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Abstract. This paper presents a new methodology for solving multiobjective integer linear
programs (MOILP) using tools from algebraic geometry. We introduce the concept of partial Gröbner
basis for a family of multiobjective programs where the right-hand side varies. This new structure
extends the notion of Gröbner basis for the single objective case to the case of multiple objectives,
i.e., when there is a partial ordering instead of a total ordering over the feasible vectors. The main
property of these bases is that the partial reduction of the integer elements in the kernel of the
constraint matrix by the different blocks of the basis is zero. This property allows us to prove that
this new construction is a test family for a family of multiobjective programs. An algorithm “á
la Buchberger” is developed to compute partial Gröbner bases, and two different approaches are
derived, using this methodology, for computing the entire set of Pareto-optimal solutions of any
MOILP problem. Some examples illustrate the application of the algorithm, and computational
experiments are reported on several families of problems.
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1. Introduction. The multiobjective paradigm appeared in economic theory in
the nineteenth century in the seminal works by Edgeworth [14] and Pareto [30] to
define an economic equilibrium. Mathematically, the multiobjective optimization ap-
proach consists of determining the maximal (minimal) elements of a partially ordered
set. This problem was already addressed by Cantor [7], Cayley [8], and Hausdorff [21]
at the end of the nineteenth century. Since then, multiobjective programming (includ-
ing multicriteria optimization) has been a fruitful research field within the areas of
applied mathematics, operations research, and economic theory. Excellent textbooks
and survey papers are available in the literature; the interested reader is referred to
the books by Sawaragi, Nakayama, and Tanino [32], Chankong and Haimes [9], Yu
[45], Miettinen [28], or Ehrgott, Figueira, and Gandibleux [19], and to the surveys in
[17, 18].

The importance of multiobjective optimization is not due only to its theoretical
implications but also to its many applications. Witnesses of that are the large number
of real-world decision problems that appear in the literature formulated as multiobjec-
tive programs. These include flowshop scheduling [24], analysis in finance [17], railway
network infrastructure capacity [13], vehicle routing problems [25, 34], or trajectory
optimization [36], among many others.

Multiobjective programs are formulated as optimization (without lost of gener-
ality, we restrict ourselves to the minimization case) problems over feasible regions
with at least two objective functions. Usually, it is not possible to minimize all of
the objective functions simultaneously, since the objective functions induce a partial
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572 VÍCTOR BLANCO AND JUSTO PUERTO

order over the vectors in the feasible region, so a different notion of solution is needed.
A feasible vector is said to be Pareto-optimal (or nondominated) if no other feasible
vector has componentwise smaller objective values, with at least one strict inequality.

This paper studies multiobjective integer linear programs (MOILP). Thus, we
assume that all objective functions and constraints that define the feasible region are
linear and that the feasible vectors have nonnegative integer components.

There are nowadays several exact methods to solve MOILP problems. Two of
them, multiobjective implicit enumeration [46, 47] and multiobjective dynamic pro-
gramming [26], claim to be of general use and have attracted the attention of re-
searchers in the last several years. Nevertheless, although, in principle, they may be
applied to any number of objectives, one can mainly find, in the literature, applica-
tions to biobjective problems. Moreover, some other methods even do not provide
the entire set of Pareto-optimal solutions, but provide the supported ones (those that
can be obtained as solutions of linearly scalarized programs).

On the other hand, there are several methods that apply to biobjective problems
but that do not extend to the general case. Thus, one can see that there are two
thresholds in multiobjective programming: a first step from one to two objectives,
and a second, and deeper one, from two to more than two objectives.

In terms of complexity, it is worth noting that most MOILP problems are NP-
hard [16]. Even when the single-objective problem is polynomially solvable, the mul-
tiobjective version may become NP-hard. This is the case of spanning tree [20] and
minimum-cost flow problems [15], among others. Therefore, computational efficiency
is not an issue when analyzing MOILP. The important point is to develop tools that
can handle these problems and that give insights into their intrinsic nature. The
goal of this paper is to present a new general methodology for solving MOILP using
tools borrowed from algebraic geometry. The usage of algebraic geometry tools in
integer programming (single criterion) is not new (see [10], [22], [41], [23], [44], [43]).
The main idea is to compute a Gröbner basis for certain toric ideals (related to the
constraints matrix) with a monomial order induced by the objective function.

Gröbner bases were introduced by Buchberger in 1965 in his Ph.D. thesis [6]. He
named them Gröbner bases paying tribute to his advisor Wolfgang Gröbner. This
theory emerged as a generalization, from the one variable case to the multivariate
polynomial case, of the greatest common divisor. One of the outcomes of Gröbner
bases theory was its application to integer programming, first published by Conti and
Traverso [10]. This paper opened a new research line, followed by a number of authors,
consisting of the application of algebraic geometry tools for solving integer programs.

In [22], Hoşten and Sturmfels gave two ways to implement the Conti and Traverso
algorithm that improve in some cases the branch–and-bound algorithm to exactly
solve integer programs. Thomas presented in [41] a geometric point of view of the
Buchberger algorithm as a method to obtain solutions of an integer program. Later,
Thomas and Weismantel [43] improved the Buchberger algorithm in its application
to solve integer programs introducing truncated Gröbner bases. At the same time,
Urbaniak, Weismantel, and Ziegler [44] published a clear geometric interpretation of
the reduction steps of this kind of algorithm in the original space (decision space).
The interested reader can find excellent descriptions of this methodology in the books
by Adams and Loustaunau [2], Sturmfels [37], Cox, Little, and O’Shea [12], or Bert-
simas and Weismantel [5], and in the papers by Aardal, Weismantel, and Wolsey [1],
Sturmfels [38, 39], Sturmfels and Thomas [40], and Thomas [42].
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p-GRÖBNER BASES FOR MOILP 573

Our main contribution is to adapt some of the above-mentioned tools from alge-
braic geometry to solve MOILP problems. We present an algorithm to exactly solve
multiobjective problems, i.e., providing the whole set of Pareto-optimal solutions (sup-
ported and nonsupported ones). One of the main advantages of our approach is that
the number of objective functions does not significantly increase the difficulty. A new
geometric approach of the notion of reduction based on a partial ordering is given.
This reduction allows us to extend the concept of Gröbner basis when a partial order-
ing rather than a total ordering is considered over Nn. We call these new structures
partial Gröbner bases or p-Gröbner bases. We prove that p-Gröbner bases can be
generated in a finite number of steps by a variation of the Buchberger algorithm. The
main property of a p-Gröbner basis being that, for each pair in Zn × Zn

+ with first
component in Ker(A), the reduction by maximal chains in the basis is the zero set.

We propose two versions of the same algorithm to solve multiobjective integer
programs based on this new construction. Our first approach consists of three stages.
The first one uses only the constraint matrix of the problem, and it produces a system
of generators for the toric ideal �A (or its geometric representation IA). In the second
step, a p-Gröbner basis is built using the initial basis given by the system of generators
computed in the first step. This step requires us to fix the objective matrix, since
it induces the partial order used in the reduction steps. Once the right-hand side
vector is fixed, in the third step, the Pareto-optimal solutions are obtained. This
computation uses the new concept of partial reduction of an initial feasible solution
by the p-Gröbner basis.

This algorithm extends, to some extent, Hoşten and Sturmfels’ algorithm [22] for
integer programs because if we apply our method to single-objective problems, partial
reductions and p-Gröbner bases coincide with the standard notions of reductions and
Gröbner bases, respectively.

Our second approach is based on the original idea by Conti and Traverso [10]. It
consists of using the big-M method that results in an increasing number of variables, in
order to have an initial system of generators. Moreover, this approach also provides an
initial feasible solution. Therefore, the first step in the former variant of the algorithm
can be ignored, and the third step is highly simplified. In any case, our first version
(the one extending the Hoşten and Sturmfels approach) has proved to be more efficient
than this second one, since the computation of a p-Gröbner basis is highly sensitive
to the number of variables.

Both algorithms have been implemented in MAPLE 10. We report on some
computational experiments based on the first version of the algorithm and on two
different families of problems with different number of objective functions.

The rest of the paper is organized as follows. In section 2 we give the notation, the
formulation of the problem, and its algebraic codification. We also introduce here the
notion of test family and its geometric description. Section 3 presents the definition
of p-Gröbner basis, based on the notion of partial reduction. Here, we also state the
relationship between test families and p-Gröbner bases: the reduced p-Gröbner basis
for a family of multiobjective programs varying the right-hand side coincides with the
minimal test family for that family. At the end of the section, an example illustrates
all of the above concepts. Section 4 is devoted to the results of the computational
experiments and its analysis. Here, we solve several families of MOILP, report on the
performance of the algorithms, and draw some conclusions on its results and their
implications.
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574 VÍCTOR BLANCO AND JUSTO PUERTO

2. The problem and its translation. The goal is to solve the MOILP in its
standard form:

min (c1 x, . . . , ck x)

subject to (s.t.)
n∑

j=1

aij xj = bii = 1, . . . , m,(1)

xj ∈ Z+, j = 1, . . . , n,

with bi nonnegative integers for i = 1, . . . , m, cl ∈ Zn
+ for l = 1, . . . , k, x = (x1, . . . , xn),

and the constraints define a polytope (bounded). For the sake of simplicity, at times,
we use a vector notation and denote A = (aij) ∈ Zm×n, b = (bi) ∈ Zm

+ , and
C = (cij) ∈ Zk×n

+ . In the following, problem (1) is referred to as MIPA,C(b), and
we denote by MIPA,C the family of multiobjective problems where the right-hand
side varies.

