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Abstract

The orange pigmentation of the fungus Neurospora crassa is due to the accumulation of the xanthophyll neurosporaxanthin
and precursor carotenoids. Two key reactions in the synthesis of these pigments, the formation of phytoene from
geranylgeranyl pyrophosphate and the introduction of b cycles in desaturated carotenoid products, are catalyzed by two
domains of a bifunctional protein, encoded by the gene al-2. We have determined the sequence of nine al-2 mutant alleles
and analyzed the carotenoid content in the corresponding strains. One of the mutants is reddish and it is mutated in the
cyclase domain of the protein, and the remaining eight mutants are albino and harbor different mutations on the phytoene
synthase (PS) domain. Some of the mutations are expected to produce truncated polypeptides. A strain lacking most of the
PS domain contained trace amounts of a carotenoid-like pigment, tentatively identified as the squalene desaturation
product diapolycopene. In support, trace amounts of this compound were also found in a knock-out mutant for gene al-2,
but not in that for gene al-1, coding for the carotene desaturase. The cyclase activity of the AL-2 enzyme from two albino
mutants was investigated by heterologous expression in an appropriately engineered E. coli strain. One of the AL-2
enzymes, predictably with only 20% of the PS domain, showed full cyclase activity, suggesting functional independence of
both domains. However, the second mutant showed no cyclase activity, indicating that some alterations in the phytoene
synthase segment affect the cyclase domain. Expression experiments showed a diminished photoinduction of al-2
transcripts in the al-2 mutants compared to the wild type strain, suggesting a synergic effect between reduced expression
and impaired enzymatic activities in the generation of their albino phenotypes.

Citation: Dı́az-Sánchez V, Estrada AF, Trautmann D, Limón MC, Al-Babili S, et al. (2011) Analysis of al-2 Mutations in Neurospora. PLoS ONE 6(7): e21948.
doi:10.1371/journal.pone.0021948

Editor: Alexander Idnurm, University of Missouri-Kansas City, United States of America

Received December 15, 2010; Accepted June 14, 2011; Published July 19, 2011

Copyright: � 2011 Dı́az-Sánchez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the European Union (European Regional Development Fund), the Spanish Ministerio de Ciencia y Tecnologı́a {projects
BIO2006-01323 and BIO2009-11131), the Andalusian Government (project P07-CVI-02813) and the Deutsche Forschungsgemeinschaft (DFG, Grant AL 892/1-4).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: avalos@us.es

¤ Current address: Biozentrum, University of Basel, Basel, Switzerland

Introduction

Carotenoids are terpenoid pigments produced by photosynthet-

ic organisms and many bacteria and fungi [1]. In plants and algae

carotenoids serve as accessory pigments in photosynthesis [2] and

in higher plants they are precursors of the phytohormones abscisic

acid and strigolactones [3,4]. Additionally, they provide attractive

colors to many fruits and flowers. Animals get carotenoids through

their diet and use them for the production of retinoids, among

them the visual chromophore retinal [5] or the vertebrate

morphogen retinoic acid [6]. Carotenoids are also responsible

for the pigmentation of some birds, insects, fish, or crustaceans.

Consumption of carotenoids has beneficial effects on human

health [7], including protection against oxidative stress, cancer,

sight degeneration syndromes and cardiovascular diseases [8].

Because of their laboratory amenability, microorganisms have

been a major research system to investigate the biochemistry of

carotenogenesis. Among them stand out several fungi, as the

zygomycetes Phycomyces blakesleeanus, Blakeslea trispora and Mucor

circinelloides, the basidiomycete Xanthophyllomyces dendrorhous or the

ascomycetes Fusarium fujikuroi and Neurospora crassa [9,10]. The

carotenoid pathways of these fungi share the first biosynthetic

steps, starting with the synthesis of geranylgeranyl pyrophosphate

(GGPP) from farnesyl pyrophosphate (FPP) and the condensation

of two GGPP units to produce the first molecule with a 40-carbon

polyene chain, the colorless precursor phytoene (Fig. 1). The

introduction of conjugated double bonds in the phytoene

backbone yields molecules able to absorb visible light and provide

the characteristic yellow, orange or red colors of the carotenoids.

Subsequently, desaturated carotenes are targeted by one or two

cyclization reactions, catalyzed by a cyclase enzymatic activity

forming a b-ionone ring. Two cyclizations lead to b-carotene, the

major end-product in zygomycetes. In X. dendrorhous, introduction

of oxygen-containing functional groups in the b-ionone rings gives

rise to astaxanthin. In F. fujikuroi and N. crassa, a carotenoid

oxygenase cleaves the fully desaturated intermediate torulene, to

produce a C35 apocarotenal [11,12], which is further oxidized to

produce the carboxylic xanthophyll neurosporaxanthin [13].

