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Salmonella enterica expresses two virulence-related type III secretion systems (T3SSs)
encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. SseK1 is
a poorly characterized substrate of the SPI2-encoded T3SS. Here, we show that this
effector is essential to get full virulence both in oral and intraperitoneal mice infections, in
spite of not having a role in invasion or intracellular proliferation in cultured mammalian
cells. In vitro, expression of sseK1 was higher in media mimicking intracellular conditions,
when SPI2 was induced, but it was also significant under SPI1 inducing conditions. A
detailed analysis of translocation of SseK1 into host cells unveiled that it was a substrate
of both, T3SS1 and T3SS2, although with different patterns and kinetics depending on
the specific host cell type (epithelial, macrophages, or fibroblasts). The regulation of
the expression of sseK1 was examined using lacZ and bioluminescent lux fusions. The
two-component system PhoQ/PhoP is a positive regulator of this gene. A combination
of sequence analysis, directed mutagenesis and electrophoretic mobility shift assays
showed that phosphorylated PhoP binds directly to the promoter region of sseK1 and
revealed a PhoP binding site located upstream of the predicted −35 hexamer of this
promoter.

Keywords: Salmonella, SseK1, type III secretion, PhoQ/PhoP two-component system, epithelial cells,
macrophages, fibroblasts, bioluminescence

Introduction

Salmonella enterica is a leading cause of bacterial foodborne infections worldwide that can induce
from enterocolitis to systemic diseases, depending on the serovar-host combination (Chen and
Jiang, 2014). The broad-host-range serovar Typhimurium causes gastroenteritis in humans, calves
and other animals, but it causes a systemic typhoid fever-like disease in susceptible mouse strains
(Tsolis et al., 1999; Uzzau et al., 2000). The virulence of these bacteria relies on the possession of
specific genes. Many of them are horizontally transferred elements that are clustered in Salmonella
pathogenicity islands (SPIs; Gyles and Boerlin, 2014). The biggest and best studied clusters are
SPI1 and SPI2, which encode two type III secretion systems, T3SS1 and T3SS2, that are important
for invasion of non-phagocytic cells and for intracellular survival and proliferation, respectively
(Galán and Curtiss, 1989; Ochman et al., 1996; Shea et al., 1996). These are flagellum-like one-
step transport systems that carry out translocation of proteins, known as effectors, across the two
membranes of Gram-negative bacteria and the host cell membrane.
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More than 30 effectors are secreted through Salmonella T3SSs
(Ramos-Morales, 2012; Habyarimana et al., 2014). Some of them
are encoded in SPI1 or SPI2 but many are encoded outside the
islands. The best characterized Salmonella invasion mechanism,
the “trigger” mechanism, requires at least six T3SS1 effectors,
SipA, SipC, SopB, SopE, SopE2, and SptP, that induce remodel-
ing of actin cytoskeleton (Guiney and Lesnick, 2005). SipA, SopB,
SopE, and SopE2 are also involved in the disruption of epithelial
tight junctions (Boyle et al., 2006), whereas AvrA is a tight junc-
tion stabilizer (Liao et al., 2008). SopA, another T3SS1 effector, is
involved in Salmonella-induced polymorphonuclear leukocytes
transepithelial migration (Zhang et al., 2006). Other processes
where T3SS1 is involved are the early and intermediate stages of
the Salmonella-containing vacuole (SCV) biogenesis (Bakowski
et al., 2008; Steele-Mortimer, 2008), and the induction of a rapid
form of pyroptosis, a caspase-1 dependent form of programmed
cell death, in macrophages (Fink and Cookson, 2007). T3SS2 is
expressed intracellularly in response to the low pH and nutri-
ent concentration found in the lumen of the SCV. This system
translocates more than 20 effectors through the SCV membrane
and is involved in several processes including intermediate and
late stages of the SCV biogenesis, generation of tubular networks
(Schroeder et al., 2011), apoptosis in epithelial cells, and delayed
pyroptosis in macrophages (Fink and Cookson, 2007).

According to the different predominant functions related to
T3SS1 and T3SS2, the conditions for optimal expression of
SPI1 or SPI2 are reached at different moments of the infec-
tion. These conditions can be modeled in vitro using appropriate
media: rich medium with low aeration and high NaCl concen-
tration for SPI1, and minimal medium with low pH and low
Mg2+ concentration for SPI2. Some effectors are specifically
coexpressed with their cognate T3SS. There are, however, other
effectors that are expressed under a broad range of conditions and
can be secreted through both systems. This has been described
for GtgE (Niemann et al., 2011), PipB2 (Baisón-Olmo et al.,
2012), SlrP (Miao and Miller, 2000; Cordero-Alba and Ramos-
Morales, 2014), SopD (Jones et al., 1998; Brumell et al., 2003),
SpvC (Mazurkiewicz et al., 2008; Haneda et al., 2012), SpvD
(Niemann et al., 2011), SspH1 (Miao et al., 1999), SteA (Cardenal-
Muñoz and Ramos-Morales, 2011), and SteE (Niemann et al.,
2011).

SseK1 was identified in S. enterica serovar Typhimurium as a
T3SS substrate because of its similarity to known secreted pro-
teins from enterohemorrhagic Escherichia coli and Citrobacter
rodentium (Kujat Choy et al., 2004). Translocation of this pro-
tein into epithelial cells was shown to be T3SS2-dependent
and after translocation SseK1 localized to the host cytosol. At
least two paralogs exist in some S. enterica serovars or strains:
SseK2 (Kujat Choy et al., 2004), which shares 61% amino acid
sequence identity with SseK1, and SseK3 (Brown et al., 2011),
which is encoded in a prophage and is 75% identical to SseK2.
Because of their striking similarity they are considered mem-
bers of the same effector family and they are predicted to
have redundant functions. However, the specific roles of these
proteins in the host cells are unknown and there are con-
flicting reports about their relevance for intracellular replica-
tion of Salmonella and for virulence in mice. A study of the

contribution of some T3SS2 effectors to replication in host cells
reported that a triple mutant sseK1 sseK2 sseK3 had signifi-
cantly reduced growth levels in RAW264.7 macrophages but
showed no defect in bacterial counts in systemic organs of mice
after oral infection (Buckner et al., 2011). In contrast, another
study showed significant attenuation for this mutant in mice
but did not detect intracellular growth defects (Brown et al.,
2011).

In this work, we carry out a detailed analysis of the patterns of
expression and the kinetics of translocation of SseK1 into differ-
ent host cell models. Our data suggest that, under physiological
conditions of expression, SseK1 is not translocated upon the ini-
tial contact with the eukaryotic cell but when Salmonella is inside
the cell. Interestingly, translocation can occur through T3SS1
and/or T3SS2, depending of the host cell type and the time after
infection. We also show an SsrB-independent, positive, direct
regulation of sseK1 by the two-component system PhoQ/PhoP
and identify a PhoP box in the promoter region of SseK1.