The reader may note that there is no loss of generality in our approach to multiob-
jective integer linear programming, since any general MOILP problem with inequality
constraints and rational components in A, b, and C can be transformed to a problem
in the above standard form.

It is clear that the problem MIPA,C(b) is not a usual optimization problem since
the objective function is a vector, thus inducing a partial order among its feasible so-
lutions. Hence, solving the above problem requires an alternative concept of solution,
namely, the set of nondominated or Pareto-optimal points (vectors).

A feasible vector x̂ ∈ Rn is said to be a Pareto-optimal or nondominated solution
of MIPA,C(b) if there is no other feasible vector y such that

cj y ≤ cj x̂ for all j = 1, . . . , k

with at least one strict inequality for some j.
If x is a Pareto-optimal solution, the vector (c1 x, . . . , ck x) ∈ Rk is called efficient.
We say that a feasible point y is dominated by a feasible point x if ci x ≤ ci y for

all i = 1, . . . , k, with at least one strict inequality. According to the above concept,
solving a multiobjective problem consists of finding its entire set of Pareto-optimal
solutions, including those that have the same objective values.

From the objective function C, we obtain a partial order over Zn as follows:

x ≺C y :⇐⇒ C x � C y or x = y,

where Cx � Cy stands for Cx ≤ Cy and Cx �= Cy.
Observe that since C ∈ Zk×n

+ , the above relation is not complete. Hence, there
may exist incomparable vectors (those x, y ∈ Zn

+ such that neither x ≺C y nor
y ≺C x). We use this partial order induced by the objective function of problem
MIPA,C as the input for the multiobjective integer programming algorithm developed
in this paper.

Remark 2.1. Note that distinct solutions with the same objective values are
incomparable under ≺C . This order can be refined so that those solutions with the
same objective values are comparable. Consider the binary relation

x 	C y :⇐⇒
{

C x � C y, or
Cx = Cy and x ≺lex y.

This alternative order allows us to rank those solutions that have the same objective
values using the lexicographical order of their components.
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p-GRÖBNER BASES FOR MOILP 575

The above partial order 	C permits us to solve a simplified version of the multi-
objective problem after introducing the following equivalence relation in Zn:

x ∼C y :⇐⇒ Cx = Cy.

In this version, we obtain solutions in Zn/ ∼C . The reader may note that when solving
the problem with the order 	C , one would obtain only a representative element of each
class of Pareto-optimal solutions (the lexicographically smallest). With those efficient
values {v1, . . . , vt}, the remaining solutions can be obtained solving the following
system of diophantine equations, in x, for each vi, i = 1, . . . , t:⎧⎨⎩

Cx = vi,
Ax = b,
x ∈ Zn

+.

Remark 2.2. In some cases, the order ≺C can be refined to be adapted to specific
problems. This is the case when slack variables appear in mathematical programs.
Two feasible solutions (x, s1) and (x, s2), where s1 and s2 are the slack components,
have the same objective values. The order ≺C considers both solutions as incompa-
rable, although they are the same because we are looking just for the x-component of
the solution. In these cases, we consider the following refined partial order in Zn×Zr:

(x, s) ≺s
C (y, s

′
) :⇐⇒

{
C x � C y, or
Cx = Cy and s ≺lex s

′
,

where x, y ∈ Zn
+ are the actual decision variables and s, s

′ ∈ Zr
+ are the slack variables

of our problem.
In the following, we will use partial order ≺C unless it is explicitly specified.
Our matrix A is encoded in the set

(2) JA = {{u, v} : u, v ∈ Nn, u − v ∈ Ker(A)}.
Let π : Nn −→ Zn denote the map x �→ Ax. Given a right-hand side vector b in
Zn, the set of feasible solutions to MIPA,C(b) constitutes π−1(b), the preimage of b
under this map. In the rest of the paper, we identify the discrete set of points π−1(b)
with its convex hull, and we call it the b-fiber of MIPA,C . Thus, π−1(b) or the b-fiber
of MIPA,C is the polyhedron defined by the convex hull of all feasible solutions to
MIPA,C(b).

For any pair {u, v}, with u, v ∈ Nn, we define the set setlm(u, v) as follows:

setlm(u, v) =

⎧⎨⎩
{u} if v ≺C u,
{v} if u ≺C v,
{u, v} if u and v are incomparable by ≺C .

The reader may note that setlm(u, v) is the set of degrees of the leading monomials
according to identification {u, v} �→ xu − xv ∈ R[x1, . . . , xn], induced by partial order
≺C .

From the above definition, setlm(u, v) may have more than one leading term,
since ≺C is only a partial order. To account for all this information, we denote by
F(u, v) the set of triplets

F(u, v) = {(u, v, w) : w ∈ setlm(u, v)}.
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The above concept extends to any finite set of pairs of vectors in Nn, accordingly. For
a pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt}, the corresponding set of ordered
pairs is

F(u,v) = {(ui, vi, w) : w ∈ setlm(ui, vi), i = 1, . . . , t}.
F(u,v) can be partially ordered based on the third component of its elements. There-
fore, we can see F(u,v) as a directed graph G(E, V ), where V is identified with the
elements of F(u,v) and ((ui, vi, w

′
), (uj , vj , w)) ∈ E if (ui, vi, w), (uj , vj , w

′
) ∈ V and

w
′ ≺C w. We are interested in the maximal ordered chains of G. Note that they can

be efficiently computed by different methods, e.g., [4], [33].
The above concepts are clarified in the following example.
Example 2.1. Let u = {(2, 3), (0, 2), (3, 0), (2, 1), (1, 1)}, v = {(1, 4), (1, 3), (4, 2),

(1, 2), (1, 0)}, and ≺C be the partial order induced by the matrix

C =
[

2 1
3 5

]
,

then, setlm((2, 3), (1, 4)) = {(2, 3),(1, 4)}, setlm((0, 2), (1, 3)) = {(1, 3)}, setlm((3, 0),
(4, 2)) = {(4, 2)}, setlm((2, 1), (1, 2)) = {(2, 1),(1, 2)}, and setlm((1, 1), (1, 0)) = {(1,
1)}. Now, by definition, we have

F(u,v) = {((2, 3), (1, 4), (2, 3)
)
,
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,(

(3, 0), (4, 2), (4, 2)
)
,

(
(2, 1), (1, 2), (2, 1)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,(

(1, 1), (1, 0), (1, 1)
)}.

Figure 1 corresponds to the directed graph associated with F(u,v), according to the
partial ordering induced by C. There are four maximal chains:
M1 = {((3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2),

(2, 1)
)
,
(
(1, 1), (1, 0), (1, 1)

)},
M2 = {((3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2),

(1, 2)
)
,
(
(1, 1), (1, 0), (1, 1)

)},
M3 = {((2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (2, 1)

)
,
(
(1, 1), (1, 0),

(1, 1)
)},

M4 = {((2, 3), (1, 4), (1, 4)
)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,
(
(1, 1), (1, 0),

(1, 1)
)}.

For any pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt}, with {ui, vi} ∈ JA, for
all i = 1, . . . , t, the corresponding set F(u,v) may also be seen as a set of pairs in
Zn × Zn

+ through the following map:

φ : Nn × Nn × Nn −→Zn × Zn
+

(u, v, w) �→(u − v, w).

We denote by IA = φ(F(JA)), i.e.,

IA = {(u − v, w) : u − v ∈ Ker(A), w = setlm(u, v)}.
It is clear that the maximal chains F1, . . . , Fr of the image of F(u,v) under φ with

respect to the order ≺C over the second components satisfy the following properties:
1. Fi is totally ordered by the second components with respect to ≺C for i =

1, . . . , r.
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(3, 0), (4, 2), (4, 2)

) (
(2, 3), (1, 4), (1, 4)

)

(
(2, 3), (1, 4), (2, 3)

)
≺C

��

(
(0, 2), (1, 3), (1, 3)

)
≺C

���������������������������
≺C

������������������

(
(2, 1), (1, 2), (2, 1)

)
≺C

������������������ (
(2, 1), (1, 2), (1, 2)

)
≺C

������������������

(
(1, 1), (1, 0), (1, 1)

) ≺C

������������������
≺C

������������������

Fig. 1. Hasse diagram of the graph associated with the data in Example 2.1.