The knowledge on the fungal enzymes involved in these

biochemical activities started with the identification of the genes

responsible for the albino phenotype of the N. crassa mutants al-1

[14], al-2 [15] and al-3 [16]. Thereafter it was shown that the

encoded enzymes, AL-1, AL-2 and AL-3, respectively represent

the dehydrogenase responsible for all the desaturation steps in the

pathway [17], the phytoene synthase mediating the formation of

phytoene from GGPP and the prenyl transferase catalyzing the

synthesis of GGPP from farnesyl pyrophosphate [18]. For many

years, the identification of the gene encoding the lycopene cyclase
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in N. crassa was elusive due to the absence of mutant phenotypes

lacking this activity. However, the discovery of cyclase activity in

the phytoene synthase CrtYB [19], the AL-2 counterpart in X.

dendrorhous, pointed to AL-2 as a bifunctional protein with

phytoene synthase (abbreviated hereafter PS) and cyclase activi-

ties. In CrtYB, the cyclase activity is located in the highly

hydrophobic amino region of the protein, while the PS activity is

located in the more hydrophilic carboxy region. The bifunctional

nature of fungal PS genes was later demonstrated for the

orthologous genes carRP and carRA, from the zygomycetes M.

circinelloides [20] and P. blakesleeanus [21], and for al-2 in N. crassa

[22]. In contrast, cyclization of lycopene in plants and bacteria is

exerted by independent enzymes encoded by different genes.

Cyclase deficient mutants of zygomycetes exhibit a red

pigmentation due to the accumulation of lycopene, distinguishing

them from b-carotene-accumulating, yellow wild type [20,23,24].

Genetic data in P. blakesleeanus suggested that PS and cyclase

activities of CarRA are exerted by two independent polypeptides,

CarR and CarA [23], and a conserved protease cleavage site was

found in the boundary between both protein domains [21]. In N.

crassa, only two reddish mutants affected in the AL-2 cyclase activity

have been described so far [22], which accumulate the acyclic form

of neurosporaxanthin [25]. One of them is probably affected also in

the PS activity, as indicated by its lower carotenoid content [22].

This mutant phenotype suggested that both enzymatic activities are

not physically separated in N. crassa. In this study, we determined the

sequence of nine al-2 mutants from the Fungal Genetics Stock

Center [26] collection and analyzed their carotenoid content. Our

data showed that one of the strains showing a reddish phenotype,

similar to that of formerly described mutants, is affected in the

cyclase domain, while the remaining eight strains are albino and are

mutated in the al-2 segment coding for the PS domain. Interestingly,

the albino mutants with the lowest carotenoid content present traces

of a carotenoid-like compound tentatively identified as the C30-

pigment diapolycopene. The same compound was also observed in

an al-2 knock-out mutant, indicating that some of the al-2 strains

analyzed contain null mutant alleles. In addition, we investigated

the impact of truncations of the PS domain on the cyclase activity in

two al-2 mutants. In support of the role of AL-2 as a single

bifunctional polypeptide, we observed absence of cyclase activity in

one of the PS-truncated mutants, despite the predicted presence of

an intact cyclase domain.

Results and Discussion

Carotenoid biosynthesis in al-2 mutants
Nine al-2 mutants obtained from the FGSC collection were

analyzed for carotenoid production. Eight of them exhibited an

Figure 1. Carotenoid biosynthetic pathway of N. crassa. The gene products responsible for each enzymatic reaction are indicated. NCU06054 is
the name annotated for squalene synthetase in the N. crassa genome. Chemical changes from precursor molecules are shaded with different colors.
Blue and red arrows indicate the predominant steps from phytoene upon illumination at 8uC or at 30uC, respectively. Squalene synthesis is also
depicted in the initial steps. The boxed reaction (diapolycopene synthesis) is proposed from the data.
doi:10.1371/journal.pone.0021948.g001

al-2 Mutations in Neurospora
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albino phenotype on slant cultures under light, while one of the

strains, #2666, showed an apparent pigmentation, although less

pronounced than that of the wild type (Fig. 2A). A detailed

examination of the eight albino mutants revealed a very pale

pigmentation in four of them, #900, #910, #913 and #4014,

which was not noticeable in the other four mutants (Table 1).

Neurosporaxanthin biosynthesis is particularly efficient in N. crassa

upon illumination at low temperature, while illumination at the

normal temperature results in a lower amount of this end product

and a higher content of its carotene precursors (see, e.g., [13]). To

learn more on the biosynthetic defects of the mutants, we

investigated their ability to produce carotenoids under illumina-

tion at either 30uC or 8uC. As expected, the wild type strain

accumulated more carotenoids at 8uC than at 30uC (Table 1), and

the absorption spectrum was consistent with a higher proportion of

neurosporaxanthin at the lower temperature. The mutant #2666

accumulated approximately 30% and 60% of the carotenoids

produced by the wild type at 8uC and at 30uC, respectively

(Table 1). However, the absorption spectrum (Fig. 2B) of the

carotenoid from #2666 was different from that of neurosporax-

anthin, accumulated in wild type, and resembled that of apo-49-

lycopenoic acid, the acyclic counterpart of neurosporaxanthin. A

comparison with the spectrum of apo-49-lycopenoic acid produced

by the cyclase mutant JA26 [25] grown in parallel suggested that

accumulation of this pigment in #2666, which is responsible for

the similar reddish color of both strains. To further confirm the

identity of the carotenoid produced by #2666, HPLC analysis of

extracts from #2666, JA26 and wild type strains was performed.

As shown in Fig. 2C, the pigments accumulated in #2666 and

JA26 were identical, confirming the occurrence of the same

biochemical defect in the carotenoid pathway in both mutants, i.e.,

loss of the cyclase activity [22,25].