Materials and Methods

Bacterial Strains, Bacteriophages and Strain
Construction
Escherichia coli and S. enterica serovar Typhimurium strains used
in this study are described in Table 1. Salmonella strains derive
from the mouse-virulent strain ATCC 14028. Transductional
crosses using phage P22 HT 105/1 int201 (Schmieger, 1972) were
used for strain construction (Maloy, 1990). To obtain phage-
free isolates, transductants were purified by streaking on green
plates. Green plates were prepared as described (Chan et al.,
1972), except that methyl blue (Sigma) substituted for aniline
blue. Phage sensitivity was tested by cross-streaking with the
clear-plaque mutant P22 H5 (Chan et al., 1972).

Bacterial Culture
The standard culture medium for S. enterica and E. coli was
Luria-Bertani (LB) broth. For SPI1-inducing conditions, S. enter-
ica strains were grown overnight at 37◦C in LB-0.3 M NaCl
medium without shaking. For SPI2-inducing conditions, bacte-
ria were inoculated in low magnesium minimal medium (LPM)
at pH 5.8, and incubated overnight at 37◦C with shaking.
LPM contained 80 mM 2-(N-morpholino) ethanesulfonic acid
(pH 5.8), 5 mM KCl, 7.5 mM (NH4)2SO4, 0.5 mM K2SO4,
0.1% casamino acids, 38 mM glycerol, 337.5 μM K2HPO4-
KH2PO4 (pH 7.4), and 8 μM MgCl2. For some experiments
the concentration of NaCl, of MgCl2, or the pH of the medium
were modified as indicated. Solid media contained 1.5% agar.
Antibiotics were used at the following final concentrations in
rich medium: kanamycin (Km), 50 μg ml−1; chloramphenicol
(Cm), 20 μg ml−1; ampicillin (Ap), 100 μg ml−1; tetracy-
cline (Tc), 20 μg ml−1. In minimal medium antibiotics were
used at these concentrations: kanamycin, 125 μg ml−1; chlo-
ramphenicol, 5 μg ml−1; ampicillin, 50 μg ml−1; tetracy-
cline, 10 μg ml−1. Plates for monitoring β-galactosidase activ-
ity contained 5-bromo-4-chloro-indolyl-β-D-galactopyranoside
(X-Gal, final concentration, 40 μg ml−1). 10 mM sodium
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TABLE 1 | Bacterial strains and plasmids used in this study.

Strain/plasmid Relevant characteristics Source/reference

Escherichia coli

DH5α supE44 �lacU169 (Ø80 lacZ�M15)
hsdR17 recA1 endA1 gyrA96 thi-1
relA1

Hanahan (1983)

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17
supE44 relA1 �lac-pro/F’ proAB
lacIq lacZ�M15 Tn10 (Tetr )

Bullock et al. (1987)

M15 lac ara gal mtl Qiagen

Salmonella enterica serovar Typhimuriuma

14028 Wild-type ATCC

55130 phoQ24 (PhoP constitutive) E. A. Groisman

SV4536 �dam-230 Prieto et al. (2004)

SV4608 trg::MudJ Segura et al. (2004)

SV4699 phoP7953::Tn10, Tcr Groisman et al.
(1989), Segura et al.
(2004)

SV4757 rcsC54 García-Calderón
et al. (2005)

SV5049 �rcsB::Cmr García-Calderón
et al. (2007)

SV5373 �hilA J. López-Garrido

SV5452 �ssrB::Cmr García-Calderón
et al. (2007)

SV6017 �SPI2::Cmr Baisón-Olmo et al.
(2012)

SV6055 �SPI1::Kmr Baisón-Olmo et al.
(2012)

SV6402 �hilD::Cmr J. López-Garrido

SV7070 �sseK1::Kmr This study

SV7071 sseK1::3xFLAG, Kmr This study

SV7179 �sseK1 This study

SV7381 sseK1::cyaA’, Kmr This study

SV8165 sseK1::lacZ (translational fusion) This study

Plasmids

pCE36 aph FRT lacZY+ this oriR6K Ellermeier et al.
(2002)

pCE40 aph FRT ‘lacZ lacY+ this oriR6K Ellermeier et al.
(2002)

pCP20 bla cat cI857 λPR flp pSC101 oriTS Cherepanov and
Wackernagel (1995)

pIC552 parent for lacZ transcriptional fusions,
Apr

Macián et al. (1994)

pIZ1673 pSIF003-R1 �lacI Cardenal-Muñoz and
Ramos-Morales
(2011)

pIZ1949 pQE30-phoP Cardenal-Muñoz and
Ramos-Morales
(2013)

pIZ1959 pIZ1673-SseK1(1-336) This study

pIZ2095 pIC552- PsseK1(−500/+40) This study

pIZ2112 pIC552-
PsseK1(−500/+40)TT−73/−72CC

This study

pIZ2115 pSB377-PsseK1(−500/+40) This study

pIZ2135 pSB377-
PsseK1(−500/+40)TT−51/−50CC

This study

pIZ2136 pSB377-
PsseK1(−500/+40)TT−62/−61CC

This study

(Continued)

TABLE 1 | Continued

Strain/plasmid Relevant characteristics Source/reference

pIZ2137 pSB377-
PsseK1(−500/+40)TT−73/−72CC

This study

pIZ2154 pIC552-
PsseK1(−500/+40)TT-62/-61,
−73/−72CC

This study

pKD4 bla FRT aph FRT PS1 PS2 oriR6K Datsenko and
Wanner (2000)

pKD13 bla FRT aph FRT PS1 PS4 oriR6K Datsenko and
Wanner (2000)

pKD46 bla PBAD gam bet exo pSC101 oriTS Datsenko and
Wanner (2000)

pREP4 lacI, Kmr Qiagen

pSB377 parent for luxCDABE transcriptional
fusions, Apr

Winson et al. (1998)

aDerivatives of these strains were used as indicated in the text.

butyrate (Sigma) was added to the medium in some experi-
ments.

Mammalian Cell Culture
HeLa (human epithelial; ECAC no. 93021013), RAW264.7
(murine macrophages; ECACC no. 91062702), NRK-49F (nor-
mal rat kidney fibroblasts; ATCC CRL-1570), Cos-7 (mon-
key fibroblasts; ATCC CRL-1651), NIH3T3 (murine fibroblasts;
ATCC CRL-1658), J774A.1 (murine macrophages; ATCC TIB-
67) and Caco2 (human epithelial; ATCC HTB-37) cells were
cultured in DMEM supplemented with 10% fetal calf serum and
2 mM L-glutamine. Sixty μg ml−1 penicillin, and 100 μg ml−1

streptomycin were included in the culture media (except for bac-
terial infection experiments). All cells were maintained in a 5%
CO2 humidified atmosphere at 37◦C.