2. For all (α, β) ∈ Fi, i = 1, . . . , r, A (β − α) = Aβ.
The map φ and the above properties allow us to define the notion of test family for
MIPA,C . This notion is analogous to the concept of test set for a family of single
objective integer programs when we have a partial order rather than a total order
over Nn [41]. Test families are instrumental for finding the Pareto-optimal set of
each member MIPA,C(b) of the family of MOILP.

Definition 2.1 (test family). A finite collection G = {G1
C , . . . ,Gr

C} of sets in
Zn × Zn

+ is a test family for MIPA,C if and only if
(1) Gj

C is totally ordered by the second component with respect to ≺C for j =
1, . . . , r.

(2) For all (g, h) ∈ Gj
C , j = 1, . . . , r, A (h − g) = Ah.

(3) If x ∈ Nn is a dominated solution for MIPA,C(b), with b ∈ Zn
+, there is some

Gj
C in the collection, and (g, h) ∈ Gj

C such that x − g ≺C x.
(4) If x ∈ Nn is a Pareto-optimal solution for MIPA,C(b), with b ∈ Zn

+, then for
all (g, h) ∈ Gj

C and for all j = 1, . . . , r, either x − g is infeasible or x − g is
incomparable to x.

Given a test family for MIPA,C , there is a natural approach for finding the entire
Pareto-optimal set. Suppose we wish to solve MIPA,C(b) for which x∗ is a feasible
solution.

If x∗ is dominated, then there is some j and (g, h) ∈ Gj
C such that x∗−g is feasible

and x∗−g ≺C x∗, whereas, for the remaining chains, there may exist some (g, h) such
that x∗ − g is feasible but incomparable to x∗. We keep track of all of them.

If x∗ is nondominated, we have to keep it as an element in our current solution set.
Then, reducing x∗ by the chains in the test family, we can only obtain either incom-
parable feasible solutions, that we maintain in our structure, or infeasible solutions
that are discarded.
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The above two cases lead us to generate the following set. From x∗, we compute
the set of incumbent solutions:

IS(x∗) := {y∗ : y∗ = x∗ − gji , (gji , hji) is the largest element (g, h) in the chain
Gi

C such that x∗ − g is feasible , i = 1, . . . , r}.
Now, the scheme proceeds recursively on each element of the set IS(x∗). Finite-

ness of the above scheme is clear, since we are generating a search tree with bounded
depth (cardinality of the test family) and bounded width, each element in the tree has
at most r (number of chains) followers. The correctness of this approach is ensured,
since any pair of Pareto-optimal solutions must be connected by a reduction chain
through elements in the test family (see Theorem 2.1 and Corollary 2.1).

The above approach assumes that a feasible solution to MIPA,C(b) is known
(thus implying that the problem is feasible). Methods to detect infeasibility and to
get an initial feasible solution are connected to solving diophantine systems of linear
equations; the interested reader is referred to [31] for further details.

The following lemmas help us in describing the geometric structure of a test family
for multiobjective integer linear problems.

Lemma 2.1 (Gordan–Dickson lemma, Theorem 5 in [11]). If P ⊆ Nn, P �= ∅,
then there exists a minimal subset {p1, . . . , pm} ⊆ P that is finite and unique such
that p ∈ P implies pj ≤ p (componentwise) for at least one j = 1, . . . , m.

Lemma 2.2. There exists a unique, minimal, finite set of vectors α1, . . . , αk ∈ Nn

such that the set LC of all dominated solutions in all fibers of MIPA,C is a subset of
Nn of the form

LC =
k⋃

j=1

(αj + Nn).

Proof. The set of dominated solutions of all problems MIPA,C is

LC = {α ∈ Nn : ∃β ∈ Nn, with Aβ = Aα and β ≺C α}.
Let α be an element in LC and β a Pareto-optimal point in the fiber π−1(Aα) that
satisfies β ≺C α. Then, for any γ ∈ Nn, A(α + γ) = A(β + γ), α + γ, β + γ ∈ Nn,
and β + γ ≺C α + γ, because the cost matrix C has only nonnegative coefficients.
Therefore, α + γ is a feasible solution dominated by β + γ in the fiber π−1(A(α + γ)).
Then, α + γ ∈ LC for all γ ∈ Nn, so α + Nn ⊆ LC . By Lemma 2.1, we conclude
that there exists a minimal set of elements α1, . . . , αk ∈ Nn such that LC =

⋃k
j=1(αj

+ Nn).
Once elements α1, . . . , αk generating LC (in the sense of the above result) have

been obtained, one can compute the maximal chains of the set {α1, . . . , αk} with
respect to the partial order ≺C . We denote by C1

C , . . . , Cμ
C these maximal chains and

set Li
C =

⋃ki

t=1(α
i
t + Nn), where αi

t ∈ Ci
C for t = 1, . . . , ki and i = 1, . . . , μ. For details

about maximal chains, upper bounds on its cardinality and algorithms to compute
them for a partially ordered set, the reader is referred to [4].

It is clear that, with this construction, we have LC =
⋃μ

i=1 Li
C .

Next, we describe a finite family of sets G≺C ⊆ Ker(A) ∩ Zn and prove that it is
indeed a test family for MIPA,C .

Let G≺C = {Gi≺C
}μ

i=1, being

(3) Gi
≺C

= {(gk
ij , h

k
ij) = (αi

j − βk
ij , α

i
j), j = 1, . . . ki, k = 1, . . . , mij}, i = 1, . . . , μ
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p-GRÖBNER BASES FOR MOILP 579

the maximal chains of G≺C (with respect to the order ≺C over the second components)
and where αi

1, . . . , α
i
ki

are the unique minimal elements of Li≺C
and β1

ij , . . . , β
mij

ij are
the Pareto-optimal solutions to the problem MIPA,C(Aαi

j).
In the next section, we give an algorithm that explicitly constructs G≺C . Notice

that for fixed i, j and k, gk
ij = (αi

j−βk
ij) is a point in the subspace S = {x ∈ Qn : Ax =

0}, i.e., in the 0-fiber of MIPA,C . Geometrically we think of (αi
j − βk

ij , α
i
j) as the ori-

ented vector −→g k
ij =

−−−−−→
[βk

ij , α
i
j ] in the Aαi

j-fiber of MIPA,C . The vector is directed from
the Pareto-optimal point βk

ij to the nonoptimal point αi
j due to the minimization

criterion in MIPA,C , which requires us to move away from expensive points. Sub-
tracting the point −→g k

ij = αi
j − βk

ij from the feasible solution γ gives the new solution
γ − αi

j + βk
ij , which is equivalent to translating −→g k

ij by a nonnegative integer vector.
Consider an arbitrary fiber of MIPA,C and a feasible lattice point γ in this fiber.

For each vector −→g k
ij in G≺C , check whether γ − gk

ij is in Nn. At γ, draw all such
possible translations of vectors from G≺C . The head of the translated vector is also
incident at a feasible point in the same fiber as γ, since gk

ij is in the 0-fiber of MIPA,C .
We do this construction for all feasible points in all fibers of MIPA,C . From Lemma
2.2 and the definition of G≺C , it follows that no vector (αi

j − βk
ij , α

i
j) in G≺C can be

translated by a ν in Nn such that its tail meets a Pareto-optimal solution on a fiber
unless the obtained vector is incomparable to the Pareto-optimal point βk

ij .
Theorem 2.1. The above construction builds a connected directed graph in every

fiber of MIPA,C . The nodes of the graph are all the lattice points in the fiber, and
(γ, γ

′
) is an edge of the directed graph if γ

′
= γ − gk

ij for some i, j, and k. Any
directed path of this graph is nonincreasing with respect to the partial order ≺C.

Proof. Pick a fiber of MIPA,C and, at each feasible lattice point, construct all
possible translations of the vector −→g k

ij from the set Gi
≺C

as described above. Let α

be a lattice point in this fiber. By Lemma 2.2, α = αi
j + ν for some i ∈ {1, . . . , t} and

ν ∈ Zn
+. Now, since the point α

′
k defined as α

′
k = βk

ij + ν also lies in the same fiber as
α, then α

′
k ≺C α or α

′
k and α are incomparable. Therefore, −→g k

ij translated by ν ∈ Nn

is an edge of this graph, and we can move along it from α to a point α
′

in the same
fiber such that α

′ ≺C α or α and α
′

are incomparable. This proves that, from every
dominated point in the fiber, we can reach an improved or incomparable point (with
respect to ≺C) in the same fiber by moving along an edge of the graph.

We call the graph in the b-fiber of MIPA,C built from elements in G≺C the ≺C-
skeleton of that fiber.

