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Abstract. This paper addresses the problem of decomposing a numerical semigroup into m-
irreducible numerical semigroups. The problem originally stated in algebraic terms is translated,
introducing the so-called Kunz-coordinates, to resolve a series of several discrete optimization prob-
lems. First, we prove that finding a minimal m-irreducible decomposition is equivalent to solve a
multiobjective linear integer problem. Then, we restate that problem as the problem of finding all
the optimal solutions of a finite number of single objective integer linear problems plus a set covering
problem. Finally, we prove that there is a suitable transformation that reduces the original problem
to find an optimal solution of a compact integer linear problem. This result ensures a polynomial
time algorithm for each given multiplicity m. We have implemented the different algorithms and
have performed some computational experiments to show the efficiency of our methodology.
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1. Introduction. The use of integer programming is commonly related to the
formulation and resolution of combinatorial optimization problems in various areas
such as location theory, transportation, or logistics. In addition, although less known,
it has been recently used to solve problems arising in commutative algebra. Some of
the most interesting problems in the field of computational algebra require performing
extensive computations over highly complex algebraic structures. This observation
has led a number of researchers in that field to be interested in new tools to be
applied in their problems. One of these tools consists of embedding those problems
into an integer programming formulation where tools from discrete optimization can
be used to solve them in an alternative, more efficient way. The goal of this paper is
to present, analyze, and solve another problem arising in commutative algebra using
tools from integer programming: the decomposition of a numerical semigroup into
irreducible ones.

A numerical semigroup is a subset S of Z+ (here Z+ denotes the set of non-
negative integers) closed under addition, containing zero and such that Z+\S is finite.
Note that the simplest numerical semigroup is Z+. Numerical semigroups were first
considered while studying the set of nonnegative solutions of Diophantine equations
and their investigation is closely related to the analysis of monomial curves (see [20]).
Because of these connections with algebraic geometry, some terminology has been
exported to the theory of numerical semigroups, for instance, the multiplicity, the
genus, or the embedding dimension of a numerical semigroup. Further details about
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INTEGER PROGRAMMING FOR DECOMPOSING SEMIGROUPS 1211

the theory of numerical semigroups can be found in the recent monograph by Rosales
and Garćıa-Sánchez [47].

In recent years, the problem of decomposing numerical semigroups into irreducible
ones has attracted the interest of the research community (see [13, 25, 42, 44, 45]).
Recall that a numerical semigroup is irreducible if it cannot be expressed as an in-
tersection of two numerical semigroups containing it properly. Furthermore, more
recently a different notion of irreducibility, the m-irreducibility [10], has appeared
and has started to be analyzed. A numerical semigroup of multiplicity m is said to be
m-irreducible if it cannot be expressed as an intersection of two numerical semigroups
of multiplicity m and containing properly. The question of existence of m-irreducible
decompositions has been proved in [10]. Nevertheless, it is still missing a method-
ology, different from the almost pure brute force enumeration, to find irreducible or
m-irreducible decompositions of minimal size. The decompositions of numerical semi-
groups into irreducible ones are useful to obtain, from the knowledge of the simpler
ones, properties and conclusions over the original (complex) semigroups. For instance,
if S is a numerical semigroup and S = S1 ∩ · · · ∩ Sn is a decomposition of S into irre-
ducible, important invariants such as the Frobenius number of S are easier to compute
since F(S) = maxi F(Si), and F(Si) has a simplified computation since F(Si) is the
unique special gap of Si (see [46]).

In this paper, we give a methodology to obtain such a minimal decomposition
into m-irreducible numerical semigroups by using tools borrowed from discrete op-
timization. For the sake of readability, we restrict ourselves to analyzing decompo-
sitions into m-irreducible numerical semigroups. Our methodology is applicable to
decompositions into standard irreducible by considering instead of the multiplicity
the concept of conductor, that is, the Frobenius number plus one. Nevertheless, in
the latter case the dimension of the associated polytopes is higher since the con-
ductor is always greater than the multiplicity. This fact would make the presen-
tation and the analysis more intricate yet doable. (The interested reader can find
in the concluding remarks some hints on this subject.) To this end, we identify
one-to-one numerical semigroups with the integer vectors inside a rational polyhe-
dron (see [41]). For the sake of this identification, we introduce the notion of the
Kunz-coordinates vector to translate the considered problem in the problem of find-
ing some integer optimal solutions, with respect to appropriate objective functions,
in the Kunz polyhedron (the one defined by the Kunz-coordinates vectors of all the
numerical semigroups with a fixed multiplicity m). Then, the problem of enumerat-
ing the minimal m-irreducible numerical semigroups involved in the decomposition is
formulated as a multiobjective integer program (Theorem 18). We state that solv-
ing this problem is equivalent to enumerating the entire sets of optimal solutions of
a finite set of single-objective integer problems (Theorem 24). The number of inte-
ger problems to be solved is bounded above by m − 1, where m is the multiplicity
of the semigroup to be decomposed. Finally, we solve a set covering problem to
ensure that the decomposition has the smallest number of elements (Theorem 27).
Although this approach is exact, its complexity is rather high and in general one
cannot prove that it is polynomial for any given multiplicity m. This observation
comes from the fact that there are relatively few exact methods to solve general mul-
tiobjective integer and linear problems (see [23]) and it is known that the complexity
of solving in general this type of problem is #P-hard. To overcome this difficulty,
we introduce a different machinery that identifies a minimal decomposition by solv-
ing a compact linear integer program (section 6). This approach ensures that the
problem of finding a minimal m-irreducible decomposition is polynomially solvable.
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1212 VÍCTOR BLANCO AND JUSTO PUERTO

We emphasize that we have included numerous examples in this paper, illustrating
and supporting the algorithms. Our methods are also tested for semigroups with
rather large multiplicities, in particular with multiplicities that GAP [17], under the
package numericalsgps, which is a standard software for making computations with
numerical semigroups, is not able to handle, as well as for semigroups for which
GAP does not ensure minimality. These points show the efficiency of the presented
methods.

Last but not least, we mention that a secondary goal of this paper is to connect
two important fields of mathematics: optimization and pure algebra. In this regard,
although we follow an abstract point of view, this work has direct applications, for
instance, in commutative ring theory. In fact, let S be a numerical semigroup, K
a field, and K[[t]] the ring of formal power series over K. It is well known (see, for
instance, [3]) that K[[S]] = {∑s∈S ast

s : as ∈ K} is a subring of K[[t]], called the
ring of the semigroup associated to S. Then, as a consequence of the results in this
paper we have that given a numerical semigroup S we can efficiently and effectively
decompose the ring K[[S]], up to large sizes, as a minimal intersection of rings with
the same multiplicity where some of them are Gorenstein (see [32]), some others are
Kunz (see, e.g., [3, 4]), and others are rings associated to numerical semigroups with
special simplicity: {x ∈ N : x ≥ m} ∪ {0} and {x ∈ N : x ≥ m and x �= i} ∪ {0}
for i ∈ {m+ 1, . . . , 2m − 1}. Furthermore, another application of the results in this
paper is to algebraic geometry. To each point P of a complete irreducible nonsin-
gular curve C of genus g, there is associated a numerical semigroup, the Weiertrass
semigroup, of the polo orders of the rational functions on C holomorphic outside P .
(See [24, 28, 29] for further details on this theory.) The analysis of this semigroup
leads to obtaining properties about many challenging algebraic curves which would
not be possible otherwise. Having new tools to obtain irreducible representations
for larger numerical semigroups may help in the analysis of more complex (higher
dimension) algebraic curves. Indeed, the Weiertrass semigroup may be decomposed
into irreducible numerical semigroups and this way its analysis would reduce to the
study of simpler semigroups. Also, one can find in the literature interesting research
papers dealing with the applicability of numerical semigroups in automata theory (see
[27, 37, 38]).

The rest of paper is organized as follows. In section 2 we recall the main defini-
tions and results needed for this paper to be self-contained. Section 3 translates the
problem of finding numerical semigroups of a given multiplicity into the problem of
detecting integer points inside a rational polyhedron, introducing the notion of the
Kunz-coordinates vector. We give in section 4 the conditions, in terms of the Kunz-
coordinates vector, for a numerical semigroup to be an m-irreducible oversemigroup.
Section 5 formulates the problem of decomposing and minimally (with the smallest
number of m-irreducible semigroups involved in the decomposition) decomposing into
m-irreducible numerical semigroups as a mathematical programming problem. We
give an exact and a heuristic approach for computing such a minimal decomposition
based on solving some integer programming problems. In section 6 we present a com-
pact model to compute, by solving only one integer programming problem, a minimal
decomposition of a numerical semigroup into m-irreducible numerical semigroups. In
the same section, we also prove that this problem is polynomially solvable. Section 7
shows some computational tests performed to check the efficiency of the presented al-
gorithms with respect to the current implementation in GAP [17]. Finally, in section 8
we draw some conclusions about the contributions of this paper and further research.
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2. Preliminaries. For the sake of readability, in this section we recall the main
results about numerical semigroups needed for the paper to be self-contained.

Let S be a numerical semigroup. We say that {n1, . . . , np} is a system of gener-
ators of S if S = {∑p

i=1 nixi : xi ∈ Z+, i = 1, . . . , p}. We denote S = 〈n1, . . . , np〉 if
{n1, . . . , np} is a system of generators of S.

The least positive integer belonging to S is denoted by m(S) and is called the
multiplicity of S (m(S) = min(S \ {0})). The largest integer not belonging to S
is called the Frobenius number of S, F(S), and its existence is guaranteed by the
definition of numerical semigroup. (See [40, 47] for a detailed analysis of the Frobenius
number of a numerical semigroup.) Hence, every numerical semigroup is in the form
S = {0, n1, . . . , nk} ∪ {n ∈ Z : n > nk} for some n1, . . . , nk ∈ Z+.

The following notions of irreducibility are extensively used throughout this paper.
Definition 1 (irreducibility and m-irreducibility).
• A numerical semigroup is irreducible if it cannot be expressed as an intersec-
tion of two numerical semigroups containing it properly.

• A numerical semigroup of multiplicity m is m-irreducible if it cannot be ex-
pressed as an intersection of two numerical semigroups of multiplicity m con-
taining it properly.

In [10], Blanco and Rosales analyze and characterize the set of m-irreducible
numerical semigroups. Note that, in particular, any irreducible numerical semigroup
is m-irreducible, while the converse is not true. One of the results in that paper is
the key for the analysis done through this paper and it is stated as follows.