DNA Amplification with the Polymerase
Chain Reaction and Sequencing
Amplification reactions were carried out in a T100 Thermal
Cycler (Bio-Rad). The final volume of reactions was 50 μl, and
the final concentration of MgCl2 was 1.5 mM. Reagents were
used at the following concentrations: dNTPs, 300 μM; primers,
0.3μM; and Taq polymerase (KAPAHiFi DNAPolymerase, Kapa
Biosystems), 1 unit per reaction. The thermal program included
the following steps: (i) initial denaturation, 3 min at 95◦C; (ii) 25
cycles of denaturation (98◦C, 20 s), annealing (60◦C, 15 s), and
extension (72◦C, 30 s per kb); and (iii) final incubation at 72◦C for
5 min, to complete extension. To generate directed mutations in
the sseK1 promoter cloned in pSB377 or pIC552 the thermal pro-
gram included the following steps: (i) initial denaturation, 3 min
at 95◦C; (ii) 17 cycles of denaturation (98◦C, 20 s), annealing
(62◦C, 15 s), and extension (72◦C, 6 min); (iii) final extension
at 72◦C for 5 min. Primers are listed in Table 2. PCR constructs
were sequenced with an automated DNA sequencer (Stab Vida,
Oeiras, Portugal).

Plasmids
Plasmids used in this study are listed in Table 1. Plasmid
pIZ2115 expressing a transcriptional sseK1::lux fusion was
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TABLE 2 | Oligonucleotides used in this study.

Oligonucleotide/use Sequence 5′-3′

sseK1 deletion

sseK1dP1 TAAAATATGTAATGAAGTAAGTATGGAGCA
TTTAATTGTTGTGTAGGCTGGAGCTGCTTC

sseK1dP2 ATATTTTATGTATTCAATAGCATGATTATTGCCA
TTTCCGCATATGAATATCCTCCTTAG

Construction of sseK1::lacZ translational fusion

sseK1P1b CATGAACTTTGCGTAAACTGACTGGTATTCATT
ATAATGTGTGTAGGCTGGAGCTGCTTC

sseK1P4 ATATGTTCCCGCGCTTTCAAAAAATGAATTGGTT
AAAACTATTCCGGGGATCCGTCGACC

Epitope tagging of SseK1

sseK1P1flag CAGTCAGTTTACGCAAAGTTCATGGGCGAGGCAT
GTGCAGGACTACAAAGACCATGACGG

sseK1P2flag ATATTTTATGTATTCAATAGCATGATTATTGC
CATTTCCGCATATGAATATCCTCCTTAG

Chromosomal sseK1::cyaA’ fusion

sseK1P1 CAGTCAGTTTACGCAAAGTTCATGGGCGAGGCA
TGTGCAGCTGCAGCAATCGCATCAGGC

sseK1P2 ATATTTTATGTATTCAATAGCATGATTATTGCCAT
TTCCGTTAGAAAAACTCATCGAGCATC

Verification of chromosomal sseK1::cyaA’ fusion

sseK1E1 TTAATTGCTCACTGGCAGGG

sseK1E2 GCACTGCGATTTTAAAGTGG

cyaArev CCTTGATGCCATCGAGTACG

Construction of pIZ1959

sseK1BampSIFfw AGTCGGATCCAGGAGGAAATAT
ATGATCCCACCATTAAATAG

sseK1BampSIFrev GATCGGATCCACTGCACATG
CCTCGCCCATG

Construction of pIZ2095

PsseK1−500fwBgl AGTCAGATCTTTGGGACAATTACATTATG

PsseK1+40revXho AGTCCTCGAGAACAATTAAATGCTCCATAC

Construction of pIZ2115

PsseK1−500fwEco AGTCGAATTCTTGGGACAATTACATTATG

PsseK1+40revEco AGTCGAATTCAACAATTAAATGCTCCATAC

Construction of pIZ2135

sseK1TT−51CCfw GCTTAGTTTAGCATCTTCCAGCTGACAGCGATTGC

sseK1TT−51CCrev GCAATCGCTGTCAGCTGGAAGATGCTAAACTAAGC

Construction of pIZ2136

sseK1TT−62CCfw CCTCCGGTTAATGCTTAGCCTAGCATC
TTTTAGCTGAC

sseK1TT−62CCrev GTCAGCTAAAAGATGCTAGGCTAAGCATT
AACCGGAGG

Construction of pIZ2112 and pIZ2137

sseK1TT−73CCfw GTATTTATGTATCCTCCGGCCAATGCTTAGT
TTAGCATC

sseK1TT−73CCrev GATGCTAAACTAAGCATTGGCCGGAGGATAC
ATAAATAC

Construction of pIZ2154

sseK1−73TT−62CCfw CCTCCGGCCAATGCTTAGCCTAGCATCTTT
TAGCTGAC

sseK1−73TT−62CCrev GTCAGCTAAAAGATGCTAGGCTAAGCATTGG
CCGGAGG

sseK1 promoter

FAMsseK1−500fw TTGGGACAATTACATTATGTTTG

FAMsseK1+40rev AACAATTAAATGCTCCATACTTAC

(Continued)

TABLE 2 | Continued

Oligonucleotide/use Sequence 5′-3′

FAMsseK1−300fw CTCGCCATTATAAAATACCTG

FAMsseK1−1rev CATGATGATTATTAGCACATG

slyB promoter

promslyBdir AGACTTGCCTGTTGCGCAAC

promslyBrev AAACGCTATTTCAGCATCCC

phoN promoter

promphoNdir AATGCGTGTCAGTCAGGCAC

promphoNrev TTAGCTACGATCAGTGGTAG

a derivative of pSB377 (a generous gift from P. Williams,
University of Nottingham). To construct this plasmid, DNA
from strain 14028 was used as a template for PCR amplification
with the primers listed in Table 2. The amplified fragments
were digested with EcoRI and ligated with EcoRI-digested
pSB377. To generate point mutations in the sseK1 promoter,
pIZ2095 or pIZ2115 were used as templates for PCR amplifi-
cation using primer pairs sseK1TT-51CCfw/sseK1TT-51CCrev,
sseK1TT-62CCfw/sseK1TT-62CCrev, sseK1TT-73CCfw/sseK1
TT-73CCrev, or sseK1-73TT-62CCfw/sseK1-73TT-62CCrev.
Products were digested with 1 μl of DpnI (10 U μl−1) for 1 h at
37◦C and used to transform E. coli DH5α. All constructs were
confirmed by DNA sequencing.

Generation of a sseK1 Mutant
Disruption and replacement of sseK1 with a Km resistance
gene were performed as described previously (Datsenko and
Wanner, 2000). Briefly, the Km resistance gene from plasmid
pKD4 was PCR amplified with primers sseK1dP1 and sseK1dP2
(Table 2). The PCR product was used to transform the wild-
type strain carrying the Red recombinase expression plasmid
pKD46.