The reader may note that, from each dominated solution α, one can easily build
paths to its comparable Pareto-optimal solutions subtracting elements in G≺C . Indeed,
let β a Pareto-optimal solution in the Aα-fiber such that β dominates α. Then, let
αi be a minimal element of LC such that α = αi + γ, with γ ∈ Nn, and let βi be the
Pareto-optimal solution in the Aαi-fiber that is comparable to αi and such that βi +γ
is comparable to β. Then α

′
= βi+γ is a solution in the Aα-fiber with β ≺C α

′ ≺C α.
Now, one repeats this process but starting with α

′
and β, until α

′
= β. Moreover, the

case where α and β are incomparable reduces to the previous one by finding a path
from α to any intermediate point β

′
that compares with β. This analysis leads us to

the following result.
Corollary 2.1. In the ≺C-skeleton of a fiber, there exists a directed path from

every feasible point α to each Pareto-optimal point β in the same fiber. The vectors of
objective function values of successive points in the path do not increase componentwise
from α to β.
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Fig. 2. The ≺C -skeleton of the (17, 11)t-fiber of MIPA,C projected on the (x1, x2)-plane.

Corollary 2.2. The family G≺C is the unique minimal test family for MIPA,C .
It depends only on the matrix A and the cost matrix C.

Proof. By the definition of G≺C , conditions 1 and 2 of Definition 2.1 are satisfied.
From Theorem 2.1, it follows that conditions 3 and 4 are also satisfied, so G≺C is a test
family for MIPA,C . Minimality is due to the fact that removing any element (gk

ij , h
k
ij)

from G≺C results in G≺C \ {(gk
ij , h

k
ij)}. However, this new set is not a test family,

since no oriented vector in G≺C \ {(gk
ij , h

k
ij)} can be translated through a nonnegative

vector in Nn such that its tail meets αi
j . It is clear by definition that G≺C depends

only on A and C.
Example 2.2. Let MIPA,C be the family of multiobjective problems, with the

following constraints and objective function matrices:

A =
[

2 2 −1 0
0 2 0 1

]
, C =

[
10 1 0 0
1 10 0 0

]
.

Let (x1, x2, s1, s2) be the vector of variables, where s1 and s2 are slack variables.
In this example, using order ≺s

C (see Remark 2.2), G≺C = {G1≺C
,G2≺C

}, where G1≺C

= {−→g 1
1 = ((0, 1, 2,−1), (0, 1, 2, 0)), −→g 1

2 = ((−1, 1, 0,−2), (0, 1, 0, 0))}, and G2
≺C

=
{−→g 2

1 = ((1, 0, 2, 0), (1, 0, 2, 0)), −→g 2
2 = ((1,−1, 0, 2), (1, 0, 0, 2))}.

Figure 2 shows, on the (x1, x2)-plane, the ≺C -skeleton of the fiber corresponding
to the right-hand side vector (17, 11)t. In the box over the graph of the ≺C-skeleton,
we show the second components of the elements of G≺C . The reader may note that,
in the graph, the arrows have opposite directions due to the fact that the directed
paths (improving solutions) are built subtracting the elements in G≺C . We describe
how to compute the sets G1≺C

and G2≺C
in section 3.

Given G≺C , there are several ways to build a path from each feasible point in a
fixed fiber to any Pareto-optimal solution. However, there is a canonical way to do
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Fig. 3. Different ways to compute paths from (9, 4, 9, 3) to the Pareto-optimal solutions in its
fiber.

it: Fix σ a permutation of the set {1, . . . , μ} and subtract from the initial point the
elements of Gσ(i)

≺C
, for i = 1, . . . , μ. Add this element to an empty list. After each

subtraction by elements in Gσ(i)
≺C

, i = 1, . . . , μ, remove from the list those elements
dominated by the new element. We prove in Section 3 that this result does not depend
on the permutation σ.

Example 2.2 (continuation). This example shows the above-mentioned different
ways to compute paths from dominated solutions to any Pareto-optimal solution. The
vector (9, 4, 9, 3) is a feasible solution for MIPA,C in the (17, 11)t-fiber. Figure 3 shows
the sequence of Pareto-optimal points obtained from the feasible point (9, 4, 9, 3) using
the permutation σ1 = (1, 2) (on the left) and using σ2 = (2, 1) (on the right).

Remark 2.3. Let ≺C be the partial order induced by C. Then, a directed path
from a dominated point α to each Pareto-optimal point β in a fiber, applying the
above method, cannot pass through any lattice point in this fiber more than μ times
(recall that μ is the number of maximal chains in G≺C ). This implies that obtaining
the Pareto-optimal solutions of a given MIPA,C using G≺C cannot cycle.

3. Test families and partial Gröbner bases. In the previous section, we
motivated the importance of having a test family for MIPA,C , since this structure
allows us to obtain the entire set of Pareto-optimal solutions of the above family of
multiobjective integer programs (when the right-hand side varies). Our goal in this
section is to provide the necessary tools to construct test families for any multiobjec-
tive integer problem. Our construction builds upon an extension of Gröbner bases on
partial orders.

In order to introduce this structure, we define the reduction of a pair (g, h) ∈
Zn×Zn

+ by a finite set of ordered pairs in Zn×Zn
+. Given is a collection GC ⊆ Zn×Zn

+,
where GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l − 1}.

The reduction of (g, h) by GC consists of the process described in Algorithm
1. The above reduction process extends to the case of a finite collection of ordered
sets of pairs in Zn × Zn

+ by establishing the sequence in which the sets of pairs are
considered. We denote by pRem((g, h),G)σ the reduction of the pair (g, h) by the
family G = {Gi}t

i=1 for a fixed sequence of indices σ.
From now on, we denote by pRem((g, h),G) the set of remainders of (g, h) by the

family G = {Gi}t
i=1 for the natural sequence of indices (1, . . . , t), i.e., when σ is the

identity.
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Algorithm 1: Partial reduction algorithm.

input : R = {(g, h)}, S = {(g, h)},
GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l − 1}.

Set i := 1, So = {}.
repeat

for (g̃, h̃) ∈ S \ So do
while h̃ − hi ≥ 0 do

if h̃ − gi and h̃ − g̃ are comparable by ≺C then
Ro = {(g̃ − gi, max≺C{h̃ − gi, h̃ − g̃})}

else
Ro = {(g̃ − gi, h̃ − gi), (g̃ − gi, h̃ − g̃)}

end
For each r ∈ Ro and s ∈ R:
if r ≺C s then

R = R\{s};
end
S = Ro.
R = R ∪ Ro.
So = So ∪ {(g̃, h̃)}.

end
end
i = i + 1.

until i ≤ t ;
output: R, the partial reduction set of (g, h) by GC .

The reduction of a pair that represents a feasible solution by a test family gives
the entire set of Pareto-optimal solutions. In order to obtain that test family, we
introduce the notion of p-Gröbner basis. This name has been motivated by the fact
that when the ordering in Nn is induced by a single cost vector, a Gröbner basis
is a test set for the family of integer programs IPA,c (see [10] or [41] for extended
details). In the single objective case, the Buchberger algorithm computes a Gröbner
basis. However, in the multiobjective case, the cost matrix induces a partial order, so
division or the Buchberger algorithm are not applicable. Using the above reduction
algorithm (Algorithm 1), we present an “á la Buchberger” algorithm to compute the
so called p-Gröbner basis to solve MOILP problems.

Definition 3.1 (partial Gröbner basis). A family G = {G1, . . . ,Gt} ⊆ IA

is a partial Gröbner basis (p-Gröbner basis) for the family of problems MIPA,C if
G1, . . . ,Gt are the maximal chains for the partially ordered set

⋃t
i=1 Gi and for any

(g, h) ∈ Zn × Zn
+, with h − g ≥ 0

g ∈ Ker(A) ⇐⇒ pRem((g, h),G)σ = {0}
for any sequence σ.

A p-Gröbner basis is said to be reduced if every element in each maximal chain
cannot be obtained by reducing any other element of the same chain.

Given a p-Gröbner basis, computing a reduced p-Gröbner basis is done by deleting
the elements that can be reduced by other elements in the basis. After the removing
process, the family is a p-Gröbner basis having only nonredundant elements. It is easy
to see that the reduced p-Gröbner basis for MIPA,C is unique and minimal, in the sense
that no element can be removed from it, maintaining the p-Gröbner basis structure.
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This definition clearly extends to p-Gröbner bases for the ideal IA induced by A,
once we fix the partial order ≺C induced by C.

In the following, we present algorithms to solve multiobjective problems analogous
to the methods that solve the single objective case using usual Gröbner basis. These
methods are based on computing the reduction of a feasible solution by the basis.
The key for that result is the fact that the reduction of any pair of feasible solutions
is the same, therefore, the algorithm is valid for any initial feasible solution. After
the following theorem, Lemma 3.1 ensures the same statement for the multiobjective
case and p-Gröbner bases.

Theorem 3.1. Let G be the reduced p-Gröbner basis for MIPA,C and α a feasi-
ble solution for MIPA,C(Aα). Then, pRem((α, α),G)σ = pRem((α, α),G)σ′ for any
sequences σ and σ′.

Proof. We first observe that the elements in pRem((α, α),G)σ are of the form
(β, β). Indeed, since the first step of Algorithm 1 reduces the element (α, α), then
h̃− g̃ = α−α = 0. Therefore, h̃− g̃ is always dominated by h̃−gi because 0 ≺C h̃−gi,
so that the remainders are of the form (α − gi, α − gi).