The amounts of carotenoids in the albino mutants were

consistent with their pigmentation patterns (Table 1). The pale

color observed in #900, #910, #913 and #4014 cultures could

be explained by the accumulation of minor amounts of

Figure 2. Phenotype of the mutant #2666. A: Left picture: slant cultures from the strain #2666 compared to the wild type and mutant JA26.
The strains were grown for three days at 30uC in the dark and four days at 22uC under light. Right picture: flasks of the cultures used for the
carotenoid analysis displayed in B and C. The cultures were incubated 48 h in the dark at 30uC and 24 h under illumination at 8uC. B: Absorption
spectra of the crude carotenoid samples from the cultures of the wild type and the mutants JA26 and #2666. Peak wavelengths are indicated. C:
HPLC profiles of the carotenoid mixtures from the samples shown on graph B. Absorption spectra of major peaks are shown in inner boxes.
doi:10.1371/journal.pone.0021948.g002

Table 1. Pigmentation and carotenoid content of the wild
type and al-2 mutants.

Straina Pigmentationb Carotenoidsc (mg g21 dry wt)

306C 86Cd

Wild type +++++ 341627 502627 (Nx)

#896 2 ,0.56,0.2 ,1.46,0.1 (*)

#897 2 ,0.76,0.2 ,1.66,0.1 (*)

#900 + 11.460.2 5.660.6 (Nx)

#904 2 ,0.86,0.4 ,2.26,0.1 (**)

#910 + 10.560.2 ,2.46,0.8 (Nx)

#913 + 7.761.0 7.260.8 (Nx)

#914 +/2 4.060.1 5.660.8 (Nx)

#2666 +++ 216627 156615 (La)

#4014 +/2 5.760.6 11.460.6 (Nx/La)

aWild type: Oak Ridge 74-OR23-1A.
#indicates FGSC numbers for al-2 mutants.
bAppearance on agar slants under light at room temperature.
cAverage and standard deviation from at least two determinations.
dMajor carotenoid in parentheses (see Fig. 3); (Nx): neurosporaxanthin; (La):
apo-49-lycopenoic acid; (Nx/La) spectrum data consistent with a mixture of
neurosporaxanthin and apo-49-lycopenoic acid; (*): spectrum data consistent
with diapolycopene; (**): not determined.

doi:10.1371/journal.pone.0021948.t001
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carotenoids, ranging from 5 to 13 mg/g in different strains and

illumination conditions. So, these strains would contain mutations

in the al-2 gene resulting in enzymes with a leaky activity. To find

out if these AL-2 altered enzymes are affected in the cyclase

activity, the trace carotenoids accumulated at 8uC were separated

by HPLC and the peak spectra were analyzed (Fig. 3). The

mutants #900, #910, #913 and #914 accumulated neurospor-

axanthin, as compared to the wild type major product. The

spectrum of the peak in mutant #4014 was consistent with a

mixture of neurosporaxanthin and apo-49-lycopenoic acid,

suggesting the occurrence of a leaky cyclase activity.

Unexpectedly, the three albino mutants with no detectable color

in the slant cultures (#896, #897 and #904, Table 1) contained

trace amounts of a carotenoid-like pigment, synthesized at 30uC
and 8uC. These results fit a previous study, in which minor

amounts of some intermediate carotenoids were found in al-2

mutants [27], indicating that the PS activity can be partially

replaced by a different enzyme. To check this hypothesis, we

analyzed the content of colored carotenoids in null mutants of the

al-1 and al-2 genes, obtained through targeted replacement by a

hygromycin resistance cassette (FGSC collection). One of the al-2

mutants with the lowest carotenoid content and a highly defective

PS domain (see next section), #896, was included in the analysis.

Crude extract spectra from mycelial sample of the Dal-2 mutant

showed the presence of trace amounts of a carotenoid-like pigment

with a central peak of 470 nm and a secondary peak at 500 nm

(Fig. 4A). The same pigment was found in #896, but not in the

Dal-1 mutant. In the latter case, there were trace amounts of other

compounds, whose absorption peaks suggest that they are

unrelated to carotenoids. HPLC analyses of these samples

confirmed the presence of the carotenoid-like pigment in Dal-2

and #896 and its absence in Dal-1 (Fig. 4B).

Carotenoid biosynthesis without phytoene synthase
The synthesis of detectable amounts of a carotenoid-like

pigment in the absence of PS function (Dal-2 and #896 mutants)

could be due to a residual PS activity by squalene synthase: the

condensation of two FPP molecules catalyzed by this enzyme is

highly similar to the condensation of two GGPP molecules

achieved by phytoene synthase, differing only in the length of

substrate and product (Fig. 1). Supportingly, the squalene synthase

inhibitor squalestatin is also active on phytoene synthase [28],

indicating that both enzymes have similar catalytic sites. Phytoene

synthesis by squalene synthase was formerly proposed to explain

the accumulation of minor amounts of lycopene in a P. blakesleeanus

mutant with a premature stop codon in the cyclase domain of gene

carRA [21], which was predicted to lack the PS domain. In our

case, because of the lack of cyclase activity of the Dal-2 mutant, we

would expect the synthesis of minor amounts of apo-49-lycopenoic

acid, which is the same carotenoid produced by the cyclase

mutants #2666 and JA26. This hypothesis is contradicted by the

chromatographic and spectrophotometric properties of the

compound identified in the HPLC analysis, which do not

correspond to those of apo-49-lycopenoic acid (compare Fig. 2C

and Fig. 4B). Moreover, the shape of the absorption spectrum and

the maximal absorption peaks are highly coincident with those of

diapolycopene [29,30]. This C30 apocarotenoid, naturally pro-

duced by some bacteria, results from the introduction of four

desaturations in the squalene molecule (diapophytoene) by the

desaturase CrtN [31].

In conclusion, our data suggest that a minor proportion of

squalene is desaturated by al-1 to produce diapolycopene (Fig. 1).