Construction of lacZ, 3xFLAG, and cyaA’
Chromosomal Fusions
The Km resistance gene from plasmid pKD13 was PCR ampli-
fied with primers sseK1P1b and sseK1P4 (Table 2). The PCR
product was used to transform the wild-type strain carrying
the Red recombinase expression plasmid pKD46. The antibiotic
resistance cassette introduced by the gene-targeting procedure
described in the previous section was eliminated by recombina-
tion using the FLP helper plasmid pCP20 (Datsenko andWanner,
2000). The FRT site generated by excision of the antibiotic resis-
tance cassette was used to integrate plasmid pCE40 to generate
a translational lac fusion (Ellermeier et al., 2002). Addition of a
DNA fragment encoding the 3xFLAG epitope tag at the 3′ end
of sseK1 was carried out as described (Uzzau et al., 2001) using
primers sseK1P1flag and sseK1P2flag. The protocol to gener-
ate a chromosomal sseK1::cyaA’ translational fusion was recently
described (Ramos-Morales et al., 2015).

β-Galactosidase Assays
Levels of β-galactosidase were assayed as described (Miller, 1972),
using the CHCl3/SDS permeabilization procedure. Bacteria
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were grown under SPI1 or SPI2-inducing conditions or
modifications of these conditions as described in Section
“Results.”

Antibodies and Immunoblot
Salmonella strains were grown under different conditions.
Usually, cultures in LB medium were diluted and grown in
different media. The bacteria were then pelleted by centrifuga-
tion and resuspended in sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) sample buffer. Proteins from
the same numbers of bacteria were separated by gradi-
ent SDS-PAGE (Mini-PROTEAN TGX precast gels, 4–15%)
and electrophoretically transferred to nitrocellulose filters for
Western blot analysis using anti-Flag (M2) monoclonal anti-
bodies (1:5000; Sigma), and anti-DnaK (8E2/2) monoclonal
antibodies (1:5000; Assay Designs). Goat anti-mouse HRP-
conjugated antibodies (1:5000; BioRad) and goat anti-rabbit
HRP-conjugated antibodies (1:10000; GE Healthcare) were used
as secondary antibodies. Intensities of SseK1-3xFLAG and
DnaK bands were quantified using NIH ImageJ 1.42q soft-
ware.

Virulence Assays in Mice
Groups of three 8-weeks-old female BALB/c mice (Charles River
Laboratories) were inoculated with a 1:1 ratio of two strains of
S. enterica serovar Typhimurium: a �sseK1::Kmr null mutant
and the wild-type (strain 14028). For oral inoculation, bac-
terial cultures were grown overnight at 37◦C in LB without
shaking. For intraperitoneal inoculation, bacteria were grown
overnight at 37◦C in LB with shaking, diluted into fresh medium
(1:100), and grown to an OD600 of 0.3–0.6. Oral inoculation
was performed by feeding the mice with 25 μl of 0.9% NaCl
containing 0.1% lactose and 108 CFU. Intraperitoneal inocu-
lation was performed with 0.2 ml of 0.9% NaCl containing
105 CFU. Bacteria were recovered from spleens 6 days (oral)
or 2 days (intraperitoneal) after inoculation and colonies were
enumerated on LB and LB with Km (to distinguish mutant and
wild-type strains). A competitive index (CI) was calculated as
the ratio between the sseK1 mutant and the wild-type strain in
the output (bacteria recovered from spleens) divided by their
ratio in the input (initial inoculum). The experimental proto-
col was approved by the ethical committee of the University of
Seville.

Bacterial Infections of Cultured Cells
Mammalian cells were plated 24 h before infection in 24-well
plates (Thermo Scientific) at 1.5 × 105 cells per well, and incu-
bated at 37◦C with 5% CO2 in media without antibiotics. For
infections under SPI1-inducing (invasive) conditions, bacteria
grown overnight in LB-0.3 M NaCl in a tightly closed tube with-
out shaking were added at a multiplicity of infection of 100. For
infections of mammalian cells under non-invasive conditions,
bacteria were grown in LB for 24 h at 37◦C with shaking. Bacteria
were centrifuged onto the cell monolayer at 200 g for 5 min and
then incubated at 37◦Cwith 5%CO2. The cell culture was washed
twice with phosphate-buffered saline (PBS) 1 h post-infection
(p.i.), overlaid with DMEM containing 100 μg ml−1 gentamicin,

and incubated for 1 h. The culture was then washed twice with
PBS, covered with DMEM with gentamicin 16 μg ml−1, and
incubated for 2–14 h.

For invasion and proliferation assays, infections were carried
out using a 10:1 mix of the sseK1mutant and a trg::MudJ mutant
(wild-type for invasion and intracellular proliferation but Lac+
due to theMudJ insertion). CI for invasion and proliferation were
calculated as previously described (Segura et al., 2004) after plat-
ing appropriate dilutions and enumerating white colonies (sseK1)
and blue colonies (trg::MudJ) in LB plates supplemented with
40 μg ml−1 5-bromo-4-chloro-galactopyranoside (X-Gal). For
invasion, the input was the initial mix of bacteria used in the
infection and the output bacteria recovered 2 h p.i. For intracel-
lular proliferation, bacteria were recovered 1.25 h p.i. (input) and
24 h p.i. (output).

Bioluminescence Assays
Bacterial strains were grown under SPI1 or SPI2-inducing condi-
tions. Samples of 150μl were transferred into white, clear bottom,
96-well plates (Corning) and luminescence and OD600 were read
using a Synergy HT microplate reader (BioTek). Conditions
used for reading luminescence were: read type, endpoint; inte-
gration time, 1 s; emission, hole; position, top; sensitivity, 150.
To measure luminescence of intracellular bacteria, RAW264.7
cells were plated into white, clear bottom, 96-well plates at
3 × 104 cells per well, and were infected 24 h later with non-
invasive bacteria, according to the protocol described in Section
“Bacterial Infections of Cultured Cells.” Luminescence was mea-
sured 2, 4, and 8 h p.i. and the numbers of CFU per well were
calculated after incubation with 1% Triton X-100 in PBS for
10 min at 37◦C to release bacteria, plating appropriate dilutions
in LB with Ap, and counting colonies after 24 h of incubation
at 37◦C.

Protein Translocation Assay
Following the infections described above, the translocation of the
SseK1-CyaA’ fusion into the eukaryotic cells was monitored by
measuring the levels of cAMP. The infected cells were lysed and
the level of cAMP in the lysates was determined using a col-
orimetric direct cAMP enzyme immunoassay kit (Arbor Assays)
according to the manufacturer’s instructions.

Protein Purification and Phosphorylation
His6-PhoP protein was produced and purified as previously
described (Gal-Mor et al., 2011) with some modifications
(Cardenal-Muñoz and Ramos-Morales, 2013). For binding
assays, S. enterica His6-PhoP was phosphorylated with acetyl
phosphate as previously described (Tang et al., 2012) with modi-
fications. Briefly, His6-PhoP was incubated in 20 μl of phospho-
rylation buffer (50 mM Tris-HCl pH 7.5, 50 mM KCl, 10 mM
MgCl2) containing 10 mM acetyl phosphate (Sigma-Aldrich) for
1 h at 37◦C.