On other hand, let (β, β) be an element in pRem((α, α),G)σ , then α−β ∈ Ker(A)
and by Definition 3.1, pRem((α − β, α),G)σ′ = pRem((α − β, β),G)σ′ = {0} for any
σ′.

The above result ensures that without loss of generality reductions of elements
of the form (α, α) by p-Gröbner bases are independent of the permutation of indices
used. Therefore, we do not make reference to σ in the notation, referring always to
the natural sequence σ = (1, . . . , t).

Lemma 3.1. Let G be the reduced p-Gröbner basis for MIPA,C and α1, α2 two
different feasible solutions in the same fiber of MIPA,C. Then, pRem((α1, α1),G) =
pRem((α2, α2),G).

Proof. Let (β, β) ∈ pRem((α1, α1),G), then since Aα1 = Aα2, β is in the same
fiber that α2. Next, since β cannot be reduced, then (β, β) ∈ pRem((α2, α2),G).

The following theorem states the relationship between the three structures intro-
duced before: test families, reduced p-Gröbner bases, and the family G≺C .

Theorem 3.2. The reduced p-Gröbner basis for MIPA,C is the unique minimal
test family for MIPA,C . Moreover, G≺C , introduced in (3), is the reduced p-Gröbner
basis for MIPA,C.

Proof. Let G = {G1, . . . ,Gt} be the reduced p-Gröbner basis for MIPA,C . We
have to prove that G satisfies the four conditions in Definition 2.1. By the definition
of p-Gröbner basis, it is clear that each Gi is totally ordered by its second component
with respect to ≺C (condition 1). Condition 2 follows because, for each i and for
each (g, h) ∈ Gi ⊆ Zn × Zn

+, clearly pRem((g, h),G) = {0}, so g ∈ Ker(A) and then
A(h − g) = Ah.

Now, let x ∈ Nn be a dominated solution for MIPA,C(b). Then, there is a
Pareto-optimal solution β such that β ≺C x. By Lemma 3.1, pRem((x, x),G) =
pRem((β, β),G) and by construction of the set of partial remainders, β ∈ pRem((β,
β), G), thus x �∈ pRem((x, x),G). This implies that there exists (g, h) ∈ Gi, for some
i = 1, . . . , t such that x − g ≺C x. This proves condition 3 of Definition 2.1.

On the other hand, if x is a Pareto-optimal solution for MIPA,C(b), x ∈ pRem((x,
x), G), then there exists no (g, h) in any Gi such that x−g ≺C x. Therefore, for every
i and for each (g, h) ∈ Gi, either x− g is infeasible or incomparable to x, which proves
condition 4 of Definition 2.1.

Minimality is due to the fact that removing an element from the reduced p-
Gröbner basis, that is, the minimal partial Gröbner basis that can be built for MIPA,C ,
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584 VÍCTOR BLANCO AND JUSTO PUERTO

we cannot guarantee to have a test family because there may exist a pair (g, h) ∈
Zn × Zn

+, with g ∈ Ker(A) that cannot be reduced to the zero set.
Finally, the second statement of the theorem follows from Corollary 2.2.
Next, we describe an extended algorithm to compute a p-Gröbner basis for IA,

with respect to the partial order induced by C. First, for any (g, h), (g
′
, h

′
) in Zn×Zn

+,
we denote by S1((g, h), (g

′
, h

′
)) and S2((g, h), (g

′
, h

′
)) the pairs

S1((g, h), (g
′
, h

′
)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(g − g

′ − 2(h − h
′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′ − 2h
′
,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′ ≺C γ + g − 2h,

(g − g
′ − 2(h − h

′
), γ + g − 2h) if γ + g

′ − 2h
′

and γ + g − 2h,
are incomparable,

and

S2((g, h), (g
′
, h

′
)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(g − g

′ − 2(h − h
′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′ − 2h
′
,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′ ≺C γ + g − 2h,

(g
′ − g − 2(h

′ − h), γ + g
′ − 2h

′
) if γ + g

′ − 2h
′

and γ + g − 2h,
are incomparable,

where γ ∈ Nn and γi = max{hi, h
′
i}, i = 1, . . . , n.

The pairs S1((g, h), (g
′
, h

′
)) and S2((g, h), (g

′
, h

′
)) are called 1−Svector and 2−

Svector of (g, h) and (g
′
, h

′
), respectively. The reader may note that S1((g, h), (g

′
, h

′
))

and S2((g, h), (g
′
, h

′
)) coincide, provided that the resulting pairs are comparable under

≺C , whereas they correspond with the two possible choices of the new pair in the case
when the vectors γ + g

′ − 2h
′
and γ + g − 2h are incomparable.

The name is due to the analogy with the algebraic-geometrical notion of S-
polynomial for a pair of polynomials with a given term order. Since we consider
a partial order, it may happen that in the standard construction of an Svector [41],
we cannot decide which is the leading term. Therefore, in our definitions of Svec-
tors, we must consider all possible combinations of leading terms, with respect to the
partial order ≺C .

The original Buchberger criterion was stated in a polynomial language. Therefore,
we adapt our notation to follow the line of that proof. Let leadmonC(f) denote the
set of leading monomials with respect to the order induced by C for any multivariate
polynomial f ∈ R[x1, . . . , xn]. We identify the set JA introduced in (2), with �A =
〈xu − xv : u − v ∈ Ker(A)〉, and therefore, the set setlm(u, v) is identified with the
elements in leadmonC(xu−xv). Moreover, each pair (g, h) ∈ Zn×Zn

+, with g ∈ Ker(A)
and h − g ≥ 0 is identified with the binomial xh − xh−g. Then, we associate with
G = {G1, . . . ,Gt} the polynomial set G∗ = {G∗

1 , . . . ,G∗
t } identifying one–to-one each

pair in G with the corresponding binomial in G∗. In this way, we adapt accordingly
the definition of pRem((f, p),G∗), the set of partial remainders of f ∈ R[x1, . . . , xn]
with leading monomial p and with respect to G∗.

Moreover, we define the 1-Spolynomial and 2-Spolynomial as the binomial tran-
scriptions of the 1-Svector and 2-Svector. For any two binomials xα1 − xβ1 and
xα2 − xβ2 , the k-Spolynomial with respect to the leading monomials xα1 , xα2 is

Sk((xα1 − xβ1 , xα1), (xα2 − xβ2 , xα2)) = xγ−α2+β2 − xγ−α1+β1 , k = 1, 2,

where γ ∈ Nn and γi = max{(α1)i, (α2)i}, i = 1, . . . , n. The difference between the
1-Spolynomial and the 2-Spolynomial is the choice of the leading term: They coincide
when the monomials are comparable and differ when the monomials are incomparable,
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and in this case, each k-Spolynomial corresponds with the two possible choices of the
leading term.

The following lemma is used in the proof of our extended criterion, and it is an
adaptation of the analogous result for total orders and usual S-polynomials.

Lemma 3.2. Let f1, . . . , fs ∈ R[x1, . . . , xn] be such that there exists p ∈ ⋂s
i=1

leadmonC(fi). Let f =
∑s

i=1 ci fi, with ci ∈ R. If there exists q ∈ leadmonC(f) such
that q ≺C p, then f is a linear combination with coefficients in R of the k-Spolynomial,
k = 1, 2, of fi and fj, 1 ≤ i < j ≤ s.

Proof. By hypothesis, fi = ai p+ other smaller or incomparable terms, with
ai ∈ R for all i. Then, f can be rewritten as f =

∑s
i=1 ci fi =

∑s
i=1 ci ai p+ other

smaller or incomparable terms. Since q ≺C p, then
∑s

i=1 ci ai = 0.
By definition, for k = 1, 2, Sk((fi, p), (fj , p)) = 1

ai
fi − 1

aj
fj, thus,

f = c1 f1 + · · · + cs fs = c1 a1

(
1
a1

f1

)
+ · · · + cs as

(
1
as

fs

)

= c1 a1

(
1
a1

f1 − 1
a2

f2

)
+ (c1 a1 + c2 a2)

(
1
a2

f2 − 1
a3

f3

)
+ · · ·

+ (c1 a1 + · · · + cs−1 as−1)
(

1
as−1

fs−1 − 1
as

fs

)
+ (c1 a1 + · · · + cs as)

1
as

fs

= dk
1 Sk((f1, p), (f2, p)) + · · · + dk

s−1 Sk((fs−1, p), (fs, p)) +

(
1
as

s∑
i=1

ci ai

)
fs

=
s−1∑
i=1

dk
i Sk((fi, p), (fi−1, p)),

where dk
i =

∑i
j=1 cj aj for i = 1, . . . , s and k = 1, 2. This proves the lemma.

The algorithm to compute standard Gröbner bases is based on the Buchberger
criterion. Its analogous for a partial order states that it suffices to check that the
partial remainders are zero for Svectors and for any fixed sequence of indices.