This compound would not be recognized as a substrate by the AL-

2 cyclase domain, as indicated by the accumulation of the same

compound in the mutant #896, which conserves this enzymatic

activity. The extremely low amounts of this compound, insufficient

to provide an externally detectable coloration, are probably

explained by the lack of squalene accessibility to Al-1 in the cell. In

support to this hypothesis, the syntheses of sterols and carotenoids

were formerly found to occur in separate cell compartments in the

fungi P. blakesleeanus [32] and F. fujikuroi [33]. Biochemical assays

with purified squalene synthase and phytoene desaturase enzymes

will be needed for future evaluation of their respective capacities to

convert GGPP into phytoene in one case, and squalene into

diapolycopene in the other.

Mutants with predicted AL-2 truncated polypeptides
To understand the biochemical basis of the mutant phenotypes,

the sequence of the al-2 alleles from all the strains under

investigation was determined (Supporting Information S1). Five

strains, #896, #897, #904, #913 and #914, contained mutations

expected to produce truncated AL-2 polypeptides (Fig. 5). The

cyclase domain was formerly identified in the first 244 amino acids

of the AL-2 protein [22], while the remaining 358 amino acids

corresponded to the PS domain. The five predicted proteins contain

an intact cyclase sequence and different segments of the PS domain.

In the mutant #896 the 59 GT splicing sequence of the second

intron was replaced by two adenines. Sequencing of the cDNA

version of the #896 al-2 mRNA showed that the intron was

removed through an alternative GT sequence, located 4 bp

downstream from the original 59 GT sequence. This alternative

Figure 3. Spectra of the major carotenoid produced by the wild
type strain, the reddish mutant #2666 and five leaky al-2
mutants. The cultures were incubated 48 h in the dark at 30uC and
24 h under illumination at 8uC. Their carotenoids extracts were
concentrated and separated by HPLC and spectra of the major peaks
were displayed. Maximal and secondary absorbance peaks for
neurosporaxanthin (469 and 497 nm) and apo-49-lycopenoic acid (478
and 507 nm) are indicated by continuous and dashed grey bars,
respectively.
doi:10.1371/journal.pone.0021948.g003
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splicing results in a frame-shift mutation, with an early stop codon

in the new reading frame. The predicted AL-2 polypeptide in

#896 only has 72 out of 358 residues of the PS domain, followed

by eight random residues. Failure of intron splicing would result in

a similar protein because of the occurrence of a stop codon in

frame with the intron sequence. The mutant #914 is expected to

produce a similarly truncated AL-2 protein, with only 94 amino

acids of the PS domain. In this case, the reason is a G to A

transition in the third position of a tryptophan codon, resulting in

a premature stop codon.

The other three mutants contain frame-shift mutations produced

either by short insertions or deletions (Fig. 5). In the mutant #904, a

GAA sequence was replaced by AG, resulting in a predicted AL-2

protein with 117 residues of the PS domain, followed by 144

random amino acids. A similar truncated protein is expected for

mutant #913, with a T deletion producing a 125 aa PS segment

followed by 136 random residues, coincident with those of the #904

protein. Finally, the mutant #897 holds a CAAGA insertion

producing an AL-2 protein with 72% of the total PS segment, plus

five random residues. The stop codon used for this predicted protein

is the same used in that of #904.

The amino acids involved in the catalytic PS activity (data from

the conserved domain database, see material and methods) are

spread along the PS segment, from residues 297 to 556 (Fig. 5B),

and most of them coincide with those participating in the substrate

binding pocket (data not shown). This segment also includes two

short amino acid segments (small grey boxes in Fig. 5B) associated

with substrate-Mg++ binding. Therefore, four out of the five AL-2

truncated proteins have lost most of the residues involved in

substrate binding and catalysis, while one of them (#897)

conserves a large portion of the PS domain. Unexpectedly, two

mutants holding severe AL-2 truncations (#913 and #914) exhibit

higher carotenoid contents than #897 (Table 1). Although the

amount of carotenoids in these mutants is drastically reduced in

comparison to the wild type, the modest amounts of carotenoids

detected in #913 and #914 should be attributed to a leaky activity

maintained by the truncated enzymes.

Mutants with complete AL-2 polypeptides
The remaining four mutants contained point mutations in their

respective al-2 alleles (Fig. 6). Two of them, #900 and #910,

contained identical al-2 sequences, with a single A to C transversion,

which replaced a tyrosine residue by a serine (Fig. 6A). The affected

tyrosine residue is involved in the catalytic site and it is highly

conserved in fungal PSs, as shown by the comparison of examples

from distant taxonomic groups: ascomycetes, basidiomycetes and

zygomycetes (Fig. 6B). The occurrence of the same mutation in the

two mutants could be coincidental or the result of a former

misclassification.