Electrophoretic Mobility Shift Assay (EMSA)
DNA fragments used for the PhoP binding assay were ampli-
fied by PCR using Salmonella 14028 as a template. The primers,
listed in Table 2, were labeled with 6-carboxyfluorescein (FAM).
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PCR amplification rendered fragments of 281, 355, and 540 (or
300) bp for phoN, slyB, and sseK1 promoters, respectively. The
binding assay was carried out as previously described (Tang
et al., 2012) with modifications. Briefly, a solution of 5 nM
of FAM-labeled DNA and 0, 0.125, 0.25, 0.5, 1, and 2 μM
of phosphorylated His6-PhoP was prepared in binding buffer
(50 mM Tris-HCl pH 8.0, 50 mM KCl) in a total volume of
20 μl and incubated for 30 min at room temperature. Protein-
DNA complexes were subjected to electrophoresis at 4◦C in a
6% non-denaturing acrylamide:bisacrylamide (29:1) gel in 0.5X
Tris-borate-EDTA buffer. Images were acquired using a Fujifilm
FLA-5100 system.

Statistical Analysis
Student’s t-test was used to analyze differences in β-galactosidase
activities and light emission. This test was also used to analyze
every CI against the null hypothesis that the mean is not signif-
icantly different from 1. P values of 0.05 or less were considered
significant.

Results

Contribution of SseK1 to Virulence in Mice
The role of SseK1 and SseK2 in virulence was previously eval-
uated by infecting BALB/c mice with sseK1, sseK2 or sseK1
sseK2 mutants, but no attenuation was detected using a time to
death assay after intraperitoneal infections (Kujat Choy et al.,
2004). More recently, a sensitive method, the CI, revealed sig-
nificant attenuation of the sseK1 sseK2 sseK3 triple mutant and
of the sseK1 sseK2 double mutant, but no attenuation of the
sseK3 single mutant, after oral infections (Brown et al., 2011).
These results prompted us to analyze the specific contribu-
tion of SseK1 to Salmonella virulence. An sseK1 null mutant
was generated and the CI for this single mutant compared to
the wild-type strain (S. enterica serovar Typhimurium strain
14028). Significant attenuation (P < 0.05) was observed both
after intraperitoneal and after oral infections of BALB/c mice

(Figure 1A). Specific contribution of SseK1 to invasion and
intracellular proliferation was assessed calculating the CI of the
sseK1 mutant against the trg::MudJ strain [wild-type for inva-
sion and intracellular proliferation (Segura et al., 2004)] in a
variety of mammalian cell types: HeLa (human epithelial), NRK-
49F (rat fibroblasts), RAW264.7 (murine macrophages), Cos-7
(monkey fibroblasts), 3T3 (murine fibroblasts), J774.A1 (murine
macrophages), and Caco2 (human epithelial). No significant
defect was detected for this mutant (P > 0.05; Figures 1B,C).
Together, the results shown in this section suggest that SseK1
is necessary for full virulence of Salmonella in mice but that it
does not contribute specifically to invasion or intracellular pro-
liferation, at least in the cell types and under the conditions
tested.

Synthesis and Translocation into
Mammalian Cells of SseK1 Under SPI1 and
SPI2 Inducing Conditions
Although expression and secretion to culture media of SseK1
was detected under SPI1 and SPI2-inducing conditions, this
Salmonella effector was described as translocated into human
epithelial HeLa cells specifically through the T3SS2 (Kujat Choy
et al., 2004). These previous results were obtained based on
SseK1-2HA and SseK1-CyaA’ fusions expressed from a plas-
mid. To carry out a more detailed analysis of the expression of
sseK1, we constructed a chromosomal lacZ translational fusion
in the native sseK1 locus. This fusion permits quantification of
the physiological levels of expression of this gene by measuring
β-galactosidase activities (see Materials and Methods). As seen
in Figure 2A, sseK1 was expressed under SPI1-inducing con-
ditions (LB, 0.3 M NaCl, without aeration) but its expression
was significantly higher (P < 0.01) under SPI2-inducing condi-
tions (LPM, pH 5.8, high aeration). Variants of these conditions
were tested to detect relevant factors influencing the expression
of sseK1. Changes in osmolarity in the SPI1-inducing medium
had little but significant impact (P < 0.01 or 0.05; Figure 2B),
and the maximum expression in this medium was obtained

FIGURE 1 | Competitive index (CI) analysis for an sseK1 null
mutant. (A) Graphical representation of CI analysis of a strain carrying
a mutation in sseK1 after intraperitoneal (ip) and oral mice infections.
(B) Analysis of invasion of the sseK1 mutant in mixed infections with
a trg::MudJ mutant used as the wild-type strain. (C) Analysis of

intracellular proliferation of the sseK1 mutant in mixed infections with a
trg::MudJ mutant used as the control strain. The CIs are the means
from three infections. Error bars represent the SD. wt, wild-type strain.
Asterisks denote that the CIs are significantly different from 1 for a
t-test P value < 0.05.
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FIGURE 2 | Expression of sseK1 in different culture media.
β-Galactosidase activities were measured from overnight cultures of a
Salmonella enterica strain carrying a chromosomal sseK1::lacZ
translational fusion. (A) Bacteria were incubated overnight at 37◦C in
LB with 0.3 M NaCl without shaking (SPI1) or in LPM with shaking
(SPI2). (B) Different concentrations of NaCl were used to test the
role of osmolarity on sseK1 expression under SPI1-inducing

conditions. (C) The effects of pH, oxygen limitation and butyrate on
sseK1 expression were tested in LB. (D) Activities were measured
after growth in LPM with different pH and Mg++ concentrations, as
indicated. Means and SD from three independent β-galactosidase
measurements are shown. Statistical significance is shown by asterisks
representing t-test P values: ∗P < 0.05; ∗∗P < 0.01. C: reference
for statistical comparison.

with the original NaCl concentration (0.3 M). Hypoxia did not
appear to be an important factor in the expression of sseK1 but
butyrate, a fermentation product found in the intestine that is
known to downregulate SPI1 genes, caused a significant repres-
sion (P < 0.01) of sseK1 expression (Figure 2C). Interestingly,
although the low Mg++ concentration that is present in the
medium used to induce SPI2 (LPM) was a factor contribut-
ing to expression of sseK1, the acidic pH of the same medium
had a negative impact (Figure 2D) and the highest expres-
sion was observed in LPM with low Mg++ concentration at
pH 8.4 (P < 0.01). A general conclusion of these experiments
is that expression of sseK1 is not restricted to SPI1- or SPI2-
inducing conditions resulting in coexpression of this gene with
both islands.