Theorem 3.3 (extended Buchberger’s criterion). Let G = {G1, . . . ,Gt}, with
Gi ⊆ IA for all i = 1, . . . , t, be the maximal chains of the partially ordered set {gi :
gi ∈ Gi for some i = 1, . . . , t} and such that G∗, the polynomial transcription of G, is
a system of generators of �A. Then the following statements are equivalent:

(1) G is a p-Gröbner basis for the family MIPA,C .
(2) For each i, j = 1, . . . , t and (g, h) ∈ Gi, (g

′
, h

′
) ∈ Gj, pRem(Sk((g, h),

(g
′
, h

′
)),G) = {0} for k = 1, 2.

Proof. Let G be a p-Gröbner basis for IA and (g, h) ∈ Gi, (g
′
, h

′
) ∈ Gj for any

i, j ∈ {1, . . . , t}. Then, Sk((g, h), (g
′
, h

′
)), for k = 1, 2, is in IA so by the definition of p-

Gröbner basis, pRem(Sk((g, h), (g
′
, h

′
)),G)σ = {0}, for any sequence σ, in particular,

for σ = (1, . . . , t).
Conversely, assume that for each (g, h) ∈ Gi and (g

′
, h

′
) ∈ Gj for any i, j ∈

{1, . . . , t}, pRem(Sk((g, h), (g
′
, h

′
)),G) = {0} for k = 1, 2. Let (g̃, h̃) ∈ Zn ×Zn

+, with
g̃ ∈ Ker(A) and h̃ − g̃ ≥ 0. We define f = xh̃ − xh̃−g̃ ∈ Z[x1, . . . , xn], and we denote
by G∗ = {g∗1 , . . . , g∗d} the polynomial set associated with G.
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Then, by hypothesis f , can be written as a linear combinations of the elements
in G∗ (this representation is not unique):

f =
d∑

i=1

pi g∗i

for some pi ∈ R[x1, . . . , xn] for i = 1, . . . , d.
Let X = {X1, . . . , XN} be the set of maximal elements of the set {Pi Ri : Pi ∈

leadmonC(pi), Ri ∈ leadmonC(g∗i )} with respect to ≺C .
If X ⊇ leadmonC(f), the polynomial f can be partially reduced by the elements

in G∗. This proves the result.
Otherwise, there must exist l ∈ leadmonC(f)\X . We will prove by contradiction

that this case is not possible. Indeed, if l ∈ leadmonC(f), it must come from some
simplification (reduction) of the linear combination defining f . Then, the construction
ensures that there must exist at least one element Xi ∈ X such that l ≺C Xi.

Set J(Xi) = {j : Pj Rj = Xi, with Pj ∈ leadmonC(pj), Rj ∈ leadmonC(g∗j )}. For
any j ∈ J(Xi), we can write pj = Pj + other terms and define q =

∑
j∈J(Xi)

Pj g∗j .
Then, Xi ∈ leadmonC(Pj g∗j ) for all j ∈ J(Xi). However, by hypothesis, there exists
Q ∈ leadmonC(q), with Q ≺C Xi.

Hence, by Lemma 3.2, there exist dk
s,r ∈ R, k = 1, 2 such that

q =
∑

r,s∈J(Xi),r �=s,g∗
s ,g∗

r∈G∗
dk

s,r Sk((Ps g∗s , Ls), (Pr g∗r , Ls)), k = 1, 2

for some Lj ∈ leadmonC(Pj g∗j ) for all g∗j ∈ G∗.
Now, for any r, s ∈ J(Xi), we have that Xi = lcm(Lr, Ls) for some Lr ∈

leadmonC(Pr g∗r ) and Ls ∈ leadmonC(Ps g∗s), and therefore, we can write

Sk((Pr g∗r , Lr), (Ps g∗s , Ls)) =
Xi

Lr
Pr g∗r − Xi

Ls
Ps g∗s

=
Xi

lr
g∗r − Xi

ls
g∗s =

Xi

Pr,s
Sk((g∗r , lr), (g∗s , ls)),

where lr = Lr

Pr
, ls = Lr

Ps
, Pr,s = lcm(lr, ls), and k = 1, 2.

By hypothesis, pRem(Sk((g∗r , lr), (g∗s , ls)),G∗) = {0}. Thus, from the last equa-
tion we deduce that

pRem(Sk((Pr g∗r , Lr), (Ps g∗s , Ls)),G) = {0}.

This gives a representation:

Sk((Pr g∗r , Lr), (Ps g∗s , Ls)) =
∑

g∗
ν∈G∗

pk,ν
r,s g∗ν ,

with pk,ν
r,s ∈ R[x1, . . . , xn] and k = 1, 2.

Then, {P k,ν
r,s Rν : g∗ν ∈ G∗, P k,ν

r,s ∈ leadmonC(pk,ν
r,s ), Rν ∈ leadmonC(g∗ν) and do

not exist P k,ν̃
r,s and Rν̃ satisfying P k,ν̃

r,s ∈ leadmonC(pk,ν̃
r,s ), Rν̃ ∈ leadmonC(g∗ν̃) such

that P k,ν
r,s Rν ≺C P k,ν̃

r,s Rν̃} = leadmonC(Sk(Pr g∗r , Ps g∗s)).
To simplify the notation, denote Sk

r,s = leadmonC(Sk(Pr g∗r , Ps g∗s)).
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By construction of S-polynomials, we have that there exists p ∈ Sk
r,s such that

p ≺C Xi, so, substituting these expressions into q above, we have

f =
∑

j �∈J(Xi)

pj g∗j +
∑

j∈J(Xi)

pj g∗j =
∑

j �∈J(Xi)

pj g∗j + q

=
∑

j �∈J(Xi)

pj g∗j +
∑
r,s

dk
r,s Sk((Ps g∗s , Ls), (Pr g∗r , Lr)) =

∑
j �∈J(Xi)

pj g∗j +
∑
r,s

∑
ν

pk,ν
r,s g∗ν .

Thus, we have expressed f as

f =
d∑

i=1

p′i g∗i ,

with one leading term p smaller than Xi. However, this is a contradiction, and the
theorem is proved.

This criterion (the one in Theorem 3.3) allows us to describe a geometric algorithm
which constructs a p-Gröbner basis GC for MIPA,C , and therefore, a test family for
that family of multiobjective problems.

The first approach to compute a p-Gröbner basis for a family of multiobjective
programs is based on the Conti and Traverso method for the single objective case
[10]. For this algorithm, the key is transforming the given multiobjective program
into another one where computations are easier and so that an initial set of generators
for IA is known.

Notice that finding an initial set of generators for IA can be done by a straight-
forward modification of the Big-M method [3].

Given the program MIPA,C(b), we consider the associated extended multiobjec-
tive program EMIPA,C(b) as the problem MIPÃ,C̃(b), where

Ã =

⎛⎜⎝ −1

Idm

... A
−1

⎞⎟⎠ ∈ Zm×(m+1+n),

C̃ = (M · 1|C) ∈ Z(m+1+n)×k, Idm stands for the m × m identity matrix, M is a
large constant, and 1 is the (m + 1) × k matrix whose components are all 1. This
problem adds m + 1 new variables, whose weights in the multiobjective function are
big, and so solving this extended minimization program allows us to solve directly
the initial program MIPA,C . Indeed, any feasible solution to the original problem
is a feasible solution to the extended problem with the first m components equal
to zero, so any feasible solution of the form (0, m+1. . . , 0, α1, . . . , αn) is nondominated,
upon the order ≺C̃ , by any solution without zeros in the first m components. Then,
computing a p-Gröbner basis for the extended program using the partial Buchberger
Algorithm (Algorithm 2) allows detecting infeasibility of the original problem. Fur-
thermore, a trivial feasible solution x̃0 = (b1, . . . , bm, 0, n+1. . . , 0) is known, and the
initial set of generators for IA is given by {{Mi − Pi, Mi} : i = 0 . . . , n}, where Mi =
(a1i −min{0, minj{aji}}, . . . , ami −min{0, minj{aji}},−min{0, minj{aji}}, 0, n. . ., 0),
Pi = (0, m+1. . . , 0|ei), for all i = 1, . . . , n, M0 = (1, m+1. . . , 1, 0, n. . ., 0), and P0 = 0,
Mi, Pi, M0, P0 ∈ Zn+m+1

+ (see [2] for further details). Then, we can state the fol-
lowing result.