The al-2 alleles from the mutants #4014 and #2666 contained

numerous point mutations compared to the standard wild type of

N. crassa. Most of the mutations were silent, affecting third codon

positions, and two mutations were located in the second intron,

with no predictable consequences on intron splicing. Some of the

mutations coincided in both strains, indicating a common origin

(discussed below). Concerning the protein sequence, the predicted

#2666 AL-2 polypeptide differed in 4 amino acids from the

standard wild-type AL-2 sequence (Fig. 6A). Three changes

(leading to V, L and P, Fig. 6A) affect non-conserved residues

(mutations 1, 3 and 4 in Fig. 6B), and are unlikely to have

significant consequences on AL-2 activity. In contrast, the fourth

Figure 4. Detection of a carotenoid-like pigment in al-2 mutants. A: Absorption spectra of the crude carotenoid samples from the cultures of
the mutants #896 and the null mutants Dal-1 and Dal-2 incubated 48 h in the dark at 30uC and 24 h under illumination at 8uC. Relevant peak
wavelengths are indicated. The spectrum of the wild type sample (WT) diluted about 150 times is shown for comparison. B: HPLC profiles of the
carotenoid mixtures from the samples of the mutants displayed on the left. Absorption spectra of the major peaks are shown in inner boxes.
doi:10.1371/journal.pone.0021948.g004

al-2 Mutations in Neurospora

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21948



change replaced a highly conserved tyrosine residue by aspartic

acid (Fig. 6A and mutation 2 in Fig. 6B). This mutation, located in

the cyclase domain, is very likely to cause the carotenoid pattern

exhibited by the mutant #2666, similar to that of JA26. The single

mutation found in the JA26 al-2 allele [22] affected a tryptophan

residue close to the replacement of valine by leucine (mutation 3 in

Fig. 6B, tryptophan indicated in grey); however, the latter

mutation is unlikely to have an effect, as suggested by the

occurrence of leucine at the same position in other fungal

enzymes.

The AL-2 protein predicted for the mutant #4014 differs from

the wild type enzyme in two amino acids, both of them located in

the PS domain. One of the mutations affects the same base and

amino acid than one of the mutations found in the strain #2666

(segment 4, Fig. 6A and B). The second mutation, more likely to

produce the biosynthetic defect exhibited by the mutant, replaces

a valine residue by one of glutamic acid. A valine was also found at

this position in the F. fujikuroi enzyme, but the residue was a

cysteine in the other enzymes checked. This residue is adjacent to

a highly conserved alanine residue, involved in the catalytic site.

The proximity of this mutation to the critical residue may explain

the leaky phenotype exhibited by the mutant (Table 1).

The sequences of the al-2 alleles from the mutants #2666 and

#4014 suggest their origin from a different genetic background

than that of the other mutants under investigation. The eight silent

changes present in both mutant alleles compared to the standard

wild type gene should be already present in the preceding wild

type al-2 allele. The original #4014 mutant was backcrossed seven

times with the St. Lawrence wild type strain (data provided by the

FGSC collection). It seems very plausible that the five additional

silent mutations in the upstream al-2 sequence identified in the

mutant #2666 were also present in the original wild type strain.

The current sequences are explained by the occurrence of an

internal recombination in one of the backcrosses that led to the

loss of these mutations (Fig. 6C). Probably, the valine and the

leucine found in the cyclase domain of #2666 were not due to de

novo mutations, but were present in the original wild type allele

(wild type 2 in Fig. 6C). However, we cannot discard the possibility

that the mutations were introduced by the UV mutagenesis

process. Additionally, the available information indicates that

either an A-.P mutation occurred in the generation of #2666 or

a P-.A mutation occurred in the generation of #4014. We

cannot distinguish between these two alternatives, but it seems

evident that either proline or alanine were present in this wild type

allele instead of threonine (mutation 4 in Fig. 6B).

Cyclase activity of two AL-2 mutant enzymes
The carotenoid pattern of the mutant #2666 reveals a defect in

the formation of cycled carotenoids, explained by the mutation in

the cyclase domain of the al-2 gene (Fig. 6). Additionally, this

mutant produced less carotenoids than the wild type, pointing to a

partial defect in PS activity. This effect could be related to the

proline found at position 262, or it could be an indirect effect of

the Y-.D mutation in the cyclase domain. A lower carotenoid

content is also exhibited by the mutant JA26, whose mutation was

mentioned above. However, another mutant with a single

mutation in the cyclase domain, JA28, exhibited defective cyclase

activity, but accumulated similar amounts of carotenoids as the

Figure 5. Predicted AL-2 truncated polypeptides in the mutants #896, #897, #904, #913 and #914. A: Scheme of the AL-2 wild type
polypeptide and locations of the different mutations indicated in the text. The cyclase and phytoene synthase domains are indicated in orange and
blue colors, respectively. Vertical bars: substitutions; upside triangles: small deletions; downside triangle: small insertion. FGSC numbers of the
mutants are indicated for each mutation. B: Above: Map of conserved residues upon Clustal comparison of AL-2 from N. crassa (accession number
L27652), with the cyclase/PS enzymes CarRA from F. fujikuroi (AJ426417) and P. blakesleeanus (CAB93661), CarRP from M. circinelloides (AJ250827),
CrtYB from X. dendrorhous (AAO47570), and Car2 from U. maydis (UM06287). Full bars in the scheme indicate identical positions in the six proteins,
2/3 bars indicate conserved substitutions, and 1/3 bars indicate semi-conserved-substitutions (‘‘*’’, ‘‘:’’ and ‘‘.’’ symbols in the Clustal alignment,
respectively). Small vertical bars over the scheme indicate amino acids involved in phytoene synthase catalytic domain. The small grey boxes indicate
two short amino acid segments associated with substrate-Mg2+ binding. Below, schematic representation of predicted AL-2 truncated proteins.
Random amino acid segments of the same reading frame are indicated with the same color at the carboxy ends of the polypeptides. The numbers
below indicate predicted protein lengths plus number of random amino acids in the cases of frame-shift mutations.
doi:10.1371/journal.pone.0021948.g005