Proposition 2 (see [10]). Let S be a numerical semigroup of multiplicity m.
Then, there exist S1, . . . , Sk m-irreducible numerical semigroups such that S = S1 ∩
· · · ∩ Sk.

From the above result, although the decomposition of a numerical semigroup is
always possible, one may think of obtaining the minimal number of elements involved
in the above intersection of m-irreducible numerical semigroups. Formally, we de-
scribe what we understand by decomposing and minimally decomposing a numerical
semigroup of multiplicity m into m-irreducible numerical semigroups.

Definition 3 (decomposition into m-irreducible numerical semigroups). Let
S be a numerical semigroup of multiplicity m. Decomposing S into m-irreducible
numerical semigroups consists of finding a set of m-irreducible numerical semigroups
S1, . . . , Sr(S) such that S = S1 ∩ · · · ∩Sr(S). (This decomposition is always possible by
Proposition 2.)

A minimal decomposition of S into m-irreducible numerical semigroups is a de-
composition with minimum r(S) (minimal cardinality of the number of m-irreducible
numerical semigroups involved in the decomposition).

Observe that minimal decompositions may not be unique since one can find dif-
ferent decompositions of S into m-irreducible numerical semigroups with the same
number of semigroups involved. This is the case of S = 〈5, 14, 22, 31〉 that is mini-
mally decomposed as 〈5, 9, 11, 13〉 ∩ 〈5, 14, 17〉 or 〈5, 8, 11, 14〉 ∩ 〈5, 14, 17〉.

The irreducibility of a numerical semigroup has been widely studied in recent
years by the computational algebra community. This trend is explained by its exten-
sive use in related areas such as number theory or algebraic geometry, where numerical
semigroups appear naturally, as mentioned in the introduction of this paper. This is
the case of the valuation ring, K[[S]], of a numerical semigroup S, which is of type
Gorenstein or Kunz when S is irreducible (see [4]). Decomposing a numerical semi-
group into irreducible becomes particularly useful in the case of valuation rings since
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1214 VÍCTOR BLANCO AND JUSTO PUERTO

it means that we can decompose any valuation ring into rings which are Gorenstein
or Kunz, and then one can transform the analysis of general semigroup rings to the
case of rings that are well known in the literature.

Furthermore, several algorithms have been proposed to minimally decompose a
numerical semigroup into irreducible ones (see [13, 25, 42, 44, 45], among others).
However, all are based on a brute force enumeration of a large set of numerical semi-
groups. In this paper, we propose an alternative method to obtain a minimal decom-
position by translating the algebraic problem to an integer optimization problem. For
the sake of completeness, we first recall some of the main results that will be useful
in our development. The interested reader is referred to [47] for further details.

For a numerical semigroup S, the set of gaps of S, G(S), is the set Z+\S (that
is finite by definition of numerical semigroup). We denote by g(S) the cardinality of
that set, which is usually called the genus of S. Hence, the Frobenius number of S,
F(S), is the largest integer belonging to G(S) (or −1 if S = Z+).

Let S be a numerical semigroup of multiplicity m. To decompose S into m-
irreducible numerical semigroups, we first need to know how to identify those m-
irreducible numerical semigroups. In [10] it is proved that S is m-irreducible if and
only if it is maximal (with respect to the inclusion order) in the set of numerical
semigroups of multiplicity m and Frobenius number F(S). In [44] it is proved that a

numerical semigroup S is irreducible if and only if g(S) = 	F(S)+1
2 
.

The following two results that appear in [10] allow us to check the m-irreducibility
of a numerical semigroup by analyzing its genus and its Frobenius number.

Proposition 4 (see [10]). A numerical semigroup of multiplicity m, S, is m-
irreducible if and only if one of the following conditions holds:

1. F(S) = g(S) = m− 1 (being then S = {x ∈ Z+ : x ≥ m} ∪ {0}).
2. F(S) ∈ {m + 1, . . . , 2m − 1} and g(S) = m (being then S = {x ∈ Z+ : x ≥

m,x �= F(S)} ∪ {0}).
3. F(S) > 2m (being S an irreducible numerical semigroup, so g(S) = 	F(S)+1

2 
).
Corollary 5 (see [10]). Let S be a numerical semigroup of multiplicity m.

Then, S is m-irreducible if and only if g(S) ∈ {m− 1,m, 	F(S)+1
2 
}.

For a given numerical semigroup S, our goal is to find a set of m-irreducible
numerical semigroups whose intersection is S. Then, we can restrict the search of
these semigroups to the set of numerical semigroups containing S. This set is called
the set of oversemigroups of S.

Definition 6 (oversemigroups). Let S be a numerical semigroup of multiplicity
m. The set O(S) of oversemigroups of S is

O(S) := {S′ numerical semigroup : S ⊆ S′}.
The set Om(S) of oversemigroups of S of multiplicity m is Om(S) = {S′ ∈ O(S) :
m(S′) = m}.

Denote by Jm(S) the set of m-irreducible numerical semigroups in the set Om(S)
and by Im(S) the set of minimal elements in Jm(S), with respect to the inclusion
poset. From the set Im(S) we can obtain a first decomposition of S into an m-
irreducible numerical semigroup, although in general it may not be minimal (see
Example 27 in [10]).

Lemma 7. Let S be a numerical semigroup of multiplicity m and Im(S) =
{S1, . . . , Sn}. Then S = S1 ∩ · · · ∩ Sn is a decomposition of S into m-irreducible
numerical semigroups.
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Proof. The proof easily follows from Proposition 2, since S = ∩S′∈Jm(S)S
′.

Clearly, the above basic decomposition is not ensured to be minimal since it may
use redundant elements.

Remark 8. Note that if Ŝ is a numerical semigroup of multiplicity m, by Propo-
sition 4, g(Ŝ) = m − 1 if and only if Ŝ = {0,m,→} (→ denotes that every integer
greater than m belongs to Ŝ). Hence, this m-irreducible numerical semigroup only
appears in its own decomposition and in no one else.

This is due to the fact that Ŝ = {0,m,→} is the maximal element in the set of
numerical semigroups of multiplicity m, and then Om(Ŝ) = Im(Ŝ) = {Ŝ} (see [10]
for further details).

From now on, we assume that S �= Ŝ = {0,m,→} since by the above remark, the
decomposition of Ŝ is trivial.

By Proposition 4 and Remark 8, if S �= Ŝ = {0,m,→}, its decomposition into
m-irreducible numerical semigroups uses two types of numerical semigroups: those
that have genus equal to the multiplicity of S and those that are irreducible (g(S) =

	F(S)+1
2 
).
To refine the search of the elements in Im(S), first we introduce the notion of

special gap.
Definition 9. Let S be a numerical semigroup. The special gaps of S are the

elements in the following set:

SG(S) = {h ∈ G(S) : S ∪ {h} is a numerical semigroup},

where G(S) is the set of gaps of S.
We denote by SGm(S) the special gaps greater than m, i.e., SGm(S) = {h ∈

SG(S) : h > m}. In [10], the authors proved that S is m-irreducible if and only if
#SGm(S) � 1 (#A stands for the cardinality of the set A). Moreover, SGm(S) = ∅
if and only if S = {0,m,→} (there are no gaps greater than m in S).

Also, if we know the special gaps of a numerical semigroup, we can search for its
decomposition by using the following result.

Proposition 10 (see [10]). Let S, S1, . . . , Sn be numerical semigroups of multi-
plicity m. S = S1∩· · ·∩Sn if and only if SGm(S)∩(G(S1) ∪ · · · ∪G(Sn)) = SGm(S).

From the above proposition, even if the minimal m-irreducible numerical semi-
groups, Im(S) = {S1, . . . , Sm}, are known some of these elements may be discarded
when looking for a minimal m-irreducible decomposition by checking if there are re-
dundant elements in the intersection SGm(S) ∩ (G(S1) ∪ · · · ∪G(Sn)).

Then, in order to find minimal decompositions, one may choose elements in Im(S)
that minimally cover the special gaps of S. To this end, we may solve a problem fixing
each of the special gaps to be covered. Note that an upper bound of the number of
problems to be solved is the number of special gaps of a numerical semigroup that is
bounded above by m− 1 (see [47]).

Lemma 11. Let S �= {0,m,→} be a numerical semigroup of multiplicity m, and
h ∈ SGm(S). Then, there exists a minimal decomposition of S into m-irreducible
numerical semigroups, S = S1 ∩ · · · ∩ Sn, such that either h = F(Si) for some i or
h �∈ Si for some i such that there exists h′ ∈ SGm(Si) with F(Si) = h′ > h.

Proof. By Proposition 2, there exists a minimal decomposition of S into an
m-irreducible numerical semigroup, S = S1 ∩ · · · ∩ Sk. By applying Proposition
10, this decomposition must verify that SGm(S) ∩ (G(S1) ∪ · · · ∪G(Sn)) = SGm(S).
Each special gap h ∈ SGm(S) must be in G(Si) for some i = 1, . . . , n. Assume
that h �= F(Si) and that for all h′ ∈ SGm(Si) with h′ > h, F(Si) �= h′. Then,
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1216 VÍCTOR BLANCO AND JUSTO PUERTO

S′
i = Si ∪ {F(Si)} is an m-irreducible numerical semigroup such that SGm(S) ∩

(G(S1) ∪ · · ·G(S′
i) · · · ∪G(Sn)) = SGm(S). Then, we have obtained a different min-

imal decomposition. (Note that it has the same number of terms as the original
one.)

By repeating this procedure for each h ∈ SGm(S) whenever possible, we find a
minimal decomposition of S fulfilling the conditions of the lemma.

3. The Kunz-coordinates vector. The approach followed in this paper uses
mathematical programming tools to solve the problem of decomposing a numerical
semigroup into m-irreducible numerical semigroups. For the sake of translating the
problem to a discrete optimization problem, we use an alternative encoding of numer-
ical semigroups different from the system of generators. We identify each numerical
semigroup of multiplicity m with a nonnegative integer vector with m−1 coordinates,
where m is the multiplicity of the semigroup. To describe this identification we first
need to give the notion of an Apéry set of a numerical semigroup that was introduced
by Apéry in [1].

Definition 12. Let S be a numerical semigroup and n ∈ S\{0}. The Apéry set
of S with respect to n is the set Ap(S, n) = {s ∈ S : s− n �∈ S}.

However, we are interested in the following characterization of the Apéry set
(see [47]): Let S be a numerical semigroup and n ∈ S\{0}; then Ap(S, n) = {0 =
w0, w1, . . . , wn − 1}, where wi is the smallest element in S congruent with i modulo
n for i = 1, . . . , n− 1.