Theorem 3.4. Let G = {Gi}t
i=1 be a p-Gröbner basis for EMIPA,C and b =

(b1, . . . , bm). The entire set of Pareto-optimal solutions for MIPA,C(b) consists

D
ow

nl
oa

de
d 

02
/2

5/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Algorithm 2: Partial Buchberger algorithm I.

input : F1 = {M0, M1, . . . , Mn} and F2 = {P0, P1, . . . , Pn},
Mi = (a1i − min{0, minj{aji}}, . . . , ami −
min{0, minj{aji}},−min{0, minj{aji}}, 0, n. . ., 0) (i > 0),
Pi = (0, m+1. . . , 0|ei) ∈ Nm+n+1 (i > 0),
M0 = (1, m+1. . . , 1, 0, n. . ., 0),
P0 = (0, n+m+1. . . , 0).

repeat
Compute, G1, . . . ,Gt, the maximal chains for G = φ(F(F1, F2)).
for i, j ∈ {1, . . . , t}, i �= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′
, h

′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else
Add φ(F(r)) to G for each r ∈ Rk.

end
end

until Rk = {0} for every pairs;
output: G = {G1, . . . ,GQ} p-Gröbner basis for IA with respect to ≺C .

of the vectors α = (α1, . . . , αn) such that (0, m+1. . . , 0, α1, . . . , αn) ∈ pRem(((b, 0, n+1. . . , 0),
(b, 0, n+1. . . , 0)),G). Moreover, if there is no α′ in the set pRem(((b, 0, n+1. . . , 0),
(b, 0, n+1. . . , 0)),G) whose m + 1 first components are zero MIPA,C(b) is infeasible.

Proof. Let α be a vector obtained by successive reductions over G. It is clear that
α is feasible because ((0, α), (0, α)) is in the set of remainders of ((b,0), (b,0)) by G
and then in the same fiber. Besides, α is a Pareto-optimal solution because G is a test
family for the problem (Theorem 3.2).

Now, if β∗ is a Pareto-optimal solution, by Lemma 3.1 pRem(((0, β∗), (0, β∗)),
G) = pRem(((0,b), (0,b)),G), but since β∗ is a Pareto-optimal solution, it cannot be
reduced so ((0, β∗), (0, β∗)) ∈ pRem(((0, β∗), (0, β∗)),G) and then ((0, β∗), (0, β∗))
also belongs to the list of partial remainders of ((b,0), (b,0)) by G.

Hoşten and Sturmfels [22] improved the method by Conti and Traverso to solve
single-objective programs using standard Gröbner bases. Their improvement is due
to the fact that it is not necessary to increase the number of variables in the problem,
as Conti and Traverso’s algorithm does. Hoşten and Sturmfels’s algorithm allows
decreasing the number of steps in the computation of the Gröbner basis, but, on
the other hand, it needs an algorithm to compute an initial feasible solution, which
was trivial in the Conti and Traverso algorithm. We have modified this alternative
algorithm to compute the entire set of Pareto-optimal solutions. The first step in the
algorithm is computing an initial basis for the polynomial toric ideal �A = 〈xu − xv :
u−v ∈ Ker(A)〉 that we can identify with JA. This step does not depend on the order
induced by the objective function, so it can be used to solve multiobjective problems.
Details can be seen in [22]. Algorithm 3 implements the computation of the set of
generators of �A. This procedure uses the notion of Lenstra–Lenstra–Lovàsz (LLL)-
reduced basis (see [27] for further details). In addition, we use a ω-graded reverse
lexicographic term order ≺gri

ω induced by xi+1 > · · · > xi−1 > xi (with xn+1 := x1)
that is defined as follows:

α ≺gri
ω β :⇐⇒

n∑
j=1

ωjαj <

n∑
j=1

ωjβj or
n∑

j=1

ωjαj =
n∑

j=1

ωjβj and α ≺lex β,
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Algorithm 3: setofgenerators(A).
input : A ∈ Zm×n

1. Find a lattice basis B for Ker(A) (using Hermite normal form).
2. Replace B by the LLL-reduced lattice basis Bred.

Let J0 := 〈xu+ − xu− : u ∈ Bred〉.
for i = 1, . . . , n do

Compute Ji = (Ji−1 : x∞
i ) as

(a) Compute Gi−1 the reduced Gröbner basis for Ji−1 with respect to ≺gri
ω .

(b) Divide each element f ∈ Gi−1 by the highest power of xi that divides f .
output: �A := Jn = {xu1 − xv1 , . . . , xus − xvs} system of generators for IA.

Algorithm 4: pgrobner(F1, F2).
input : F1 = {M1, . . . , Ms} and F2 = {P1, . . . , Ps}.
repeat

Compute G1, . . . ,Gt the maximal chains for G = φ(F(F1, F2)).
for i, j ∈ {1, . . . , t}, i �= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj do

Compute Rk = pRem(Sk((g, h), (g
′
, h

′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else
Add φ(F(r)) to G for each r ∈ Rk.

end
end

until Rk = {0} for every pairs;
output: G = {G1, . . . ,GQ} p-Gröbner basis for MIPA,C .

where ω ∈ Rn
+ is chosen such that xi+1 > · · · > xi−1 > xi. Finally, for any a ∈ R, we

denote by a+ = max{a, 0} and a− = −min{a, 0}.
�A consists of binomials xui −xvi with ui − vi ∈ Ker(A) for i = 1, . . . , s. Coming

back to our notation, each binomial xu − xv in �A is identified with {u, v} ∈ JA,
so computing a set of generators for �A gives us, in some sense, a finite number of
generators for the set that represents the constraints matrix. We compute in the next
step a partial Gröbner basis from initial sets F1 = {u1, . . . , us} and F2 = {v1, . . . , vs}
using our extended Buchberger algorithm (Algorithm 4).

Once we have obtained the partial Gröbner basis using the above algorithm, we
can compute the entire set of Pareto-optimal solutions for MIPA,C(b) by Algorithm 5.

There are some interesting cases where our methodology is highly simplified due
to the structure of the set of constraints. One of these cases is when the dimension of
the set of constraints is n− 1. The next remark explains how the algorithm simplifies
in this case.

Remark 3.1. Let A be an m × n integer matrix with rank n − 1. Then, since
dim(Ker(A)) = 1, the system of generators for IA (Step 2) has just one element,
(g, h) and the p-Gröbner basis (Step 3) is the family G = {{(g, h)}} because no Svector
appears during the computation of the Buchberger algorithm. In this case, Pareto-
optimal solutions are obtained as partial remainders of an initial feasible solution
(α, α) by (g, h), i.e., the entire set of Pareto-optimal solutions is a subset of Γ =
{α−λg : λ ∈ Z+}. More explicitly, the set of Pareto-optimal solutions for MIPA,C(b)
is the set of minimal elements (with respect to ≺C) of Γ.D
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Algorithm 5: Pareto-optimal solutions computation for MIPA,C(b).
input : MIPA,C(b).
Step 1. Compute an initial feasible solution αo for MIPA,C(b) (a solution for

the diophantine system of equations Ax = b, x ∈ Zn).
Step 2. Compute a system of generators for IA: {{ui, vi} : i = 1, . . . , s} using

setofgenerators(A).
Step 3. Compute the partial reduced Gröbner basis for MIPA,C , GC =

{G1, . . . ,Gt} using pgrobner( F1, F2 ), where F1 = {ui : i = 1, . . . , r}
and F2 = {vi : i = 1, . . . , r}.

Step 4. Calculate the set of partial remainders: R := pRem(αo,GC).
output: Pareto-optimal Solutions : R.

To illustrate the above approach, we present an example of MOILP with two
objectives where all the computations are done in detail.

Example 3.1.

(4)

min {10x + y, x + 10y}
s.t.

2x + 2y � 17,

2y � 11,

x � 10,

x, y ∈ Z+.

Transforming the problem to the standard form results in

(5)

min {10x + y + 0z + 0t + 0q, x + 10y + 0z + 0t + 0q}
s.t.

2x + 2y − z = 17,

2y + t = 11,

x + q = 10,

x, y, z, t, q ∈ Z+.

Step 1. Feasible solution for MIPA,C(b): u = (9, 4, 9, 3, 1).
Step 2. Following the steps of Algorithm 3:

1. Basis for Ker(A) : B := {(0, 1, 2,−2, 0), (−1, 0,−2, 0, 1)}.
2. LLL-reduced basis for B : Bred := B := {(−1, 0,−2, 0, 1), (−1, 1, 0,−2, 1)}.
3. J0 := 〈xu+ − xu− : u ∈ Bred〉 = 〈x5 − x1x

2
3, x2x5 − x1x

2
4〉.

4. Ji+1 := (Ji : x∞
i ).

(a) G̃0 := {x5−x1x
2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J1 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(b) G̃1 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J2 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(c) G̃2 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J3 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
(d) G̃3 := {x5−x1x

2
3, x2x5−x1x

2
4, x2x

2
3−x2

4} ⇒ J4 := 〈x5−x1x
2
3, x2x5−

x1x
2
4, x2x

2
3 − x2

4〉.
5. �A = 〈x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4, x1x
2
3 − 1〉 �→

IA = 〈{((1, 0, 0, 0, 1), (0, 1, 0, 2, 0)
)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1)

)
,(

(0, 1, 2, 0, 0), (0, 0, 0, 2, 0)
)}〉.D
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Fig. 4. Feasible region, Pareto-optimal solutions, and improvement cone for Example 3.1.
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Fig. 5. Feasible region, Pareto-optimal solutions, and improvement cone for Example 3.1 with
C = [[10,−1], [−1, 10]].