The results shown above are compatible with translocation
of SseK1 through T3SS1 and T3SS2. A detailed analysis of
this possibility was carried out using two kinds of SseK1-CyaA’
fusions: the first one was prepared in a plasmid and its expres-
sion was driven by a constitutive promoter; the second one was
generated in the chromosome under the control of the native
promoter. In both cases the whole SseK1 protein was fused
to the catalytic domain of the calmodulin-dependent adenylate
cyclase from Bordetella pertussis. Salmonella strains (wild-type
and mutants lacking T3SSs) expressing these fusions were used to
infect three mammalian cell types: human epithelial HeLa cells,
murine RAW264.7 macrophages and rat NRK-49F fibroblasts.
Translocation of the fusion into host cells was tested 1, 2, 4, 8, and
16 h p.i. and was detected as an increase in cAMP concentration
in the cell culture (Figure 3). All the infections were carried out
using invasive bacteria (grown under SPI1-inducing conditions)
except long infections (4–16 h) of RAW cells to prevent rapid
macrophage pyroptosis induced by invasive bacteria (Fink and
Cookson, 2007). Interestingly, different patterns of translocation
were observed depending on the host cell and on the fusion. The

main conclusions are: (i) Translocation of SseK1 at short times
(1 and 2 h p.i.) is only observed when the fusion is constitutively
expressed from a plasmid (Figures 3A,C,E) and is dependent on
T3SS1 in the three cell types. (ii) When sseK1 is expressed from
its own promoter (Figures 3B,D,F), translocation of SseK1 starts
at 4 h p.i. in epithelial cells and fibroblasts, and at 8 h p.i. in
macrophages. Under these conditions, translocation into HeLa
cells depends on T3SS1, translocation into RAW cells depends
on T3SS2, and translocation into NRK cells occurs through both
systems.

SsrB Independent Regulation of sseK1 by
PhoQ/PhoP
We took advantage of the chromosomal sseK1::lacZ fusion
to look for genetic factors controlling sseK1 expression. We
tested the effect of mutations in genes encoding important
virulence regulators: HilA, HilD, SsrB, PhoP, RcsB, and Dam.
HilA and HilD are positive regulators of SPI1 (Bajaj et al.,
1995; Schechter and Lee, 2001). SsrB is the main positive reg-
ulator of the expression of SPI2 (Cirillo et al., 1998). Both
islands are regulated by PhoP, that positively regulates SPI2
through SsrB and negatively regulates SPI1 through HilA (Bajaj
et al., 1996; Bijlsma and Groisman, 2005). RcsB represses SPI1
through HilD (Mouslim et al., 2004; Lin et al., 2008). Dam is
an adenine methylase that activates SPI1 through HilD (López-
Garrido and Casadesús, 2010). In addition to null mutations
in all these genes, the point mutations phoQ24 and rcsC54
were also used. These mutations result in constitutive acti-
vation of the two-component system PhoQ/PhoP and of the
phosphorelay system RcsC/RcsD/RcsB, respectively. The level
of expression of sseK1::lacZ was measured in liquid bacterial
cultures grown under SPI1 (Figure 4A) or SPI2 (Figure 4B)
inducing conditions. The results suggest that PhoP is a posi-
tive regulator of sseK1 expression since a significant decrease
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FIGURE 3 | Translocation of SseK1 into mammalian cells. Human
epithelial HeLa cells (A,B), RAW264.7 murine macrophage-like cells
(C,D) and NRK-49F normal rat kidney fibroblasts (E,F) were infected
with derivatives of S. enterica serovar Typhimurium 14028 (wild-type,
wt, �SPI1, �SPI2 and �SPI1 �SPI2 strains) carrying a plasmid
expressing an SseK1-CyaA’ fusion from a constitutive promoter (A,C,E)

or a chromosomal SseK1-CyaA’ fusion expressed under the native
sseK1 promoter (B,D,F). Bacteria were grown under SPI1-inducing
conditions for most infections. Non-invasive bacteria were used
specifically for infections of RAW264.7 cells for 4, 8, and 16 h. To
detect translocation, the level of cAMP was measured 1, 2, 4, 8, and
16 h p.i. Means and SD from triplicate experiments are represented.

in expression was observed in a phoP-null mutant under SPI2
inducing conditions (P < 0.01). This conclusion is confirmed
by the positive effect of the activating mutation phoQ24 on

sseK1 expression under SPI1-inducing conditions (P < 0.05).
We also assessed the effect of the phoP mutation on SseK1
at the protein level using a chromosomal 3xFLAG fusion
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FIGURE 4 | Positive regulation of the expression of sseK1 by the
PhoQ/PhoP system. β-Galactosidase activities were measured from
SPI1-inducing (A) and SPI2-inducing (B) cultures of several S. enterica serovar
Typhimurium strains: wild-type 14028 (wt), null mutants (hilA, hilD, ssrB, rcsB,
and dam), and mutants with constitutive activation of the PhoQ/PhoP system
and the Rcs system, respectively (phoQ24 and rcsC54), carrying an sseK1::lacZ
translational fusion. The role of SsrB in the regulation by PhoP was investigated
in a double mutant phoQ24 ssrB. Means and SD from three independent

β-galactosidase measurements are shown. The effect of the PhoQ/PhoP system
(C) and of SsrB (D) on sseK1 expression at the protein level was assessed by
immunoblot analysis using strains expressing SseK1-3xFLAG. A monoclonal
anti-FLAG antibody was used to detect the fusion protein and a polyclonal
anti-DnaK antibody was used to get a loading control. Representative gels are
shown together with quantification of bands (SseK1/DnaK ratio) from duplicate
gels. Statistical significance of the differences between wt and mutant strains is
shown by asterisks representing t-test P values: ∗P < 0.05; ∗∗P < 0.01.

(Figure 4C). The effect was more dramatic at this level sug-
gesting some kind of postranslational regulation in addition
to the modulation of transcription that is expected for PhoP.
No effect was detected for mutations affecting the other reg-
ulators that were tested in these assays, including SsrB. Lack
of SsrB had no significant impact on sseK1 expression even
in a phoQ24 background (Figure 4D), providing evidence for
SsrB-independent upregulation of sseK1 by the PhoQ/PhoP
system.

Direct Regulation of sseK1 Expression by
PhoP
Next, we reasoned that since PhoP regulates sseK1 in an SsrB-
independent manner, it could be a direct regulator of this
gene. To test this possibility, we decided to analyze the pro-
moter region of sseK1 looking for a putative PhoP-binding site.
According to a previous global analysis carried out on S. enter-
ica serovar Typhimurium strain SL1344 (Kroger et al., 2012), the
transcriptional start site of sseK1 is a T located 40 nucleotides
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upstream of the translational start codon. Visual inspection
revealed the presence of putative −10 and −35 consensus motifs
for σ70-dependent transcription with the appropriate spacing
(Figure 5A). In addition, a sequence resembling the PhoP box
consensus motif (T/G)GTTTA-NNNNN-(T/G)GTTTA (where
N is any nucleotide), was found at position −75/−59 relative
to the transcriptional start site. Another putative half box, less
similar to the expected consensus, was located at −53/−48.
The role of this region in driving the transcription of sseK1
was tested using two different promoter probe plasmids: pIC552
and pSB377. A DNA fragment containing the promoter and 5′
untranslated regions of sseK1, from −500 to +40, was cloned

into these plasmids to generate a lacZ transcriptional fusion
(Figure 5B) and a bioluminescent lux transcriptional fusion
(Figure 5C), respectively. Expression of the fusions in wt and
phoP backgrounds indicated that the cloned region contained
the signals necessary for expression and PhoP-mediated reg-
ulation of sseK1. To test the relevance of the putative PhoP
binding sites, three independent mutants were obtained in the
lux fusion plasmid. Each mutant was constructed by exchanging
the conserved TT motif in the middle of a putative half PhoP
box sequence for CC (Figure 5A). Whereas mutations at posi-
tions −51/−50 had no effect on the expression of the fusion,
alteration of the −62/−61 or the −73/−72 motifs completely