Moreover, the set Ap(S, n) completely determines S, since S = 〈Ap(S, n) ∪ {n}〉
(see [41]). Actually, n is already indirectly contained in the Apéry set, namely,
n = #Ap(S, n) − 1. Hence, we can identify S with its Apéry set with respect to
n. Besides, the set Ap(S, n) contains, in general, more information than an arbi-
trary system of generators of S. For instance, Selmer in [48] gives the formulas,
g(S) = 1

n (
∑

w∈Ap(S,n)w)− n−1
2 and F(S) = max(Ap(S, n))− n. In addition, one can

test if a nonnegative integer s belongs to S by checking if ws (mod n) � s. Note that
the smallest Apéry set is Ap(S,m(S)).

We consider a slight but useful modification of the Apéry set that we call the
Kunz-coordinates vector.

Definition 13 (Kunz-coordinates). Let S be a numerical semigroup of multi-
plicity m. If Ap(S,m) = {w0 = 0, w1, . . . , wm−1} with wi congruent with i modulo m,
the Kunz-coordinates vector of S is the vector x ∈ Z

m−1
+ with components xi =

wi−i
m

for i = 1, . . . ,m− 1.
We say that x ∈ Z

m−1
+ is a Kunz-coordinates vector (or Kunz-coordinates, for

short) if there exists a numerical semigroup whose Kunz-coordinates vector is x.
From the Kunz-coordinates we can recover the Apéry set. If x ∈ Z

m−1
+ is the

Kunz-coordinates vector of S, Ap(S,m) = {mxi + i : i = 1, . . . ,m− 1} ∪ {0}. Conse-
quently, S can be completely described from its Kunz-coordinates.

The Kunz-coordinates vectors have been implicitly used in [32] and [41] to charac-
terize numerical semigroups with fixed multiplicity and used in [6] to count numerical
semigroups with a given genus.

Furthermore, if S is a numerical semigroup of multiplicity m and x ∈ Z
m−1
+ are

its Kunz-coordinates, from Selmer’s formulas it is easy to compute its genus and its
Frobenius number as follows:

• g(S) =
∑m−1

i=1 xi,
• F(S) = maxi{m(xi − 1) + i} (clearly, if the maximum is reached in the ith
component, F(S) ≡ i (mod m))
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(where for a, b, c ∈ Z, a ≡ b (mod c) denotes that a and b are congruent modulo c,
that is, a− b is an integer multiple of c).

The following result that appears in [41] allows us to manipulate numerical semi-
groups of multiplicity m as integer points inside a polyhedron.

Theorem 14 (Theorem 11 in [41]). Each numerical semigroup is one-to-one
identified with its Kunz-coordinates. Furthermore, the Kunz-coordinates vectors of the
set of numerical semigroups of multiplicity m is the set of solutions of the following
system of diophantine inequalities:

xi � 1 for all i ∈ {1, . . . ,m− 1},
xi + xj − xi+j � 0 for all 1 � i � j � m− 1, i+ j � m− 1,

xi + xj − xi+j−m � −1 for all 1 � i � j � m− 1, i + j > m,
xi ∈ Z+ for all i ∈ {1, . . . ,m− 1}.

The polyhedron defined by the above system of inequalities is usually called the
Kunz polyhedron.

From Theorem 14 and Selmer formulas, we can identify all the numerical semi-
groups (in terms of their Kunz-coordinates vector) of multiplicity m, genus g, and
Frobenius number F with the solutions of this system of diophantine inequalities:

xi � 1 for all i ∈ {1, . . . ,m− 1},
xi + xj − xi+j � 0 for all 1 � i � j � m− 1, i+ j � m− 1,

xi + xj − xi+j−m � −1 for all 1 � i � j � m− 1, i+ j > m,

m−1∑
i=1

xi = g,

F = maxi {m(xi − 1) + i} −m,
xi ∈ Z+ for all i ∈ {1, . . . ,m− 1}.

From the above formulation and Corollary 5, the set of m-irreducible numerical
semigroups is completely determined by the solutions of the following diophantine
system of inequalities and equations, which is obtained fixing the value of the genus:

(3.1)
xi � 1 for all i ∈ {1, . . . ,m− 1},

xi + xj − xi+j � 0 for all 1 � i � j � m− 1, i+ j � m− 1,
xi + xj − xi+j−m � −1 for all 1 � i � j � m− 1, i+ j > m,

m−1∑
i=1

xi ∈ {m− 1,m,maxi {m(xi − 1) + i}},
xi ∈ Z+ for all i ∈ {1, . . . ,m− 1}.

Note that the above system is not a standard system of diophantine inequalities since
(3.1) is equivalent to solving three systems of diophantine equations/inequalities.

Once the m-irreducible numerical semigroups are characterized in terms of the
Kunz-coordinates vectors, in order to characterize the minimal m-irreducible decom-
positions of a numerical semigroup S with multiplicity m, we need to determine the
structure of its oversemigroups. Observe that those semigroups are the first candidates
to appear in the decomposition of S.

The following result characterizes the set of oversemigroups of a numerical semi-
group in terms of its Kunz-coordinates vector.

Proposition 15. Let S be a numerical semigroup of multiplicity m and x ∈
Z
m−1
+ its Kunz-coordinates. Then, the set of Kunz-coordinates vectors of oversemi-

D
ow

nl
oa

de
d 

02
/2

5/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1218 VÍCTOR BLANCO AND JUSTO PUERTO

groups of S of multiplicity m is

(3.2) Um(x) = {x′ ∈ Z
m−1
+ : x′ is a Kunz-coordinates vector and x′ ≤ x},

where ≤ denotes the componentwise order in Z
m−1.

Proof. Let S′ ∈ Om(S) and Ap(S′,m) = {0, w′
1, . . . , w

′
m−1}. Let Ap(S,m) =

{0, w1, . . . , wm−1}. The ith element in the Apéry set is characterized as being the
minimum element in the semigroup that is congruent with i modulo m. Thus, w′

i �
wi for all i = 1, . . . ,m − 1 since S ⊆ S′. Then x′

i =
w′

i−i
m � wi−i

m = xi for all
i = 1, . . . ,m− 1. Hence, x′ ≤ x.

For the sake of readability, we shall refer to the set Um(x) introduced in (3.2)
as the set of undercoordinates of x. It is clear from Proposition 15 that if x is the
Kunz-coordinates vector of a numerical semigroup S, the oversemigroups of S (see
Definition 6) can be one-to-one identified with the undercoordinates of its Kunz-
coordinates vector.

For ease of presentation, we identify a numerical semigroup of multiplicity m with
an integer vector with m−1 coordinates, its Kunz-coordinates. All the notions previ-
ously given for numerical semigroups are adapted conveniently by using the following
notation. If S is a numerical semigroup and x ∈ Z

m−1 is its Kunz-coordinates vector,
we write

• m(x) = m(S) = m (multiplicity of x);
• F(x) = F(S) (Frobenius number);
• G(x) = G(S) = {n ∈ Z : mxn (mod m) + n (mod m) > n} (gaps of x);
• g(x) = g(S) (genus of x);
• SG(x) = SG(S) (special gaps of x);
• SGm(x) = SGm(S) (special gaps of x greater than m);
• Um(x) = {x′ ∈ Z

m−1 : x′ is a Kunz-coordinates vector and x′ ≤ x} (under-
coordinates of x); observe that Om(S) = {〈{0} ∪ {mx′

i + i}〉 : x′ ∈ Um(x)};
• Ap(x) = Ap(S,m) = {0} ∪ {mxi + i : i = 1, . . . ,m− 1} (Apéry set of x).

Note that all the above indices and sets can be computed by using only the Kunz-
coordinates vector of the semigroup.

Recall that we have assumed without loss of generality that S �= {0,m,→}. In
terms of the Kunz-coordinates, this assumption is equivalent to saying that x �=
(1, . . . , 1) ∈ Z

m−1
+ (or

∑m−1
i=1 xi � m).

By Corollary 5 we say that a Kunz-coordinates vector x ∈ Z
m−1
+ is m-irreducible

if g(x) ∈ {m,m − 1, 	F(x)+1
2 
}. Furthermore, we say that x is irreducible if g(x) =

	F(x)+1
2 
. Hence, every irreducible Kunz-coordinates vector in Z

m−1
+ is m-irreducible,

but the converse is not true in general.
We also say that a set of Kunz-coordinates vectors, D = {x1, . . . , xk} ⊆ Z

m−1
+ ,

is a decomposition of x ∈ Z
m−1
+ into m-irreducible Kunz-coordinates vectors if the

semigroups associated with the elements in D give a decomposition into m-irreducible
numerical semigroups of the semigroup identified with x. Equivalently, by Proposi-
tion 10, D is a decomposition of x ∈ Z

m−1
+ into m-irreducible Kunz-coordinates

vectors if xi is an m-irreducible Kunz-coordinates vector and SGm(x) = SGm(x) ∩(
G(x1) ∪ · · · ∪G(xk)

)
.

Then, a minimal decomposition x ∈ Z
m−1
+ into m-irreducible Kunz-coordinates

is a decomposition into m-irreducible Kunz-coordinates, D = {x1, . . . , xk} ⊆ Z
m−1
+ ,

with minimum cardinality.
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We define

Im(x) = {x′ ∈ Um(x) : x′ is m-irreducible and there is not an m-irreducible
Kunz-coordinates vector x∗ ∈ Um(x) such that x∗ ≥ x′}.

Observe that Im(x) is one-to-one identified with Im(S).

4. m-irreducible Kunz-coordinates vectors. In this section we give neces-
sary and sufficient conditions for an undercoordinate of a Kunz-coordinates vector to
be m-irreducible.

Let x ∈ Z
m−1
+ be a Kunz-coordinates vector. By the above definition, a Kunz-

coordinates vector x′ is an element in Um(x) if and only if there exists y ∈ Z
m−1
+ such

that x′ + y = x.
By applying Theorem 14 to x′ = x − y, we get that the vector y ∈ Z

m−1
+ must

verify the following inequalities:

yi � xi − 1 for all i ∈ {1, . . . ,m− 1},
yi + yj − yi+j � xi + xj − xi+j for all 1 � i � j � m− 1, i+ j � m− 1,

yi + yj − yi+j−m � xi + xj − xi+j−m + 1 for all 1 � i � j � m− 1, i+ j > m.

