)− βr
2 − n2

r2
)− zt = 0 , βrr +

βr

r
+ 2βr

zr
z

+ ω(z)− βt = 0.

(51)

4.7.1 Stationary solutions with Sn symmetry

The solutions and reduced equations with G45 + G3 symmetry have the same
form as above, with the condition that β and z are t independent.

4.7.2 Multiarmed rotating spiral waves

These are G45 +G35-solutions. The characteristic equations for G35 are:

zt = 0 , a3ϕt − 1 = 0.

Then, the solutions are of the form:

u = z(r) cos(nθ +Ωt+ β(r)) , v = z(r) sin(nθ +Ωt+ β(r)), (52)

with Ω =
1

a3
. The reduced equations are:

zrr +
zr
r

+ z (λ(z)− βr
2 − n2

r2
) = 0 , βrr +

βr

r
+ 2βr

zr
z

+ ω(z)− Ω = 0.

(53)
The phase curves rotate rigidly with angular speed Ω.

5 Conclusions

The λ − ω systems are charaterized among reaction-diffusion systems by its
symmetry group. Solutions invariant with respect to different subgroups of the
full symmetry group exhibit many different patterns with physical interest. The
study of the reduced equations with appropiate boundary conditions applied to
specifics models is necessary to delimitate the ranges of the parameters values,
inherent to each model, associated to differents types of solutions. We are now
concluding a study relative to a model for the Belousov-Zhabotinskii reaction
[18], which is a λ− ω system.

9



Appendix: Determination of Lie Symmetries

In this appendix we briefly sketch, without technical details, the method
used for obtaining the characteristics of λ − ω systems. A complete reference
can be found in [8].

Group of transformations

Let G be a local Lie Group, x = (x1, x2, ...., xn) the set of independent
variables, and u = (u1, u2, ...., um) the set of dependent variables, in a space of
functions u = u(x). A local Lie group of transformations in the space (x,u) is
given by the set of equations:

xϵ = X(x, u, ϵ) ; uϵ = U(x, u, ϵ), (A1)

where ϵ is a continuous parameter of a local group, being ϵ = 0 the value of
the parameter for the identity element. The expression local means that the
group properties are valid at least in some neighbourhood of ϵ = 0. If the
functions X and U depend not only on x and u but also on some derivatives,
the transformations (A1) have no geometrical interpretation, and must be seeing
as transformations in the space of functions u(x). In this case they are called
generalized transformations.

Infinitesimals

For every transformation (A1) there is an infinitesimal transformation given
by

δx = ξ(x, u)ϵ ; δu = η(x, u)ϵ, (A2)

with ϵ small enough; ξ = (ξ1, ξ2, ..., ξn) and η = (η1, η2, ..., ηm) are called the
infinitesimals of the transformation and are given by

ξ =

(
∂X

∂ϵ

)
ϵ=0

; η =

(
∂U

∂ϵ

)
ϵ=0

(A3)

Characteristics

10



The characteristic of the transformation group is defined as Q = η− ξiui =.
An equivalent transformation [8] to (A1) that leaves invariant the x variables is
given infinitesimaly by

δu = Q(x, u, {ui})ϵ where Q =

(
∂U

∂ϵ

)
ϵ=0

(A4)

This is a generalized transformation which has an equivalent geometrical

transformation. The expression {ui} represents the set of derivatives
∂uα

∂xi
with

α = 1, 2, ...,m and i = 1, 2, ..., n.
We represent by {uI}, where I = (i1, i2, ..., in) is a multiindex, the set of

derivatives, given explicitly by the expressions

{uI} → ∂|I|uα

∂xi1
1 ∂xi2

2 ...∂xin
n

α = 1, 2, ....,m; |I| =
∑n

j=1 ij > 0

The infinitesimal transformation for uI is given by

δuI = (DIQ)ϵ,

where DI is the total derivative operator

DI =
∂

xI
+ uI

∂

∂u
+
∑
J

uJ,I
∂

∂uJ
, |J | > 0

where
∂

∂xI
=

∂|I|

∂xi1
1 ∂xi2

2 ...∂xin
n

.

Invariant functions

A function u(x) is said to be invariant if it is left unchanged the action of

the transformation group, that is
∂uϵ

∂ϵ
= 0, or equivalently

Q(x, u, {ui}) = 0 (A5)

.

Symmetry Group

A system of partial differential equations,

F (x, u, {uJ}) = 0 (A6)
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is said to be invariant under a transformation group if every solution u is
transformed by the group into other solution uϵ , that is, F (x, uϵ, {uϵ

I}) = 0.
The corresponding infinitesimal condition is

Q
∂F

∂u
+DI(Q)

∂F

∂uI
= 0 , |I| > 0, (A7)

whenever u is a solution of the SPDE.

Invariant Solutions

Invariant solutions are solutions of the SPDE that are invariant with respect
to a symmetry group. Then they must be solutions of equations (A5) and (A6).
When the SPDE models a physical system, invariant solutions are very often
functions that exhibits interesting patterns with physical interest.

Procedure

In order to find a symmetry group of a SPDE we first substitute the partial
differential equations into (A7). The resulting equations are treated as forms in
the derivatives of u, whose coefficients depend on (u, x, t) and the infinitesimals
(η, ξ). After the substitution we collect together the coefficients of like derivative
terms in u and set all of them equal to zero. The resulting equations are called
the determining equations of the group. In practice these equations are solvable
and thus the infinitesimals and characteristics of the group are determined. The
subsequent study is clearly shown in this paper.

Mathematical Packages

These calculations, though not difficult in itself, are clearly complicated as
the order of the SPDE and the number of equations increase, so a software
for symbolic mathematics becomes really useful. To our knowledge, the best
package for these kind of calculations is Macsyma. Programs written by the
authors in Macsyma 4.0, running in a Convex, have been used to get the results
shown in this paper.
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