FIGURE 5 | Identification of a PhoP box in the promoter of sseK1.
(A) Analysis of the promoter region of sseK1. The sequence surrounding the
transcriptional start site (+1) is shown. The start of the coding sequence, the
putative ribosomal binding site and the consensus sequences for
σ70-dependent transcription (−10 and −35) are indicated. Putative
PhoP-binding motifs are marked in pink and a putative PhoP-box is
underlined with an arrow. A fragment of DNA containing the promoter region
and 5′ untranslated region of sseK1 (−500/+40) was inserted into plasmid
pIC552 to generate a lacZ transcriptional fusion (B) and into plasmid

pSB377 to generate a luxCDABE transcriptional fusion (C). These plasmids
and the corresponding original empty vectors were introduced into S.
enterica serovar Typhimurium strain 14028 (wt) or a phoP-null mutant, and
β-galactosidase activities or luminescence, respectively, were measured in
cultures grown to stationary phase in liquid LPM at pH 5.8. Luminescence
was also measured from the wt, phoP and phoQ24 strains carrying
derivatives of pSB377 with the promoter region of sseK1 or variants with the
indicated mutations and grown under SPI1 (D) or SPI2 (E) inducing
conditions. RLU: relative light units.
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abrogated PhoP regulation of the fusion under SPI1 (Figure 5D)
and SPI2-inducing conditions (Figure 5E). These results suggest
that the region −75/−59 constitutes a complete PhoP binding
box.

Finally, an electrophoretic mobility shift assay was used to
analyze the binding of PhoP to the promoter of sseK1. The
promoters of slyB and phoN were used as positive and nega-
tive controls, respectively. Phosphorylated His6-PhoP and PCR-
amplified DNA fragment containing the relevant promoters were
used in these experiments. As seen in Figure 6A, PhoP was
able to bind to the slyB and sseK1 promoters and no bind-
ing was observed to the phoN promoter. In addition, mutations
at positions −61/−62 and −72/−73, prevented PhoP binding
(Figure 6B). These results provide additional support to the
hypothesis that the region −75/−59 is a PhoP binding box.

Expression of sseK1 Inside Macrophages
We took advantage of the sseK1::lux transcriptional fusion
described above to study expression of sseK1 during infection
of RAW264.7 macrophages. Salmonella strains expressing this
fusion were used to infect cultures of these cells in 96-well
plates. As seen in Figure 7, luminescence per wild-type CFU was
increased 4 and 8 h p.i. compared to 2 h p.i., suggesting that

FIGURE 7 | Intracellular PhoP-dependent expression of sseK1. Two
strains of S. enterica serovar Typhimurium (wild-type, wt, and phoP mutant)
carrying a plasmid expressing an sseK1::luxCDABE transcriptional fusion
(pSB377-sseK1[−500/+40]) were grown for 24 h in LB at 37◦C with aeration
(non-invasive conditions). These bacteria were used to infect RAW264.7
murine macrophage-like cells and luminescence produced by intracellular
bacteria was measured 2, 4, and 8 h p.i.

sseK1 expression is induced, together with T3SS2, in response to
intravacuolar signals. In contrast, intracellular induction was not
observed in a phoP null mutant, giving additional support to the

FIGURE 6 | Direct interaction of phosphorylated PhoP with the
promoter region of sseK1. Purified His6-PhoP was phosphorylated in vitro
with acetyl phosphate. (A) DNA fragments containing the promoter regions
of sseK1 (−500/+40), phoN and slyB were PCR amplified using
fluorochrome-labeled primers and incubated with the indicated
concentrations of phosphorylated His6-PhoP (PhoP-P). Electrophoretic

mobility shift assays were used to detect binding. (B) DNA fragments
containing the promoter regions of sseK1 (−300/−1) wild-type (wt) or with
mutations T– > C at positions −73, −72, −62 y −61 (PhoP box mutant)
were PCR amplified using fluorochrome-labeled primers and incubated with
the indicated concentrations of phosphorylated His6-PhoP (PhoP-P).
Electrophoretic mobility shift assays were used to detect binding.
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conclusion that PhoP is a positive regulator of the expression of
sseK1.

Discussion

Although the functions of the members of the SseK family of
T3SS effectors are unknown, their amino acid sequence similar-
ities suggested some redundancy in their functions. In previous
studies, virulence attenuation was only shown for the triple sseK1
sseK2 sseK3 or the double sseK1 sseK2 mutants. The results pre-
sented here, however, clearly show that SseK1 is important in
itself during the systemic phase of the infection in the mouse
model, since a single sseK1mutant is significantly attenuated after
oral and intraperitoneal infections (Figure 1). In addition, our
efforts to detect secretion of SseK2 and SseK3 were unsuccess-
ful, probably due to the low expression levels of these proteins
under the conditions tested (data not shown). Our results also
suggest that SseK1 is not necessary for invasion or intracellu-
lar proliferation in seven different mammalian cell lines. This is
in agreement with previous attempts that were unable to find
a phenotype following infection of HeLa, Caco2 or RAW264.7
cells (Kujat Choy et al., 2004; Brown et al., 2011; Buckner et al.,
2011). However, one of these reports showed a 60% reduc-
tion in the replication index of the triple mutant sseK1 sseK2
sseK3 inside RAW264.7 macrophages (Buckner et al., 2011).
The discrepancy between results obtained in different laborato-
ries may be a consequence of differences in experimental details
including specific Salmonella strains used and multiplicity of
infection.

SseK1 was initially described as a T3SS2 effector in HeLa cells
(Kujat Choy et al., 2004; Brown et al., 2011). Here, we carried
out a detailed analysis of translocation of this effector using three
host cell lines, from three different mammalian species, and two
different CyaA’ fusions (Figure 3). Our results suggest several
conclusions and comments: (i) A first general conclusion is that
SseK1 can be secreted through T3SS1 and T3SS2, although with
different kinetics depending on the host cell type. Hence, the
examination of as many host cell types as possible is essential to
fully understand the function of T3SS effectors. (ii) Translocation
at short time p.i. (1–2 h) was T3SS1-dependent but was only
observed when the SseK1-CyaA’ fusion was expressed from a con-
stitutive promoter in a plasmid. This result suggests that under
physiological conditions (expression from its own promoter in
the chromosome) SseK1 is not synthetized at sufficient level to
allow detectable translocation before invasion of the host cell. It
also indicates that the use of chromosomal fusions is more reli-
able in order to get conclusions about the conditions necessary for
translocation of T3SS effectors. (iii) Translocation into epithelial
HeLa cells was dependent on T3SS1, since it was not detected in
a mutant lacking this system (Figure 3B). This result may be par-
tially explained by the fact that the trigger mechanism mediated
by T3SS1 is necessary for the invasion of these cells. As a conse-
quence, translocation from internalized bacteria through T3SS2,
if it existed, would not be detected using the �SPI1 mutant. (iv)
Translocation into NRK fibroblasts, although T3SS1-dependent
at 4 h p.i., appears to occur through both systems at 8 and 16 h