Step 3. Computing a p-Gröbner basis for IA, using order ≺s
C (Remark 2.2) and fol-

lowing Algorithm 4, we obtain G, whose maximal chains are
G1 = {((0, 1, 2, 0, 0), (0, 0, 0, 2, 0), (0, 1, 2, 0, 0)

)
,
(
(0, 1, 0, 0, 2), (2, 0, 2, 2, 0),

(0, 1, 0, 0, 2)
)
,
(
(0, 1, 0, 0, 1), (1, 0, 0, 2, 0), (0, 1, 0, 0, 1)

)} and
G2 = {((1, 0, 0, 4, 0), (0, 2, 2, 0, 1), (1, 0, 0, 4, 0)

)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1),

(1, 0, 2, 0, 0)
)
,
(
(1, 0, 0, 2, 0), (0, 1, 0, 0, 1), (1, 0, 0, 2, 0)

)}.
Step 4. Partial remainders. Reducing first by G1,

pRem((9, 4, 9, 3, 1),G1) = {(9, 0, 1, 11, 1)}.
Then, reducing each remainder by G2,
pRem((9, 0, 1, 11, 1),G2) = {(9, 0, 1, 11, 1), (8, 2, 3, 7, 2), (7, 2, 1, 9, 3),
(6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.

The entire set of Pareto-optimal solutions is

{(9, 0, 1, 11, 1), (8, 1, 1, 9, 2), (7, 2, 1, 7, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.
Figure 4 shows the feasible region and the Pareto-optimal solutions of the example
above. In addition, we have evaluated the problem with the same feasible region but
choosing a cost matrix such that the respective normal vectors of each of the rows in
the matrix form an acute angle. Then, nonsupported solutions appear in the set of
Pareto-optimal solutions. Figure 5 shows the Pareto-optimal solutions for the same
feasible region and C =

[
10 −1
−1 10

]
.
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Table 1

Summary of computational experiments for knapsack problems.

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

knap4_2 0.063 249.369 1.265 250.697 11 20 2 164.920
knap4_3 0.063 1002.689 2.012 1004. 704 5 46 2 772.772
knap4_4 0.063 1148.574 2.374 1151.011 16 98 2.4 763.686
knap5_2 0.125 1608.892 0.875 609.892 3 29 2 1187.201
knap5_3 0.125 3500.831 2.035 3503.963 2 30 2.2 2204.123
knap5_4 0.125 3956.534 2.114 3958.773 9 45.4 3 3044.157
knap6_2 0.185 2780.856 2.124 2783.165 18 156 2.4 2241.091
knap6_3 0.185 3869.156 2.018 3871.359 16.4 189 2.4 2790.822
knap6_4 0.185 4598.258 3.006 4601.449 26 298 3.2 3096.466

4. Computational results. A series of computational experiments have been
performed in order to evaluate the behavior of the proposed solution method. Pro-
grams have been coded in MAPLE 10 and executed in a PC with an Intel Pentium 4
processor at 2.66GHz and 1 GB of RAM. In the implementation of Algorithm 4 to ob-
tain the p-Gröbner basis, the package poset for Maple [35] has been used to compute,
at each iteration, the maximal chains for the p-Gröbner basis. The implementation
has been done in a symbolic programming language, available upon request, in order
to make the access easy to both optimizers and algebraic geometers.

The performance of the algorithm was tested on randomly generated instances for
knapsack and transportation [29] multiobjective problems for 2, 3, and 4 objectives.
For the knapsack problems, 4, 5, and 6 variables, programs have been considered, and,
for each group, the coefficients of the constraint were randomly generated in [0, 20],
whereas the coefficients of the objective matrices range in [0, 20]. Once the constraint
vector (a1, . . . , an) is generated, the right-hand side is fixed as b = � 1

2

∑n
i=1 ai� to

ensure feasibility.
The computational tests for each number of variables have been done in the

following way: (1) Generate five constraint vectors and compute the initial system of
generators for each of them using Algorithm 3; (2) Generate five random objective
matrices for each number of objectives (2, 3, and 4) and compute the corresponding p-
Gröbner basis using Algorithm 4; and (3) with b = � 1

2

∑n
i=1 ai� and for each objective

matrix, compute the Pareto-optimal solutions using Algorithm 5.
Table 1 contains a summary of the average results obtained for the considered

knapsack multiobjective problems. The second, third, and fourth columns show the
average CPU times for each stage in the algorithm: sogt is the CPU time for com-
puting the system of generators, pgbt is the CPU time for computing a p-Gröbner
basis, and post is the time for computing a feasible solution and partially reducing it
to obtain the set of Pareto-optimal solutions. The fifth column shows the total time
for computing the set of Pareto-optimal solutions for the problem. Finally, the sixth
and seventh columns show the average number of Pareto-optimal solutions and the
number of maximal chains in the p-Gröbner basis for the problem, respectively. The
problems have been named as knapN_O, where N is the number of variables and O is
the number of objectives. For the transportation problems, instances with 3 origins
× 2 destinations, 3 origins × 3 destinations, and 4 origins × 2 destinations have been
considered. In this case, for each fixed numbers of origins s and destinations d, the
constraint matrix A ∈ Z(s+d)×(sd) is fixed. Then, we have generated five instances
for each problem of size s× d. Each of these instances is combined with five different
right-hand side vectors. The procedure is analogous to the knapsack computational

D
ow

nl
oa

de
d 

02
/2

5/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Table 2

Summary of computational experiments for the battery of multiobjective transportation problems.

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

tr3x2_2 0.015 11.813 0.000 11.828 5.2 6 2 7.547
tr3x2_3 0.015 7.218 13.108 30.341 12 2.6 2 6.207
tr3x2_4 0.015 6.708 15.791 21.931 6 5 2.2 4.561
tr3x3_2 0.047 1545.916 1.718 1547.681 5 92 2 928.222
tr3x3_3 0.047 3194.333 11.235 3205.615 9 122 2.4 2172.146
tr3x3_4 0.047 3724.657 7.823 3732.527 24 187.4 2.2 2112.287
tr4x2_2 0.046 675.138 2.122 677.306 3.4 35.2 2 398.093
tr4x2_3 0.046 1499.294 6.288 1505.628 5.8 42.4 2.2 119.519
tr4x2_4 0.046 2285.365 7.025 2292.436 12 59 2.2 1654.048

test: a first step where a system of generators is computed, a second one where the
p-Gröbner basis is built, and in the last step, the set of Pareto-optimal solutions is
computed using partial reductions. Table 2 shows the average CPU times and the
average number of Pareto-optimal solutions and maximal chains in the p-Gröbner
basis for each problem. The steps column shows the average number of steps in the
p-Gröbner computation, and act_pGB is the average CPU time in the computation of
the p-Gröbner basis elapsed since the last element was added to the basis until the end
of the process. The problems have been named as trNxM_O, where N is the number
of origins, M is the number of destinations, and O is the number of objectives. As can
be seen in Tables 1 and 2, the overall CPU times are clearly divided into three steps,
the most costly being the computation of the p-Gröbner basis. In all of the cases,
more than 99% of the total time is spent computing the p-Gröbner basis. Once this
structure is computed, obtaining the Pareto-optimal solutions is done very efficiently.

The CPU times and sizes in the different steps of the algorithm are highly sensitive
to the number of variables. However, our algorithm is not very sensitive to the
number of objectives, since the increment of CPU times with respect to the number
of objectives is much smaller than the one with respect to the number of variables.

It is clear that one can not expect fast algorithms for solving MOILP, since all
these problems are NP-hard. Nevertheless, our approach provides exact tools that,
apart from solving these problems, give insights into the geometric and algebraic
nature of the problem.

As mentioned above, using our methodology one can identify the common alge-
braic structure within any MOILP problem. This connection allows us to improve the
efficiency of our algorithm, making use of any advance that improves the computation
of Gröbner bases. In fact, any improvements of the standard Gröbner bases theory
may have an impact in improving the performance of this algorithm. In particular,
one can expect improvements in the efficiency of our algorithm based on the special
structure of the integer program (see, for instance, Remark 3.1). In addition, we have
to mention another important issue in our methodology. As shown in Theorem 3.2,
solving MOILP with the same constraint and objective matrices requires computing
only once the p-Gröbner basis. Therefore, once this is done, we can solve different
instances varying the right-hand side very quickly.

Finally, we have observed from our computational tests that a significant amount
of the time, more than 60% (see column act_pGB) for the computation of the p-
Gröbner basis is spent checking that no new elements are needed in this structure.
This implies that the actual p-Gröbner basis is obtained much earlier than when the
final test is finished. A different truncation strategy may be based on the number
of steps required to obtain the p-Gröbner basis. According to the exact method, the
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algorithm stops once in a step; no new elements are added to the structure. Our
tables show that, in most cases, the number of steps is two, actually, only one step is
required to generate the entire p-Gröbner basis (see column steps). These facts can
be used to accelerate the computational times at the price of obtaining only heuristic
Pareto-optimal solutions. This idea may be considered an alternative primal heuristic
in MOILP and will be the subject of further research.
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