al-2 Mutations in Neurospora
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Figure 6. Point mutations in the al-2 alleles in the mutants #2666, #4014, #900 and #910. A: Schematic representation of the mutations
on the AL-2 polypeptide. Amino acid changes are indicated by black bars and silent mutations are indicated by green bars. Upper bars: mutations in
strain #2666. Lower bars, mutations in strain, #4014. Dashed bar: mutation in strains #900 and #910. B: Comparison of the six polypeptide
segments containing amino acid changes, taken from the Clustal analysis of AL-2 with the five fungal cyclase/PS enzymes mentioned in the legend of
Figure 4. The location of the six protein segments are shown below the map of conserved residues. Numbers in parentheses indicate amino acids in
the AL-2 protein. The sequences representing the mutations from each strain are boxed, and the affected residues are highlighted on blue
background. In sequence number 3, the tryptophan affected in the mutant JA26 is indicated on yellow background. C: Proposed molecular events
leading to the formation of the mutants #2666 and #4014. The X represents a cross-over in one of the backcrosses. Mutations are indicated with
bars, as displayed in panel A. Relevant amino acid changes are boxed. Direct evidence for wild-type sequence is only available for wild type 1.
doi:10.1371/journal.pone.0021948.g006
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wild type [22]. These results suggest that certain mutations in the

cyclase domain, but not others, interfere with the PS activity.

To learn more on the crossed effects between the two AL-2

enzymatic functions, we investigated the cyclase activity of two

mutants with truncated PS domains, #896 and #897, in

comparison to the wild type. For this purpose, cDNA versions of

the respective al-2 alleles were cloned under control of the lac

promoter in a plasmid with bacterial activities leading to lycopene

production. Transformation of appropriate E. coli strains with the

corresponding plasmids showed that the wild type AL-2 enzyme

efficiently converted lycopene into c-carotene and b-carotene

(Fig. 7), demonstrating the functionality of the AL-2 cyclase

domain in our in vivo assays. Unexpectedly, the two truncated

AL-2 proteins exhibited very different properties. The #896

protein, predicted to contain a severely truncated polypeptide,

exhibited a cyclase activity similar to that of the wild type enzyme.

However, no cyclase activity was detected upon expression of the

#897 protein under the same conditions. Both mutants have an

intact cyclase domain, but the truncated PS segment of #897

interferes with the cyclase function, an effect not exhibited by the

#896 protein.

Taken together, the available data show that different mutations

at either of the two AL-2 domains may interfere with the activity of

the other, presumably affecting protein structure or stability,

providing support to the function of this bifunctional enzyme as a

single polypeptide. In favor of this hypothesis, the predicted

protease cleavage site found at the boundary of the cyclase and PS

domains in the P. blakesleeanus CarRA protein is not conserved in

the orthologous enzymes from other fungi, including AL-2 [21].

Gene expression in al-2 mutants
Neurosporaxanthin biosynthesis is induced by light in N. crassa

mycelia by the White Collar photoreceptor system, which activates

the transcription of the enzymatic genes [34]. Thus, lack of

carotenoids in N. crassa mutants may also be explained by a

regulatory defect in the photoinduction mechanism. We carried

out experiments to determine the mRNA levels of genes al-1 and

al-2 in the wild type strain and al-2 mutants grown in darkness or

after 30 min illumination, sufficient for a full photoresponse under

our culture conditions [13]. As expected, al-1 and al-2 mRNA

augmented in the wild type strain upon illumination. However,

photoinduction of al-2 mRNA was reduced 2 to 4-fold in the al-2

mutants compared to the control strain while that of al-1 was

essentially unaffected (Fig. 8). This effect could be added to the

imputed enzymatic defects to explain the reduced carotenoid

content in these strains.

The attenuated al-2 photoinduction in the al-2 mutants is an

unexpected result, since the presumed alterations of the AL-2

enzyme should be independent of the WC-mediated regulation of

the gene. Furthermore, this effect was exhibited by al-2 but not by

al-1, although both genes are controlled by the same photoinduc-

tion system [35]. As a tentative explanation, al-2 mRNA stability

could be modulated by an unknown signal associated to the AL-2

enzymatic activity. Interestingly, a similar effect was formerly

reported for the al-2 orthologous gene of P. blakesleeanus, carRA:

mutants of this gene also exhibited a significant reduction in the

photoinduction of their own carRA mRNA [36]. Either in N. crassa

or in P. blakesleeanus, the explanation for this regulatory effect will

require further investigation.

Materials and Methods

Strains and growth conditions
The Neurospora crassa wild-type Oak Ridge 74-OR23-1A strain,

the FGSC mutants listed in Table 1, and the knock-out mutants

FGSC 17609 (Dal-1) and FGSC 17611 (Dal-2) were obtained from

the Fungal Genetics Stock Center [26]. JA26 was formerly

identified as a reddish al-2 mutant with a defect in the cyclase

domain [22]. Null mutations in FGSC 17609 and FGSC 17611

were generated as described [37]. The remaining mutants were

obtained by exposure to UV radiation, except FGSC 2666, that

was obtained by exposure to X-rays (information provided by

FGSC through its mutant strain list).