p.i., since simultaneous inactivation of T3SS1 and T3SS2 is nec-
essary to abolish the increase in cAMP (Figure 3F). Detection of
T3SS2-dependent translocation using the T3SS1 mutant is pos-
sible in this model because invasion of fibroblasts can take place
using a multiplicity of entry mechanisms (Aiastui et al., 2010).
(v) Translocation of SseK1 into macrophages infected with non-
invasive bacteria was T3SS2-dependent and was detected 8 and
16 h p.i., but not 4 h p.i. (Figure 3D). This is similar to the timing
observed for T3SS2-dependent SseK1 translocation into fibrob-
lasts infected with invasive bacteria and suggests that this system
begins to be functional between 4 and 8 h after internalization
in both cell types. The results obtained in RAW cells also sug-
gest that non-invasive phagocytized bacteria are unable to induce
T3SS1 inside these cells.

These results fit well into the context of a previous report
showing simultaneous expression of T3SS1 and T3SS2 inside
HeLa cells (Hautefort et al., 2008). This initially surprising coex-
pression was explained by the existence of two subpopulations
of Salmonella in epithelial cells: a T3SS2-induced intravacuo-
lar subpopulation and a T3SS1-induced cytosolic subpopulation
(Knodler et al., 2010). Cytosolic Salmonella are also detected
in fibroblasts and macrophages, although the permissiveness for
Salmonella survival and replication in the cytosol is dependent
upon the cell type (reviewed in Knodler, 2015).

In this study, we also used a combination of lac, 3xFLAG
and lux fusions to analyze the environmental conditions and
the genetic factors involved in the regulation of the expres-
sion of sseK1. Maximal expression in rich medium was obtained
with 0.3 M NaCl and modest repression was observed with
lower and higher salt concentrations (Figure 2B). Two addi-
tional factors that decreased expression of sseK1 in rich medium
were low pH and butyric acid (Figure 2C), a major short
chain fatty acid produced in the intestine by anaerobic bacte-
rial fermentation. This organic acid is known to repress SPI1
and other T3SS1-related genes (Lawhon et al., 2002; Gantois
et al., 2006; Gong et al., 2009; Cardenal-Muñoz and Ramos-
Morales, 2011). Expression in a minimal medium mimicking
intravacuolar conditions (LPM) was higher than in rich medium
(Figure 2A). However, acidic pH, which is one of the envi-
ronmental cues used to induce SPI2, had a negative impact on
the expression of sseK1 also in minimal medium (Figure 2D).
These data, together with translocation data shown in Figure 3
and discussed above, suggest that expression of sseK1 could
be partially repressed during passage through the stomach and
the gut, but it would be induced after invasion of host cells
and specially after release into the cytosol of non-phagocytic
cells.

Among the SPI1 and SPI2 regulators that we tested, only the
PhoQ/PhoP two-component regulatory system had a significant
effect on the expression of sseK1 (Figure 4). PhoQ is a membrane
protein that activates PhoP in response to low Mg++ concentra-
tion (García Véscovi et al., 1996; Montagne et al., 2001). PhoP is
a transcription factor that regulates expression of about 3% of the
Salmonella genes (Miller and Mekalanos, 1990). These genes are
involved in the control of physiological and virulence functions.
Positive regulation of sseK1 by this system is consistent with the
effect of Mg++ concentrations on its expression (Figure 2D).
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The results obtained at the protein level with an SseK1-
3xFLAG fusion are consistent with a previous report using
a 2xHA fusion (Kujat Choy et al., 2004) and indicated that
SseK1 was undetectable in a phoP null background. Our
results also showed that this dramatic effect is observed
specifically under SPI2-inducing conditions (Figure 4C), sug-
gesting that under SPI1-inducing conditions there are other
unidentified factors allowing synthesis of SseK1 in the absence
of PhoP. The comparison between the results obtained at
the protein level (Western blot in Figures 4C,D) and the
results obtained using a chromosomal sseK1::lacZ transla-
tional fusion (β-galactosidase activities in Figure 4B) also sug-
gests an indirect posttranslational effect in addition to the
transcriptional effect that is expected for a regulator like
PhoP.

Whereas PhoQ/PhoP is considered an ancestral regula-
tory system that is conserved in enteric bacteria and senses
Mg++ concentrations, the two-component system SsrA/SsrB is
Salmonella-specific and is activated by acidic pH (Miao et al.,
2002; Mulder et al., 2015). SsrB is necessary for the expression
of T3SS2 and some of its effectors that are encoded outside
SPI2 (Ochman et al., 1996; Cirillo et al., 1998; Hensel et al.,
1998; Worley et al., 2000). Since PhoP controls expression of the
response regulator SsrB at the transcriptional level and of the sen-
sor SsrA at a posttranscriptional level (Bijlsma and Groisman,
2005), it also indirectly regulates expression of SsrB-regulated
genes. However, our epistasis analysis combining an ssrB null
mutation with a phoQ24 activating mutation (Figure 4) clearly
showed that the effect of PhoP on sseK1 was SsrB-independent,
which is consistent with the induction of sseK1 expression by
low Mg++ concentrations but not by low pH. This result also
suggested the possibility of direct regulation of sseK1 by PhoP.
Two lines of evidence support this hypothesis: (i) PhoP regula-
tion of a lux transcriptional fusion was abrogated by mutations in
a putative PhoP-box that was detected in the promoter region of

sseK1 (Figure 5). (ii) Binding of PhoP to the promoter region of
sseK1 was confirmed by EMSA analysis (Figure 6A). In addition,
mutation of the putative PhoP-box significantly reduced binding
(Figure 6B).

The bioluminescent fusion used here showed great sensitivity
and was used to demonstrate in vivo PhoP-dependent induction
of sseK1 inside macrophages (Figure 7), giving stronger support
to the conclusions obtained using a culture medium (LPM) that
imitates intravacuolar conditions (Figure 4). This fusion could
also be, in principle, useful for future experiments regarding the
study of expression of sseK1 inside animal models.

In summary, our results suggest that the T3SS effector SseK1 is
a virulent factor that responds to a complex array of environmen-
tal signals. Expression of sseK1 is directly activated by PhoP under
SPI2-inducing conditions and, probably, by other unknown reg-
ulators under SPI1-inducing conditions. In response to these sig-
nals and regulators SseK1 is expressed and translocated through
both T3SS1 and T3SS2 when Salmonella is inside the host cell.
Additional experiments will be necessary to understand the spe-
cific role of SseK1 during infections.
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