Actually, if we are searching for those x′ = x− y that are identified with a set of
m-irreducible undercoordinates decomposing x, we can restrict ourselves, by Corollary

5, to considering those with genus m, m − 1, and 	F(x)+1
2 
. Therefore, y must be a

solution of the system Pm(x):

yi � xi − 1 for all i ∈ {1, . . . ,m− 1},(Pm(x))

yi + yj − yi+j � xi + xj − xi+j for all 1 � i � j � m− 1, i+ j � m− 1,

yi + yj − yi+j−m � xi + xj − xi+j−m + 1 for all 1 � i � j � m− 1, i+ j > m,

m−1∑
i=1

yi ∈ M(x, y),(4.1)

y ∈ Z
m−1
+ .

whereM(x, y) = {∑m−1
i=1 xi−m,

∑m−1
i=1 xi−m+1,

∑m−1
i=1 xi−	maxi{m(xi−yi)+i}−m+1

2 
}.
Recall that the Kunz-coordinates vector (1, . . . , 1) ∈ Z

m−1
+ is not considered be-

cause it corresponds to S = {0,m,→} that is m-irreducible, and then its minimal
decomposition is itself (Remark 8). Clearly, these coordinates are the unique solution
of the above system when constraint (4.1) is

m−1∑
i=1

yi =

m−1∑
i=1

xi −m.

In the next subsections we analyze the remaining two cases for the constraint
(4.1).

4.1. m-irreducible undercoordinates that are irreducible. Let x ∈ Z
m−1
+

be a Kunz-coordinates vector. In this subsection we deal with the problem of analyzing
those m-irreducible undercoordinates of x that are also irreducible. Then, in system
(Pm(x)), (4.1) is

(4.2)

m−1∑
i=1

yi =

m−1∑
i=1

xi −
⌈
maxi{m(xi − yi) + i} −m+ 1

2

⌉
.
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Denote now by Hm
k (x) = {y ∈ R

m−1 : maxi{m(xi−yi)+i} = m(xk−yk)+k} and
by Pm

k (x) = P(x)∩Hm
k (x) for all k = 1, . . . ,m−1. Note that Hm

k (x) is the hyperplane
in R

m−1 where the Frobenius number of x−y is reached in the kth component (recall
that F(x) = max{mxi + i} −m), that is, F(x − y) = m(xk − yk) + k −m.

With these assumptions, Pm
k (x) can be described by the following system of in-

equalities:

(Pm
k (x)) yi � xi − 1 for all i ∈ {1, . . . ,m− 1},

yi + yj − yi+j � xi + xj − xi+j for all 1 � i � j � m− 1, i+ j � m− 1,

yi + yj − yi+j−m � xi + xj − xi+j−m + 1 for all 1 � i � j � m− 1, i+ j > m,

m−1∑
i=1

yi =
m−1∑
i=1

xi −
⌈
m(xk − yk) + k −m+ 1

2

⌉
,

y ∈ Z
m−1
+ .

This system can also be described (using that z � 	z
 < z + 1 for any z ∈ R) by
the following system of linear inequalities:

yi � xi − 1 for all i ∈ {1, . . . ,m− 1},
yi + yj − yi+j � xi + xj − xi+j for all 1 � i � j � m− 1, i+ j � m− 1,

yi + yj − yi+j−m � xi + xj − xi+j−m + 1 for all 1 � i � j � m− 1, i+ j > m,

2

m−1∑
i=1

yi −myk � 2

m−1∑
i=1

xi −mxk − k +m− 2,

2

m−1∑
i=1

yi −myk � 2

m−1∑
i=1

xi −mxk − k +m− 1,

y ∈ Z
m−1
+ .

4.2. m-irreducible undercoordinates with genus m. In what follows, we
describe the second type of m-irreducible undercoordinates of S, those with genus m.

Denote by HGm(x) = {y ∈ R
m−1 :

∑m−1
i=1 yi =

∑m−1
i=1 xi − m} and Pm

m(x) =
Pm(x) ∩ HGm(x). This set is described by the following system Pm

m(x):

yi � xi − 1 for all i ∈ {1, . . . ,m− 1},(Pm
m(x))

yi + yj − yi+j � xi + xj − xi+j for all 1 � i � j � m− 1, i+ j � m− 1,

yi + yj − yi+j−m � xi + xj − xi+j−m + 1 for all 1 � i � j � m− 1, i+ j > m,

m−1∑
i=1

yi =
m−1∑
i=1

xi −m,(4.3)

y ∈ Z
m−1
+ .

The solutions of system (Pm
m(x)) are easily identified by the few possible choices

for the solutions of (4.3). (The integer vector x− y ∈ Z
m−1 has positive coordinates

and the sum of them must be m.) Actually, the entire set of solutions of (Pm
m(x)) is

(4.4) {x− 1− ej : xj � 2 for j = 1, . . . ,m− 1} ⊆ Z
m−1
+ ,

where ej is the jth unit vector in Z
m−1
+ and 1 = (1, . . . , 1) ∈ Z

m−1.

D
ow

nl
oa

de
d 

02
/2

5/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTEGER PROGRAMMING FOR DECOMPOSING SEMIGROUPS 1221

Then, the set of m-irreducible undercoordinates of x with genus m is given by
the set {1+ ej : xj � 2 for j = 1, . . . ,m− 1} ⊆ Z

m−1
+ .

5. Decomposing into m-irreducible numerical semigroups. In the section
above we characterized the m-irreducible undercoordinates of a Kunz-coordinates vec-
tor x ∈ Z

m−1
+ . In what follows, we use these characterizations to find a decomposition

of x into m-irreducible Kunz-coordinates vectors. First, we give a decomposition that
is not minimal in general by enumerating the whole set of solutions of the systems
(Pm

k (x)) and (Pm
m(x)). Then we provide a multiobjective integer linear programming

model to obtain the set of minimal elements in Im(x). We prove that this model is
equivalent to enumerating the entire set of optimal solutions of some single-objective
integer linear programming problems. Thus, a minimal decomposition can be ob-
tained from the former set of solutions by solving a set covering problem. Finally,
we propose a heuristic methodology based on the abovementioned exact approach to
obtain a (minimal) decomposition of x into m-irreducible Kunz-coordinates vectors.

As a consequence of Corollary 5 and the characterizations of m-irreducible Kunz-
coordinates in sections 4.1 and 4.2, we obtain the following result that states how to
get a decomposition into m-irreducible Kunz-coordinates vectors by solving several
systems of diophantine inequalities.

Proposition 16. Let x ∈ Z
m−1
+ be a Kunz-coordinates vector. Any decompo-

sition of x into m-irreducible Kunz-coordinates vectors is given by some elements
in the form x − y, where y belongs to the union of the solutions of the systems
Pm
1 (x), . . . ,Pm

m−1(x) and Pm
m(x).

Remark 17. Note that the whole set of solutions of Pm
1 (x), . . . ,Pm

m−1(x) and
Pm
m(x) gives a decomposition into m-irreducible numerical semigroups of the semi-

group S identified with x. This is the maximal decomposition since it has the
maximum possible number of m-irreducible Kunz-coordinates, namely, all the m-
irreducible undercoordinates of x.

In the following we give a methodology to compute minimal decompositions. The
main idea is to adequately choose solutions of the systems Pm

1 (x), . . . ,Pm
m−1(x) and

Pm
m(x).

The first step to selecting decompositions that are minimal with respect to the
inclusion ordering is to find the minimal elements within the set of m-irreducible
undercoordinates of a Kunz-coordinates vector x. This fact can be formulated as a
multiobjective integer programming problem as stated in the following result.

Theorem 18. Let x ∈ Z
m−1
+ be a Kunz-coordinates vector. The Kunz-coordinates

vectors of the elements in Im(x) are in the form x − ŷ, where ŷ is a nondominated
solution of any of the following multiobjective integer linear programming problems
MIPm

1 (x), . . . ,MIPm
m(x):

(MIPm
k (x)) v −min (y1, . . . , ym−1) s.t. y ∈ Pm

k (x) for k = 1, . . . ,m− 1,m,

where v−min stands for finding the set of nondominated solutions of the multiobjective
problem.

Proof. Let x′ be an element in Im(x). Then, x′ = x − y for some y ∈ Z
m−1
+ .

If k = F(x′) (mod m), then F(x′) = mx′
k + k − m. Since x′ is an m-irreducible

undercoordinate of x with the above Frobenius number, either y′ ∈ Pm
k (x) (if F(x′) >

2m) or y′ ∈ Pm
m(x) (if F(x′) < 2m). Suppose that there is a nondominated solution,

ŷ, of MIPm
k (x) (resp., MIPm

m(x)) dominating y′. Then, we can find x̂ = x − ŷ with
ŷ nondominated solution of MIPm

k (x) (resp., MIPm
m(x)) such that ŷ ≤ y′ and ŷ �= y′.

Then, x̂ ≥ x′ and x′ �= x̂, and consequently, we have found m-irreducible maximal
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Kunz-coordinates in Im(x) such that x̂ ≥ x′ and x′ �= x̂, contradicting the maximality
of x′.

Note that Γ the union of the nondominated solutions of MIPm
1 (x), . . . ,MIPm

m(x)
contains Im(x), but it may contain nondominated solutions of MIPm

k (x) that dominate
some nondominated solution of MIPm

j (x) if k �= j. Thus, Γ may contain coordinates
vectors that dominate one another. This fact may lead to nonminimal decompositions
into m-irreducible Kunz-coordinates vectors.

The key to getting minimal decompositions into m-irreducible Kunz-coordinates
follows by applying Lemma 11. Therefore, we need to address the question about
how to compute SGm(x). Algorithm 1 shows the way of computing the special gaps
greater than the multiplicity of a Kunz-coordinates vector. This algorithm is based on
the following theorem, where k(n) := n( mod m) stands for the nonnegative integer
remainder of dividing n by m.

Theorem 19. Let x ∈ Z
m−1
+ be a Kunz-coordinates vector and m < h ∈ N.

Then, h ∈ SGm(x) if and only if the following conditions hold:
(i) h = m(xk(h) − 1) + k(h),
(ii) xk(h) + xj > xk(k(h)+j) − γk(h),j for all j = 1, . . . ,m with k(h) + j �= m, and
(iii) 2h � mxk(2h) + k(2h),

being γij =
{

1 if i+ j > m
0 otherwise

for all i, j = 1, . . . ,m− 1.
Proof. The elements in SGm(x) are those elements fulfilling the following condi-

tions (see [10]):
• h = wi −m, where wi ∈ Ap(x), for some i = 1, . . . ,m− 1.
• wl − wi �∈ Ap(x) for all wl ∈ Ap(x), wl �= wi.
• 2h � wk(2h), w2k(h) ∈ Ap(x).