For carotenoid analyses, the strains were grown in Petri dishes

with 25 ml of Vogel’s liquid medium [38] supplemented with

0.2% Tween 80 to suppress aerial development and conidia

formation. The plates were inoculated with 105 conidia and

incubated for 2 days in the dark at 30uC, followed by 1 day in the

light, either at 30uC or at 8uC. Illumination conditions were

4 W m22 white light obtained with two fluorescent tubes. In the

Figure 7. In vivo activity of AL-2 alleles in lycopene-producing E. coli strains. HPLC analyses of the carotenoids accumulated in E. coli cell
expressing the genes crtE, crtB and crtI from E. herbicola and the al-2 alleles either from the wild type (pFarbeR-AL2) or mutants #896 and #897
(pFarbeR-896 and -897, respectively). Absorption spectra of the major peaks and carotene identifications are shown in inner boxes.
doi:10.1371/journal.pone.0021948.g007
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case of 8uC incubation, the plates were precooled in a 4uC
chamber for 1 h before light exposure. For RNA extractions and

subsequent cDNA generation, the strains were incubated for 1 h

under light to induce al-2 expression.

For HPLC analyses of carotenoid content in reddish al-2

mutants, incubation and light exposure were the same, except that

the cultures were grown in 250 ml Erlenmeyer flasks with 100 ml

Vogel’s medium. For genomic DNA extraction, the strains were

grown for 2 days at 30uC in 100 ml Erlenmeyer flasks with 40 ml

Vogel’s medium. In both cases, incubations were done in a rotary

shaker at 200 rpm.

For expression analyses, the strains were grown for 2 days at

30uC in the dark in Petri dishes with 25 ml of liquid Vogel’s

medium, inoculated with 105 conidia, and supplemented with

0.2% Tween 80. Mycelia were collected before and after 30 min

exposure to 10 W m22 white light. Samples were dried on filter

paper, frozen in liquid nitrogen, and stored at 280uC until use.

Sequencing of al-2 alleles
Genomic DNA was extracted from mycelial samples washed by

filtration, frozen in liquid nitrogen, and ground into a fine powder

in a cold mortar. DNA extractions were done with Genelute Plant

Genomic DNA Miniprep Kit (Sigma, St Louis, MO, USA).

Sequences from the wild type and nine al-2 mutant alleles were

obtained from three overlapping PCR products generated with

primers 59-CCCAAGATGTACGACTATGC-39 and 59-TCGA-

GCTTCGTCCCCGATC-39, covering 6 bp upstream of the start

codon and the first 700 bp of the al-2 coding sequence, 59-

GACGGTGCTCCCGATGTTC-39 and 59-GAGTCCATCTC-

GAAACCCTTG-39, covering a 750 bp internal coding segment,

and 59-AGACAGCGTTCCCTCCCTG-39 and 59- CACACCA-

CATCGAACTAGCC-39, giving a 746 bp segment extending

along the last 695 bp of the coding sequence and 51 bp

downstream of the stop codon. Sequences of each allele were

determined from two clones obtained from independent PCR

reactions, and compared with that of the wild type Neurospora strain

(accession number L27652). DNA sequencing of PCR products

was achieved by Sistemas Genómicos (Valencia, Spain). PCR

reactions were performed with 50 ng genomic DNA samples of

the fungal strain, 0.2 mM dNTPs, 1 mM of each primer, and

0.25 ml of the Expand PCR System (Boehringer, Mannheim,

Germany). Reaction mixtures were heated at 94uC for 2 min

followed by 35 cycles of denaturation (94uC, 20 s), annealing

(52uC, 20 s) and polymerization (72uC, 1 min) and by a final

polymerization at 72uC for 5 min in a thermocycler (Techne

ftgene2d). Amplified DNA fragments were purified from agarose

gels with the GFXTM PCR DNA and Gel Band Purification Kit

(Amersham Biosciences, NJ, USA).

In vivo assays of cyclase activity
To check cyclase activity of the selected AL-2 enzymes,

corresponding cDNAs were obtained by PCR from cDNA samples

synthesized from total RNA of the mutants with the SuperScript III

Reverse Transcriptase kit (Invitrogen, Carlsbad, CA, USA). PCR

reactions were performed with Phu Polymerase (Phusion High

Fidelity DNA Polymerase, New England Biolabs, Ipswich, MA,

USA), using the primers 59-ATGTACGACTATGCTTTTGT-39

and 59-CACACCACATCGAACTAGCC-39. The reactions con-

sisted of 30 s of initial denaturation at 98uC, 32 cycles of

denaturation (98uC, 15 s), annealing (58uC, 30 s) and polymeriza-

tion (72uC, 90 s) and by a final polymerization at 72uC for 10 min.

RNA samples were obtained with the RNeasy Plant Mini Kit

(Qiagen, Hilden, Germany). The resulting PCR products were

cloned in the vector pBLUNT (Zero Blunt PCR cloning Kit,

Invitrogen). Lack of introns and sequence integrity, including the

expected mutations, were checked by sequencing from M13 F and

R primers.

The cloned cDNAs, obtained from wild type strain and mutants

#896 and #897, were amplified by PCR with primers 59-

AAGCGGCCGCGCGCCCAATACGC-39 and 59-CGTTTCTA-

GAGGCACACCACATCG-39, which contain NotI and XbaI

restriction sites for generation of the al-2 coding sequence under

control of the Escherichia coli lac promoter. The PCR products were

purified and subcloned in the plasmid pFarbeR [25], that contains

three genes from Erwinia herbicola coding for enzymes needed for

lycopene synthesis in E. coli: CrtE (GGPP synthesis from FPP and

IPP), CrtB (phytoene synthesis from GGPP) and CrtI (lycopene

synthesis from phytoene). The resulting plasmids were checked by

restriction analyses and introduced by transformation in the E. coli

TOP 10 strain (Invitrogen).