By the identification of Kunz-coordinates vectors and the elements in the Apéry set,
the first set of conditions is translated in h = mxi + i−m = m(xi − 1)+ i for some i.
Since k(m(xi − 1) + i) = i, we get that k(h) must be i. The second set of conditions
are equivalent to checking for each l �= i, that wl − wi = mxl + l − mxi − i �∈
{0} ∪ {mxk + k : k = 1, . . .m − 1}. Note that if mxl + l − mxi − i = mxk + k
for some k, then, k(k) = k(l − i), so if wl − wi is an element in Ap(x) the unique
possible choice is wk(l−i). Now, if l > i, then k(l − i) = l − i, and the condition is
the same as checking if mxl + l −mxi − i �= mxl−i + l − i or, equivalently, whether
xi + xi−l �= xl. Since x is a Kunz-coordinates vector, by Theorem 14, xi + xl−i � xl,
so checking that those elements are different is the same as xi + xl−i > xl. Then,
denoting by j = l − i ∈ {1, . . . ,m− i − 1} we have the desired result for j such that
i+ j < m. By an analogous argument, for l < i we have that k(l− i) = l− i+m, and
j = l − i +m, being i + j > m. In this case, by Theorem 14 we get that the second
set of conditions is equivalent to xi + xl−i > xl − 1. Summarizing both cases we have
that xk(h) + xj > xk(k(h)+j) − γk(h),j for all j = 1, . . . ,m with k(h) + j �= m.

The third condition is straightforward by identifying the elements in the Apéry
set with the Kunz-coordinates vector.

The above theorem is used to compute the set SGm(x) for any Kunz-coordinates
vector x ∈ Z

m−1
+ as shown in Algorithm 1.

Note that the complexity of Algorithm 1 is O(m2).
Applying Algorithm 1 to the Kunz-coordinates vector of any numerical semigroup

with multiplicity m, we obtain the following useful result.
Proposition 20. Let x ∈ Z

m−1
+ be a Kunz-coordinates vector, y ∈ Z

m−1
+ and

h ∈ SGm(x). If x − y is an undercoordinate of x, then h ∈ G(x − y) if and only if
yk(h) = 0. Furthermore, F(x − y) is the unique element in {h ∈ SGm(x) : k(h) =
max{i ∈ {1, . . . ,m− 1} : yi = 0}}.

D
ow

nl
oa

de
d 

02
/2

5/
16

 to
 1

50
.2

14
.1

82
.1

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTEGER PROGRAMMING FOR DECOMPOSING SEMIGROUPS 1223

Algorithm 1. Computing the special gaps greater than the multiplicity of a
Kunz-coordinates vector.

Input: A Kunz-coordinates vector x ∈ Z
m−1
+ .

Compute M1 = {m(xi − 1) + i : xi + xj > xi+j for all j with i+ j < m} and
M2 = {m(xi − 1) + i : xi + xj > xi+j−m − 1 for all j with i+ j > m}.

Output: SGm(x) = {z ∈ M1 ∩M2 : z > m and 2z ≥ mxk(2z) + k(2z)}.

Proof. Since h ∈ SGm(x), by the method to compute the set of special gaps (see
Algorithm 1), h is in the form h = m(xk(h) − 1) + k(h). (Observe that if h ≤ m,
k(h) = h and the representation is direct.)

If h ∈ G(x− y), then m(xk(h) − yk(h)) + k(h) ≥ h+ 1 = m(xk(h) − 1) + k(h) + 1,

that is, yk(h) � m−1
m < 1. Therefore yk(h) = 0 because yi ≥ 0 for all i = 1, . . . ,m− 1.

Conversely, if yk(h) = 0, then m(xk(h) − yk(h)) + k(h) = mxk(h) + k(h) � h +
1 since h is an special gap of x and then, in particular, a gap of x. Thus, h ∈
G(x− y).

By Proposition 10, to compute a decomposition of x into m-irreducibles, for
each h ∈ SGm(x) we need to find a nonnegative integer vector y such that x − y is
an irreducible Kunz-coordinates vector with h ∈ G(x − y). This is equivalent, by
Proposition 20, to searching for those vectors y with yk(h) = 0. Then, in order to
compute a minimal decomposition we only need, from all the minimal m-irreducible
numerical oversemigroups of S, those that do not contain the special gaps of S. The
following result further shrinks this search.

Lemma 21. Let x ∈ Z
m−1
+ be a Kunz-coordinates vector and h ∈ SGm(x).

Then, every nondominated solution, y, of MIPm
k(h)(x) satisfies yk(h) = 0, and then

F(x− y) = h. Moreover, the sum of the coordinates of any nondominated solution of
MIPm

k(h)(x) is constant.
Proof. Let y be a nondominated solution of MIPm

k(h)(x). By Algorithm 1, h is of
the form h = mxk(h) +k(h)−m, and then F(x− y) = m(xk(h) − yk(h)) + k(h)−m =
h − myk(h). Since y is a feasible solution of MIPm

k(h)(x), x − y is an irreducible
undercoordinate of x with Frobenius number reached at the k(h)th coordinate. Fur-
thermore, because y is a nondominated solution, by Theorem 18, x− y is a maximal
m-irreducible undercoordinate of x, and then it must have a maximum Frobenius
number (otherwise one could find another irreducible undercoordinate with a greater
Frobenius number and componentwise greater than x − y). On the other hand, it is
clear that there always exists an m-irreducible undercoordinate of x with Frobenius
number h, so yk(h) must be 0 and F(x − y) = h.

Finally, let y′ be another nondominated solution of MIPm
k(h)(x). Observe that the

k(h)th coordinate must be zero. Then,

m−1∑
i=1

y′i =
m−1∑
i=1

xi −
⌈
m(xk(h) − y′k(h)) + k(h)−m+ 1

2

⌉

=

m−1∑
i=1

xi −
⌈
mxk(h) + k(h)−m+ 1

2

⌉

=

m−1∑
i=1

xi −
⌈
m(xk(h) − yk(h)) + k(h)−m+ 1

2

⌉
=

m−1∑
i=1

yi.

(5.1)
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1224 VÍCTOR BLANCO AND JUSTO PUERTO

Remark 22. From the proof of the above theorem we can conclude not only
that the sum the coordinates of any nondominated solution of MIPm

k(h)(x) is constant
but also that this constant is the minimum sum of coordinates in the set of feasible
solutions of the multiobjective problem.

By Lemma 21 and Remark 22, we know that if we fix a special gap, h, a nondom-
inated solution of MIPm

k (x) with overall minimum sum can be computed by fixing the
value of yk(h). Then, moving through all the special gaps in SGm(x) and fixing each
one of them in MIPm

k (x), we can obtain at least #SGm(x) nondominated solutions
giving a decomposition of x into m-irreducible Kunz-coordinates.

Therefore, an upper bound on the number of elements in any decomposition is the
number of special gaps greater than the multiplicity of the semigroup. Thus, for each
problem Pm

k (x) we can augment the constraint requiring that h is a gap of the Kunz-
coordinates vector for each h ∈ SGm(x), i.e., yk(h) = 0. Then, for each h ∈ SGm(x)
and k ∈ {1, . . . ,m} we need to solve the following multiobjective problem:

(MIPm(x, h))

v −min (y1, . . . , ym−1)
s.t.

yk(h) = 0,
y ∈ Pm

k (x).

Remark 23. By Lemma 21, it is enough to search for m-irreducible Kunz-
coordinates with Frobenius numbers in SGm(x). If h ∈ SGm(x), this condition is
augmented to MIPm(x, h) as the constraint maxi{m(xi − yi) + i}−m = h, or equiv-
alently as yk(h) = 0.

Note that any solution of MIPm(x, h) is identified with a numerical semigroup
with Frobenius number congruent with hmodulom. Now, since (1) the nondominated
solutions y of MIPm(x, h) are componentwise minimal, (2) h satisfies that h ≡ k(h)
(mod m), and (3) h ∈ SGm(x), if one solution, y, has Frobenius smaller than h, then
h is not in the set of gaps of the Kunz-coordinates x − y. Then, this element is
irrelevant for the decomposition, since there must exist some other semigroup so that
h belongs to it.

Hence, we can simplify further the decomposition process considering only single-
objective integer problems rather than multiobjective ones. The following result states
this fact.

Theorem 24. Let x be a Kunz-coordinates vector. Then, the elements in a
minimal decomposition of x into m-irreducible Kunz-coordinates must belong to the
union of the set of optimal solutions of the following problems:

(IPm(x, h))

min

m−1∑
i=1

yi

s.t.
y ∈ Pm

k(h)(x),

yk(h) = 0,

if h > 2m or

(IPm
m(x, h))

min

m−1∑
i=1

yi

s.t.
yk(h) = xk(h) − 2,
y ∈ Pm

m(x),

if h < 2m for each h ∈ SGm(x).
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Proof. Let h ∈ SG(x). By Lemma 21, every nondominated solutions of MIPm(x, h),
y, induces a m-irreducible undercoordinate of x, namely, x−y, with F(x−y) = h. By
Proposition 4, every m-irreducible Kunz-coordinates vector has either genus m − 1
(this case has been already discarded), m, or 	Frobenius number +1

2 
. Furthermore,
Proposition 4 also states that if the genus is m, then the Frobenius number is smaller
than 2m and greater than 2m otherwise. Hence, if h < 2m and x − y is an m-
irreducible undercoordinate of x the genus, g(x − y) =

∑m−1
i=1 xi −

∑m−1
i=1 yi, is m,

and by (4.4), y = x − 1− ej for some j. Next, since F(x − y) = h, we conclude that
j = k(h) and then yk(h) = xk(h)−2. That proves that if h < 2m, y must be a solution
of IPm

m(x, h).
Assume now that h > 2m. By Lemma 21, we only need to solve the multiobjective

problems (MIPm
k (x)) with k = k(h). In addition, Remark 22 proves that any solution

of (MIPm
k (x)) has minimum overall sum of its coordinates over Pm

k(h)(x)∩{y ∈ Z
m−1 :

yk(h) = 0}. Hence, any nondominated solution is an optimal solution for some of the
linear (single-objective) integer programs above.

Furthermore, assume that y∗ ∈ Z
m−1
+ is an optimal solution of (IPm(x, h)) or

(IPm
m(x, h)). If y∗ were not a nondominated solution of (MIPm(x, h)) another feasible

solution, y, of (MIPm(x, h)) would exist (and consequently either in Pm
k(h)(x) or in

Pm
m(x)) such that y ≤ y∗. Then,

∑m−1
i=1 yi ≤

∑m−1
i=1 y∗i . Next, since y∗ is an optimal

solution for (IPm(x, h)) or (IPm
m(x, h)), we have that

∑m−1
i=1 yi =

∑m−1
i=1 y∗i . Hence,

y = y∗ since y, y∗ ∈ Z
m−1
+ .

Finally, we are looking for solutions, y, with the minimum difference of gaps with
x, so minimizing

∑
i yi. Therefore, for our purpose it is enough to minimize the sum

of the components of y, as formulated in (IPm(x, h)) and (IPm
m(x, h)).

Note that if (IPm
m(x, h)) is feasible, it has a unique feasible solution, namely,

y = x − 1 − ek(h) (see (4.4)). Furthermore, this problem is feasible if and only if
k(h) = h−m since under this condition h = 2m+ k(h)−m, the Frobenius number.

Actually, in this case, if (IPm(x, h)) has a solution, y, it must also be the solution
of (IPm

m(x, h)). This fact is stated in the following theorem.
Theorem 25. Let x ∈ Z

m−1
+ be a Kunz-coordinates vector h ∈ SGm(x) and y1

and y2 optimal solutions of problems (IPm(x, h)) and (IPm
m(x, h)), respectively. Then,

y1 = y2.
Proof. We have two m-irreducible undercoordinates of x, x1 = x − y1 and x2 =

x−y2. x1 is an irreducible Kunz-coordinates vector with Frobenius number h. x2 is a
Kunz-coordinates vector with Frobenius number h and genus m. Since the irreducible
Kunz-coordinates are those with maximal genus when fixing the Frobenius number
and the maximum genus in this case is m, then y1 = y2 because in both problems we
are minimizing the sum of y.

The following result shows that the optimal value of (IPm(x, h)) is known a priori.
Lemma 26. Let y be an optimal solution of (IPm(x, h)). Then,

∑
i

yi =

m−1∑
i=1

xi −
⌈
h+ 1

2

⌉
.

Proof. Clearly, optimal solutions must satisfy constraint (4.2). Then, the result
follows from Lemma 21.

Let x ∈ Z
m−1 be a Kunz-coordinates vector. Once a decomposition is chosen, in

order to select a minimal decomposition we use a set covering formulation to choose
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1226 VÍCTOR BLANCO AND JUSTO PUERTO

among the overall set of minimal m-irreducible undercoordinates of x a minimal num-
ber of elements for the decomposition.

Let SGm(x) = {h1, . . . , hs} and Di = {xi1 , . . . , xipi } be the set of the max-
imal Kunz-coordinates vectors of m-irreducible undercoordinates of x when fixing
the special gap hi (optimal solutions of IPm(x, hi)) for i = 1, . . . , s. We denote by
D = D1 ∪ · · · ∪Ds the set of m-irreducible Kunz-coordinates vectors candidates to be
involved in the minimal decomposition of x.

We consider the set of decision variables

zij =

{
1 if xij is selected for the minimal decomposition,
0 otherwise

for i = 1, . . . , s, j = 1, . . . , pi.
We formulate the problem of selecting a minimal number of m-irreducible un-

dercoordinates vectors of x that decompose x into m-irreducible Kunz-coordinates
as

(SCm(D))

min

s∑
i=1

pi∑
j=1

zij

s.t. ∑
i,j/mxij

k(h)
+k(h)≥h+1

zij ≥ 1 for all h ∈ SGm(x).

The covering constraint ensures that for each special gap of x there is an element
in {xi1, . . . , xip1 , . . . , xs1, . . . , xsps} such that h is a gap of its corresponding semi-
group. Minimizing the overall sum we find the minimum number of Kunz-coordinates
fulfilling this requirement. Note that when solving (SCm(D)) at most one element in
Di is choosen for each i = 1, . . . , s.

In the following, we give a procedure to decompose a numerical semigroup S of
multiplicitym (after identification with its Kunz-coordinates vector) intom-irreducible
numerical semigroups. This process is described in Algorithm 2. In that implemen-
tation we also consider two trivial cases: (1) when the number of special gaps greater
than the multiplicity is 1, being then the semigroup m-irreducible; and (2) when the
number of this special gaps is 2, where the decomposition is given by both solutions of
the two unique integer programming problems, and no discarding process is needed.

As a consequence of all the above comments and results we state the correctness
of our approach.

Theorem 27. Algorithm 2 computes, exactly, a minimal decomposition into
m-irreducible Kunz-coordinates vector of a Kunz-coordinates vector x ∈ Z

m−1
+ . Fur-

thermore, the entire set of optimal solutions of (SCm(D)) characterizes the set of
minimal decompositions.

Algorithm 2 computes a minimal decomposition of a Kunz-coordinates vector,
x ∈ Z

m−1
+ , by enumerating the whole set of optimal solutions of (IPm(x, h)). However,

this task is not easy since it mainly consists of enumerating the set of vertices of
the polytope defining the feasible region of an integer programming problem (the
convex hull of the integer points inside the polyhedron), which is hard to compute
(see, e.g., [2]). In what follows we propose a heuristic approach to obtain a “short”
decomposition into m-irreducibles by choosing an optimal solution of (IPm(x, h))
instead of enumerating all of them. One may choose any of them, but we can also
slightly modify the integer programming model to obtain a good solution.
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Algorithm 2. Decomposition into m-irreducible numerical semigroups.

Input: A numerical semigroup S of multiplicity m.
Compute the Kunz-coordinates vector of S: x ∈ Z

m−1
+ . (Computing the

Apéry set.)
D = {}.
Compute SGm(x).
if #SGm(x) = 1 then

DmIR = {x}
else

for hi ∈ SGm(x) do
if hi < 2m then

Set D := D ∪ {1+ ek(h)}.
else

for each optimal solution of (IPm(x, h)), ŷi do
Set D := D ∪ {x− ŷi} .

Let D = {x11, . . . , x1i1 , . . . , xs1, . . . , xsis}.
Let z∗ be an optimal solution of (SCm(D)).
Set DmIR = {xij ∈ D : z∗ij = 1}
Output: DmIRNS = {〈{m} ∪ {mx′

i + i : i = 1, . . . ,m− 1}〉 : x′ ∈ DmIR}.

We consider the set of decision variables

wi =

{
1 if hi ∈ G(x− y),
0 otherwise

for i = 1, . . . , n, and SGm(x) = {h1, . . . , hn}.
For a fixed h ∈ SGm(x), wi = 1 represents that hi is covered by the solution x−y

and then that it can be discarded to obtain a minimal decomposition.
Then, to ensure that we maximize the number of elements that can be discarded

in the previous decomposition, we formulate the problem as
(IPm

k (x, h))

max

#SGm(x)∑
i=1

wi

s.t. y ∈ Pm
k(h)(x),

yk(h) = 0,

m(xk(ĥi)
− yk(ĥi)

) + k(ĥi)− ĥi − 1 +M(1− wi) ≥ 0 for all ĥi ∈ SGm(x),

where M � 0.
Observe that the big-M constraintm(xk(ĥi)

−yk(ĥi)
)+k(ĥi)−ĥi−1+M(1−wi) ≥ 0

ensures that if ĥi �∈ G(x− y) (equivalently, m(xk(ĥi)
− yk(ĥi)

) + k(ĥi) < ĥi + 1), then
wi = 0. Otherwise, wi could be 0 or 1, but since we are maximizing, wi = 1.

The optimal value of this integer problem is then the number of numerical semi-
groups in the decomposition that can be discarded with this choice.

A pseudocode of the proposed approximated scheme for obtaining a “short”
decomposition of a Kunz-coordinates vector x ∈ Z

m−1
+ into m-irreducible Kunz-

coordinates vectors by solving (IPm
k (x, h)) is shown in Algorithm 3.

When running Algorithm 3 we obtain an optimal solution of the problem, and
then moving through all the special gaps we obtain a decomposition intom-irreducibleD
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1228 VÍCTOR BLANCO AND JUSTO PUERTO

Algorithm 3. Decomposition into m-irreducible numerical semigroups.

Input: A numerical semigroup S of multiplicity m.
Compute the Kunz-coordinates vector of S: x ∈ Z

m−1
+ . (Computing the

Apéry set.)
D = {}.
Compute SGm(x).
if #SGm(x) = 1 then

DmIR = {x}
else

for hi ∈ SGm(x) do
if hi < 2m then

Set D := D ∪ {1+ ek(h)}.
else

Let ŷ be an optimal solution of (IPm(x, h)). Set D := D ∪ {x− ŷ} .

Let D = {x1, . . . , xs}.
if #SGm(x) = 2 then

DmIR = D
else

Select a minimal decomposition from D. Let z∗ be an optimal solution of
(SCm(D)).
Set DmIR = {xj ∈ D : z∗j = 1}

Output: DmIRNS = {〈{m} ∪ {mx′
i + i : i = 1, . . . ,m− 1}〉 : x′ ∈ DmIR}.

Kunz-coordinates. With the following example we show how Algorithms 2 and 3 run
for a given numerical semigroup.

Example 28. Let S = 〈5, 11, 12, 18〉. The multiplicity of S is m = 5, its Kunz-
coordinates vector is x = (2, 2, 3, 4), and SG5(S) = {6, 13, 19}.

First, we solve one integer problem for each special gap:
• h = 6. Since h < 2×5 = 10, the integer problem to solve is P5

5(x, 6) and then
D1 = {x11 = (2, 1, 1, 1)}.

• h = 13. In this case h > 2 × 5 = 10 and h = 3 (mod 5), so the inte-
ger problem in this case is P5

3(x, 13). The whole set of optimal solutions is
{(1, 0, 0, 3), (0, 1, 0, 3)}, so D2 = {x21 = (2, 1, 3, 1), x22 = (1, 2, 3, 1)}.

• h = 19. Since h = 19 > 2 × 5 = 10 and h = 4 (mod 5), the problem is now
P5
4(x, 19). The set of optimal solutions is {(1, 0, 0, 0), (0, 0, 0, 1)}, and then

D3 = {x31 = (1, 2, 3, 4), x32 = (2, 2, 2, 4)}.
The above five Kunz-coordinates vectors give a decomposition in oversemigroups of
S. To obtain a minimal decomposition we must solve the associated set covering
problem.

Solving SC5(D) we obtain that z11 = z31 = 1 and all other variables are set to
zero, being then the minimal decomposition given by x11 and x31, i.e., a minimal
decomposition into 5-irreducible Kunz-coordinates is given by {(2, 1, 1, 1), (1, 2, 3, 4)}.
Translating to numerical semigroups,

S = 〈5, 11, 7, 8, 9〉 ∩ 〈5, 6, 12, 18, 24〉.

When solving (IPm
k (x, h)), we obtain the same decomposition.