The E. coli transformants harboring the plasmid allowing

lycopene production and expressing different al-2 alleles were

grown at 24uC in LB medium supplemented with 50 mg l21

kanamycin to reach an OD600 of 0.6. Then, 100 mM isopropyl-b-

D-thiogalactopyranoside (IPTG) was added to induce al-2 gene

expression and the cultures were incubated at 20uC overnight.

Finally, the cells were collected by centrifugation and used for

carotenoid extractions.

Figure 8. Effect of light on transcript levels of genes al-1 and
al-2 in the wild type and al-2 mutants. Real-time RT-PCR analyses of
RNA samples isolated from the wild-type strain and the al-2 mutants
under investigation, grown in the dark (dark bars) or illuminated for
30 min (light bars). Data represent average and standard deviations of
four determinations from two independent experiments. Relative
mRNA levels for each gene are referred to the value from illuminated
wild type samples in each set of experiments.
doi:10.1371/journal.pone.0021948.g008
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Carotenoid analyses
The mycelial samples were dried on filter paper and lyophilized

before extraction. Carotenoids were extracted by breaking the dry

mycelial samples in a FastPrepH 24 device (MP Biomedicals, Irvine,

CA), and analyzed as described by Arrach et al. [22]. Total

carotenoid contents were estimated from their maximal absorption

peaks using the extinction coefficient for neurosporaxanthin,

E (1 mg l21, 1 cm) = 171.5. For low carotenoid amounts

(,20 mg g21 dry wt), the samples were concentrated and measured

in a 100 ml micro cell.

HPLC analyses of the carotenoid contents of the wild type, JA26

and #2666 were done with a Hewlett Packard 1100 series system

(Waldbronn, Germany), equipped with a photodiode array

detector and a C30-reversed phase column (Waters, hypersil

ODS). The separations were performed using MeOH/tert-

butylmethylether, 1:1, v/v (solvent A) and MeOH/tertbutylmethy-

lether/water, 5:1:1, v/v/v (solvent B). The column was developed

at a flow rate of 1 ml min21 with a linear gradient from 100%

solvent B to 57% solvent A/43% solvent B within 45 min,

followed by a linear gradient to 100% solvent A with a flow rate of

2 ml within 25 min. The flow was then increased to 2 ml min21 of

100% solvent B maintaining these conditions for 11 min.

For extraction of carotenoids in E. coli, the cultures were

centrifuged and the pellets were resuspended in 5 ml acetone and

subjected to sonication. After centrifugation, epiphases were

discarded and organic phases were isolated, vacuum-dried and

resuspended in 80 ml CHCl3 for HPLC analyses. HPLC

separations were achieved with a Waters system Alliance 2695

(Eschborn, Germany) equipped with a photodiode array detector

(model 996) and a YMC-Pack C30-reversed phase column

(25064.6 mm i.d., 5 mm; YMC Europe, Schermbeck, Germany),

using the solvents A (MeOH:TBME:H2O 5:1:1 v/v/v) and B

(MeOH:TBME 7:13 v/v). The column was developed first at a

flow-rate of 1 ml min21 for 40 min with solvent A, then 10 min

with solvents A:B 1:1, followed by 20 min at a flow-rate of

2 ml min21 with solvent B.

Expression analyses
Mycelia were lysed in a Fast-PrepH-24 homogenizer (MPTMBio-

medicals LLC Europe, France) using zirconia microbeads and 2

pulses of 30 s at 6 m s21. Total RNA was isolated using the

RNeasy Plant Mini kit (Qiagen, Valencia, CA, USA) and treated

with rDNAse I according to the manufacturer (USB, Affymetrix,

Cleveland, OH, USA). Total RNA concentration was estimated

using a Nanodrop ND-1000 spectrophotometer (NanoDrop Tech-

nologies, Wilmington, DE, USA).

RT-PCR mixtures are detailed in Limón et al. [39]. RT-PCRs

were performed in an ABI 7500 (Applied Biosystems, Foster City,

CA, USA) using a PCR program described by Estrada et al. [13].

Genes and primer sets to analyze gene expression by RT-PCR

were: al-1 (59-TCCAATGTTTCCCCAACTACAAC-39 and 59-

CGGTGGTGGGCGAGAA-3), al-2 (59-CGCTATCGCCTACC-

CCATT-39 and 59-CGACGAGGAAGCCTGTTTG-39), and

NCU04054 (b-tubulin gene, used as endogenous control for

constitutive expression, 59-CGTCCATCAGCTCGTTGAGA-39

and 59-CGCCTCGTTGTCAATGCA-39).

Primer design and relative gene expression were done as

described by Rodrı́guez-Ortiz et al. [40]. Each RT-PCR analysis

was performed four times (duplicated samples from two indepen-

dent experiments). Error bars indicate standard deviation.

Sequence analyses
Sequence alignments were achieved with the ClustalX 1.83

program [41]. Neurospora DNA sequences were obtained through

the server www.broad.mit.edu/annotation/fungi/ of the Broad

Institute (Cambridge, MA. USA). Data on residues involved in PS

catalytic domains are mentioned in gene bank accession number

for al-2, AAA19428, according to data for Trans-Isoprenyl

Diphosphate Synthases, head-to-head, from the NCBI conserved

domain database [42]; NCBI server: www.ncbi.nlm.nih.gov/

Structure/index.shtml.
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