However, the decomposition obtained with Algorithm 3 may not be minimal. The
following example illustrates this fact.
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Example 29. Let S = 〈12, 17, 18, 23, 26, 28, 33, 39〉 be a numerical semigroup
of multiplicity 12. Its Kunz-coordinates vector is x = (4, 2, 3, 2, 1, 1, 3, 3, 2, 2, 1) and
SG12(x) = {21, 22, 27, 31, 32, 37}. Then, six integer problems must be solved: IP12

12(x, 21),
IP12

12(x, 22), IP12
3 (x, 27), IP12

7 (x, 31), IP12
8 (x, 32), and IP12

1 (x, 37). By solving these
problems with Xpress-Mosel 7.0 [50] we obtain the following optimal solutions: x −
y ∈ {(1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1) , (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1), (1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1),
(2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1), (1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 1), (4, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1)}.

The translations of the above coordinates in terms of numerical semigroups are
{〈12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 33〉, 〈12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 34, 23〉,
〈12, 13, 16, 17, 18, 19, 20, 21, 22, 23〉, 〈12, 15, 17, 18, 20, 21, 22, 23, 25, 26, 28, 43〉,
〈12, 13, 17, 18, 21, 22, 23, 26, 27, 28, 31, 44〉, 〈12, 15, 17, 18, 21, 23, 26, 28, 31, 32, 34, 49〉}.

Now, by solving problem (SCm(D)), 〈12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 34, 23〉 is
discarded. Then, the decomposition using our methodology is given by five 12-
irreducible numerical semigroups:
S = 〈12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 33〉∩ 〈12, 13, 16, 17, 18, 19, 20, 21, 22, 23〉∩
〈12, 15, 17, 18, 20, 21, 22, 23, 25, 26, 28, 43〉∩ 〈12, 13, 17, 18, 21, 22, 23, 26, 27, 28, 31, 44〉∩
〈12, 15, 17, 18, 21, 23, 26, 28, 32, 34〉.

However, this decomposition is not minimal since S = 〈12, 13, 16, 17, 18, 19, 20, 21,
22, 23, 26, 39〉∩〈12, 15, 17, 18, 20, 21, 22, 23, 25, 26, 28, 43〉∩〈12, 13, 17, 18, 21, 22, 23, 26,
27, 28, 31, 44〉 ∩ 〈12, 15, 16, 17, 18, 23, 26, 31, 32, 33, 34, 49〉 is a decomposition into m-
irreducible numerical semigroups using a smaller number of terms.

In Example 29 we found that by applying the described methodology we got a
decomposition which is not minimal. This situation is due to the fact that among the
whole set of optimal solutions of (IPm(x, h)), Algorithm 3 chooses a particular one,
but depending on that choice, different numbers of elements can be discarded from
that decomposition to obtain the minimal one. To avoid this fact, we need to consider
a compact model that connects all the possible elements in the decomposition and
that selects, among all of them, the smallest number of solutions to decompose a
Kunz-coordinates vector.

6. A compact model for minimally decomposing into m-irreducible
Kunz-coordinates vectors. In the section above we described an exact and a
heuristic procedure to compute a minimal decomposition of a Kunz-coordinates vec-
tor x ∈ Z

m−1 into m-irreducible Kunz-coordinates. To obtain solutions by using that
exact procedure we need to enumerate the solutions of a knapsack type diophantine
equation included in the Kunz polyhedron. Once we have those solutions, a set cov-
ering problem must be solved to obtain a minimal decomposition. By using that
model, the complete enumeration cannot be avoided since, by choosing one solution,
one may obtain nonminimal decompositions when solving the set covering model (see
Example 29). We present here a compact model to decompose any Kunz-coordinates
vector, x ∈ Z

m−1
+ , merging in a single integer linear programming problem all the

subproblems considered in the previous section to ensure minimal decompositions.
Moreover, this approach will allow us to prove a polynomiality result for the problem
of decomposing into m-irreducible numerical semigroups.

Let SGm(x) = {h1, . . . , hs}.
We consider the following families of decision variables for the new model:
• yli ∈ Z+ for all l = 1, . . . , s and i = 1, . . . ,m − 1 such that x − yl is an
m-irreducible undercoordinate of x with Frobenius number hl.

• wl ∈ {0, 1} for all l = 1, . . . , s, representing if x− yhl is chosen (1) or not (0)
for a minimal decomposition into m-irreducible coordinates of x.
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1230 VÍCTOR BLANCO AND JUSTO PUERTO

• zlk ∈ {0, 1} that measures if hk is a gap of x − yl (1) or not (0) for all
l, k = 1, . . . , s. Note that hk ∈ G(x − yl) if and only if ylk(hk)

= 0.

In addition, take M � max{xk(hl) : l = 1, . . . , s}. Then, the proposed model,
CIPm(x), is described as follows:

(CIPm(x)) min

s∑
l=1

wl

s.t.

yli � xi − 1 for all i = 1, . . . ,m− 1 for all l = 1, . . . , s,(6.1)

yli + ylj − yli+j � xi + xj − xi+j if i+ j < m for all l = 1, . . . , s,(6.2)

yli + ylj − yli+j−m � xi + xj − xi+j−m + 1 if i+ j > m for all l = 1, . . . , s,(6.3)

m−1∑
i=1

yli =

(
m−1∑
i=1

xi −
⌈
hl + 1

2

⌉)
wl for all l = 1, . . . , s with hl > 2m,(6.4)

m−1∑
i=1

yli =

(
m−1∑
i=1

xi −m

)
wl for all l = 1, . . . , s with hl < 2m,(6.5)

ylk(hl)
= 0 for all l = 1, . . . , s,(6.6) ∑

l

zlk(hk)
� 1 for all k = 1, . . . , s,(6.7)

zlk(hk)
� 1− ylk(hk)

−M (1− wl) for all l, k = 1, . . . , s,(6.8)

ylk(hk)
� M(1− zlk(hk)

) for all k = 1, . . . , s,(6.9)

zlk(hk)
� wl for all l, k = 1, . . . , s,(6.10)

yli ∈ Z+, for all i = 1, . . . ,m− 1, l = 1, . . . , s,(6.11)

wl ∈ {0, 1}, for all l = 1, . . . , s,(6.12)

zlj ∈ {0, 1} for all l = 1, . . . , s, j = 1, . . . ,m− 1.(6.13)

The components of any optimal solutions, y∗, of the above problem in the set
{y∗l : y∗l �= 0, l = 1, . . . , s} = {y∗l1, . . . , y∗lp} give a minimal decomposition of x into
m-irreducible Kunz-coordinates vectors as {x − y∗lj : j = 1, . . . , s}. Note also that
F(x− y∗lj ) = hlj .

Constraints (6.1)–(6.3) ensure that x− yl is an undercoordinate of x. Equations
(6.4) and (6.5) give conditions related to the genus and the Frobenius number of
those Kunz-coordinates vectors (Corollary 5) associated to the choice of yl (wl =
1). Constraint (6.6) ensures that hl is a gap of x − yl and (6.7) that there is at
least one element in the decomposition having hl among its gaps. Constraints (6.8)–
(6.10) control that the variables zlk are well defined. Equations (6.11)–(6.13) are the
integrality and binary constraints for the variables.

The optimal value of (CIPm(x)) gives the number of Kunz-coordinates involved
in a minimal decomposition of x into m-irreducible Kunz-coordinates vectors.
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The solution of (CIPm(x)) gives exactly a minimal decomposition of x into m-
irreducible Kunz-coordinates (or m-irreducible numerical semigroups). However, it is
harder to solve than the problems in Algorithm 3 since it has many more variables. (By
using Algorithm 3, we need to solve at most m− 1 problems with m− 1 variables and
a set covering problem with at most m− 1 variables while (CIPm(x)) has 2(m− 1)2+
(m − 1) integer/binary variables.) In the computational experiments (see section 6)
we have observed that the solutions when running Algorithm 3 are not far from
minimality and it is faster than solving (CIPm(x)).

Remark 30 (m-symmetry and m-pseudosymmetry). Blanco and Rosales [10] also
defined the notion of m-symmetry and m-pseudosymmetry of a numerical semigroup
of multiplicity m, extending the previous notions of symmetry and pseudosymmetry
(see [47]). A numerical semigroup S of multiplicity m is m-symmetric if S is m-
irreducible and F(S) is odd. On the other hand, S is m-pseudosymmetric if S is
m-irreducible and F(S) is even.

Rosales and Branco analyzed in [42] and [43] those numerical semigroups that can
be decomposed into symmetric numerical semigroups. (In this case the semigroup is
called the ISY-semigroup.) Another interesting application of our methodology is to
compute a decomposition of S into m-symmetric numerical semigroups. (Following
the notation in [43], S is an ISYM-semigroup.) This follows by fixing in (CIPm(x))
that the m-irreducible numerical oversemigroups of S associated to even special gaps
do not appear in the decomposition (yli = 0 for all i = 1, . . . ,m − 1 if l is even).
Thus, the m-irreducible numerical semigroups whose Frobenius numbers are each of
the odd special gaps must cover the whole set of gaps. If this problem is feasible,
its solution gives a minimal decomposition into m-symmetric numerical semigroups.
However, in this case we cannot ensure that it is always possible to decompose into
m-symmetric numerical semigroups (for instance, a numerical semigroup with even
Frobenius number is not decomposable in this way). Then, if problem (CIPm(x))
is infeasible, the semigroup cannot be expressed as an intersection of m-symmetric
numerical semigroups.

In addition, [43] analyzes the set of ISYG-semigroups (those that can be expressed
as an intersection of symmetric semigroups with the same Frobenius number). We
could introduce the notion of ISYGM-semigroups (those that can be expressed as an
intersection of symmetric numerical semigroups with the same Frobenius number and
multiplicity). This case can also be handled with our approach by fixing the Frobenius
number of the semigroup in (CIPm(x)).

A similar methodology can be applied to compute a decomposition into m-
pseudosymmetric numerical semigroups.

Remark 31 (computational complexity). Assume that m is fixed. (CIPm(x))
has at most 2(m− 1)2 + (m− 1) variables and then it is solvable in polynomial time
[35]. It is worth noting that the heuristic approach also has polynomial time overall
complexity. Indeed, for each special gap of x, one integer program is solved, IPm(x, h)
if h > 2m or IPm

m(x) if h < 2m. Since the number of special gaps is bounded above
by m − 1, the complexity of this step is polynomial for fixed multiplicity and so is
polynomial. Once we have the solutions for all the special gaps, the discarding step
consists of solving the set covering problem (SCm(D)) with at most m− 1 variables
and so is polynomial in m.

On the other hand, the algorithm proposed in [10] to decompose a numerical semi-
group S of multiplicity m into m-irreducible numerical semigroups can be rewritten
as follows.
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Fig. 6.1. Sketch of Gx.

Let Gx = (V,E) be a directed graph whose set of vertices is the set of un-
dercoordinates of x, Um(x), and (x1, x2) ∈ E if x2 = x1 − eh (mod m) for some
h ∈ SGm(x). Figure 6.1 illustrates how this graph is built. In that figure we de-
note SGm(x) = {h1, . . . , hk} and SGm(x + ek(h)) = {h′

1, . . . , h
′
k}. The algorithm

searches for a set of vertices {x1, . . . , xn} with the properties that #SGm(xi) = 1 for
all i = 1, . . . , n and that any other vertex is dominated by any of the elements in
the set. Furthermore, Gx is a tree since it does not have circuits. In [10], a breadth
first search over this tree is proposed to find the desired set. Clearly, the worst case
complexity of this method is exponential even for fixed multiplicity.

7. Computational experiments. In this section we present the results of some
computational experiments designed to analyze the performance of the proposed al-
gorithms. Our algorithms have been implemented in XPRESS-Mosel 7.0 [50], which
allows us to solve the single-objective integer problems involved in the decomposition
into m-irreducible numerical semigroups by using a branch-and-bound method and
nesting models by calling the library mmjobs. The algorithms have been executed on
a PC with an Intel Core 2 Quad processor at 2x 2.50 GHz and 4 GB of RAM.

The complexity of the algorithm depends of the dimension of the space (multi-
plicity), the size of the coefficients of the constraints, and the number of special gaps.
Then, we randomly generated three different batteries of numerical semigroups with
the following requirements:
Battery I. Numerical semigroups with multiplicities ranging in [0, 25] (divided in the

five subintervals (0, 5], (5, 10], (10, 15], (15, 20], and (20, 25]) with generators
ranging in [2, 5000]. There are 10 instances for each subinterval.

Battery II. Numerical semigroups with multiplicities ranging in [10, 2000] (divided
in the seven subintervals (10, 25], (25, 50], (50, 100], (100, 250], (250, 500],
(500, 1000], and (1000, 2000]) with generators ranging in [2, 5000]. There are
five instances for each subinterval.

Battery III. Numerical semigroups with multiplicities ranging in [25, 150] (divided in
the five subintervals (25, 50], (50, 75], (75, 100], (100, 125], and (125, 150]) with
generators ranging in [2, 5000] and with number of special gaps greater than
the multiplicity less than or equal to 30. There are 10 instances for each
subinterval.

The first battery of problems is designed to compare the three algorithms: the one
implemented in GAP, the heuristic approach (Algorithm 3), and the compact model
(CIPm(x)). With the second set of problems, we check the efficiency of Algorithm 3
for solving large instances. Finally, with the third battery of problems, we compare theD
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Table 7.1

Results of the computational experiments for Battery I.

m CMtime Heurtime GAPtime #SG #m-irred avgap

[0,5] 0.001 0.020 0.001 1.5 1.5 0
(5,10] 0.003 0.054 2.3973 2.7 2.3 0
(10, 15] 0.013 0.091 4.1645 4.1 3.4 0.1
(15,20] 0.053 0.081 523.556 5.4 4 0
(20,25] 0.046 0.089 n/a 5.7 4.4 0.1

Table 7.2

Results of the computational experiments for Battery II.

m Heurtime #SG #m-irred

(25,50] 0.242 11.8 7.2
(50,100] 1.411 19.6 9.6
(100,250] 168.272 42.4 25.4
(250,500] 1318.475 86.2 47.8
(500,1000] 1056.878 27.2 18.8
(1000,2000] 1895.058 15.2 9.8

Table 7.3

Results of the computational experiments for Battery III.

m CMtime Heurtime #SG #m-irred avgap

(25,50] 1.064 0.201 9.3 5.8 0.7
(50,75] 6.981 0.713 13.5 7.1 1.1
(75,100] 58.580 1.819 16.3 9 1
(100,125] 102.999 3.428 15.1 7.1 1.6
(125,150] 144.531 5.752 15.5 8.3 1.3

difficulty of solving (CIPm(x)) and the heuristic algorithm. (Note that this difficulty
is mainly due to the number of special gaps since it increases the number of variables.)
Therefore, we generate numerical semigroups with very large multiplicities but where
the number of special gaps is bounded above by 30.

We used recursively the function RandomListForNS of GAP[17] until we found
the list of integers defining the semigroup with the above requirements. The imple-
mentation done for decomposing in GAP (with the package numericalsgps) into m-
irreducible numerical semigroups is an adaptation of the function DecomposeIntoIrre-

ducibles for decomposing into standard irreducible numerical semigroups.
The results of these experiments are summarized in Tables 7.1–7.3. In these

tables, m indicates the range of the multiplicity, CMtime and Heurtime the average
times in seconds consumed by solving (CIPm(x)) and Algorithm 3, respectively, in
Xpress-Mosel, GAPtime informs on the average time consumed by GAP for the same
task, #SG is the average number of special gaps of the problems, and #m-irred is
the average number of semigroups involved in a minimal decomposition. The column
avgap is the average difference between the number of numerical semigroups used
in the heuristic decomposition and the number of numerical semigroups used in the
minimal decomposition computed by solving (CIPm(x)).

Note that even for instances of Battery I, GAP was not able to solve any of the
10 instances when the multiplicity ranges in (20, 25].

We have also observed that the algorithm implemented in GAP does not ensure
minimal decompositions into m-irreducible numerical semigroups. For instance, con-
sider the semigroup S = 〈15, 17, 19, 48, 52, 59, 73〉 that decomposes in GAP into six
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15-irreducible numerical semigroups, while our methodology obtains a decomposition
into five 15-irreducible numerical semigroups. The reason GAP fails is closely re-
lated to the fact that prevents ensuring, in all cases, that Algorithm 3 gets minimal
solutions.

From our computational experiments we observe that except for the instances
with m ∈ [0, 5], where the algorithm in GAP takes almost the same time to compute
the decompositions, our methodology solves the problems faster than GAP. Actually,
in this battery solving the problem (CIPm(x)) is the best way to compute such a
decomposition. This is due to the minimum computational time consumed by Xpress-
Mosel to load the problems involved in Algorithm 3.

Both the exact algorithm based on solving (CIPm(x)) and the heuristic approach
are able to compute, in reasonable CPU times, minimal decompositions into m-
irreducible numerical semigroups for multiplicities up to 150, while the procedure
implemented in GAP is not able to solve problems with multiplicities ranging even in
(20, 25]. Furthermore, although the default branch-and-bound algorithm is not able
to solve (CIPm(x)) for larger multiplicities, the heuristic approach solves problems
with multiplicities up to m = 2000.

The heuristic approach finds a short decomposition of numerical semigroups into
m-irreducible numerical semigroups much faster than the exact approach. Further-
more, the heuristic approach reaches a minimal decomposition most of the time. For
instance, in the first battery of problems, the heuristic value does not coincide with
the exact optimal one in only 2 of the 50 instances. Moreover, the third battery of
instances satisfies that in 30% of the cases the minimal decomposition coincides with
the heuristic short decomposition, in 34% of the cases the difference is only one semi-
group, in 30% of the cases it is two semigroups, in 4% (two cases) it is three, and in
only 2% (one instance) it is four.

Note that most of the computations done by using Algorithm 3 may be paral-
lelized by solving in different cores each of the problems (IPm

k (x, h)) since they are
independent. This could improve the CPU times and sizes of the problems because
more than 99% of the time consumed by this algorithm is to solve those problems,
while just a little part of the time is spent solving the set covering problem.

On the other hand, we have simply implemented the proposed models in Xpress-
Mosel, with the default branch-and-bound method. Larger instances could be solved
by applying specific more sophisticated integer programming algorithms to solve each
one of the problems.

8. Concluding remarks. We present in this paper a new approach to decom-
posing a numerical semigroup of multiplicity m into the minimum number of m-
irreducible numerical semigroups. Our methodology is based on translating the prob-
lem to the problem of solving an integer programming problem. Hence, this approach
connects commutative algebra and discrete optimization. The transformation from
the algebraic problem to the optimization formulation uses the notion of the Kunz-
coordinates vector of a numerical semigroup that allows us to encode a numerical
semigroup of multiplicity m as a vector with m− 1 nonnegative integer coordinates.

Although we have presented here a method to compute minimal decompositions
into m-irreducible numerical semigroups, a similar idea can be applied to decompose
a numerical semigroup into (standard) irreducible ones. Note that if we do not fix
the multiplicity, we cannot use the Apéry set with respect to the multiplicity (and
consequently, we cannot use the Kunz-coordinates vector defined in this paper) to en-
code all the numerical semigroups that may take part in the decomposition. However,
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instead of the multiplicity one can use the concept of conductor, i.e., the Frobenius
number plus one, of the numerical semigroup that is to be decomposed. Note that
when decomposing a numerical semigroup S with Frobenius number F , one must
search for the elements in such a decomposition in the set {S′ : S ⊆ S′}, and since
F + 1 belongs to S, F + 1 also belongs to S′ for any S′ ⊃ S. Then, one can use the
Apéry sets with respect to the conductor F+1 and define the Kunz-coordinates vector
with respect to this number. In [11], these alternative coordinates vectors have been
used to enumerate the set of irreducible numerical semigroups with a given Frobenius
number. The advantage of the coordinates vectors with respect to the conductor is
that they have the property of always being vectors with coordinates in {0, 1} and
so are particulary easy to handle. The analysis of these coordinates and their re-
lationship to the Kunz-coordinates vectors for a fixed multiplicity is left for further
research.

Our algorithms have been implemented in XPRESS-Mosel 7.0 but as a future
direction of research we would like to implement them in some open source software
that allows them to be integrated in GAP or any other open source software supporting
integer programming solvers (for instance, SAGE1) so they will be available to the
algebraic community.

Moreover, it would be interesting to compute not only one but all the feasible min-
imal decompositions of a numerical semigroup into irreducible numerical semigroups,
which is equivalent to solving the multiobjective problem described in section 5. The
number of those minimal decompositions has been analyzed in [42]. We believe that
our approach will lead to tighter bounds for that number.

Finally, we would like to point out that finding conditions ensuring uniqueness of
an optimal solution of the integer programming problems (MIP

m
k (x)) would allow us

to prove the exact convergence of our heuristic method in Algorithm 3. We believe
that for numerical semigroups with special structure where one such condition holds,
we would be able to solve even larger problems in shorter times.
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